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Preface

With the availability of Big Data, one may have more information to iden-

tify the underlying causality of economic relationship or forecast impor-

tant macroeconomic variables or indicators. However, when large volume

of data is involved, large dimension could be an issue in the statistical infer-

ence of traditional regression models. This book is motivated by the recent

development in panel data models with large individuals/countries (n) and

large amount of observations over time (T ). It introduces testing for cross-

sectional dependence and structural breaks in large panels. This book also

summarizes important advancement in estimating factor-augmented panel

data models and group patterns in panels in recent literature.

This book can be considered complementary to popular panel data

econometrics textbooks such as Baltagi (2013), Hsiao (2014) and Pesaran

(2015). It is designed for high-level graduate courses in econometrics and

statistics. It can be used as a reference for researchers. In specific, Chap-

ters 2 and 4 drew heavily from our published works with Badi H. Baltagi.

Chapters 3 and 5 summarize important methods from the recent literature.

We would like to thank Badi H. Baltagi for his collaborative work that

stimulated our interest in writing this book. We would also like to thank

Kunpeng Li for sharing his code, which is used to produce empirical results

in Chapter 3. Wei Wang and Mengying Yuan are also acknowledged for

helping read the drafts and research assistance. We also wish to thank

World Scientific Publishing for giving us the opportunity to undertake this

work.
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As a personal note, the authors would like to thank their family mem-

bers. Chihwa thanks his wife Ivy Liu who convinced him of the need for

writing this book. Qu wishes to thank his loving wife and parents. The com-

pletion of this book would not have been possible without their support.
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Chapter 1

Introduction

This book is motivated by the recent development in high-dimensional panel

data models with large amount of individuals/countries (n) and observa-

tions over time (T ). Specifically, it introduces four important research topics

in large panels, including testing for cross-sectional dependence, estima-

tion of factor-augmented panel data models, structural changes and group

patterns in panels in the following four chapters. To address these issues,

we examine the properties of traditional tests and estimators in large-

dimensional setup. In addition, we also take advantage of some techniques

in Random Matrix Theory and Machine Learning.

Chapter 2 covers testing for cross-sectional dependence in panel data

regression models with large n and large T . Cross-sectional dependence,

described as the interaction between cross-sectional units (e.g., households,

firms and states, etc.), has been well discussed in the spatial economet-

rics literature. Intuitively, dependence across “space” can be regarded as

the counterpart of serial correlation in time series. It could arise from

the behavioral interaction between individuals, e.g., imitation and learn-

ing among consumers in a community, or firms in the same industry. This

has been widely studied in game theory and industrial organization. It could

also be due to unobservable common factors or common shocks popular in

macroeconomics.

In recent literature, cross-sectional dependence among individuals is a

concern when n is large. As serial correlation in time-series analysis, the

1
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cross-sectional of dependence/correlation leads to efficiency loss for least

squares and invalidates conventional t-tests and F -tests which use standard

variance–covariance estimators. In some cases, it could potentially result

in inconsistent estimators (Lee, 2002; Andrews, 2005). Several estimators

have been proposed to deal with cross-sectional dependence, including the

popular spatial methods (Anselin, 1988; Anselin and Bera, 1998; Kelejian

and Prucha, 1999; Kapoor, Kelejian and Prucha, 2007; Lee, 2007; Lee and

Yu, 2010), and factor models in panel data (Pesaran, 2006, Kapetanios,

Pesaran and Yamagata, 2011; Bai, 2009). However, before imposing any

structure on the disturbances of our model, it may be wise to test the

existence of cross-sectional dependence.

There has been a lot of work on testing for cross-sectional dependence in

the spatial econometrics literature, see Anselin and Bera (1998) for cross-

sectional data and Baltagi, Song and Koh (2003) for panel data, to men-

tion a few. The latter derives a joint Lagrange multiplier (LM) test for

the existence of spatial error correlation as well as random region effects

in a panel data regression model. Panel data provide richer information

on the covariance matrix of the errors than cross-sectional data. This is

especially relevant for the off-diagonal elements which are of particular

importance in determining cross-sectional dependence. With panel data

one can test for cross-sectional dependence without imposing ad hoc spec-

ifications on the error structure generating the covariance matrix, e.g., the

spatial autoregressive model in the spatial literature, or the single or mul-

tiple factor structures imposed on the errors in the macro literature. Ng

(2006) and Pesaran (2004) propose two test procedures based on the sam-

ple covariance matrix in panel data. Ng (2006) develops a test tool using

spacing method in a panel model. Pesaran (2004) proposes a cross-sectional

dependence (CD) test using the pairwise average of the off-diagonal sam-

ple correlation coefficients in a seemingly unrelated regressions model. The

CD test is closely related to the RAVE test statistic advanced by Frees

(1995). Unlike the traditional Breusch-Pagan (1980) LM test, the CD test

is applicable for a large number of cross–sectional units (n) observed over

T time periods. In Pesaran (2015), the CD test is interpreted as a test

for weak cross-sectional dependence. Sarafidis, Yamagata and Robertson

(2009) develop a test for cross-sectional dependence based on Sargan’s

difference test in a linear dynamic panel data model, in which the error

cross-sectional dependence is modeled by a multifactor structure. Hsiao,

Pesaran and Pick (2012) propose a LM-type test for nonlinear panel data
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models. For a recent survey of some cross-sectional dependence tests in

panels, see Moscone and Tosetti (2009). Baltagi, Feng and Kao (2011)

propose a test for sphericity following John (1972) and Ledoit and Wolf

(2002) in the statistics literature. Sphericity means that the variance–

covariance matrix is proportional to the identity matrix. The rejection of

the null could be due to cross-sectional dependence or heteroskedasticity

or both.

Based on Baltagi, Feng and Kao (2012), Chapter 2 discusses testing pro-

cedures in the fixed effects panel data models, including static and dynamic

cases. It is well known that the standard Breusch and Pagan (1980) LM

test for cross-equation correlation in a SUR model is not appropriate for

testing cross-sectional dependence in panel data models when n is large and

T is small. We derive the asymptotic bias of this scaled version of the LM

test in the context of a fixed effects panel data model. This asymptotic bias

is found to be a constant related to n and T , which suggests a simple bias

corrected LM test for the null hypothesis.

There are two ways of modeling cross-sectional dependence: spatial mod-

els and factor models. In Chapter 3, we introduce three leading approaches

of estimating large panel data regression models with an error factor struc-

ture: the common correlated effects (CCE) approach proposed by Pesaran

(2006), Bai’s (2009) iterated principal components (IPC) approach and the

maximum likelihood estimation (MLE) method proposed by Bai and Li

(2014). The use of these approaches is illustrated by an empirical example

in the context of the productivity of infrastructure investment in China.

Chapter 4 examines the issue of structural changes in large panel

data regression models. In the literature on panel data models with large

time dimension, e.g., Kao (1999), Phillips and Moon (1999), Hahn and

Kuersteiner (2002), Alvarez and Arellano (2003), Phillips and Sul (2007),

Pesaran and Yamagata (2008), Hayakawa (2009), to name a few, the

implicit assumption is that the slope coefficients are constant over time.

However, due to policy implementation or technological shocks, structural

breaks are possible especially for panels with a long time span. Conse-

quently, ignoring structural breaks may lead to inconsistent estimation and

invalid inference.

Based on Baltagi, Feng and Kao (2016, 2019), Chapter 4 extends

Pesaran’s (2006) work on CCE estimators for large heterogeneous panels

with a general multifactor error structure by allowing for unknown common

structural breaks in slopes and unobserved factor structure. We propose
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a general framework that includes heterogeneous panel data models and

structural break models as special cases. The least squares method proposed

by Bai (1997a, 2010) is applied to estimate the common change points, and

the consistency of the estimated change points is established. We find that

the CCE estimators have the same asymptotic distribution as if the true

change points were known. Additionally, Monte Carlo simulations are used

to verify the main findings.

By considering both cross-sectional dependence and structural breaks

in a general panel data model, this chapter also contributes to the change

point literature in several ways. First, it extends Bai’s (1997a) time-series

regression model to heterogeneous panels, showing that the consistency of

estimated change points can be achieved with the information along the

cross-sectional dimension. This result confirms the findings of Bai (2010)

and Kim (2011). Second, it also enriches the analysis of common breaks

of Bai (2010) and Kim (2011) in a panel mean-shift model and a panel

deterministic time trend model by extending them to a regression model

using panel data. This makes it possible to allow for structural breaks and

cross-sectional dependence in empirical work using panel regressions. In

particular, our methods can be applied to regression models using large

stationary panel data, such as country-level panels and state/provincial-

level panels.

Regarding estimating common breaks in panels, Feng, Kao and Lazarova

(2009) and Baltagi, Kao and Liu (2012) also show the consistency of the esti-

mated change point in a simple panel regression model. Hsu and Lin (2012)

examine the consistency properties of the change point estimators for non-

stationary panels. More recently, Qian and Su (2016) and Li, Qian and Su

(2016) study the estimation and inference of common breaks in panel data

models with and without interactive fixed effects using Lasso-type methods.

Westerlund (2019) establishes the consistency of least squares estimator of

break point in a mean-shift model with fixed T , using the CCE approach to

deal with unobserved error factors. In terms of detecting structural breaks

in panels, some recent literature includes Horváth and Hušková (2012) in

a panel mean-shift model with and without cross-sectional dependence, De

Wachter and Tzavalis (2012) in dynamic panels, and Pauwels, Chan and

Mancini-Griffoli (2012) in heterogeneous panels, Oka and Perron (2018) in

multiple equation systems, to name a few.

Chapter 5 studies heterogeneity and grouping issues in large dimen-

sional panel data models. When a large number of individuals/countries

are involved in the regression, it is costly to allow for individual unobserved
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heterogeneity, for example, fixed effects, which may lead to incidental

parameter problem in the regression. One way to balance between model-

ing heterogeneity and incidental parameters is grouping. With within-group

homogeneity and cross-group difference, we can still allow for a certain

degree of heterogeneity and avoid incidental parameter problem.
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Chapter 2

Tests for Cross-Sectional
Dependence in Fixed Effects

Panel Data Models

In recent literature, cross-sectional dependence among individuals is a con-

cern when n is large. As serial correlation in time-series analysis, the cross-

sectional of dependence/correlation could invalidate inference. In some

cases, it could even render inconsistent estimation. This chapter discusses

testing procedures in the fixed effects panel data models, including static

and dynamic cases.

In the fixed n case and as T → ∞, the Breusch and Pagan’s (1980)

LM test can be applied to test for the cross-sectional dependence in panels.

Under the null hypothesis of cross-sectional independence in errors, the test

statistic is asymptotically Chi-square distributed with n(n − 1)/2 degrees

of freedom. However, this test is not applicable when n → ∞. Therefore,

Pesaran (2004) proposes a scaled version of this LM test, denoted by CDlm

which has a N(0, 1) distribution as T → ∞ first, followed by n → ∞. As

pointed out by Pesaran (2004), the CDlm test is not correctly centered at

zero for finite T and is likely to exhibit large size distortions as n increases.

To solve this problem, Pesaran (2004) proposes a diagnostic test based on

the average of the sample correlations, which he denotes by the CD test,

and this is valid for large n. Additionally, Pesaran, Ullah and Yamagata

(2008) develop a bias-adjusted LM test using finite sample approximations

in the context of a heterogeneous panel model.

Based on Baltagi, Feng and Kao (2012), this chapter introduces tests

for cross-sectional dependence in panel data models. In specific, we derive

7
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the asymptotic bias of this scaled version of the LM test in the context of

a fixed effects homogeneous panel data model. Because it is based on the

fixed effects residuals, we denote it by LMP to distinguish it from CDlm. The

asymptotic bias of LMP is found to be a constant related to n and T , sug-

gesting a simple bias corrected LM test for the null hypothesis. This chap-

ter differs from the bias-adjusted LM test of Pesaran, Ullah and Yamagata

(2008) in that the latter assumes a heterogeneous panel data model, whereas

this chapter assumes a fixed effects homogeneous panel data model. Also,

the bias correction derived in this chapter is based on asymptotic results

as (n, T ) → ∞, while the bias adjustment in Pesaran, Ullah and Yamagata

(2008) is obtained using finite sample approximation. Phillips and Moon

(1999) provide regression limit theory for panels with (n, T ) → ∞. Here, we

adopt the asymptotics used in the statistics literature for high-dimensional

inference, see Ledoit and Wolf (2002) and Schott (2005), to mention a few.

This literature usually deals with multivariate normal distributed variables

where the number of variables (in our case n) is comparably as large as the

sample size (T ). We find that under this joint asymptotics framework with

(n, T ) → ∞ simultaneously, the limiting distribution of the LMP statis-

tic is not standard normal under the assumption of a fixed effects model.

Consequently, it can suffer from large size distortions.

The organization of this chapter is as follows. Section 2.1 reviews several

LM tests for cross-sectional dependence in the literature. Section 2.2 derives

the limiting distribution of the LMP test in the raw data case. Section 2.3

derives a bias-corrected LM test in the context of a fixed effects model.

In Section 2.4, we show that the proposed bias-corrected LM test can be

extended to the dynamic panel data model. Section 2.5 reports the size

and power of the tests for cross-sectional dependence using Monte Carlo

experiments. Section 2.6 reviews the recent development in this topic. The

technical details are included in Section 2.7.

2.1. LM Tests for Cross-Sectional Dependence

Consider the heterogeneous panel data model:

yit = x′itβi + uit, for i = 1, . . . , n; t = 1, . . . , T, (2.1)

where i indexes the cross-sectional units and t the time-series observations.

yit is the dependent variable and xit denotes the exogenous regressors of

dimension k × 1 with slope parameters βi that are allowed to vary across

i. uit is allowed to be cross-sectionally dependent but is uncorrelated with
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xit. Let Ut = (u1t, . . . , unt)
′. The n× 1 vectors U1, U2, . . . , UT are assumed

i.i.d. N(0,Σu) over time. Let σij be the (i, j)th element of the n×n matrix

Σu. The errors uit are cross-sectionally dependent if Σu is nondiagonal, i.e.,

σij �= 0 for i �= j. The null hypothesis of cross-sectional independence can

be written as

H0 : σij = 0 for i �= j,

or equivalently as

H0 : ρij = 0 for i �= j, (2.2)

where ρij is the correlation coefficient of the errors with ρij =
σij√
σ2
i σ

2
j

.

Under the alternative hypothesis, there is at least one nonzero correlation

coefficient ρij , i.e., Ha : ρij �= 0 for some i �= j.

The OLS estimator of yit on xit for each i, denoted by β̂i, is consistent.

The corresponding OLS residuals ûit defined by ûit = yit − x′itβ̂i are used

to compute the sample correlation ρ̆ij as follows:

ρ̆ij =

(
T∑
t=1

û2it

)−1/2( T∑
t=1

û2jt

)−1/2 T∑
t=1

ûitûjt. (2.3)

In the fixed n case and as T → ∞, the Breusch and Pagan’s (1980) LM test

can be applied to test for the cross-sectional dependence in heterogeneous

panels. In this case, it is given by

LMBP = T

n−1∑
i=1

n∑
j=i+1

ρ̆2ij .

This is asymptotically distributed under the null as a χ2 with n(n − 1)/2

degrees of freedom. However, this Breusch–Pagan LM test statistic is not

applicable when n → ∞. In this case, Pesaran (2004) proposes a scaled

version of the LMBP test given by

CDlm =

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(
T ρ̆2ij − 1

)
. (2.4)

Pesaran (2004) shows that CDlm is asymptotically distributed as N(0, 1),

under the null, with T → ∞ first, and then n → ∞. However, as pointed

out by Pesaran (2004), for finite T , E[T ρ̆2ij − 1] is not correctly centered

at zero, and with large n, the incorrect centering of the CDlm statistic is

likely to be accentuated. Thus, the standard normal distribution may be a

bad approximation of the null distribution of the CDlm statistic in finite
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samples, and using the critical values of a standard normal may lead to

big size distortion. Using finite sample approximation, Pesaran, Ullah and

Yamagata (2008) rescale and recenter the CDlm test. The new LM test,

denoted as PUY’s LM test, is given by

PUY’s LM =

√
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(T − k)ρ̆2ij − μTij

σTij
, (2.5)

where

μTij =
1

T − k
tr[E(MiMj)]

is the exact mean of (T − k)ρ̆2ij and

σ2
Tij = {tr[E(MiMj)]}2a1T + 2 tr{E[(MiMj)

2]}a2T
is its exact variance. Here

a1T = a2T − 1

(T − k)2
,

a2T = 3

[
(T − k − 8)(T − k + 2) + 24

(T − k + 2)(T − k − 2)(T − k − 4)

]2
,

and Mi = I−Xi(X
′
iXi)

−1X ′
i, where Xi = (xi1, . . . , xiT )

′ contains T obser-

vations on the k regressors for the ith individual regression. PUY’s LM is

asymptotically distributed as N(0, 1), under the null, with T → ∞ first,

and then n→ ∞.

This chapter considers the fixed effects homogeneous panel data model

yit = α+ x′itβ + μi + vit, for i = 1, . . . , n; t = 1, . . . , T, (2.6)

where μi denotes the time-invariant individual effect. The k × 1 regressors

xit could be correlated with μi, but are uncorrelated with the idiosyncratic

error vit. This is a standard model in the applied panel data literature

and differs from (2.1) in that the β′
i’s are the same, and heterogeneity is

introduced through the μ′
i’s. The intercept α appears explicitly so that the

regressor vector xit includes only time-variant variables. Throughout our

derivations for the fixed effects model, we require the following assumptions.

Assumption 2.1. n
T → c ∈ (0,∞) as (n, T ) → ∞.

c is a nonzero bounded constant. This assumption approximates the

case where the dimension n is comparably as large as T .
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For a static panel data model, we assume the following.

Assumption 2.2. (i) The n × 1 vectors of idiosyncratic distur-

bances Vt = (v1t, . . . , vnT )
′, t = 1, . . . , T, are i.i.d. N(0,Σν) over time;

(ii) E[vit|xi1, . . . , xiT ] = 0 and E[vit|xj1, . . . , xjT ] = 0, i = 1, . . . , n,

t = 1, . . . , T ; (iii) For the demeaned regressors x̃it = xit − 1
T

∑T
s=1 xis,

1
T

∑T
t=1 x̃it,

1
T

∑T
t=1 x̃itx̃

′
jt are stochastic bounded for all i = 1, . . . , n

and j = 1, . . . , n, and lim(n,T )→∞ 1
nT

∑n
i=1

∑T
t=1 x̃itx̃

′
it exists and is

nonsingular.

The normality assumption (Assumption 2.2(i)) may be strict but it is

a standard assumption in the statistical literature and is also assumed by

Pesaran, Ullah and Yamagata (2008). Other distributions will be examined

for robustness checks in the Monte Carlo experiments. Assumption 2.2(ii)

is standard. Assumption 2.2(iii) excludes nonstationary or trending regres-

sors. Under these assumptions, the within estimator β̃ is
√
nT -consistent.

This estimator is obtained by regressing ỹit = yit− 1
T

∑T
s=1 yis on x̃it. The

corresponding within residuals given by v̂it = ỹit−x̃′itβ̃ are used to compute

the sample correlation ρ̂ij as follows:

ρ̂ij =

(
T∑
t=1

v̂2it

)−1/2( T∑
t=1

v̂2jt

)−1/2 T∑
t=1

v̂itv̂jt. (2.7)

For a dynamic panel data model with the lagged-dependent variable

as a regressor, more assumptions are needed. We will discuss this case in

Section 2.4.

The scaled version of the LMBP test suggested by Pesaran (2004) but

now applied to the fixed effects model is given by

LMP =

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(
T ρ̂2ij − 1

)
. (2.8)

This replaces ρ̆ij with ρ̂ij and it now tests the null given in (2.2) only applied

to the remainder disturbance vit. In order to see this, let uit = μi+vit denote

the disturbances in (2.6). The fixed effects estimator wipes out the individ-

ual effects, and that is why it does not matter whether the μ′
i’s are correlated

with the regressors or not. The test for no cross-sectional dependence of

the disturbances given in (2.2) becomes a test for no cross-sectional depen-

dence of the vit. This LMP test, for the fixed effects model (2.8), suffers
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from the same problems discussed by Pesaran (2004) for the corresponding

CDlm statistic (2.4) for the heterogeneous panel model. We show that it

will exhibit substantial size distortions due to incorrect centering when n is

large. Unlike the finite sample adjustment in Pesaran, Ullah and Yamagata

(2008), this chapter derives the asymptotic distribution of the LMP statistic

under the null as (n, T ) → ∞, and proposes a bias corrected LM test. The

asymptotics are done using the high-dimensional inference in the statistics

literature, see Ledoit and Wolf (2002) and Schott (2005), to mention a few.

Our derivation begins with the raw data case and then extends it to a fixed

effects regression model. We find that in a fixed effects panel data model,

after subtracting a constant that is a function of n and T , the LMP test is

asymptotically distributed, under the null, as a standard normal. Therefore,

a bias-corrected LM test is proposed.

2.2. LMP Test in the Raw Data Case

In the raw data case, the n × 1 vectors Z1, Z2, . . . , ZT are a random

sample drawn from N(0,Σz). The tth observation Zt has n components,

Zt = (z1t, . . . , znt)
′. The null hypothesis of independence among these n

components is the same as (2.2) but now pertaining to Σz rather than

Σu. For fixed n, and as T → ∞, the traditional LM test statistic is

T
∑n−1

i=1

∑n
j=i+1 r

2
ij , which converges in distribution to χ2

n(n−1)/2 under the

null of independence. The sample correlation rij is defined as

rij =

(
T∑
t=1

z2it

)−1/2( T∑
t=1

z2jt

)−1/2 T∑
t=1

zitzjt. (2.9)

However, as the dimension n becomes as comparably large as T , this tra-

ditional LM test becomes invalid. A scaled LM test statistic

LMz =

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(
Tr2ij − 1

)
(2.10)

is thus considered. This LMz statistic (2.10) is closely related to the test

statistic proposed by Schott (2005)

n−1∑
i=1

n∑
j=i+1

r2ij −
n(n− 1)

2T
.
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For high-dimensional data, as n/T → c ∈ (0,∞), Schott (Theorem 1, 2005)

shows that under the null of independence,

n−1∑
i=1

n∑
j=i+1

r2ij −
n(n− 1)

2T

d→ N

(
0, lim

(n,T )→∞
n(n− 1)(T − 1)

T 2(T + 2)

)
(2.11)

or, equivalently, that√
T 2(T + 2)

n(n− 1)(T − 1)

⎡⎣n−1∑
i=1

n∑
j=i+1

r2ij −
n(n− 1)

2T

⎤⎦ d→ N(0, 1).

Using Schott’s (2005) result and the fact that√
T 2(T + 2)

n(n− 1)(T − 1)

⎡⎣n−1∑
i=1

n∑
j=i+1

r2ij −
n(n− 1)

2T

⎤⎦ =

√
T + 2

T − 1
LMz,

it is straightforward to infer that the limiting distribution of LMz is N(0, 1)

under the null. Srivastava (2005, Theorem 5.1) also derives the null limiting

distribution of the LMz statistic given in (2.10) using T → ∞ and focusing

on the case where T = O(nδ) where 0 < δ ≤ 1.

2.3. A Bias-Corrected LM Test in a Fixed Effects Panel

Data Model

This section derives the limiting distribution of the LMP test defined in

(2.8). This tests the null of no cross-sectional dependence in the fixed effects

regression model given in (2.6). The null hypothesis of no cross-sectional

dependence is the same as (2.2) but now pertaining to Σν rather than Σu.

Theorem 2.1. Under Assumptions 2.1, 2.2 and the null hypothesis of no

cross-sectional dependence

LMP − n

2(T − 1)

d→ N(0, 1).

The key step of proof of Theorem 2.1 is provided in Section 2.7. The

asymptotics are derived under the joint asymptotics of (n, T ) → ∞ with

n/T → c ∈ (0,∞).
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Based on this result, this chapter proposes a bias-corrected LM test

statistic given by

LMBC = LMP − n

2(T − 1)

=

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(
T ρ̂2ij − 1

)− n

2(T − 1)
. (2.12)

Theorem 2.1 shows that, under the null, the limiting distribution of the

bias-corrected LM test is standard normal.

Comparing LMP in the fixed effects model versus the corresponding

LMz in the raw data case, it is clear that LMP exhibits an asymptotic bias,

while LMz does not. The asymptotic bias in the fixed effect model results

from the incidental parameter problem. Due to the presence of unobserved

heterogeneity μi, the idiosyncratic error vit cannot be estimated accurately

by the within residuals v̂it = ỹit − x̃′itβ̃ = vit − 1
T

∑T
s=1 vis − x̃′it(β̃ − β).

The second term 1
T

∑T
s=1 vis, created by the within transformation to wipe

out the unobserved heterogeneity μi, is Op(
1
T ). Hence, the accuracy of the

within residuals depends on T . For small T , the within residuals are inac-

curate, and so are the sample correlations ρ̂ij ’s computed using the within

residuals. For large T , the terms involved with odd power of 1
T

∑T
s=1 vis

vanish due to the law of large numbers. However, the sum of a large num-

ber of squared terms of 1
T

∑T
s=1 vis cannot be ignored. The inaccuracy due

to the within transformation accumulates in the sum of squared terms of

the statistic with comparably large n and n/T → c ∈ (0,∞), consequently,

resulting in asymptotic bias.

2.4. Dynamic Panel Data Models

In a dynamic panel data model

yit = α+ ξyi,t−1 + x′itβ + μi + vit, for i = 1, . . . , n; t = 1, . . . , T,

(2.13)

where yi,t−1 is the lagged-dependent variable. As documented by Nickell

(1981), the within estimator is inconsistent for finite T as n→ ∞. Various

consistent estimators have been proposed in the literature, including Ander-

son and Hsiao (1981), Arellano and Bond (1991), Kiviet (1995), Bun and

Carree (2005), Phillips and Sul (2007) etc., to name a few. For a detailed

discussion, see Baltagi (2008). Recently, Hahn and Kuersteiner (2002) stud-

ied the asymptotic properties of the within estimator in a dynamic panel
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model with fixed effects when n and T grow at the same rate. They show,

after a bias-correction, the within estimator is
√
nT -consistent.

For the dynamic panel data model in (2.13), let us denote θ = (ξ, β′)′.

Based on the bias-corrected estimator
̂̂
θ proposed by Hahn and Kuersteiner

(2002), we can compute the within residuals v̂it = ỹit − (ỹi,t−1, x̃
′
it)
̂̂
θ with

ỹi,t−1 = yi,t−1 − 1
T

∑T
s=1 yi,s−1, and the corresponding sample correlations

ρ̂ij and the bias-corrected LM test statistic (LMBC). Theorem 1 of Hahn and

Kuersteiner (2002) shows that the limiting distribution of
√
nT (θ̃−θ), where

θ̃ denotes the within estimator, is not centered at zero when both n and

T are large. Due to this noncentrality, we find in Monte Carlo experiments

that the proposed bias-corrected LM test using the within estimator is

oversized in micro panels when n is much larger than T. This is why we use

the bias-corrected estimator
̂̂
θ proposed by Hahn and Kuersteiner (2002).

We show that as long as
̂̂
θ is

√
nT -consistent, the proposed LMBC test in the

dynamic panel data model still has standard normal limiting distribution

under the null. However, stronger assumptions are needed than the static

panel data model.

Assumption 2.3. (i)
√
nT (
̂̂
θ− θ) = Op(1); (ii) |ξ| < 1; (iii) 1

n

∑n
i=1 y

2
i,0 =

Op(1) and
1
n

∑n
i=1 μ

2
i = Op(1); (iv)

1
T

∑T
s=1

∑s−1
τ=1 ξ

τ−1xi,s−τ = Op(1) and
1
T

∑T
s=1

∑s−1
τ=1 ξ

τ−1vi,s−τ = Op(T
−1/2).

Assumption 2.3(iii) is the same as condition 4(iv) in Hahn and Kuer-

steiner (2002). It implies yi,0 = Op(1) and μi = Op(1). Under Assumptions

2.3(iii) and (iv), the dependent variable yit and its time average 1
T

∑T
t=1 yi,t

are stochastically bounded.

Theorem 2.2. Under Assumptions 2.1–2.3 and the null hypothesis of no

cross-section dependence

LMBC
d→ N(0, 1).

Under Assumption 2.3(iii), the proof follows along the same lines as that

of Theorem 2.1.

2.5. Monte Carlo Simulations

This section employs Monte Carlo simulations to examine the empirical size

and power of our bias-corrected LM test defined in (2.12) in a static panel
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data model. We compare its performance with that of Pesaran’s (2004) CD

test given by

Pesaran’s CD =

√
2T

n(n− 1)

n−1∑
i=1

n∑
j=i+1

ρ̆ij ,

and PUY’s LM test given in (2.5). The sample correlations ρ̆ij are computed

using OLS residuals, see (2.3).

2.5.1. Experiment design

The experiments use the following data generating process:

yit = α+ βxit + μi + vit, i = 1, . . . , n; t = 1, . . . , T, (2.14)

xit = ζxi,t−1 + μi + ηit. (2.15)

Following Im, Ahn, Schmidt and Wooldridge (1999) xit in (2.15) is corre-

lated with the μi, but not with vit.

To calculate the power of the tests considered, two different models of

the cross-sectional dependence are used: a factor model and a spatial model.

In the former, it is assumed that

vit = γift + εit, (2.16)

where ft (t = 1, . . . , T ) are the factors and γi (i = 1, . . . , n) are the loadings.

In a spatial model, we consider a first-order spatial autocorrelation (SAR(1)

in (2.17)) and a spatial moving average (SMA(1) in (2.18)) model as follows:

vit = δ(0.5vi−1,t + 0.5vi+1,t) + εit, (2.17)

vit = δ(0.5εi−1,t + 0.5εi+1,t) + εit. (2.18)

Cross-sectional dependence can also be modeled by including a spatially

lagged-dependent variable, denoted as the mixed regressive, spatial autore-

gressive (MRSAR) model:

yit = α+ δ(0.5yi−1,t + 0.5yi+1,t) + βxit + μi + vit, (2.19)

where, similar to the SAR(1) model in (2.17), the term δ(0.5yi−1,t +

0.5yi+1,t) represents the spatial interaction in the dependent variable.
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The null can be regarded as a special case of γi = 0 in the factor model

(2.16) and δ = 0 in the spatial models (2.17)–(2.19).

vit (under the null) and εit (under the alternative) are from i.i.d.

N(0, σ2
i ). To model the heteroskedasticity, we follow Baltagi, Song and

Kwon (2009) and Roy (2002) and assume that

σ2
i = σ2(1 + θx̄i)

2, (2.20)

where x̄i is the individual mean of xit. Here θ is assigned values 0, 0.5

with θ = 0 denoting the homoskedastic case. For nonzero θ, we fix the

average value of σ2
i across i as 0.5 in our experiments. We obtain the value

of σ2 = 0.5/
[
1
n

∑n
i=1(1 + θx̄i)

2
]
using (2.20) and subsequently the value of

σ2
i . For the case of θ = 0, σ2

i = σ2 is fixed at 0.5.

The parameters α and β are set arbitrarily to 1 and 2, respectively.

μi is drawn from i.i.d. N(φμ, σ
2
μ) with φμ = 0 and σ2

μ = 0.25 for i =

1, . . . , n. For the regressor in (2.15), ζ = 0.7 and ηit ∼ i.i.d. N(φη, σ
2
η) with

φη = 0 and σ2
η = 1. For the factor model in (2.16), ft ∼ i.i.d. N(0, 1)

and two sets of experiments are conducted for γi ∼ i.i.d. U(−0.5, 0.55) and

γi ∼ i.i.d. U(0.1, 0.3). For the spatial model, δ = 0.4 in (2.17)–(2.19).

The Monte Carlo experiments are conducted for n = 5, 10, 20, 30, 50,

100, 200 and T = 10, 20, 30, 50. For each replication, we compute the bias-

corrected LM test, Pesaran’s CD and PUY’s LM test. A total of 2000

replications are performed. To obtain the empirical size, the proposed bias-

corrected LM test and PUY’s LM test are conducted at the positive one-

sided 5% nominal significance level, while Pesaran’s CD test is implemented

at the two-sided 5% nominal significance level.

2.5.2. Results

Table 2.1 presents the empirical size of these tests under the null of cross-

sectional independence with heteroskedasticity (θ = 0.5). The size of the

bias-corrected LM test is close to 5%, even for micro panels with small T

and large n. For example, the size of the bias-corrected LM test is 5.1%

for n = 200 and T = 10. The simulation results are consistent with the

asymptotic theory given in Theorem 2.1 in Section 2.4. As discussed in

Pesaran, Ullah and Yamagata (2008), for large T there is no bias issue, so

PUY’s LM test has the correct size for large T . For large n and small T ,

it is slightly oversized. For example, the size of PUY’s LM test is 9.2% for

T = 10, n = 200. Pesaran’s CD test has the correct size for all combinations

of n and T .
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Table 2.1. Size of tests under heteroskedasticity (θ = 0.5).

Size T\n 5 10 20 30 50 100 200

Bias-corrected LM 10 5.4 5.5 5.8 5.4 6.2 5.9 5.1
20 5.6 6.3 5.0 4.8 6.2 5.5 5.4
30 6.5 5.5 5.0 6.1 6.0 6.1 5.3
50 5.8 6.0 5.4 5.9 5.1 5.7 4.3

PUY’s LM 10 6.7 6.9 5.9 6.1 6.5 7.3 9.2
20 6.4 6.3 5.6 6.0 7.2 5.2 6.7
30 7.0 6.0 4.8 6.0 5.5 5.8 5.7
50 6.7 6.5 5.8 5.5 4.7 5.3 4.5

Pesaran’s CD 10 4.9 5.9 5.0 4.9 5.9 5.3 5.4
20 4.9 5.5 5.3 5.8 4.5 4.7 4.9
30 5.5 5.1 5.0 6.2 5.1 5.3 4.8
50 5.0 5.3 5.1 4.8 4.4 4.2 5.4

Table 2.2 shows the size-adjusted power of these tests under the alter-

native specified by a factor model. The bias-corrected LM test has bigger

size-adjusted power than PUY’s LM test for small T . However, both tests

have size-adjusted power that is almost 1 when n and T are larger than 20.

By contrast, the power of Pesaran’s CD test is much smaller than those of

the two LM tests. While the power of the LM tests becomes one for large n

and T, the power of the CD test reaches a maximum of 36.5% for n = 200

and T = 50 when γi is drawn from U(−0.5, 0.55). This is expected under the

current design. As pointed out by Pesaran, Ullah and Yamagata (2008), in

the factor model above in (2.16), Cov(vit, vjt) = E[γi]E[γj ], implying that

the value of Pesaran’s CD test statistic is close to zero if the mean of γi is

zero. This explains the low power of Pesaran’s CD test when γi is drawn

from U(−0.5, 0.55). However, this is not the case for the proposed LM and

PUY’s LM tests which involve the squared terms of sample correlation coef-

ficients. For the case of γi drawn from U(0.1, 0.3), the power of Pesaran’s

CD test increases to 1 with n or T .

Tables 2.3 and 2.4 give the size-adjusted power of these tests under

the alternative specifications of SAR(1) and SMA(1), respectively. In these

cases, the size-adjusted power of Pesaran’s CD test performs much better

than in the case of a factor model, increasing to 1 with T .

Table 2.5 provides the results of robustness check on the size of the

tests with some nonnormal or asymmetric distributions on the errors. We

ran experiments with uniform distribution U [1, 2], Chi-square distribution

with 1 degree of freedom, χ2
1, and t-distribution with 5 degrees of freedom,
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Table 2.2. Size-adjusted power of tests: Factor model.

Size-adjusted power T\n 5 10 20 30 50 100 200

γi ∼ i.i.d. U(−0.5, 0.55)

Bias-corrected LM 10 23.8 50.4 82.1 92.9 99.2 99.9 100.0
20 50.4 82.9 98.5 100.0 100.0 100.0 100.0
30 61.9 93.2 99.7 100.0 100.0 100.0 100.0
50 79.1 98.1 100.0 100.0 100.0 100.0 100.0

PUY’s LM 10 21.6 44.8 77.9 88.9 98.0 99.7 100.0
20 49.0 81.7 98.2 99.8 100.0 100.0 100.0
30 60.5 93.0 99.7 100.0 100.0 100.0 100.0
50 78.2 97.3 100.0 100.0 100.0 100.0 100.0

Pesaran’s CD 10 7.6 7.8 8.0 8.7 9.2 10.6 13.8
20 16.4 14.2 13.7 12.6 13.3 17.7 21.5
30 18.0 17.8 17.9 18.4 18.9 22.1 27.2
50 26.4 25.8 27.1 29.1 29.3 32.8 36.5

γi ∼ i.i.d. U(0.1, 0.3)

Bias-corrected LM 10 15.3 35.5 64.8 83.3 95.0 99.2 100.0
20 33.6 68.8 95.6 98.9 100.0 100.0 100.0
30 46.5 83.4 98.9 100.0 100.0 100.0 100.0
50 66.7 93.2 99.9 100.0 100.0 100.0 100.0

PUY’s LM 10 14.7 29.2 59.6 76.2 91.9 98.0 100.0
20 33.5 68.7 94.1 98.8 99.9 100.0 100.0
30 46.3 83.6 98.7 100.0 100.0 100.0 100.0
50 65.3 92.8 99.9 100.0 100.0 100.0 100.0

Pesaran’s CD 10 20.8 51.4 86.5 96.6 99.7 100.0 100.0
20 42.6 83.3 99.1 99.9 100.0 100.0 100.0
30 52.8 93.2 100.0 100.0 100.0 100.0 100.0
50 72.3 98.6 100.0 100.0 100.0 100.0 100.0

t(5), and we compare these results with those of Gaussian case N(0, 0.5).

For large T , these experiments show that the size of the bias-corrected LM,

PUY’s LM and Pesaran’s CD tests are not that sensitive to the normality

assumption on the errors. The same results obtain although the magnitude

are different. PUY’s LM test is still oversized around 8% for large n = 100,

small T = 10 no matter what distribution is used. The bias-corrected LM

test has size close to 5% for the uniform and t distributions and is a little

oversized for T ≥ 10 when using the χ2
1 distribution.

Dynamic panel data models. To examine the finite sample properties

of the proposed bias-corrected LM test in a dynamic panel data model,
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Table 2.3. Size-adjusted power of tests: SAR (1) model.

Size-adjusted power T\n 5 10 20 30 50 100 200

Bias-corrected LM 10 62.4 66.0 65.8 68.3 68.2 69.9 73.6
20 96.0 98.1 99.4 99.9 99.8 99.9 100.0
30 99.5 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PUY’s LM 10 57.5 54.9 55.8 53.4 54.3 54.6 45.6
20 95.4 97.5 98.8 99.4 99.1 99.7 100.0
30 99.3 100.0 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Pesaran’s CD 10 70.5 59.4 55.6 53.7 52.6 53.9 52.9
20 94.5 88.6 84.2 83.7 84.2 86.0 83.4
30 98.5 97.0 95.9 94.4 95.6 95.5 96.1
50 100.0 100.0 99.8 99.6 99.8 99.7 99.8

Table 2.4. Size-adjusted power of tests: SMA (1) model.

Size-adjusted power T\n 5 10 20 30 50 100 200

Bias-corrected LM 10 50.3 52.3 53.0 53.0 50.8 52.3 57.4
20 92.3 95.2 97.7 97.8 97.7 99.0 99.0
30 99.2 99.9 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PUY’s LM 10 45.1 40.1 45.4 41.8 40.9 40.6 33.6
20 90.0 93.2 96.0 95.9 95.8 97.0 95.9
30 98.4 99.8 100.0 100.0 100.0 100.0 100.0
50 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Pesaran’s CD 10 46.8 40.7 38.2 37.3 35.6 36.9 37.3
20 80.5 70.9 66.7 63.1 65.9 69.1 66.4
30 90.8 87.6 84.2 81.8 80.9 78.4 80.2
50 99.5 98.1 97.3 97.0 96.1 97.3 96.8

Table 2.5. Size of tests: Robustness to nonnormal errors.

N(0, 0.5) U [1, 2] χ2
1 t(5)

Size T\n 20 50 100 20 50 100 20 50 100 20 50 100

Bias-corrected LM 10 5.8 6.2 5.9 5.6 6.2 6.0 6.5 7.4 6.8 6.1 5.7 5.8

30 5.0 6.0 6.1 5.3 5.4 5.6 7.8 7.5 8.7 6.1 6.0 5.6

PUY’s LM 10 5.9 6.5 7.3 5.9 6.9 8.3 7.1 7.4 7.9 6.4 8.0 7.6

30 4.8 5.5 5.8 6.2 5.6 5.5 8.3 7.1 8.0 5.9 5.9 6.2

Pesaran’s CD 10 5.0 5.9 5.3 4.7 5.7 5.5 5.5 5.2 4.8 4.9 4.5 5.7

30 5.0 5.1 5.3 4.8 4.7 4.4 4.7 4.4 4.6 5.3 5.0 4.0
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we follow the same design as that of Hahn and Kuersteiner (2002):

yit = α+ ξyi,t−1 + μi + vit, i = 1, . . . , n;

t = −50,−49, . . . , 0, 1, . . . , T, where vit is assumed N(0, 1) indepen-

dent across i and t, μi ∼ N(0, 1), yi0|μi ∼ N
(
μi

1−ξ ,
V ar(vit)
1−ξ2

)
and ξ =

{0.3, 0.6, 0.9}. For this model, Hahn and Kuersteiner (2002) propose a bias-

corrected estimator
̂̂
ξ = T+1

T ξ̂ + 1
T , where ξ̂ is the within estimator of ξ.

Hahn and Kuersteiner (2002) show that
√
nT (
̂̂
ξ − ξ)

d→ N(0, 1 − ξ2). In

our Monte Carlo experiments, heteroskedasticity of vit is allowed. In fact,

vit ∼ N(0, σ2
i ) where σ2

i ∼ χ2(2)/2 as in the dynamic setup of Pesaran,

Ullah and Yamagata (2008). The first 50 observations are discarded to

lessen the effects of the initial values of yi0 on the results.

Table 2.6 reports the size of the tests for the dynamic panel data model.

It shows that the proposed bias-corrected LM test has the correct size,

close to the 5% nominal significance level, e.g., 5.1% and 5.4% for n = 100,

T = 10 and n = 200, T = 10 in the case of ξ = 0.3. For the cases of

ξ = 0.3, 0.6, it is slightly oversized for n = 200, T = 10. The PUY’s LM

test tends to over-reject in micro panels with large n and small T , and this

fact is also observed in Table 6 of Pesaran, Ullah and Yamagata (2008).

Pesaran’s CD has correct size as in Pesaran (2004) and Pesaran, Ullah and

Yamagata (2008).

2.6. Recent Development

Halunga, Orme and Yamagata (2017) propose a heteroskedasticity-

robust Breusch–Pagan test in heterogeneous dynamic panel data mod-

els. The key idea is to replace the sample correlation coefficient ρ̆ij =(∑T
t=1 û

2
it

)−1/2(∑T
t=1 û

2
jt

)−1/2∑T
t=1 ûitûjt in equation (2.3) with

γ̂ij =

(
T∑
t=1

û2itû
2
jt

)−1/2 T∑
t=1

ûitûjt

in the statistics LMBP and CDlm in the fixed n and large n cases. Using

γ̂ij instead of ρ̆ij allows for heteroskedasticity across both the cross-section

and time dimension. Heteroskedasticity across time dimension emerges in

a one-break-in-volatility model or a trending volatility model.
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Table 2.6. Size of tests: A dynamic panel data model.

Size T\n 5 10 20 30 50 100 200

ξ = 0.3

Bias-corrected LM 10 5.3 5.8 5.5 4.5 5.6 5.1 5.4
20 6.5 4.9 5.1 5.5 5.5 4.8 5.0
30 6.2 6.2 5.6 4.8 5.7 4.8 4.5
50 6.1 6.1 5.0 5.1 5.1 5.6 5.2

PUY’s LM 10 7.2 7.6 9.0 9.9 15.9 29.5 65.5
20 6.4 5.7 7.2 6.9 7.9 11.1 17.8
30 7.5 6.1 5.9 6.2 7.4 7.9 8.8
50 6.0 6.3 6.2 5.4 6.3 6.9 7.0

Pesaran’s CD 10 6.5 5.9 5.5 6.2 5.0 6.1 4.5
20 5.1 5.4 4.5 5.1 5.3 5.1 5.7
30 5.1 4.6 5.7 5.6 5.1 5.5 5.7
50 5.2 5.0 4.0 5.0 4.5 4.9 5.4

ξ = 0.6

Bias-corrected LM 10 4.1 5.2 5.1 4.4 5.2 5.5 6.3
20 4.9 5.3 4.2 4.7 5.7 5.4 4.9
30 4.9 4.9 4.6 5.1 5.0 5.2 5.1
50 6.4 5.1 5.3 5.7 4.8 5.3 5.9

PUY’s LM 10 7.4 9.1 11.5 12.4 22.0 42.8 84.6
20 6.0 6.9 6.0 7.9 9.6 17.9 36.3
30 6.3 5.8 6.7 7.4 8.2 11.0 17.8
50 6.7 6.0 6.5 6.9 5.7 7.4 7.8

Pesaran’s CD 10 6.2 6.0 5.5 4.6 5.1 5.2 5.7
20 5.9 5.7 7.1 5.5 6.0 6.4 5.0
30 6.3 5.3 5.2 4.7 4.9 4.5 5.5
50 4.6 5.7 5.5 5.5 4.5 5.1 4.5

In their Theorem 1, Halunga, Orme and Yamagata (2017) show that

under some conditions, for all i �= j, as T → ∞
√
T γ̂ij

d→ N(0, 1).

Based on this result, they proposed two robust versions of Breusch–Pagan

tests using γ̂ij . However, the proposed tests are only valid when n is fixed

or much smaller than T . For the case of comparably large n and T , wild

bootstrap procedures based on these two robust tests are proposed and

illustrated to work well in finite samples.
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In Table 2.4 above, we find that under the alternative of an SMA(1)

model, the power of LMBC increases with T , but not substantially with n.

For example, when n increases from 100 to 200 with T = 10, the power of

LMBC increases from 52.3% to 57.4%. This means that the LMBC test is

likely to be not powerful enough to reject the null in some cases. Recently,

Fan, Liao and Yao (2015) find that in the high-dimensional setup, the

quadratic tests, like LMBC and PUY’s LM, lack power to detect the sparse

alternatives with only a few nonzero off-diagonal elements.

To deal with this issue, they propose a power enhanced version of LMBC

test by adding a power enhancement component J0 (≥ 0 almost surely),

J = LMBC + J0,

where J0 converges in probability to zero under H0, and diverges in prob-

ability under sparse alternatives. An example of J0 is a screening statistic,

J0 =
√
n(n− 1)/2

∑
(i,j)∈Ŝ

ρ̂2ij v̂
−1
ij ,

Ŝ = {(i, j) : ρ̂ij v̂−1/2
ij > δN,T , i < j ≤ n},

where v̂ij = (1 − ρ̂2ij)
2/T is the estimated asymptotic variance of ρ̂ij ,

and δn,T = log(log T )
√
log(n(n− 1)/2). Using a threshold δn,T , the set

Ŝ screens out most of the estimation error and determines a few nonzero

off-diagonal entries with an overwhelming probability.

Recently, Mao (2016) extends Pesaran’s (2004) CD test and PUY’s

bias-adjusted LM test in a static heterogeneous panel data model based

on pairwise-augmented regressions. Demetrescu and Homm (2016) derive

tests for cross-sectional correlation in large panels based on White’s (1982)

information matrix equality test principle. This approach is considered as

a specification test. Instead of looking at the diagonality of error variance

matrix directly, the proposed tests examine the difference of variance esti-

mators of slope parameters in the cases with and without cross-sectional

correction.

2.7. Technical Details

The section provides some technical details needed to prove Theorem 2.1.

In the fixed effects model yit = α+x′itβ+μi+vit, β̃ is the within estimator

and the within residuals are given by v̂it = ỹit − x̃′itβ̃, where ỹit = yit − ȳi·
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and x̃it = xit − x̄i·, with ȳi· = 1
T

∑T
s=1 yis, and x̄i· similarly defined. Define

ṽit = vit − v̄i· with v̄i· = 1
T

∑T
s=1 vis. The within residuals can be written

as v̂it = ṽit − x̃′it(β̃ − β). Let Vi = (vi1, . . . , viT )
′, V̂i = (v̂i1, . . . , v̂iT )

′, V̄i =
(v̄i·, . . . , v̄i·)′, Xi = (xi1, . . . , xiT )

′, X̃i = (x̃i1, . . . , x̃iT )
′, Yi = (yi1, . . . , yiT )

′,
Ỹi = (ỹi1, . . . , ỹiT )

′ for i = 1, . . . , n. In vector form,

V̂i = Vi − V̄i − X̃i(β̃ − β). (2.21)

Using this notation, the sample correlation rij in the raw data case can be

written as

rij =
V ′
i Vj

(V ′
i Vi)

1/2(V ′
j Vj)

1/2
(2.22)

and its sample counterpart using within residuals in the fixed effects model

is given by

ρ̂ij =
V̂ ′
i V̂j

(V̂ ′
i V̂i)

1/2(V̂ ′
j V̂j)

1/2
. (2.23)

Dividing v̂it by σi, we obtain

v̂it
σi

=
vit
σi

− 1

T

T∑
s=1

vis
σi

−
(
x̃it
σi

)′
(β̃ − β).

As shown below, the terms involving ( x̃it

σi
)′(β̃ − β) have no effect on the

test statistic asymptotically. Without loss of generality, σi is assumed to

be 1 in the derivations below. Under Assumption 2.2, 1
T X̃

′
iX̃i = Op(1),

1
T X̃

′
iX̃j = Op(1) and (β̃ − β) = Op((nT )

−1/2). In addition, we need the

following lemma in the proofs below.

Lemma 2.1. Under Assumptions 2.1, 2.2 and the null,

(1) 1
T V

′
i Vi = 1 +Op(T

−1/2);

(2) 1
T V

′
i Vj = Op(T

−1/2) for i �= j;

(3) 1
T V̄

′
i V̄i =

1
T V

′
i V̄i = Op(T

−1);

(4) 1
T v̄i·v̄j· = Op(T

−2);

(5) 1
T X̃

′
iVi = Op(T

−1/2);

(6) 1
T X̃

′
iV̄i = Op(T

−1/2);

(7) 1
T X̃

′
jVi = Op(T

−1/2);

(8) 1
T X̃

′
j V̄i = Op(T

−1/2).
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Lemma 2.2. Under Assumptions 2.1, 2.2 and the null,

(1) V̂ ′
i V̂i = V ′

i Vi− V̄ ′
i V̄i+Ei, where Ei = −2(β̃−β)′X̃ ′

iVi+2(β̃−β)′X̃ ′
iV̄i+

(β̃ − β)′X̃ ′
iX̃i(β̃ − β) = Op(n

−1/2);

(2) V̂ ′
i V̂j = V ′

i Vj − V̄ ′
i V̄j + F , where F = −(β̃ − β)′X̃ ′

jVi + (β̃ − β)′X̃ ′
j V̄i −

(β̃ − β)′X̃ ′
iVj + (β̃ − β)′X̃ ′

iV̄j + (β̃ − β)′X̃ ′
iX̃j(β̃ − β) = Op(n

−1/2).

Lemma 2.3. Under Assumptions 2.1, 2.2 and the null,

(1) (V̂ ′
i V̂j)

2 − (V̂ ′
i V̂i)(V̂

′
j V̂j)(V

′
i Vj)

2/[(V ′
i Vi)(V

′
j Vj)] = G+H,

where

G = (V̄ ′
i V̄j)

2 − 2(V ′
i Vj)(V̄

′
i V̄j) + (V̄ ′

j V̄j)(V
′
i Vj)

2/(V ′
j Vj)

+ (V̄ ′
i V̄i)(V

′
i Vj)

2/(V ′
i Vi)− (V̄ ′

i V̄i)(V̄
′
j V̄j)(V

′
i Vj)

2/[(V ′
i Vi)(V

′
j Vj)]

+ 2(V ′
i Vj)F = Op(1) +Op

(√
T

n

)

and

H = F 2 − 2(V̄ ′
i V̄j)F − [(V ′

i Vi)Ej − (V̄ ′
i V̄i)Ej + (V ′

j Vj)Ei

−(V̄ ′
j V̄j)Ei + EiEj ](V

′
i Vj)

2/[(V ′
i Vi)(V

′
j Vj)] = Op(n

−1/2);

(2) (
V̂ ′
i V̂i

T )(
V̂ ′
j V̂j

T ) = (1 − 1
T )

2 +Op(T
−1/2).

Lemma 2.4. Under Assumptions 2.1, 2.2 and the null,

(1)

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1

T
(V ′
i Vj)(V̄

′
i V̄j)

=

√
1

n(n− 1)

[
n(n− 1)

2T
+Op

(
n
√
n

T

)
+Op

(
n√
T

)]
;

(2)

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1

T
(V̄ ′
i V̄j)

2

=

√
1

n(n− 1)

[
n(n− 1)

2T
+Op

(
n
√
n

T

)]
;
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(3)

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1

T
(V̄ ′
j V̄j)(V

′
i Vj)

2/(V ′
j Vj)

=

√
1

n(n− 1)

[
n(n− 1)(T + 2)

2T 2
+Op

(
n
√
n

T

)]
;

(4)

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1

T
(V̄ ′
i V̄i)(V

′
i Vj)

2/(V ′
i Vi)

=

√
1

n(n− 1)

[
n(n− 1)(T + 2)

2T 2
+Op

(
n
√
n

T

)]
;

(5)

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1

T
(V̄ ′
i V̄i)(V̄

′
j V̄j)(V

′
i Vj)

2/[(V ′
i Vi)(V

′
j Vj)]

=

√
1

n(n− 1)

[
n(n− 1)(T 2 + 20T + 60)

2T 4
+Op

(
n
√
n

T 2
√
T

)]
;

(6)

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1

T
(V ′
i Vj)F

=

√
1

n(n− 1)

[
Op

( n
T

)
+Op

(√
n

T

)]
.

Now we are in good position to prove Theorem 2.1.

Proof of Theorem 2.1. It is equivalent to show that for large n and T ,

LM(ρ̂it)− LM(rit)− n

2(T − 1)
= op(1).

By (2.22), (2.23) and Lemma 2.3,

LM(ρ̂ij)− LM(rit)

=

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(T ρ̂2ij − 1)−
√

1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(Tr2ij − 1)

=

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

T
(V̂ ′
i V̂j)

2 − (V̂ ′
i V̂i)(V̂

′
j V̂j)(V

′
i Vj)

2/[(V ′
i Vi)(V

′
j Vj)]

(V̂ ′
i V̂i)(V̂

′
j V̂j)
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=
1

(1− 1
T )

2

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1
T (G+H)

(V̂ ′
i V̂i/T )(V̂

′
j V̂j/T )/(1− 1

T )
2

=
1

(1− 1
T )

2

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

G

T

+
1

(1− 1
T )

2

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

H

T

+
1

(1− 1
T )

2

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

[
1

(V̂ ′
i V̂i/T )(V̂

′
j V̂j/T )/(1− 1

T )
2
− 1

]

× 1

T
(G+H).

Using H = Op(n
−1/2), the second term above can be written as follows:

1

(1− 1
T )

2

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

H

T

=
1

(1− 1
T )

2

1

T

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

Op(n
−1/2) = Op

(√
n

T

)
.

By Lemma 2.3, ( 1
T V̂

′
i V̂i)(

1
T V̂

′
j V̂j) = (1 − 1

T )
2 + Op(T

−1/2), it follows that
1

(V̂ ′
i V̂i/T )(V̂ ′

j V̂j/T )/(1− 1
T )2

− 1 = Op(T
−1/2). Thus, it is straightforward to

calculate the order of magnitude of the third term,

1

(1− 1
T )

2

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

[
1

(V̂ ′
i V̂i/T )(V̂

′
j V̂j/T )/(1− 1

T )
2
− 1

]
G+H

T

=
1

(1− 1
T )

2

1

T

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

Op(T
−1/2)

×
[
Op(1) +Op

(√
T

n

)
+Op(n

−1/2)

]

= Op

(
n

T
√
T

)
+Op

(√
n

T

)
.
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Now we consider the first term,

1

(1− 1
T )

2

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

G

T

=
1

(1− 1
T )

2

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1

T
[(V̄ ′

i V̄j)
2 − 2(V ′

i Vj)(V̄
′
i V̄j)

+ (V̄ ′
j V̄j)(V

′
i Vj)

2/(V ′
j Vj) + (V̄ ′

i V̄i)(V
′
i Vj)

2/(V ′
i Vi)

− (V̄ ′
i V̄i)(V̄

′
j V̄j)(V

′
i Vj)

2/[(V ′
i Vi)(V

′
j Vj)] + 2(V ′

i Vj)F ].

By Lemma 2.4,

1

(1− 1
T )

2

√
1

n(n− 1)

n−1∑
i=1

n∑
j=i+1

G

T

=
1

(1 − 1
T )

2

√
1

n(n− 1)

[
−2

n(n− 1)

2T
+Op

(
n
√
n

T

)
+Op

(
n√
T

)

+
n(n− 1)

2T
+Op

(
n
√
n

T

)
+
n(n− 1)(T + 2)

2T 2
+Op

(
n
√
n

T

)
+
n(n− 1)(T + 2)

2T 2
+Op

(
n
√
n

T

)
− n(n− 1)(T 2 + 20T + 60)

2T 4
+Op

(
n
√
n

T 2
√
T

)
+Op

(n
T

)
+Op

(√
n

T

)]
. (2.24)

For large n and T , the expression above (2.24) can be approximated by

1

(1− 1
T )

2

(
−2

n

2T
+

n

2T
+

n

2T
+

n

2T
− n

2T 2

)
+Op

( n
T 2

)
+Op

(√
n

T

)
+Op

(
1√
T

)
=

n

2(T − 1)
+Op

( n
T 2

)
+Op

(√
n

T

)
+Op

(
1√
T

)
.
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Combining these three terms, we obtain

LM(ρ̂it)− LM(rit)

=

[
n

2(T − 1)
+Op

( n
T 2

)
+Op

(√
n

T

)
+Op

(
1√
T

)]
+Op

(√
n

T

)
+

[
Op

(
n

T
√
T

)
+Op

(√
n

T

)]
=

n

2(T − 1)
+Op

( n
T 2

)
+Op

(√
n

T

)
+Op

(
1√
T

)
.

Therefore, as (n, T ) → ∞ with n/T → c ∈ (0,∞),

LM(ρ̂ij)− LM(rit)− n

2(T − 1)

p→ 0.

2.8. Exercises

(1) Under Assumptions 2.1, 2.2 and the null, show:

(a) 1
T

∑T
t=1 vitvjt = Op(T

−1/2) for i �= j;

(b) 1
T 2

∑n−1
i=1

∑n
j=i+1

∑T
t=1 v

2
itv

2
jt =

n(n−1)
2T +Op(

n
√
n

T
√
T
);

(c) 1
T 2

∑n−1
i=1

∑n
j=i+1

∑T
t=1

∑T
τ �=t v

2
itvjtvjτ = Op(

n
√
n

T );

(d)
√

1
n(n−1)

∑n−1
i=1

∑n
j=i+1

1
T (V

′
i Vj)(V̄

′
i V̄j) =

√
1

n(n−1)

[n(n−1)
2T +

Op(
n
√
n

T ) +Op(
n√
T
)
]
.

(2) (Baltagi, Feng, Kao, 2011, Proposition 4.1) In the fixed effects model,

for i = 1, . . . , n; t = 1, . . . , T

yit = α+ x′itβ + μi + vit,

let vt = (v1t, . . . , vnT )
′. The n×1 vectors v1, v2, . . . , vT are assumed to

be i.i.d. N(0,Σn). Denote the n×n sample covariance matrix by S =
1
T

∑T
t=1 vtv

′
t. For the within residuals v̂it, the residual-based sample

covariance matrix can be obtained as Ŝ = 1
T

∑T
t=1 v̂tv̂

′
t where v̂t =

(v̂1t, . . . , v̂nt)
′ for t = 1, . . . , T. Under the null hypothesis H0 : Σn =

σ2
vIn, show

1

n
tr Ŝ − 1

n
trS = Op

(
1

T

)
.
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(3) [Breusch and Pagan, 1980]

LMBP = T

n−1∑
i=1

n∑
j=i+1

ρ̆2ij
d→ χ2

n(n−1)/2

under the null of diagonality or cross-sectional uncorrelation.

(4) [Halunga, Orme and Yamagata (2017), Theorem 1] Under certain con-

ditions, for fixed n, as T → ∞, show

(a)
√
Tγij =

1√
T

∑T
t=1 uitujt√

1
T

∑T
t=1 u

2
itu

2
jt

d→ N(0, 1).

(b) γ̂ij − γij =

1√
T

∑T
t=1 ûitûjt√

1
T

∑T
t=1 û

2
itû

2
jt

−
1√
T

∑T
t=1 uitujt√

1
T

∑T
t=1 u

2
itu

2
jt

= op(1).

(5) [Pesaran (2015), Theorem 2] Under the null, as n and T go to infinity,

CD
d→ N(0, 1).

(6) Prove (2.11).

(7) [Ledoit and Wolf, 2002] Let xi, i = 1, . . . , n + 1, be i.i.d. as a

p-dimensional random vector such that

xi ∼ N(μ,Σ).

Let

S =
1

n

n+1∑
i=1

(xi − x) (xi − x)′

with

x =
1

n+ 1

n+1∑
i=1

xi.

Show that as p
n → c

1

p
tr(S)

p→ α,

1

p
tr
(
S2
) p→ (1 + c)α2 + δ2,
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and

n

⎡⎢⎣
1

p
tr(s)− α

1

p
tr
(
S2
)− n+ p+ 1

n
α2

⎤⎥⎦

d→ N

⎛⎜⎜⎝
[
0

0

]
,

⎡⎢⎢⎣
2α2

c
4
(
1 + 1

c

)
α3

4

(
1 +

1

c

)
α3 4

(
2
c + 5 + 2c

)
α4

⎤⎥⎥⎦
⎞⎟⎟⎠

with

α =
1

p

p∑
j=1

λj

and

δ2 =
1

p

p∑
j=1

(λj − α)
2

where λ1, . . . , λp are the eigenvalues of Σ.

(8) [Jiang (2004)] Let xn = (xij) be n× p, where the n rows are observa-

tions from a multivariate normal distribution and each of p columns

has n observations. Let

ρij =

∑n
k=1 (xki − xi) (xkj − xj)√∑n

k=1 (xki − xi)
2∑n

k=1 (xkj − xj)
2
,

where

xi =
1

n

n∑
k=1

xki.

Then R = (ρij) is a p× p sample correlation matrix. Define

Ln = max
1≤i≤j≤p

|ρij | .

Show that if np → γ ∈ (0,∞)

lim
n→∞

√
n

logn
Ln = 2

almost surely and

P
(
nL2

n − 4 logn+ log (logn) ≤ y
)→ e−ke

−y/2
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with

k =
1

γ2
√
8π
.

(9) (Jiang and Yang, 2013) Let p× 1 vector xi
i.i.d.∼ N(μ,Σ), i = 1, . . . , n.

Consider the spherical test

H0 : Σ = λIp

versus

Ha : Σ �= λIp

for a λ. Define

x =
1

n

n∑
i=1

xi

and

S =
1

n

n∑
i=1

(xi − x) (xi − x)
′
.

Let

Vn = |S|
(
tr(S)

p

)−p
.

(a) Show that under the null

− (n− 1) ρ logVn
d→ χ2

f

as n→ ∞ with p fixed where

ρ = 1− 2p2 + p+ 2

6 (n− 1) p

and

f =
1

2
(p− 1) (p+ 2) .

(b) Show that

logVn − μn
σn

d→ N(0, 1)
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as p
n → y ∈ (0, 1] where

μn = −p−
(
n− p− 3

2

)
log

(
1− p

n− 1

)
and

σ2
n = −2

[
p

n− 1
+ log

(
1− p

n− 1

)]
.

(10) (Chen and Jiang, 2018) Define

Λn =

(
e

n− 1

) (n−1)p
2

e−
tr(S)

2 |S|n−1
2 .

Show that as (n, p) → ∞
log Λn − μn

nσn

d→ N(0, 1)

with

μn = −1

4
(n− 1) (2n− 2p− 3) log

(
1− p

n− 1

)
+

1

2
.

(11) Let

Σ =
(
ρ|j−i|

)
p×p

for ρ ∈ (−1, 1) . Show that

tr
(
Σ2
)
=

p

1− p2
+
ρ2
(
ρ2p − 1

)
(1− ρ2)

2 = O(p),

tr
(
Σ4
)
= 2

p−1∑
k=1

(p− k) (k + 1)
2
ρ2k

+ p

(
1 + ρ2 + 7ρ4 − ρ6

)
(1− ρ2)3

+O(1),

tr
(
Σ4
)
= O(p),

and

tr
(
Σ4
)
= o
{
tr2
(
Σ2
)}
.
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(12) (Chen et al., 2010) Let xi
i.i.d.∼ N (μ,Σ) , i = 1, . . . , n, where xi is p×1.

Let

y1n =
1

n

n∑
i=1

x′ixi,

y2n =
1

P 2
n

∑
i�=j

(
x′ixj

)2
,

y3n =
1

P 2
n

∑
i�=j

x′ixj ,

y4n =
1

P 3
n

∑
i

∑
j

∑
k

x′ixjx
′
jxk,

and

y5n =
1

P 4
n

∑
i

∑
j

∑
k

∑
l

x′ixjx
′
kxl

with

P rn =
n!

(n− r)!
.

Define

T1n = y1n − y3n,

T2n = y2n − 2y4n + y5n,

and

Un = p

(
T2n
T 2
1n

)
− 1.

Show that as tr(Σ2) → ∞ and tr(Σ4)
tr2(Σ2) → 0

1

σ1n

[(
Un + 1

p

)(
tr2(Σ)

tr(Σ2)

)
− 1

]
d→ N(0, 1)

with

σ2
1n =

4

n2
+

8

n
tr

[(
Σ2

tr(Σ2)
− Σ

tr(Σ)

)2
]

+
4Δ

n
tr

[(
A2

tr(Σ2)
− A

tr(Σ)

)
◦
(

A2

tr(Σ2)
− A

tr(Σ)

)]
,

where for two matrices C = (cij) and B = (bij), C ◦B = (cijbij).
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Chapter 3

Factor-Augmented Panel Data
Regression Models

3.1. Motivation

In the past decades, factor-augmented panel data regression models have

received tremendous attention in econometrics literature and empirical

studies. Adding an interactive form of unobserved factors could include

the traditional linear panel data regression models as special cases. In addi-

tion, the factor structure could be used to model heterogeneous impacts of

unobserved common shocks and cross-sectional dependence. Recently, Hsiao

(2018) provides a very detailed and insightful review on the main modeling

and estimation approaches in the literature. In this chapter, three main

approaches are introduced, including Pesaran’s (2006) common correlated

effect (CCE) approach and Bai’s (2009) iterated principal component (IPC)

approach and the likelihood approach proposed by Bai and Li (2014) and

advocated by Hsiao (2018).

Pesaran (2006) develops CCE estimators for large heterogeneous pan-

els with a general multifactor error structure. The idea of CCE approach

is to use cross-sectional averages of dependent and independent variables

to proxy for the unobserved factors, thus the slope parameters can be esti-

mated by least squares using augmented data when the cross-section dimen-

sion is large. Kapetanios, Pesaran and Yamagata (2011) show that the CCE

estimator can be extended to the case of nonstationary unobserved com-

mon factors. Additionally, the CCE approach is also shown to be applicable

to situations of spatial and other forms of weak cross-sectional dependent

errors (Pesaran and Tosetti, 2011; Chudik, Pesaran and Tosetti, 2011), and

35
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heterogeneous dynamic panel data models with weakly exogenous regressors

(Chudik and Pesaran, 2015). Baltagi, Feng and Kao (2016, 2019) general-

ize Pesaran’s (2006) heterogeneous panels by allowing for unknown common

structural breaks in slopes and factor loadings due to global technological

or financial shocks in the cases of exogenous and endogenous regressors.

Bai (2009) takes a different perspective and treats the unobservable

factor structure as interactive fixed effects in a homogeneous panel data

model. In this model, factors and loadings are treated as parameters to be

estimated, so the correlations between regressors and factors and loadings

are allowed. An IPC estimator is developed to consistently estimate slopes

and factor structure.

Since the advancement of Pesaran’s (2006) CCE approach and Bai’s

(2009) IPC method, a multifactor error structure has been widely employed

in empirical studies to model cross-sectional dependence and heterogeneous

effects of unobserved macro shocks. For example, in the applications of the

CCE approach, common factors are used to account for spillover in a study

of private returns to R&D (Eberhardt, Helmers and Strauss, 2013), and

to control for unobserved heterogeneity when examining the relationship

between public debt and long-run growth (Eberhardt and Presbitero, 2015).

In Boneva and Linton’s (2017) research on the issuing of a corporate bond,

unobserved common shocks such as the global financial crisis are modeled by

interactive fixed effects in a discrete-choice model in heterogeneous panels.

In addition, heterogeneous responses to aggregate shocks are allowed for by

common factors in examining the effect of financial aid on macro outcomes

by Temple and Van de Sijpe (2017), also, the reaction in a given US state

to capital tax changes in other states by Chirinko and Wilson (2017).

In the applications of the IPC approach, Kim and Oka (2014) exam-

ine the effects of unilateral divorce laws on divorce rates in the US. They

control for endogeneity due to the correlation between the unobserved het-

erogeneity and regressors to deal with bias in the resulting estimates of the

treatment effects. Similarly, Gobillon and Magnac (2016) use Bai’s (2009)

IPC approach to evaluate the effect of an enterprise zone program. Totty

(2017), on the other hand, estimates the effect of minimal wage increase on

employment in the US with a factor structure to address concerns related

to unobserved heterogeneity.

In this chapter, we introduce these three main approaches in the

factor-augmented panel data regression models. In particular, in Sec-

tion 3.2, Pesaran’s (2006) CCE approach is discussed in detail. Section 3.3

presents Bai’s (2009) IPC approach. A likelihood approach is introduced in
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Section 3.4, and other studies are briefly discussed in Section 3.5. Finally,

an empirical example is used to illustrate these approaches.

3.2. CCE Approach

Pesaran’s (2006) CCE approach is originally developed in a static hetero-

geneous panel data model with large n and large T . It can be applied to

the cases of homogeneous panels, dynamic and fixed T , etc. Here, we start

with a simplified version and then extend to the general model considered

by Pesaran (2006). In a heterogeneous panel data model:

yit = x′itβi + eit, i = 1, . . . , n; t = 1, . . . , T, (3.1)

xit is a p × 1 vector of explanatory variables, and the errors are cross-

sectionally correlated, modeled by a multifactor structure

eit = γ′ift + εit, (3.2)

where ft is an m× 1 vector of unobserved factors and γi is the correspond-

ing loading vector. Here εit is the idiosyncratic error independent of xit.

However, xit could be affected by the unobservable common effects ft. Pro-

jecting xit on ft, we obtain

xit = Γ′
ift + vit, i = 1, . . . , n; t = 1, . . . , T, (3.3)

where Γi is an m × p factor loading matrix, and vit is a p × 1 vector of

disturbances. Due to the correlation between xit and eit, the ordinary least

squares (OLS) for each individual regression could be inconsistent.

To deal with the endogeneity due to the unobserved factors, Pesaran

(2006) proposes an innovative idea of using the cross-sectional averages of

yit and xit as proxies for ft. Plugging (3.2) and (3.3) into (3.1) gives

yit = x′itβi + γ′ift + εit

= (Γ′
ift + vit)

′βi + γ′ift + εit

= (β′
iΓi + γ′i)ft + (β′

ivit + εit). (3.4)

Combining (3.4) and (3.3) yields

wit
(p+1)×1

=

(
yit

xit

)
=

(
(β′
iΓi + γ′i)ft + (β′

ivit + εit)

Γ′
ift + vit

)
= C′

i
(p+1)×m

ft
m×1

+ uit
(p+1)×1

, (3.5)
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where

Ci
m×(p+1)

= (γi,Γi)

(
1 0

βi Ip

)
,

uit =

(
β′
ivit + εit
vit

)
.

Let w̄t =
∑n

i=1 θiwit be the cross-sectional averages of wit using weights

θi, i = 1, . . . , n. They satisfy conditions: θi = O( 1
n ),

∑n
i=1 θi = 1 and∑n

i=1 |θi| < ∞. A simple example is the equal weights, i.e., θi = 1/n. In

particular,

w̄t = C̄′ft + ūt, (3.6)

where C̄ =
∑n

i=1 θiCi and

ūt =
n∑
i=1

θiuit =

(
ε̄t +

∑n
i=1 θiβ

′
ivit

v̄t

)
(3.7)

with ε̄t =
∑n

i=1 θiεit and v̄t =
∑n
i=1 θivit.

When C̄ is of full rank, C̄C̄′ is invertible. From (3.6), ft can be written

as follows:

ft =
[
C̄C̄′]−1

C̄(w̄t − ūt).

Intuitively, in the case of equal weights θi = 1/n, i = 1, . . . , n, ūt is the

combination of averaged errors. By the Law of Large Numbers and the

assumption of independence between βi and xit (or vit), ūt → 0 as n→ ∞,

yielding

ft −
[
C̄C̄′]−1

C̄w̄t
p→ 0. (3.8)

This implies that it is asymptotically valid to consider ft as a linear function

of w̄t. Pesaran (2006) suggests augmenting the original regression (3.1)

by adding w̄t, the cross-sectional averages of dependent and independent

variables, as additional regressors to control for the effects of ft. That is,

the regression becomes

yit = x′itβi + ϕ′
iw̄t + εit.

From this perspective, this CCE approach is regarded as a way to predict

the unobserved ft using observables. It is also similar to IV estimation in the

sense that the CCE approach uses predicted value to solve the endogeneity

issue.
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The matrix form of (3.4) is

Yi = Xiβi + Fγi + εi. (3.9)

If F were treated as observable regressors, then the OLS estimator of βi can

be estimated by partitioned regression. However, equation (3.8) suggests

that ft can be proxied by w̄t. Or F can be wiped out asymptotically by

a projection matrix based on w̄t. Let W̄ = (w̄1, w̄2, . . . , w̄T )
′ denote the

T ×(p+1) matrix of cross-sectional averages of dependent and independent

variables. Denote the T × T matrix Mw by Mw = IT − W̄ (W̄ ′W̄ )−1W̄ ′.
Premultiplying both sides of (3.9) by Mw, we obtain

MwYi =MwXiβi +MwFγi +Mwεi. (3.10)

It is expected that the terms involving MwF are ignorable asymptoti-

cally as n→ ∞, and that there is no endogeneity due to unobserved factors

in equation (3.10). Thus, the CCE estimator of βi is defined as the least

squares of transformed data

β̂i,CCE = (X ′
iMwXi)

−1X ′
iMwYi.

When a common slope β, instead of individual slope βi, is the parameter

of interest in empirical studies, under the random coefficient assumption,

it can be obtained by the CCE mean group (CCEMG) estimator

β̂CCEMG =
1

n

n∑
i=1

β̂i,CCE,

or CCE-pooled (CCEP) estimator

β̂CCEP =

(
n∑
i=1

θ̃iX
′
iMwXi

)−1 n∑
i=1

θ̃iX
′
iMwYi,

where θ̃i is a different set of weights. Under some conditions,
√
n(β̂CCEMG − β)

d→ N(0,ΣMG),

where ΣMG can be consistently estimated by

1

n− 1

n∑
i=1

(β̂i,CCE − β̂CCEMG)(β̂i,CCE − β̂CCEMG)
′.

The general case considered by Pesaran (2006) includes observed factors,

e.g., season dummies denoted by dt:

yit = α′
idt + x′itβi + eit, i = 1, . . . , n; t = 1, . . . , T.

Thus, equation (3.9) becomes

Yi = Dαi +Xiβi + Fγi + εi,
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where D = (d1, d2, . . . , dT )
′. Different from unobserved factors F , the

observed factorsD can be partialled out directly. In this case, the projection

matrix Mw (3.10) can be replaced by Mh = IT − H(H ′H)−1H ′, where
H = (D, W̄ ).

3.3. IPC Approach

Another popular approach of estimating factor-augmented panel regression

model is IPC proposed by Bai (2009) in a homogeneous panel data model:

yit = x′itβ + uit = x′itβ + λ′ift + εit, i = 1, . . . , n; t = 1, . . . , T. (3.11)

In this model, the factor structure λ′ift is considered as a generalized version

of fixed effects with an interaction form, instead of an additive form λi+ ft
in a two-way error component panel data model. Different from the model

above using CCE approach, here γi could be correlated with regressors xit,

as in the traditional fixed effects model. Thus, there is an additional source

of endogeneity. Therefore, the CCEMG or CCEP could be inconsistent in

the model (3.11) under this assumption.

To obtain a consistent estimator of β in equation (3.11), Bai (2009)

proposes an iteration method based on the principal components method.

Different from Pesaran’s (2006) approach, in which the unobserved factors

are partialled out, the IPC approach treats factors and loadings as param-

eters and estimates them directly. The matrix form of (3.11) is

Yi = Xiβ + Fλi + εi. (3.12)

Define n × r matrix Λ = (λ1, . . . , λn)
′. The parameters of interest here

include β, F and Λ. The least squares estimator is defined as the solution

to minimizing the sum of squared residuals

min SSR(β, F,Λ) =

n∑
i=1

(Yi −Xiβ − Fλi)
′(Yi −Xiβ − Fλi). (3.13)

Stacking observations through all n individuals, we write equation (3.12)

as

Y = Xβ + FΛ′ + ε,

where Y = (Y1, . . . , Yn), X = (X1, . . . , Xn) and ε = (ε1, . . . , εn). Since F

and Λ are not identifiable, additional restrictions are imposed on the factor

structure: F ′F/T = Ir and Λ′Λ = diagonal.
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With these additional restrictions, an iterated estimation procedure is

proposed. First, for each given F , OLS of β is obtained in (3.13)

β̂(F ) =

(
n∑
i=1

X ′
iMFXi

)−1 n∑
i=1

X ′
iMFYi,

where MF = IT − F (F ′F )−1F ′ = IT − FF ′/T . Second, for a given β,

Yi−Xiβ = Fλi+εi has a pure factor structure. The least squares estimator

of F is equal to the first r eigenvectors (multiplied by
√
T ) associated with

the r largest eigenvalues of the matrix
∑n

i=1(Yi − Xiβ)(Yi − Xiβ)
′. Once

the estimated factor F̂ is obtained in the second step, the slope estimator

β̂(F ) in the first step can be updated. Thus, the final least squares estimator

(β̂, F̂ ), referred to as the IPC estimator, is the solution of following iteration:

β̂ =

(
n∑
i=1

X ′
iMF̂Xi

)−1 n∑
i=1

X ′
iMF̂Yi, (3.14)

[
1

nT

n∑
i=1

(Yi −Xiβ)(Yi −Xiβ)
′
]
F̂ = F̂ VnT , (3.15)

where VnT is a diagonal matrix that consists of the r largest eigenvalues of
1
nT

∑n
i=1(Yi −Xiβ)(Yi −Xiβ)

′, arranged in descending order. The loading

estimator is

Λ̂′ = F̂ ′(Y −Xβ̂)/T.

In practice, Bai (2009) proposes a more robust iteration procedure: given

F,Λ, slope estimate can be computed by

β̂(F,Λ) =

(
n∑
i=1

X ′
iXi

)−1 n∑
i=1

X ′
i(Yi − Fλi), (3.16)

and given β̂ above, F and Λ can be computed from the pure factor structure

Yi −Xiβ̂ = Fλi + ei, i = 1, . . . , n. This new iteration scheme calculates a

matrix inverse (
∑n

i=1X
′
iXi)

−1 in (3.16) and avoids updating matrix inverse

in each iteration in (3.14).

In the absence of correlations and heteroskedasticity, the IPC estimator

β̂ defined above is
√
nT consistent without a bias. However, in a general

case, β̂ is asymptotically biased. Thus, Bai (2009) proposes a bias-corrected

version of IPC estimator of β.

Compared to the CCE estimator proposed by Pesaran (2006), the IPC

approach has the advantage of allowing for the correlation between factor

loadings and regressors. In addition, no rank condition is required.
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3.4. Likelihood Approach

Bai’s (2009) IPC approach treats both factors and loadings as parameters,

and controls the interactive fixed effects through estimating them. The ben-

efit of this approach is allowing for arbitrary correlations between regressors

and factors and loadings. However, there are too many parameters to esti-

mate and a bias due to incidental parameters may arise. To address this

concern, Bai and Li (2014) propose a likelihood approach to estimate the

sample covariance matrix of factors (or loadings), instead of factors (or

loadings) themselves, thus eliminating the incidental parameters problem

in the time dimension (or cross-sectional dimension).

The model considered in Bai and Li (2014) is

yit = x′itβ + λ′ift + εit, i = 1, . . . , n; t = 1, . . . , T. (3.17)

To estimate β, Hsiao (2018) considers a quasi-likelihood approach for (3.17)

using the following objective function:

−T
2
ln |Σε| − 1

2

n∑
i=1

(Yi −Xiβ − Fλi)
′Σ−1
ε (Yi −Xiβ − Fλi),

in a special case of homoskedasticity, i.e., Σε = E(εiε
′
i) = σ2

εIT . Bai and

Li (2014) take a different approach. Similar to Pesaran’s (2006) model, the

relationship between xit and factor structure is specified in an additional

equation:

xit = γ′ift + vit. (3.18)

Different from Pesaran (2006), this model allows for the correlation between

xit and λi through the correlation between γi and λi. Bai and Li (2014) treat

loadings λi, γi as parameters and estimate them jointly with β by forming

(3.17) and (3.18) in a simultaneous equation system. Let Γi = (λi, γi),

zit = (yit, x
′
it)

′ and uit = (εit, v
′
it)

′. The model consisting of (3.17) and

(3.18) can be written as[
1 −β′

0 Ip

]
zit = Γ′

ift + uit.

Let B =
[
1 −β′
0 Ip

]
, zt = (z′1t, . . . , z

′
nt)

′ and Γ = (Γ1, . . . ,Γn)
′, ut =

(u′1t, . . . , u
′
nt)

′. Stacking observations across i, we obtain

(IN ⊗B)zt = Γft + ut, t = 1, . . . , T. (3.19)

Thus, the model (3.19) becomes a high-dimensional factor model considered

in Bai and Li (2012) except the term (In⊗B) in front of the observable zt. As
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in the estimation of system of equations, the objective function of maximum

likelihood estimation considered in Bai and Li (2014) is

lnL = − 1

2n
ln |Σzz | − 1

2n
tr[(In ⊗B)Mzz(In ⊗B′)Σ−1

zz ] (3.20)

where Σzz = ΓMffΓ
′ + Σu, Mzz = 1

T

∑T
t=1(zt − z̄)(zt − z̄)′ is the data

matrix and z̄ = 1
T

∑T
t=1 zt. The parameters to be estimated here are

(β,Γ, Mff ,Σu). Here N(p + 1) × r matrix Γ contains all factor loadings

λi, γi in equations of yit and xit, i = 1, . . . , n, and r × r matrix Mff =
1
T

∑T
t=1(ft− f̄)(ft− f̄)′ has r× (r+1)/2 distinct elements, f̄ = 1

T

∑T
t=1 ft.

Different from Bai (2009), here only matrix Mff , instead of r × T param-

eters ft, t = 1, . . . , T , is to be estimated. Thus, the incidental parameters

problem in time dimension is avoided. Moreover, n(p+1)×n(p+1) matrix

Σu = E(utu
′
t) = diag(Σ11, . . . ,Σnn) is a block diagonal matrix due to the

uncorrelation of uit across i.

The maximum likelihood estimator (MLE) of (β,Γ, Mff ,Σu) is defined

to maximize lnL in equation (3.20). The identification conditions required

are as follows:Mff = Ir,
1
T

∑T
t=1 ft = 0, and 1

nΓ
′Σ−1
u Γ is a diagonal matrix

with its diagonal elements distinct and arranged in descending order. Under

these conditions, parameters to be estimated reduce to (β,Γ, Σu).

Bai and Li (2014) show that under some conditions and
√
n/T → 0, the

MLE of β is
√
nT consistent, efficient and has no asymptotic bias, which

is different from Bai’s (2009) IPC estimator. To implement the maximum

likelihood method, Bai and Li (2014) adapt the ECM (expectation and

conditional maximization) procedures.

In equation (3.19), an individual specific intercept term can be intro-

duced to accommodate an intercept in equation (3.17) and nonzero means in

equation (3.18). As shown in (3.20), only the second moments are involved,

so including an intercept term does not affect the MLE.

Bai (2013) extends the likelihood approach to a dynamic panel data

model with a factor error structure. With a proper treatment of the initial

observation, the proposed MLE is consistent, efficient and asymptotically

unbiased in cases of fixed T and large T .

3.5. Other Studies

Other important approaches to deal with the unobserved factor structure

in static panel data models include the quasi-difference method by Ahn

et al. (2013), instrumental variable approach by Sarafidis and Robertson
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(2015), etc. In a dynamic model, Moon and Weidner (2017) propose a bias-

corrected least squares estimator. Hsiao (2018) reviews the existing factor-

augmented panel data regression models in the literature and categorizes

them into four groups by treating λi and ft as random or fixed effects. In

terms of the potential correlations between λi and xit, and between ft and

xit, Pesaran’s (2006) model and CCE approach introduced in Section 3.2

can be considered as the case of treating λi as random and ft as fixed. Since

in Bai’s (2009) model, both λi and ft are allowed to be correlated with xit,

the IPC approach is considered as the case of treating both λi and ft as

fixed.

Hsiao (2018) suggests a quasi-likelihood approach as a common frame-

work for four different combinations of random and fixed λi and ft. In a

dynamic model,

yit = β1yit−1 + x′itβ2 + λ′ift + εit, i = 1, . . . , n; t = 1, . . . , T,

when T is fixed, it is reasonable to treat λi as random and ft as fixed. In

Hsiao’s (2018) Monte Carlo experiments, both CCE and IPC approaches

are invalid for the case of the dynamic model when T is fixed. In this

case, a quasi-maximum likelihood estimator introduced by Hsiao (2018) is

consistent and asymptotically unbiased as n→ ∞.

3.6. An Empirical Example

In this section, CCE, IPC and likelihood approaches introduced above are

illustrated by using a panel data set for China’s provincial infrastructure

investments over the period of 1996–2015. This data set is employed by

Feng and Wu (2018) to investigate the productivity effect of infrastructure

by estimating the output elasticity with respect to public infrastructure in

an aggregate production function.

We start with a homogeneous panel data model based on an aggregate

production function:

git = β0 + βbbit + βkkit + μi + λt + εit, (3.21)

where git is the logarithm of GDP per labor in province i in year t, and

bit is the logarithm of public infrastructure stock per labor, and kit is the

logarithm of noninfrastructure capital stock per labor. In this equation,

βb and βk are, respectively, the output elasticities of public infrastruc-

ture and noninfrastructure capital, and μi denotes province specific fac-

tors, such as location, weather, endowments of raw materials. Time effects
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λt are used to control for national-level macro shocks, and εit denotes the

idiosyncratic error. To estimate the parameter of interest βb, the following

first-differenced equation form is used to deal with the nonstationarity of

macroeconomic variables git, bit, kit:

Δgit = βbΔbit + βkΔkit +Δλt +Δεit. (3.22)

Summary statistics of the variables used in the regressions and detailed

information of the data construction and variables can be found in Feng

and Wu (2018).

Table 3.1 gives the first-differenced (FD) estimates assuming that the

regressors Δbit and Δkit are exogenous. Besides the full sample estimates in

column (1), estimates using subsamples of noneastern and eastern provinces

are reported in columns (2) and (3) to highlight cross-region heterogeneity.

Similarly, to allow for structural changes in elasticities, subsample estimates

using the periods of 1997–2007 and 2008–2015 are presented in columns

(4) and (5). Substantial differences in the magnitude of the estimated βb are

observed, indicating that cross-region heterogeneity and structural changes

should be accommodated in an empirically more flexible model.

Table 3.1 also reports Bai’s (2009) IPC estimates in column (6), Bai

and Li’s (2014) MLE in column (7) and Pesaran’s (2006) CCE mean group

(CCEMG) estimates in column (8). In column (6), the IPC estimates of

βb and βk are 0.197 and 0.349, respectively.1 Compared with column (1),

the IPC estimate of βk varies little after controlling for interactive fixed

effects, while the IPC estimate of βb increases from 0.127 to 0.197. MLE

results proposed by Bai and Li (2014) are included in column (7). In the

case of two factors, the MLE of βb and βk are 0.233 and 0.517, slightly

bigger than those of IPC. When there is one unobserved factor in errors,

the MLE results are very close to IPC estimates.

Column (8) estimates a heterogeneous model to allow for different elas-

ticities across provinces:

Δgit = βb,iΔbit + βk,iΔkit +Δλt +Δεit. (3.23)

Column (8) assumes a factor structure in the error Δεit = γ′ift + εit in

equation (3.23) to capture the heterogeneous impact of unobserved macro

shocks ft, and the fact that regressors Δbit, Δkit can be affected by the

1A Stata ado file regife developed by Gomez (2015) is used to calculate Bai’s (2009)
IPC estimates. Here, two factors are assumed. The estimates are quantitatively similar
to those with three factors in the errors.
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Table 3.1. Output elasticities estimates.

Dependent variable: Output per labor

FD IPC MLE CCEMG

Independent variables (1) (2) (3) (4) (5) (6) (7) (8)

Infrastructure per labor 0.127*** 0.166*** 0.107*** 0.144*** 0.088** 0.197*** 0.233 0.194***
(0.025) (0.025) (0.026) (0.031) (0.036) (0.017) (0.023)

Noninfrastructure per labor 0.324*** 0.346*** 0.321*** 0.340*** 0.315*** 0.349*** 0.517 0.407***
(0.027) (0.024) (0.025) (0.040) (0.024) (0.018) (0.037)

Regions All Noneastern Eastern All All All All All
Periods All All All 1997–2007 2008–2015 All All All
Year effects Yes Yes Yes Yes Yes Yes Yes Yes

No. of observations 569 360 209 329 240 569 569 569
Overall R2 0.727 0.762 0.758 0.755 0.670 0.72

Notes: Standard errors are reported in parentheses. The stars, ∗, ∗∗ and ∗∗∗ indicate the significance level at 10%, 5% and 1%, respectively.
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unobserved common factors ft. For this model, Pesaran’s (2006) CCEMG

can be applied directly. Compared with the usual first-difference estimates

in column (1), CCEMG in column (8) accommodates two empirical fea-

tures: slope heterogeneity and cross-sectional dependence. The CCEMG

estimates of βb and βk are 0.194 and 0.407, respectively, very close to the

corresponding IPC estimates in column (6) and both are slightly different

from the FD estimates in column (1).

3.7. Exercises

(1) (Doz, Giannone, and Reichlin, 2012) Consider

yt = Λft + et,

where ft = (f1t, . . . , frt)
′ is an r × 1, Λ is an n × r factor loading

matrix, and et = (e1t, . . . , ent)
′ is an n × 1 idiosyncratic components

with et
i.i.d.∼ N(0,Σ) where Σ is a diagonal matrix. Assume

A(L)ft = ut

with

A(L) = I −A1L− · · · −ApL
p

an r×r filter of finite length p with roots outside the unit circle, and ut

an r-dimensional Gaussian white noise, ut
i.i.d.∼ N(0, Ir). Let θ̂ be the

quasi maximum likelihood estimator (QMLE) of parameters θ. Define

F̂
̂θ = E

̂θ[F |Y ]

with F = (f1, . . . , fT )
′ and Y = (y1, . . . , yT )

′ where F̂
̂θ =

(f̂
̂θ1, . . . , f̂̂θT )

′. Show that

trace

(
1

T
(F − F̂

̂θĤ)′(F − F̂
̂θĤ)

)
= Op

(
1

ΔnT

)
as (n, T ) → ∞ where Ĥ = (F̂ ′

̂θ
F̂
̂θ)

−1F̂ ′
̂θ
F and ΔnT = min{√T , n

logn}.
(2) (Continued) Assume

ft
i.i.d.∼ N(0, Ir)

and

et
i.i.d.∼ N(0, σ2Ir).

Show that:
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(a) the log-likelihood function is

logL(Y ; θ) = −nT
2

log 2π−T
2
log |ΛΛ′+σ2In|−T

2
trace(ΛΛ′+σ2In);

(b) the QMLE are

Λ̂ = V (D − σ̂2Ir)
1/2

and

σ̂2 =
1

n
trace(S − Λ̂Λ̂′),

where D is an r×r diagonal matrix containing the r largest eigen-

values of the sample covariance matrix

S =
1

T
Y ′Y,

and V is the n × r matrix whose columns are the corresponding

normalized eigenvectors such that V ′V = Ir and SV = V D;

(c) F̂
̂θ = Y V (D − σ̂2Ir)

1/2D−1.

(3) (Barigozzi and Cho, 2019) Consider

yit = χit + eit

with

χit = λ′ift.

Let

χ̂pcit =

r∑
j=1

ŵijŵjyt,

where ŵj = (ŵ1j , . . . , ŵnj) is the normalized eigenvector correspond-

ing to the jth largest eigenvalue of the sample covariance matrix of yt.

Show that

max
i

max
t

|χ̂pcit − χit| = Op

(
max

(√
logn

T
,

1√
n

)
logT

)
.

(4) (Bai and Liao, 2013) Consider

yit = λ′ift + uit

where ft is an r × 1 vector of common factors, λi is a vec-

tor of factor loadings, and uit is the idiosyncratic component.
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Let yt = (yit, . . . , ynt)
′, Λ = (λ1, . . . , λn)

′ and ut = (u1t, . . . , unt)
′.

In vector form,

yt = Λft + ut.

Define

(Λ̂, f̂t) = argmin
Λ,ft

T∑
t=1

(yt − Λft)
′WT (yt − Λft)

subject to 1
T

∑T
t=1 f̂tf̂

′
t = Ir and Λ̂′WT Λ̂ is diagonal, where WT is an

n × n weight matrix. Let Y be the n × T matrix of yit. Show that

λ̂i and f̂t are both r × 1 vectors such that the columns of the T × r

matrix 1√
T
F̂ = 1√

T
(f̂1, . . . , f̂T )

′ are the eigenvectors corresponding to

the largest r eigenvalues of Y ′WTY and Λ̂ = (λ̂1, . . . ,̂ λn)
′ = 1

T Y F̂ .

(5) (Bai and Liao, 2016) Consider

yit = αi + λ′ift + uit,

where αi is an individual effect, λi is an r × 1 vector of factor load-

ings, ft is an r × 1 vector of common factors and uit denotes the

idiosyncratic component. Let yt = (y1t, . . . , ynt)
′, Λ = (λ1, . . . , λn)

′,
α = (α1, . . . , αn)

′ and ut = (u1t, . . . , unt)
′. In vector form,

yt = α+ Λft + ut.

Let S = 1
T

∑T
t=1(yt − y)(yt − y)′ and Sf = 1

T

∑T
t=1(ft − f)(ft − f)′

with y = 1
T

∑T
t=1 yt and f = 1

T

∑T
t=1 ft. Assume Sf = Ir and Λ′Σ−1

u Λ

is diagonal. The quasi-likelihood function is

L(Λ,Σu) =
1

n
log[ΛΛ′ +Σu] +

1

n
tr(S(ΛΛ′ +Σu)

−1),

where Σu = E(utu
′
t). Define

(Λ̂, Σ̂u) = arg min
(Λ,Σu)

L(Λ,Σu) + PT (Σu)

with

PT (Σu) =
1

n

∑
i�=j

μnTwij |Σij |,

where μnT is a tuning parameter that converges to zero and wij is an

entry-dependent weight parameter. Let

f̂t = (Λ̂′Σ̂uΛ̂)−1Λ̂′Σ̂−1
u (yt − y).
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Assume log(n) = o(T ). Show that as (n, T ) → ∞
1

n
‖Σ̂u − Σu‖2F

p→ 0,

1

n
‖Λ̂− Λ‖2F

p→ 0,

and

‖f̂t − ft‖ p→ 0

for each t where ‖ · ‖F is the Frobenius norm.

(6) (Fan, Liao, Liu, 2016) Consider

yt = Λft + et.

Assume Λ is known, Λ = ln, and Σe = E(ete
′
t) = I, where ln denotes

the n-dimensional column of ones with ‖lnl′n‖2 = n. Let Σ = E(yty
′
t).

Then

Σ = Var(f1)lnl
′
n + I

and

Σ̂ = V̂ar(f1)lnl
′
n + I.

Note ‖Σ̂−Σ‖2 = | 1T
∑T

t=1(f1t− f1)2−var(f1t)|×‖lnl′n‖2 where ‖A‖2
denotes the operator norm of a matrix A. Show that

√
T
n ‖Σ̂− Σ‖2 =

Op(1) and ‖Σ̂− Σ‖2 → ∞ if n >
√
T .

(7) Consider

yt = Λft + et,

where ft is an r × 1 vector of common factors, yt = (y1t, . . . , ynt)
′,

Λ = (λ1, . . . , λn)
′ and et = (e1t, . . . , ent)

′. Let F = (f1, . . . , fT )
′

and Y = (y1, . . . , yT )
′. Assume ΛΛ′

n → ΣΛ which is positive definite,

E(ete
′
t) = Σ = diag(σ2

1 , . . . , σ
2
n),

1
T F

′F = Ir and ΛΛ′ is diagonal

with distinct entries. Let F̂ be the first r leading eigenvectors of Y Y ′

multiplied by
√
T and Λ̂ = Y ′

̂F
T . Show that for each i

√
T (λ̂i − λi)

d→ N(0, σ2
i Ir)

if
√
T
n → 0 for each i,

and
√
T (f̂t − ft)

d→ N(0,Σ−1
Λ QΣΛ)
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if
√
n
T → 0 for each t, with

1

n
Λ′Λ → ΣΛ

and

1

n
Λ′ΣΛ → Q.

Consider a quasi-likelihood function

(Y ; Λ, F,Σ) = −nT log(2π)− T

2
log det

∣∣∣∣XX ′

T
+Σ

∣∣∣∣
− 1

2
tr

[
Y ′
(
XX ′

T
+Σ

)−1

Y

]

with X = ΛF ′ and XX′
T = ΛΛ′. Let Λ̃ and Σ̃ be the quasi-maximum

likelihood estimates (QMLE) of Λ and Σ. Show that as (n, T ) → ∞
for each i

√
T (λ̃i − λi)

d→ N(0, σ2
i Ir)

and
√
T (σ̃2

i − σ2
i )

d→ N(0, (2 + κi)σ
4
i )

where κi is the excess kurtosis of eit. Define

f̃t = (Λ̃′Σ̃−1Λ̃)−1Λ̃′Σ̃−1yt.

Show that
√
n(f̃t − ft)

d→ N(0, Q−1)

if n
T 2 → 0.

(8) (Continued) Let

β̂ = (F ′F )−1F ′F̂ =
F ′F̂
T

.

Show that

β̂ − 1 = op

(
1√
T

)
if factors are strong, i.e., Λ′Λ

n → ΣΛ. Let Y =
√
TÛD̂V̂ ′ with D̂ =

diag(d̂1, . . . , d̂min(n,T )), and Û ′Û = V̂ ′V̂ = Ir . Define Λ = UD with
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U ′U = Ir and D = diag(d1, . . . , dr). By assuming factors are weak,

i.e., dk → ρk <∞, show that

d̂k
p→

⎧⎪⎨⎪⎩
√(

ρk +
1

ρk

)(
ρk +

c

ρk

)
σ if ρk > c1/4σ,

(1 +
√
c)σ otherwise

and

β̂k
p→

⎧⎪⎨⎪⎩
√

ρ4k − c

ρ4k + ρ2k
if ρk > c1/4σ,

0 otherwise

if Σ = σ2In and n
T → c.

(9) Consider a large factor model as in Bai and Ng (2002),

yit = λ′ift + uit for i = 1, . . . , n and t = 1, . . . , T, (3.24)

to test the null hypothesis of

H0 : λi = 0 (3.25)

for all i against the alternative that

H1 : λi �= 0

for some i. To test the null hypothesis in equation (3.25), a standard

F -statistic is defined as

Fλ(r) =
(RRSS−URSS)/nr

URSS/[n(T − r)]
, (3.26)

where RRSS and URSS denote the residual sum of squares from

the restricted and unrestricted models, respectively. Show that the

F -statistic can be written as a ratio of the average of r largest eigen-

values and the average of the rest T − r eigenvalues,

Fλ(r) =
1
r

∑r
j=1 l̂j

1
T−r

∑T
j=r+1 l̂j

where l̂1, . . . , l̂T are eigenvalues of 1
n

∑n
i=1XiX

′
i.
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(10) Let Xij be i.i.d. standard normal variables. Write

Sn =

(
1

n

n∑
k=1

XikXjk

)p
i,j=1

,

which can be considered as a sample covariance matrix with n samples

of a p-dimensional mean zero random vector with covariance matrix

Ip×p. Define

Tn = ln(detSn)

=

p∑
j=1

lnλn,j ,

where λn,j are the eigenvalues of Sn, j = 1, . . . , p.

(a) Show that when p is fixed, λj
p→ 1 and hence Tn

p→ 0.

(b) Show that √
n

p
Tn

d→ N(0, 2)

for any fixed p.

(c) One may think that the possibility that Tn is asymptotically nor-

mal provided p = O(n). However, this is not the case. Explain

(no need to show it formally) why√
n

p
Tn → −∞

when (p, n) → ∞.

(11) Suppose X̃it is observed with a measurement error εit in a large factor

model

X̃it = λ′ift + eit

with

X̃it = Xit + εit

and

1

nT

n∑
i=1

T∑
t=1

εit = Op

(
1

δ2nT

)
,
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where δnT = min(
√
n,

√
T ). Show that PC and IC estimators of the

number of factors in Bai and Ng (2002) are still consistent. Impose

the conditions/assumptions you need as you see fit.

(12) (Kao and Oh, 2017) Consider a factor model

yit = λ′ift + εit,

i = 1, . . . , n, t = 1, . . . , T , where ft is an r × 1 vector of factors, λi is

an r × 1 vector of factor loadings and r is the number of factors, and

εit
i.i.d.∼ N(0, 1). Let

IC(k) = lnS(k) + k ·G(n, T )
with

S(k) =
1

nT

n∑
t=1

T∑
t=1

(yit − λ̂′ki f̂
k
t )

2,

where k < min(n, T ), G(n, T ) is a penalty function, λ̂ki and f̂kt are

estimated loadings and factors given by the number of factors k, e.g.,

Bai and Ng (2002). Define

k̂IC = argmin
k

IC(k).

Show that IC(k) in Bai and Ng (2002) can be written as

IC(k) = ln

⎛⎝ 1

n

n∑
j=k+1

�j

⎞⎠+ k ·G(n, T ),

where �1 ≥ �2 ≥ · · · ≥ �n denotes the n eigenvalues of an n×n sample

covariance matrix 1
T

∑T
t=1 x

′
txt. Let ΔIC(1) = IC(r) − IC(r + 1) > 0,

where

IC(r) = ln

⎛⎝ 1

n

n∑
j=r+1

�j

⎞⎠+ r ·G(n, T )

and

IC(r + 1) = ln

⎛⎝ 1

n

n∑
j=r+2

�j

⎞⎠+ (r + 1)×G(n, T ).
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Show that the probability of the number of factors would be overesti-

mated by exactly one has the form

P (ΔIC(1) > 0) = P

(
�1(W )

Tr(W )
> ξn,T

)
+Op

(
1

n

)
,

whereW is an (n−r)×(n−r) Wishart matrix with identity covariance

matrix, �1(W ) is the largest eigenvalue ofW , Tr(W ) is the sum of n−r
eigenvalues of W and

ξn,T = −1 +
√
1 + 2G(n, T ).
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Chapter 4

Structural Changes in Panel
Data Models

Based on Baltagi, Feng and Kao (2016, 2019), this chapter studies the

issue of structural changes in large panel data regression models. Parameter

instability due to new policy implementation or major technological shocks

is more likely to occur over a longer time span. Consequently, ignoring

structural changes may lead to inconsistent estimation and invalid inference.

We consider a heterogeneous panel regression model and extend

Pesaran’s (2006) work on common correlated effect (CCE) estimators for

large heterogeneous panels with a general multifactor error structure by

allowing for unknown common structural breaks. We propose a general

framework that includes heterogeneous panel data models and structural

break models as special cases. The least squares method proposed by Bai

(1997a, 2010) is applied to estimate the common change points, and the

consistency of the estimated change points is established. We find that the

CCE estimators have the same asymptotic distribution as if the true change

points were known.

Then, we discuss the case of endogenous regressors and structural

changes in error factor loadings. Allowing for endogenous regressors makes

the proposed panel regression empirically more appealing. An extensive

Monte Carlo study is employed to examine the proposed estimator in var-

ious scenarios. In addition, an empirical example of infrastructure invest-

ment is used to illustrate the estimation of common break date and slope

parameters.

57
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Finally, we also review the recent development in this literature, includ-

ing Lasso-type approaches in Qian and Su (2017) and Okui and Wang

(2018).

4.1. Heterogeneous Panels with a Common

Structural Break

In a heterogeneous panel data model:

yit = x′itβi + eit, i = 1, . . . , n; t = 1, . . . , T, (4.1)

xit is a p × 1 vector of explanatory variables, and the errors are cross-

sectionally correlated, modeled by a multifactor structure

eit = γ′ift + εit, (4.2)

where ft is an m × 1 vector of unobserved factors and γi is the corre-

sponding loading vector. Here, εit is the idiosyncratic error independent of

xit. However, xit could be affected by the unobservable common effects ft.

Projecting xit on ft, we obtain

xit = Γ′
ift + vit, i = 1, . . . , n; t = 1, . . . , T, (4.3)

where Γi is an m × p factor loading matrix and vit is a p × 1 vector of

disturbances. Due to the correlation between xit and eit, ordinary least

squares (OLS) for each individual regression could be inconsistent. Thus,

Pesaran (2006) develops the CCE estimator of βi by least squares using

augmented data.

In this chapter, we allow for structural breaks to occur in some or all

components of the slopes βi. Following Bai (2010) and Kim (2011), a struc-

tural break at a common unknown date k0 is assumed. This could be due

to a macro policy implementation or a technological shock that affects all

markets or firms at the same time. More formally,

yit = x′itβi(k0) + eit, i = 1, . . . , n; t = 1, . . . , T, (4.4)

where some or all components of βi(k0) are different before and after

the date k0. Following Bai (1997a), this structural break model can be

written as

yit =

{
x′itβi + eit, t = 1, . . . , k0,

x′itβi + z′itδi + eit, t = k0 + 1, . . . , T,
(4.5)
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i = 1, . . . , n, where zit = R′xit denotes a q × 1 subvector of xit with

R′ = (0q×(p−q), Iq). Here, Iq is the q × q identity matrix with q ≤ p. The

case where q < p denotes a partial change model, while the case where

q = p is for a pure change model. Pauwels, Chan and Mancini-Griffoli

(2012) propose a testing procedure for k0 in this setting.

Substituting zit = R′xit in (4.5), we obtain

βi(k0) = βi +Rδi · 1{t > k0}

=

{
β1i = βi, t = 1, . . . , k0,

β2i = βi +Rδi, t = k0 + 1, . . . , T,

so that β2i − β1i = Rδi, and δi denotes the slope jump for i. When δi = 0,

there is no structural break in the slope.

The case of multiple break points will be discussed in Section 4.5. In

Sections 4.2 and 4.3, we consider the simple case of one common break

as in model (4.5). Compared with the heterogeneous panel data model

considered in Pesaran (2006), equation (4.5) has the extra component Rδi ·
1{t > k0} in the slope, involving the unknown structural change point k0.

Thus, ignoring the structural break in the slopes may invalidate the CCE

estimator proposed by Pesaran (2006). Compared with the simple mean-

shift panel data model in Bai (2010), our model is enriched by adding

a regression structure with xit �= 1 in general, as well as cross-sectional

dependence characterized by a multifactor structure in the errors. When

there are no unobservable common factors ft, our model (4.4) can also be

regarded as an extension of Bai (1997a) to a panel data setting. In addition,

the model (4.4) above is similar to Kim (2011), who considered the case of

a deterministic time trend with a common break.

Before proceeding to the general model (4.5), we start with a simple

case of heterogeneous panels in the absence of common correlated effects ft
and then extend the main results to the general case.

To estimate the common change point k0, we need the following addi-

tional assumptions.

Assumption 4.1. k0 = [τ0T ], where τ0 ∈ (0, 1) and [ · ] is the greatest

integer function.

Note that unlike the time-series model considered by Bai (1997a), the

restriction of τ0 ∈ (0, 1) is unnecessary in a panel mean-shift setup consid-

ered by Bai (2010) as long as T/n→ 0. However, this assumption is required
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in our heterogeneous panels with general regressors. Enough observations

are needed to consistently estimate the slopes in each regime.

Define φn =
∑n
i=1 δ

′
iδi. For series i, δ

′
iδi measures the magnitude of the

structural break, thus φn is an indicator of the break magnitude for all n

series sharing a common break.

Assumption 4.2. φn → ∞ and (i) φn

n is bounded as n → ∞; (ii) φn
T
n →

∞ as (n, T ) → ∞.

δi could be random with a finite variance across i, with

Assumption 4.2(i) describing this case. When δi is considered as random,

Assumption 4.2 means that φn

n is stochastically bounded in part (i), and

that n
φnT

converges in probability to 0 in part (ii). Alternatively, δi could

denote fixed parameters. Since Assumption 4.2(i) allows for the case where
φn

n → 0 as n→ ∞, Assumption 4.2(ii) implies that it cannot converge to 0

too fast. Consequently, Assumption 4.2(i) imposes an upper bound on φn

n ,

while Assumption 4.2(ii) imposes a lower bound on φn

n .

In case T grows at a comparable rate or faster than n, i.e., T = O(nψ)

with ψ ≥ 1, Assumption 4.2(ii) implies that φn can diverge at any rate.

When φn increases at a rate less than n, Assumption 4.2(ii) allows for the

possibility of no structural break in some series. Assumption φn → ∞ rules

out the case where there is no structural break in the slopes in all series.

4.2. Model 1: No Common Correlated Effects

In this section, we assume that there are no unobserved common effects ft
in the errors and regressors. Or the loading vectors γi and Γi are equal to

zero. For i = 1, . . . , n,

yit =

{
x′itβi + εit, t = 1, . . . , k0,

x′itβi + z′itδi + εit, t = k0 + 1, . . . , T.
(4.6)

This is the special case of cross-sectionally independent errors, where a

common break k0 occurs in the heterogeneous slopes. This model generalizes

Bai’s (1997a, 2010) and Pesaran and Smith’s (1995) models. When n = 1,

equation (4.6) is the time-series model considered in Bai (1997a). When

xit = 1, this model reduces to the one in Bai (2010). In case the lagged-

dependent variable is included in xit and δi = 0, equation (4.6) turns out

to be the setup in Pesaran and Smith (1995).
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Assumption 4.3. (i) The disturbances εit, i = 1, . . . , n, are cross-

sectionally independent; (ii) for each series i, εit is independent of xit
for all i and t; (iii) εit is a stationary process with absolute summable

autocovariances,

εit =
∞∑
l=0

ailζi,t−l,

where {ζit, t = 1, . . . , T } are i.i.d. random variables with finite fourth-order

cumulants. Assume 0 < Var(εit) =
∑∞

l=0 a
2
il = σ2

i <∞. Also, for the T × 1

vector εi = (εi1, εi2, . . . , εiT )
′, Var(εi) = Σε,i.

When εit is serially uncorrelated, lagged-dependent variables are prede-

termined and can be included as regressors in (4.6).

Assumption 4.4. For i = 1, . . . , n, the matrices (1/j)
∑j
t=1 xitx

′
it,

(1/j)
∑T
t=T−j+1 xitx

′
it, (1/j)

∑k0
t=k0−j+1 xitx

′
it and (1/j)

∑k0+j
t=k0+1 xitx

′
it are

stochastically bounded and have minimum eigenvalues bounded away from

zero in probability for all large j. In addition, for each i, (1/T )
∑T
t=1 xitx

′
it

converges in probability to a nonrandom and positive definite matrix as

T → ∞.

This assumption is borrowed from Assumptions A3 and A4 in Bai

(1997a). Its counterpart across the cross-sectional dimension is also needed.

Assumption 4.5. For any positive finite integer s, the matrices
1
n

∑n
i=1

∑k0
t=k0−s+1 xitx

′
it and 1

n

∑n
i=1

∑k0+s
t=k0+1 xitx

′
it, i = 1, . . . , n, are

stochastically bounded, with minimum eigenvalues bounded away from

zero in probability for large n. In addition, for each t, (1/n)
∑n
i=1 xitx

′
it

is stochastically bounded as n→ ∞.

Assumption 4.6. {δi, i = 1, . . . , n} are drawn independently of {xit,
i = 1, . . . , n}.

Let bi = (β′
i, δ

′
i)

′, i = 1, . . . , n, denote the slope parameters. In the ran-

dom coefficient model considered by Pesaran and Smith (1995) and Pesaran

(2006), we assume the following.

Assumption 4.7. For i = 1, . . . , n,

bi = b+ vb,i, vb,i ∼ i.i.d.(0,Σb), (4.7)
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where b = (β′, δ′)′, vb,i =

(
vβ,i
vδ,i

)
and Σb =

(
Σβ 0
0 Σδ

)
for i = 1, 2, . . . , n,

where ‖b‖ <∞, ‖Σb‖ <∞, and the random deviations vb,i are independent

of xit and εjt for all i, j and t.

For any matrix or vectorA, the norm of A is defined as ‖A‖ =
√
tr(AA′).

This assumption is a simplified version of Assumption 4 of Pesaran (2006).

Under Assumption 4.6, {δi, i = 1, . . . , n} are not necessarily random. When

{δi, i = 1, . . . , n} are considered as random, as part of Assumption 4.7,

Assumption 4.6 becomes redundant. Under Assumption 4.7, Σδ �= 0 implies

a structural break in the slope.

By (4.4),

yit = x′itβi + x′itRδi1{t > k0}+ εit,

if the structural break is ignored, the term x′itRδi1{t > k0} is absorbed in

the error term ε̂it = x′itRδi1{t > k0} + εit. This leads to inconsistency of

OLS for each series due to endogeneity. Thus, estimating k0 first is essential.

Let Yi = (yi1, . . . , yiT )
′, Xi = (xi1, . . . , xiT )

′ and εi = (εi1, εi2, . . . , εiT )
′

denote the stacked data and errors for individual i = 1, . . . , n over the

time periods observed. Similarly, define Z0i = (0, . . . , 0, zi,k0+1, . . . , ziT )
′
.

Equation (4.6) can be written in matrix form as

Yi = Xiβi + Z0iδi + εi, i = 1, . . . , n. (4.8)

The parameters of interest are βi, δi and the change point k0. We first

estimate k0 using least squares as proposed by Bai (1997a, 2010). For

any possible change point k = 1, . . . , T − 1, define the matrices X2i(k) =

(0, . . . , 0, xi,k+1, . . . , xiT )
′
, and Z2i(k) = (0, . . . , 0, zi,k+1, . . . , ziT )

′
. When

k happens to be the true change point k0, Z2i(k0) = Z0i. Define X0i =

X2i(k0), thus Z0i = X0iR. To make the notation more compact, we let

Xi(k) = (Xi, Z2i(k)) and X0i = (Xi, Z0i). Thus, (4.8) becomes

Yi = Xiβi + Z0iδi + εi = X0ibi + εi, i = 1, . . . , n. (4.9)

Given any k = 1, . . . , T − 1, one can estimate bi by least squares,

b̂i(k) =

(
β̂i(k)

δ̂i(k)

)
= [Xi(k)

′
Xi(k)]

−1
Xi(k)

′Yi, i = 1, . . . , n. (4.10)
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The corresponding sum of squared residuals is given by

SSRi(k) = [Yi − Xi(k)b̂i(k)]
′[Yi − Xi(k)b̂i(k)]

= [Yi −Xiβ̂i(k)− Z2i(k)δ̂i(k)]
′[Yi −Xiβ̂i(k)− Z2i(k)δ̂i(k)],

i = 1, . . . , n. Note that both b̂i(k) and SSRi(k) depend on k. For each series

i, k0 can be estimated by argmin1≤k≤T−1 SSRi(k) as in Bai (1997a). Given

that the structural break occurs at a common date for all cross-sectional

units in the panel setup, the least squares estimator of k0 is defined as

k̂ = arg min
1≤k≤T−1

n∑
i=1

SSRi(k). (4.11)

In Baltagi et al. (2016), different weights are used in the sum (4.11) above

to allow for the possibility of different magnitudes, e.g., different variances,

across series.

When n = 1, k̂ defined in (4.11) boils down to the change-point estima-

tor considered by Bai (1997a) in a time-series setting, with k̂ − k0 = Op(1)

for large T . In time-series models, only the break fraction τ0 = k0/T ,

instead of k0 itself, can be consistently estimated. In a multivariate time

series setup, Bai, Lumsdaine and Stock (1998) show that the width of the

confidence interval of the estimated change point decreases with the num-

ber of time series. This result implies that cross-sectional observations with

common breaks improve the accuracy of the estimated change point. In

fact, Bai (2010) shows that the least squares estimator of the change point

is consistent in a panel mean-shift model, i.e., k̂ − k0 = op(1). A similar

result is also obtained by Kim (2011) in a panel deterministic time trend

model. In our heterogeneous panel regression model, equation (4.11) com-

bines the information from each series by summing up SSRi(k). With a large

n, k̂ uses more information provided by the multiple time series sharing a

common break. Consequently, the panel data estimator k̂ is more accurate

than the time-series estimator and achieves consistency, i.e., k̂ − k0
p→ 0 as

(n, T ) → ∞.

Theorem 4.1. Under Assumptions 4.1–4.6 (or 4.7), lim(n,T )→∞
P (k̂ = k0) = 1.

Given the estimated change point k̂, the corresponding estimator of the

slopes is b̂i = b̂i(k̂), i = 1, . . . , n. When bi, i = 1, . . . , n, are considered as
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random variables under Assumption 4.7, the cross-sectional mean b can be

consistently estimated by the mean group estimator proposed by Pesaran

and Smith (1995) and Pesaran (2006):

b̂MG =
1

n

n∑
i=1

b̂i =
1

n

n∑
i=1

[Xi(k̂)
′
iXi(k̂)]

−1
i Xi(k̂)

′Yi. (4.12)

4.3. Model 2: Common Correlated Effects

In this section, we extend Model 1 to the general model with common

correlated effects (4.5): for i = 1, . . . , n,

yit = x′itβi(k0) + eit

=

{
x′itβi + eit, t = 1, . . . , k0,

x′itβi + z′itδi + eit, t = k0 + 1, . . . , T,

where eit = γ′ift + εit. The regressors xit, i = 1, . . . , n, are allowed to be

correlated with the unobservable factors ft modeled in (4.3), xit = Γ′
ift+vit.

When δi = 0, the model reduces to the one considered by Pesaran (2006).

Kim (2011) considers the special case of xit = (1, t)′. Recently, a simplified

model with xit = 1 and fixed T is considered by Westerlund (2019). In this

heterogeneous panel data model with a common break k0, the parameters

of interest are bi = (β′
i, δ

′
i)

′, i = 1, . . . , n, and the change point k0. The

following assumptions are needed.

Assumption 4.8. Common factors ft, t = 1, . . . , T, are covariance sta-

tionary with absolute summable autocovariances, independent of errors εis
and vis for all i, s, t.

Assumption 4.9. Errors εis and vjt are independent for all i, j, s, t.

Moreover, vit, i = 1, . . . , n, are linear stationary processes with abso-

lute summable autocovariances, vit =
∑∞

l=0 Silυi,t−l, where (ζit, υ
′
it )

′ are
(p+1)×1 vectors of i.i.d. random variables with variance–covariance matrix

Ip+1 and finite fourth-order cumulants, and

Var(vit) =

∞∑
l=0

SilS
′
il = Σi,v, and 0 < ‖Σi,v‖ <∞.

Assumption 4.10. Factor loadings γi and Γi are i.i.d. across i, and inde-

pendent of εjt, vjt and ft for all i, j, t. Assume γi = γ+ ηi, ηi ∼ i.i.d.(0,Ωη)
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and Γi = Γ + ξi, ξi ∼ i.i.d.(0,Ωξ), i = 1, . . . , n, where the means γ, Γ are

nonzero and fixed and the variances Ωη, Ωξ are finite.

Together with Assumptions 4.3 and 4.7, Assumptions 4.8–4.10 given

above are the same as Assumptions 1–3 of Pesaran (2006), with the addi-

tional restrictions γ �= 0 and Γ �= 0.

The correlation between xit and eit due to unobserved common factors

ft renders OLS inconsistent. If ft were observable, it could be treated as a

regressor, and this correlation can be removed using a partitioned regres-

sion. Let F = (f1, f2, . . . , fT )
′, then the corresponding orthogonal projec-

tion matrix is given byMf = IT −F (F ′F )−1F ′. In this case, equation (4.5)

can be written in matrix form as

Yi = Xiβi + Z0iδi + Fγi + εi, i = 1, . . . , n. (4.13)

Premultiplying (4.13) by Mf , we get

Y̆i = X̆iβi + Z̆0iδi + ε̆i, i = 1, . . . , n, (4.14)

which is of the same form as equation (4.8) considered in Model 1 of no

factor structure above, with transformed data Y̌i = MfYi, X̆i = MfXi =

MfVi, Z̆0i(k0) = MfZ0i and ε̆i = Mfεi. For each i = 1, . . . , n, the T × p

vector Vi denotes (vi1, . . . , viT )
′. Conditional on F , (X̆i, Z̆0i) and ε̆i are

uncorrelated under Assumption 4.9.

However, ft, t = 1, . . . , T, are unobservable. To proceed, we follow

Pesaran’s (2006) idea of using the cross-sectional averages of yit and xit
as proxies for ft. Combining (4.5) and (4.3) yields

wit
(p+1)×1

=

(
yit

xit

)
= Ci(k0)

′
(p+1)×m

ft
m×1

+ uit(k0)
(p+1)×1

, (4.15)

where

Ci(k0)
m×(p+1)

= (γi,Γi)

(
1 0

βi(k0) Ip

)
,

uit(k0) =

(
εit + v′itβi(k0)

vit

)
.

Note that like βi(k0), the slope Ci(k0) in (4.15) also shifts at k0.

Ci(k0) =

{
C1i = (γi + Γiβ1i, Γi), t = 1, . . . , k0,

C2i = (γi + Γiβ2i, Γi), t = k0 + 1, . . . , T.
(4.16)
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Common break k0 splits the data generating process for all individuals

into two regimes, and each regime has the same structure as that considered

in Pesaran (2006). Consequently, unobserved common factors ft can be

partialled out by using cross-sectional averages in the same spirit.

Let w̄t =
∑n

i=1 θiwit be the cross-sectional averages of wit using weights

θi, i = 1, . . . , n. In particular,

w̄t = C̄(k0)
′ft + ūt(k0), (4.17)

where

C̄(k0) =

n∑
i=1

θiCi(k0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C̄1 =

n∑
i=1

θiC1i, t = 1, . . . , k0,

C̄2 =

n∑
i=1

θiC2i, t = k0 + 1, . . . , T.

The common break assumption is needed, otherwise C̄(k0) is not well

defined. Now ūt(k0) is defined as

ūt(k0) =

n∑
i=1

θiuit(k0)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ε̄t +
n∑
i=1

θiv
′
itβ1i

v̄t

⎞⎟⎠, t = 1, . . . , k0,

⎛⎜⎝ε̄t +
n∑
i=1

θiv
′
itβ2i

v̄t

⎞⎟⎠, t = k0 + 1, . . . , T.

(4.18)

As in Pesaran (2006), the weights θi, i = 1, . . . , n, satisfy conditions: θi =

O( 1
n ),

∑n
i=1 θi = 1 and

∑n
i=1 |θi| <∞.

Assumption 4.11. Rank(C̄1) = Rank(C̄2) = m ≤ p+ 1.

We assume that the rank condition is satisfied. Pesaran (2006) shows

that in the case of deficient rank, it is impossible to obtain consistent

estimators of the individual slope coefficients, but their cross-sectional
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mean can be consistently estimated. When C̄(k0) is of full rank, ft can

be written as

ft =
[
C̄(k0)C̄(k0)

′]−1
C̄(k0)(w̄t − ūt(k0)).

From (4.16), the matrix C̄(k0)C̄(k0)
′ has two regimes, shifting at k0,

C̄(k0)C̄(k0)
′ =

{
C̄′

1C̄1, t = 1, . . . , k0,

C̄′
2C̄2, t = k0 + 1, . . . , T.

Assumption 4.11 implies that C̄(k0)C̄(k0)
′ is invertible. As shown in Lemma

1 of Pesaran (2006), the cross-sectional average of the errors vanish in both

regimes as n→ ∞, where ε̄t =
∑n

i=1 θiεit, v̄t =
∑n

i=1 θivit, yielding

ft −
[
C̄(k0)C̄(k0)

′]−1
C̄(k0)w̄t

p→ 0. (4.19)

This suggests that it is asymptotically valid to use w̄t as observable prox-

ies for ft. Let W̄ = (w̄1, w̄2, . . . , w̄T )
′ denote the T × (p + 1) matrix

of cross-sectional averages. Denote the T × T matrix Mw by Mw =

IT − W̄ (W̄ ′W̄ )−1W̄ ′. Thus, similar to the result MfF = 0, by (4.19) it

is expected that the terms involving MwF are ignorable asymptotically as

n→ ∞.

Premultiplying (4.13) by Mw instead of Mf , we obtain

MwYi =MwXiβi +MwZ0iδi +MwFγi +Mwεi, i = 1, . . . , n. (4.20)

Let the T × p matrix X̃i =MwXi = (x̃i1, . . . , x̃iT )
′ denote the transformed

regressors. Similarly, define Ỹi = MwYi, Z̃0i = MwZ0i and ε̃i = Mwεi.

Thus, equation (4.20) becomes

Ỹi = X̃iβi + Z̃0iδi +MwFγi + ε̃i

= X̃iβi + Z̃0iδi + ε̃0i , i = 1, . . . , n, (4.21)

where ε̃0i =MwFγi + ε̃i.

Lemma 4.5 in Section 4.8 shows that each element of MwFγi is of order

Op(
1√
n
) and vanishes as (n, T ) → ∞, implying that ε̃0i can be treated as ε̃i

asymptotically. Based on this intuition, we can follow the procedure pro-

posed in Model 1 above to estimate k0 and bi = (β′
i, δ

′
i)

′, using transformed

data {Ỹi, X̃i, i = 1, . . . , n}.
For any possible change point k = 1, . . . , T −1, define matrices Z̃2i(k) =

MwZ2i(k), X̃i(k) = (X̃i, Z̃2i(k)) and X̃0i = (X̃i, Z̃0i). With new notation,



August 6, 2020 15:30 Large-Dimensional Panel Data Econometrics 9in x 6in b3901-ch04 page 68

68 Large-Dimensional Panel Data Econometrics

equation (4.21) becomes

Ỹi = X̃0ibi + ε̃0i , i = 1, . . . , n. (4.22)

Given k, slope bi can be estimated by least squares,

b̃i(k) =

(
β̃i(k)

δ̃i(k)

)
= [X̃i(k)

′
X̃i(k)]

−1
X̃i(k)

′Ỹi, i = 1, . . . , n. (4.23)

The resulting sum of squared residuals is

S̃SRi(k) = [Ỹi − X̃i(k)b̃i(k)]
′[Ỹi − X̃i(k)b̃i(k)]

= [Ỹi − X̃iβ̃i(k)− Z̃2i(k)δ̃i(k)]
′

× [Ỹi − X̃iβ̃i(k)− Z̃2i(k)δ̃i(k)], i = 1, . . . , n,

and the estimator of k0 is defined similarly as

k̃ = arg min
1≤k≤T−1

∑
i

S̃SRi(k). (4.24)

Assumption 4.12. For i = 1, . . . , n, the matrices 1
TX

′
iMwXi and

1
TX

′
iMfXi are nonsingular, and their inverses have finite second-order

moments.

This assumption of identifying bi and b is adopted from Pesaran (2006).

Let x̃′it be the tth element of matrix X̃i, i = 1, . . . , n. To identify k0, we

need a modified version of Assumptions 4.4–4.6.

Assumption 4.13. For i = 1, . . . , n, the matrices (1/j)
∑j
t=1 x̃itx̃

′
it,

(1/j)
∑T
t=T−j+1 x̃itx̃

′
it, (1/j)

∑k0
t=k0−j+1 x̃itx̃

′
it and (1/j)

∑k0+j
t=k0+1 x̃itx̃

′
it are

stochastically bounded and have minimum eigenvalues bounded away from

zero in probability for all large j. In addition, for each i, (1/T )
∑T
t=1 x̃itx̃

′
it

converges in probability to a nonrandom and positive definite matrix as

T → ∞.

Assumption 4.14. For any positive finite integer s, the matrices
1
n

∑n
i=1

∑k0
t=k0−s+1 x̃itx̃

′
it and 1

n

∑n
i=1

∑k0+s
t=k0+1 x̃itx̃

′
it, i = 1, . . . , n, are

stochastically bounded, with minimum eigenvalues bounded away from

zero in probability for large n. In addition, for each t, (1/n)
∑n
i=1 x̃itx̃

′
it

is stochastically bounded as n→ ∞.
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Assumption 4.15. {δi, i = 1, . . . , n} are drawn independently of the pro-

cess of {x̃it, i = 1, . . . , n}.

Alternatively, under a random coefficient model, we have a slightly dif-

ferent version of Assumption 4.7.

Assumption 4.16. For i = 1, . . . , n,

bi = b+ vb,i, vb,i ∼ i.i.d.(0,Σb),

where b = (β′, δ′)′, vb,i =

(
vβ,i
vδ,i

)
and Σb =

(
Σβ 0
0 Σδ

)
for i = 1, 2, . . . , n,

where ‖b‖ <∞, ‖Σb‖ <∞, and the random deviations vb,i are independent

of γj , Γj, εjt, and vjt for all i, j and t.

Under Assumption 4.16, bi is independent of Γj , implying that as n →
∞, C̄1 =

∑n
i=1 θiC1i

p→ E(C1i) = (γ+Γβ,Γ) and C̄2
p→ E(C2i) = (γ+Γ(β+

Rδ),Γ). In this case, rank condition (Assumption 4.11) requires nonzero

means for γ and Γ in Assumption 4.10 when n is large. Similarly in Model

1, when {δi, i = 1, . . . , n} are considered as random, as part of Assumption

4.16, Assumption 4.15 becomes redundant.

After the transformation (4.20), it can be shown that the change point

estimator k̃ is still consistent in a linear model with a multifactor error

structure (4.5), i.e., k̃ − k0 = op(1).

Theorem 4.2. Under Assumptions 4.1–4.3, 4.8–4.15 (or 4.16),

lim(n,T )→∞ P (k̃ = k0) = 1.

Theorem 4.2 can be proved similarly to Theorem 4.1, see the technical

details in Section 4.8.

Given the change point estimator k̃, the CCE estimator of the slope

coefficients can be written as

b̃i = b̃i(k̃) = [X̃i(k̃)
′
X̃i(k̃)]

−1
X̃i(k̃)

′Ỹi, i = 1, . . . , n.

With the consistency of k̃, the asymptotics of b̃i can be established.

Proposition 4.1. Under Assumptions 4.1–4.3, 4.8–4.15, and
√
T/n → 0

as (n, T ) → ∞, for each i,

√
T (b̃i − bi)

d→ N
(
0,Σ−1

X̃,i
Σ

X̃ε̃,iΣ
−1

X̃,i

)
,
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where

Σ
X̃,i = plim

T→∞

1

T
X̃

′
0iX̃0i,

Σ
X̃ε̃,i = plim

T→∞

1

T
X̃

′
0iΣε,iX̃0i, i = 1, . . . , n.

An additional condition
√
T/n→ 0 as (n, T ) → ∞ is required here, due

to the fact that MwFγi is included in ε̃0i = MwFγi + ε̃i, the error term

of transformed model (4.21) using cross-sectional averages. This yields an

extra term in
√
T (b̃i − bi) whose order is Op(

√
T/n) + Op(1/

√
n) which is

asymptotically ignorable when
√
T/n→ 0 as (n, T ) → ∞. See the Supple-

mentary Appendix.

As discussed above, Assumption 4.2 allows that T can grow faster than

n, i.e., T = O(nψ) with ψ ≥ 1. Here, the relative speed of n and T ,
√
T/n→

0 as (n, T ) → ∞ imposes an upper bound on ψ, i.e., ψ < 2. Therefore, in the

case of T = O(nψ) with 1 ≤ ψ < 2, both Assumption 4.2 and
√
T/n → 0

as (n, T ) → ∞ required by Proposition 4.1 are satisfied.

As discussed by Pesaran (2006), a consistent Newey–West-type estima-

tor of Σ
X̃ε̃,i can be obtained using the transformed data,

Σ̃
X̃ε̃,i = Λ̃i0 +

ω∑
j=1

(
1− j

ω + 1

)
(Λ̃ij + Λ̃′

ij),

Λ̃ij =
1

T

ω∑
t=j+1

ẽitẽi,t−jXit(k̂)Xit(k̂)′,

where ω is the window size. ẽit is the tth element of ẽi = Ỹi − X̃i(k̃)b̃i and

X̃it(k̃) is the tth row of X̃i(k̃). Since Σ
X̃,i can be consistently estimated by

1
T X̃i(k̃)

′X̃i(k̃). Thus, a consistent estimator of Σ−1

X̃,i
Σ

X̃ε̃,iΣ
−1

X̃,i
is given by[

1

T
X̃i(k̃)

′
X̃i(k̃)

]−1

Σ̃
X̃ε̃,i

[
1

T
X̃i(k̃)

′
X̃i(k̃)

]−1

. (4.25)

Since b̃i(k̃) has the same limiting distribution as b̃i(k0), parameters bi,

i = 1, . . . , n, in model (4.5) can be inferred as if k0 were known.

The mean group estimator with a common break can be defined

similarly:

b̃MG =
1

n

n∑
i=1

b̃i =
1

n

n∑
i=1

[X̃i(k̃)
′
X̃i(k̃)]

−1
X̃i(k̃)

′Ỹi. (4.26)
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Proposition 4.2. Under the Assumptions 4.1–4.3, 4.8–4.14, 4.16,

√
n(b̃MG − b)

d→ N(0,Σb).

As in Pesaran (2006), Σb can be consistently estimated by

1

n− 1

n∑
i=1

(b̃i − b̃MG)(b̃i − b̃MG)
′.

For detailed proofs of Propositions 4.1 and 4.2, see the Supplementary

Appendix. Unlike Pesaran (2006), an additional step is needed, that of

estimating k0. As shown in the propositions above, with the consistency

of k̃, the convergence rate of k̃ is not required for deriving the asymptotic

distributions of b̃i, for i = 1, . . . , n, and b̃MG.

4.4. Multiple Common Break Points

When multiple common break points k
(1)
0 , . . . , k

(Bk)
0 , occur in the slopes,

there are Bk + 1 regimes for each individual:

yit =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x′itβi + eit, t = 1, . . . , k
(1)
0 ,

x′itβi + z′itδ1i + eit, t = k
(1)
0 + 1, . . . , k

(2)
0 ,

...
...

x′itβi + z′itδBk,i + eit, t = k
(Bk)
0 + 1, . . . , T,

(4.27)

for i = 1, . . . , n.

Estimation of multiple break points has been discussed by Bai (1997b)

and Chong (1995) in a mean-shift model, Bai and Perron (1998) in linear

regression models and Bai (2010) in a panel mean-shift model. To deal with

this issue in the model (4.27), we can follow the sequential or one at-a-time

approach discussed by Bai (1997b, 2010). The number of common breaks,

Bk, is assumed known. The idea of the sequential approach is to estimate

break points one by one. For example, if Bk = 3, the estimation of k
(1)
0 , k

(2)
0

and k
(3)
0 can be completed in three steps. In the first step, one break point

is assumed as in Model 1 (or Model 2) above, and can be estimated by

(4.11) (or (4.24)), denoted by k̂(1) (or k̃(1)). In the second step, in each of

the two sub-panels split by k̂(1) (or k̃(1)), the same procedure (4.11) (or

(4.24)) is applied. Thus, two single break estimators are obtained in these
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two sub-panels. Moreover, k̂(2) (or k̃(2)) is defined as the one associated

with a larger reduction in the sum of squared residuals. Similarly, k̂(1) and

k̂(2) (or k̃(1) and k̃(2)) yield three sub-panels. In the third step, in each of

these three sub-panels, one break point can be estimated as in Model 1

(or 2). Among these three break estimators, we choose the one associated

with the largest reduction of sum of squared residuals, denoted as k̂(3) (or

k̃(3)). As suggested by Bai (2010), it can be shown that after rearranging

(k̂(1), k̂(2), k̂(3)) (or (k̃(1), k̃(2), k̃(3))) in temporal order, (k̂(1), k̂(2), k̂(3)) (or

(k̃(1), k̃(2), k̃(3)) in Model 2) is consistent for (k
(1)
0 , k

(2)
0 , k

(3)
0 ) as long as the

assumptions listed in Section 4.2 (or 4.3) hold in each of the sub-panels.

Once the consistent estimators of (k
(1)
0 , . . . , k

(Bk)
0 ) are obtained, the

parameters βi, δ1i, . . . , δBk,i, i = 1, . . . , n, can be estimated by least squares

as in (4.10) (or (4.23)). Thus, their mean group estimators can be obtained

similarly.

4.5. Endogenous Regressors and Break in Factors

In the empirical studies using the CCE and iterated principal component

(IPC) approaches, there are two main concerns. First, to apply these two

approaches, long panel data sets are usually required. However, over a long

span, parameter instability due to structural breaks is possible. Second,

with the exception of Temple and Van de Sijpe (2017), and Chirinko and

Wilson (2017), endogeneity due to the correlation between the regressors

and the idiosyncratic errors could bias the resulting estimates. Though an

error factor structure can be used to control for the correlation between the

regressors and the unobserved factors or loadings, the correlation between

the regressors and the idiosyncratic errors could still be present due to

reverse causality or other sources. This endogeneity is common in empiri-

cal studies using aggregate data, for example, the return of public infras-

tructure as surveyed by Gramlich (1994) and Calderon, Moral-Benito and

Serven (2015).

In this section, we show that the model (4.4) considered in Section 4.5

can be extended to allow for endogenous regressors and structural changes

in error factor loadings. Thus, based on Pesaran’s (2006) heterogeneous pan-

els we provide an appealing panel data regression model with four empirical

features: (i) slope heterogeneity, (ii) cross-sectional dependence modeled by

an error factor structure, (iii) endogenous regressors and (iv) structural

changes in slopes and error factor loadings.
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Specifically, the model considered here is

yit = x′itβi(k0) + eit

=

{
x′itβ1i + eit, t = 1, . . . , k0,

x′itβ2i + eit, t = k0 + 1, . . . , T,

eit = γi(k1)
′ft + εit, xit = Γ′

ift + vit.

Here Cov(εit, vit) �= 0. The case of partial changes in slopes can be easily

accommodated as in (4.6) of Model 1 in Section 4.2. Assume there are q

instruments zit with q ≥ p. The instruments zit could be affected by ft.

The key differences of this model from (4.4) are (i) endogenous regressors

and (ii) a common break k1 in factor loading γi(k1).

To deal with endogeneity, we start with a simplified case without

considering the error factor structure. Different from the assumption in

Sections 4.2 and 4.3, here εit is allowed to be correlated with xit.

Let bi = (β′
1i, β

′
2i)

′
, i = 1, . . . , n. For every i, and k = 1, . . . , T − 1,

define X1i(k) = (xi1, . . . , xi,k)
′
and X2i(k) = (xi,k+1, . . . , xiT )

′
. Simi-

larly, define Y1i(k) = (yi1, . . . , yi,k)
′ and Y2i(k) = (yi,k+1, . . . , yiT )

′. Let
Yi = (yi1, . . . , yiT )

′ and εi = (εi1, εi2, . . . , εiT )
′ denote the stacked data

and errors over time, thus Yi = (Y1i(k)
′, Y2i(k)′)′. Using the notation

Xi(k) =
(
X1i(k) 0

0 X2i(k)

)
, equation (4.6) can be written in matrix form as

Yi = Xi(k0)bi + εi, i = 1, . . . , n. (4.28)

Following Perron and Yamamoto (2015), we can project εi on the col-

umn space spanned by Xi(k0) such that the new error term ε∗i (defined

below) is uncorrelated with Xi(k0). Rewrite equation (4.8) as follows:

Yi = Xi(k0)β
∗
i (k0) + ε∗i , (4.29)

where ε∗i = (I − PX)εi = (ε∗i1, . . . , ε
∗
iT )

′ and PX is the projection matrix

based on Xi(k0), and

β∗
i (k0) =

(
β∗
1i

β∗
2i

)
= bi + [Xi(k0)

′
Xi(k0)]

−1
Xi(k0)

′εi.

As argued by Perron and Yamamoto (2015) in a time-series model, a struc-

tural change in the original parameter βi(k0) implies a shift in the new

parameter, the probability limit of β∗
i (k0), at the same break date k0, except

for a knife-edge case.
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Since the new errors ε∗it are uncorrelated with xit, equation (4.29)

becomes Model 1 in Section 4.2. Following the same lines of proof as in

Theorem 1, it can be shown that k̂ is consistent for k0, i.e., k̂− k0 = op(1),

under appropriate assumptions.

In the general model,

Yi = Xi(k0)bi + Fγi(k1) + εi, i = 1, . . . , n.

The new complication is the additional term Fγi(k1). Besides nonzero

Cov(vit, εit), this unobserved factors create an additional source of endo-

geneity due to the unobservable common factors ft that affect both xit =

Γ′
ift + vit and eit.

With endogenous regressors xit, this general model with a multifactor

error structure can still fit into the simplified case discussed in the previous

subsection. Hence, we can still use OLS to estimate k0. However, due to the

common ft, errors eit are no longer cross-sectionally independent. This is

a major difference. As pointed out by Kim (2011), the cross-sectional cor-

relation in the errors could offset the information across the cross-sectional

dimension under the common break assumption. Thus, k̂−k0 = op(1) is not

necessarily achieved without controlling for ft. It depends on the magnitude

of the cross-sectional correlation governed by the unobservable loadings.

As shown in Baltagi, Feng and Kao (2019), the CCE approach is still

valid in this general model. Since ft are unobservable, we follow Pesaran’s

(2006) idea of using the cross-sectional averages of yit and xit as proxies for

ft. Combining (4.3) and (4.5) yields

wit
(p+1)×1

=

(
yit

xit

)
= Ci(k0, k1)

′
(p+1)×m

ft
m×1

+ uit(k0)
(p+1)×1

,

where

Ci(k0, k1)
m×(p+1)

= (γi(k1),Γi)

(
1 0

βi(k0) Ip

)
,

uit(k0) =

(
εit + v′itβi(k0)

vit

)
.

In the case that the instruments zit are affected by ft, zit can be included

in the vector wit. Note that like βi(k0), the slope Ci(k0, k1) in (4.15) also
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shifts at k0, and k1. Without loss of generality, we assume k1 > k0. Thus,

Ci(k0, k1) =

⎧⎪⎨⎪⎩
C1i = (γ1i + Γiβ1i, Γi), t = 1, . . . , k0,

C2i = (γ1i + Γiβ2i, Γi), t = k0 + 1, . . . , k1,

C3i = (γ2i + Γiβ2i, Γi), t = k1 + 1, . . . , T.

Common break k0 splits the data generating process for all individuals

into two regimes, and in each regime the unobserved common factors ft
can be partialled out by using cross-sectional averages in Pesaran (2006).

Let w̄t =
∑n

i=1 θiwit be the cross-sectional average of wit using weights θi,

i = 1, . . . , n. In particular,

w̄t = C̄(k0, k1)
′ft + ūt(k0), (4.30)

where

C̄(k0, k1) =
N∑
i=1

θiCi(k0, k1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C̄1 =

n∑
i=1

θiC1i, t = 1, . . . , k0,

C̄2 =

n∑
i=1

θiC2i, t = k0 + 1, . . . , k1,

C̄3 =

n∑
i=1

θiC3i, t = k1 + 1, . . . , T,

(4.31)

and

ūt(k0) =

n∑
i=1

θiuit(k0)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎝ε̄t +
n∑
i=1

θiv
′
itβ1i

v̄t

⎞⎟⎠, t = 1, . . . , k0,

⎛⎜⎝ε̄t +
n∑
i=1

θiv
′
itβ2i

v̄t

⎞⎟⎠, t = k0 + 1, . . . , T,

(4.32)

where ε̄t =
∑n

i=1 θiεit, v̄t =
∑n

i=1 θivit.
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For equation (4.30), when C̄(k0, k1) is of full rank, ft can be written as

ft =
[
C̄(k0, k1)C̄(k0, k1)

′]−1
C̄(k0, k1)(w̄t − ūt(k0)). (4.33)

For simplicity, we assume that the rank condition is satisfied.

Assumptions 4.10 and 4.11 imply that C̄(k0, k1)C̄(k0, k1)
′ is invertible.

As shown in Lemma 1 of Pesaran (2006), in (4.18), the cross-sectional

averages of the errors ε̄t, v̄t,
∑n
i=1 θiv

′
itβ1i and

∑n
i=1 θiv

′
itβ2i all vanish as

n→ ∞, thus

ūt(k0)
p→ 0

in both regimes as n → ∞, regardless of the correlation between εit and

vit, yielding

ft −
[
C̄(k0, k1)C̄(k0, k1)

′]−1
C̄(k0, k1)w̄t

p→ 0. (4.34)

This suggests that it is asymptotically valid to use w̄t as observable proxies

for ft. This finding also shows that the CCE approach proposed by Pesaran

(2006) is robust to endogeneity and structural changes in slopes and factor

structures. Same as Model 2 above, OLS of k0 using the CCE transformed

data is consistent, i.e., k̃ − k0 = op(1).

4.6. Monte Carlo Simulations

This section employs Monte Carlo simulations to examine the consistency

of the estimated break points k̂ and k̃ summarized in Theorems 4.1 and 4.2.

Since the CCE estimators in Model 2 have the same asymptotic distribu-

tions as if the true common breaks were known, their asymptotic properties

are not examined here. Two different designs are used for Models 1 and 2,

respectively. In Model 1, there are no common correlated effects in the

errors and regressors, so least squares can be run for each individual series.

While in Model 2, the regressors and errors are correlated due to common

correlated effects ft. A transformation, using cross-sectional averages of the

dependent variable and regressors proposed by Pesaran (2006), is needed

to remove such effects asymptotically.

In the following experiments, the focus is on the histograms of k̂ and k̃

in setups with different combinations of (n, T ).
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4.6.1. Model 1: No common correlated effects

The data generating process (DGP) of Model 1 is modified from that in

Pesaran (2004, p. 24):

yit = αi + βi(k0)yi,t−1 + eit, i = 1, . . . , n; t = 1, . . . , T ;

eit = γift + εit.

Here we set γi = 0, so there is no cross-sectional dependence in the errors.

Instead, in this dynamic heterogeneous panel model, there is a common

break k0 = 0.5T in the slopes βi, for i = 1, . . . , n, i.e.,

βi(k0) =

{
β1i, t = 1, . . . , k0,

β2i = β1i + δi, t = k0 + 1, . . . , T,

where δi is the jump in the slope for each series. We assume β1i ∼
i.i.d. U(0, 0.8) and δi ∼ i.i.d. U(0, 0.2). We set αi = μi(1−β1i), μi = ε0i+ηi
where ε0i ∼ i.i.d. N(0, 1) and ηi ∼ i.i.d. N(1, 2). In addition, we assume

yi,0 ∼ i.i.d. N(0, 1) and εit ∼ i.i.d. N(0, σ2
i ), with σ

2
i ∼ χ2

2/2.

In (4.11), for any possible change point k = 1, . . . , T − 1, the estimated

change point k̂ is the one that minimizes the sum of n individual sum of

squared residuals. 1000 replications are performed to obtain the histogram

of k̂ for each setup.

Panel A of Fig. 4.1 reports the histograms of k̂ for T = 50 and n =

10, 50, 200. The frequency of choosing the true value k0 increases from 17%

for n = 10 to almost 90% for n = 200. It shows that the distribution of k̂

shrinks with n. This finding supports Theorem 4.1, confirming that multiple

individual series provide additional information on k0, and that k̂ converges

to k0 as the number of series goes to infinity.

To consider the case where there is no structural break in slopes in some

series, we set δi = 0 in [n/4] series, implying that φN increases with n at

a rate of O(n3/4). Panel B of Fig. 4.1 reports the histograms of k̂ for this

case with T = 50. Similar to Panel A, the pattern that k̂ converges to k0
as n increases remains. However, the frequency of choosing the true value

k0 is significantly smaller than that in Panel A of Fig. 4.1. For example,

for n = 50, the frequency of choosing the true value k0 drops from 44%

in Panel A to 34% in Panel B. This suggests that for the accuracy of the

estimated change point, allowing for no break in some series is equivalent

to reducing the number of series or the magnitude of break φN .
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Fig. 4.1. Histograms of k̂ in Model 1: T = 50.
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4.6.2. Model 2: Common correlated effects

The data generating process for Model 2 is as follows:

yit = αi + βi(k0)xi,t + eit, i = 1, . . . , n; t = 1, . . . , T,

eit = γ1ift + εit,

where αi
i.i.d.∼ N(1, 1) and γ1i

i.i.d.∼ N(1, 0.2). The idiosyncratic errors are

generated as εit
i.i.d.∼ N(0, σ2

i ) and σ2
i

i.i.d.∼ U(0.5, 1.5). There is a common

break in the individual slopes:

βi(k0) =

{
β1i, t = 1, . . . , k0,

β2i = β1i + δi, t = k0 + 1, . . . , T,
k0 = 0.5T,

where β1i = 1 + ηi, ηi
i.i.d.∼ N(0, 0.04) and δi

i.i.d.∼ N(0, 0.04).

Unlike Model 1, the error eit and the regressor xit contain the common

correlated effect ft:

xit = ai + γ2ift + vit,

where ai
i.i.d.∼ N(0.5, 0.5), γ2i

i.i.d.∼ N(0.5, 0.5) and vit
i.i.d.∼ N(0, 1−ρ2vi), with

ρvi = 0.5. The factor ft is generated by the stationary process:

ft = ρfft−1 + vft, t = −49, . . . , 0, 1, . . . , T ;

ρf = 0.5, vft
i.i.d.∼ N(0, 1− ρ2f ), f−50 = 0.

The correlation between xit and eit renders OLS inconsistent in the individ-

ual regressions. Thus, transformation (4.20) using cross-sectional averages

of yit and xit is needed to remove ft before conducting least squares esti-

mation of k0.

The setup above is a simplified version of the design in Pesaran (2006).

First, as in model (4.4), the observed factors are omitted for simplicity.

Second, the number of regressors and unobservable factors are reduced to

1, respectively. Third, the correlation structures in vit and εit are removed.

The only new feature of this model is that there is a common break at k0,

specified as 0.5T .

The first row of Fig. 4.2 presents the histograms of the estimated

change point k̃ for T = 50. It replicates the pattern in Fig. 4.1, show-

ing that after the transformation, the frequency of choosing the true value

k0 increases significantly with n. Figure 4.2 also reports, in the second

row, the histograms of the estimated change point k̂ without conducting



A
u
g
u
st

6
,
2
0
2
0

1
5
:3
0

L
arg

e-D
im

en
sio

n
a
l
P
a
n
el

D
a
ta

E
co
n
o
m
etrics

9
in

x
6
in

b
3
9
0
1
-ch

0
4

p
a
g
e
8
0

8
0

L
a
rge-D

im
en

sio
n
a
l
P
a
n
el

D
a
ta

E
co
n
o
m
etrics

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

k0

0 5 10 15 20 25 30 35 40 45 50

k0

0 5 10 15 20 25 30 35 40 45 50

k0

0 5 10 15 20 25 30 35 40 45 50
k0

0 5 10 15 20 25 30 35 40 45 50
k0k0

˜

F
re

qu
en

cy

ˆ

F
re

qu
en

cy
The Frequency of Estimated Change Point:  transformation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
re

qu
en

cy

The Frequency of Estimated Change Point: transformation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
re

qu
en

cy

The Frequency of Estimated Change Point: transformation

0

0.01

0.02

0.03

0.04

0.05

0.06

The Frequency of Estimated Change Point: no transformation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

F
re

qu
en

cy

The Frequency of Estimated Change Point: no transformation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

F
re

qu
en

cy

The Frequency of Estimated Change Point: no transformation

Fig. 4.2. Histograms of k̃ and k̂ in Model 2: T = 50.
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transformation (4.20). It indicates that in the presence of common cor-

related effects, cross-sectional information using multiple series fails to

improve the accuracy of the estimated change point.

Figure 4.3 reports the histograms of k̃ and k̂ for T = 200. The same

pattern emerges, suggesting that the distribution of k̃ shrinks to k0 as

n → ∞. Different from Fig. 4.2, the frequency of k̂, the estimator without

conducting transformation (4.20), choosing the true break date increases

with n in Fig. 4.3 when T is large, although not at a rate as high as

that of k̃ using the transformed data. Whether |k̂ − k0| shrinks to 0 or

not as (n, T ) → ∞ depends upon the correlation between xit and eit. In

Fig. 4.4, we increase this correlation by changing the distribution of γ1i
from N(1, 0.2) to N(2, 0.2). In this case, the cross-sectional information

using multiple series fails to improve the accuracy of the estimated change

point k̂. This is consistent with the findings of Kim (2011).

4.6.3. Case of endogenous regressors

We also check the impact of endogeneity on the consistency of the break

point estimator using various experiments. The DGP used here is a modified

design of Model 2. The main difference is that eit is correlated with xit (or

vit) by adding a term ρe,ivit in the process of eit:

eit = γ1i(k1)ft + ρe,ivit + (1− ρ2e)
1/2εit, (4.35)

where ρe,i denotes the correlation between xit and eit. We also allow a break

in the factor loading γ1i(k1) at a different time point k1 = [0.7T ]:

γ1i(k1) =

{
γ1i, t = 1, . . . , k1,

γ1i +Δγ1i, t = k1 + 1, . . . , T.

In the process generating eit, the loadings γ1i ∼ i.i.d. N(1, 0.2), Δγ1i ∼
i.i.d. N(0.5, 0.5), ρe,i ∼ i.i.d. U(−0.5, 0.5) and εit ∼ i.i.d. N(0, σ2

i ) with

σ2
i ∼ i.i.d. U(0.5, 1.5).

In the error structure (4.35), there are two sources of endogeneity due

to the unobserved factor ft and the random component vit. For simplicity,

we first ignore the break in factor loading γ1i(k1) and set Δγ1i = 0 in

Fig. 4.5. As pointed out by Perron and Yamamoto (2015), the break fraction

τ0 = k0/T can be consistently estimated by OLS even in the presence of

correlation between xit and eit in a time-series regression. However, in a

panel data setup, the cross-sectional correlation in the errors due to the
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Fig. 4.3. Histograms of k̃ and k̂ in Model 2: T = 200.
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Note: The DGP is the same as in Fig. 4.2, except that the correlation between xit and eit increases by changing the distribution of γi1
from i.i.d. N(1, 0.2) to i.i.d. N(2, 0.2). k0 = 0.5T = 100.
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Fig. 4.5. Histograms of k̃ and k̂ in the general case with endogenous regressors (T = 50).



August 6, 2020 15:30 Large-Dimensional Panel Data Econometrics 9in x 6in b3901-ch04 page 85

Structural Changes in Panel Data Models 85

common ft could fail to improve the accuracy of the OLS estimator of k0,

as pointed out by Theorem 1A(iii) of Kim (2011) and Fig. 4.4. Thus, the

transformation (4.20) using cross-sectional averages of yit and xit is needed

to remove ft before conducting least squares.

The first row of Fig. 4.5 presents the histograms of the estimated change

point k̃ for T = 50. The frequency of choosing the true value k0 increases

significantly with n. It confirms the finding that the distribution of k̃ col-

lapses to k0 as n→ ∞ in the presence of endogenous regressors. The second

row of Fig. 4.5 also reports the histograms of the estimated change point

k̂ without conducting the CCE transformation (4.20). It indicates that in

the presence of common correlated effects, cross-sectional information using

multiple series fails to improve the accuracy of the estimated change point.

Figure 4.6 presents the case when there is a common break in the factor

loading γ1i(k1), with k1 = [0.7T ] > k0. Consistent with our theory k̃, our

estimator of the break point in the slope parameters is robust to a break in

the error factor loadings γ1i. This holds since ft is asymptotically removed

by the CCE transformation (4.20). However, as shown in the second row of

Fig. 4.6, the break point in factor loadings could lead to a spurious break

in the slope parameters if we ignore the unobserved factors in the errors.

In Fig. 4.7, we reduce the correlation between xit and eit by changing the

distribution of the loading γ2i from N(0.5, 0.5) to N(0.1, 0.1), increasing n

does not improve the frequency of k̂ choosing k0.

Figure 4.8 reports the case of rank deficiency. By changing the distribu-

tion of γ2i from N(0.5, 0.5), the matrix C̄(k0) is not of full rank asymptoti-

cally. The first panel of Fig. 4.8 shows that the consistency of k̃ remains in

the case of rank deficiency. As N increases, the probability of choosing the

true value k0 increases.

In Fig. 4.9, we also compare the efficiency of the proposed OLS and IV

estimators of k0. An IV estimator is used in the first step, instead of OLS,

in a simplified case without an error factor structure. The DGP is similar to

the one used in Fig. 4.5 except that there are no factors and an instrument is

introduced and regressor xit is generated in a slightly different way, similar

to Hall et al. (2012). As expected, the IV estimator ǩ is also consistent,

and its probability of choosing the true value k0 increases with n (and T ).

However, a comparison between the histograms of k̂ and ǩ suggests that

OLS yields more accuracy in terms of the probability of finding the true

value k0 than the IV estimator.
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Fig. 4.6. Histograms of k̃ and k̂ with endogenous regressors and a structural change in the error factor loading (T = 50).
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Fig. 4.7. Histograms of k̃ and k̂ in the general case with reduced endogeneity (T = 50).

Note: The DGP is the same as the one in Fig. 4.5, except for reducing the correlation between xi,t and ei,t by changing the distribution
of the loading γ2i from i.i.d. N(0.5, 0.5) to i.i.d. N(0.1, 0.1).
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Fig. 4.8. Histograms of k̃ and k̂ in the general case with rank deficiency (T = 50).

Note: The means of γi2 and ai change to zero, i.e., γi2 ∼ i.i.d. N(0, 0.5), ai ∼ i.i.d. N(0, 0.5), so the rank condition is not satisfied
asymptotically.
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Fig. 4.9. Histograms of the OLS estimator k̂ and IV estimator ǩ in a simplified case without a factor structure in the errors (T = 50).

Note: In this simplified case, there is no factor structure in the errors. The instrument z3it is introduced and regressor xit is generated
in a slightly different way (similar to Hall et al., 2012). z3it = 2ai + γ3ift + v2it where γ3i ∼ i.i.d. N(1, 0.5), v2it ∼ i.i.d. N(0, 1), and
v2it is independent of vit and εit.
xit = 0.5z3it + vit; eit = ρe,ivit + (1 − ρ2e,i)

1/2εit, ρe,i ∼ i.i.d. U(−0.5, 0.5), εit ∼ i.i.d. N(0, σ2
i ), σ2

i ∼ i.i.d. U(0.5, 1.5), γ1i ∼
i.i.d. N(1, 0.2), γ2i ∼ i.i.d. N(0.5, 0.5), ai ∼ i.i.d. N(0.5, 0.5), vit ∼ i.i.d. N(0, 1,−ρ2vi), ρvi = 0.5. These variables are mutually
independent. The replication number is 1000. T = 50, k0 = 25.
k̂: The OLS estimator of the change point.
ǩ: The IV estimator of the change point: the IV estimator is used in the first step, instead of OLS.
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4.7. An Empirical Example

In Section 3.6, CCE, IPC and likelihood approaches are illustrated by using

China’s provincial panel data during 1996–2015 to estimate the output

elasticity with respect to public infrastructure in an aggregate production

function. In this section, based on Feng (2020), we empirically investigate

how to deal with common factors and common breaks using the estimators

proposed in this chapter.

Baltagi, Feng and Kao (2016, 2019) extend Pesaran’s (2006) CCE

approach by allowing for unknown common structural changes in slopes

and error factor structure and endogenous regressors in large heterogeneous

panels. They find that Pesaran’s CCE approach is still valid when deal-

ing with unobservable common factors in the presence of common breaks

in slopes and error factor loadings and endogenous regressors. Given that

there are no empirical investigations of the proposed estimators available,

this section aims to compare these estimators to Bai’s (2009) IPC esti-

mator and Pesaran’s (2006) CCE mean group estimator in the context of

China’s provincial infrastructure investment covering the period 1996–2015.

In this specific empirical context, the trade-offs of allowing for endogeneity

and common structural breaks in heterogeneous panels with an error factor

structure can be illustrated.

Consider the general model,

Yi = Xi(k0)bi + Fγi(k1) + εi, i = 1, . . . , n.

Denote wit = (yit, x
′
it)

′
, w̄t = 1

n

∑n
i=1 wit, W̄ = (w̄′

1, w̄
′
2, . . . , w̄

′
T )

′ and

Mw = IT − W̄ (W̄ ′W̄ )−1W̄ ′. Baltagi, Feng and Kao (2019) argue that

W̄ can be treated as exogenous asymptotically when n is large, and

that it can be included as the first-stage regressors along with instru-

ments zit. Similar to the definition of Xi(k), we define the instrument

matrix Zi(k) =
(
Z1i(k) 0

0 Z2i(k)

)
where Z1i(k) = (z′i1, . . . , z

′
ik)

′ and Z2i(k) =

(z′ik+1, . . . , z
′
iT )

′. Denote Z+
i (k) = (Zi(k), W̄ ). The predicted value of Xi(k̃)

is X̂i(k̃) = PZ+
i (k̃)Xi(k̃). Given the OLS estimator of the break date, k̃, the

IV estimator of bi is given by [X̂i(k̃)
′MwX̂i(k̃)]

−1X̂i(k̃)
′MwYi, i = 1, . . . , n,

and the mean group estimator of the cross-sectional mean of bi, i = 1, . . . , n,

is defined in Baltagi, Feng and Kao (2019) by

1

n

n∑
i=1

[X̂i(k̃)
′MwX̂i(k̃)]

−1
X̂i(k̃)

′MwYi, (4.36)

which is labeled as CCEMG-IV-b here.
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In this example, we make use of China’s institutional context to obtain

an instrument to deal with endogeneity issue. The endogeneity due to the

reverse causality between output and infrastructure has been widely docu-

mented in the literature (Gramlich, 1994).

In Section 3.6, Table 3.1 reports FD estimates of output elasticity of

infrastructure, βb, in a homogeneous model assuming exogenous regressors:

Δgit = βbΔbit + βkΔkit +Δλt +Δεit. (4.37)

Here, we consider the case that Δbit and Δkit are endogenous due to

reverse causality. Thus, first-differenced instrumental variable (FDIV) esti-

mation is reported in Table 4.1. Δenbit, the infrastructure capital per labor

in two economically neighboring provinces, and lagged values Δkit−2 in dif-

ferenced form are used as instruments for Δbit and Δkit. The validity of

instruments has been discussed in Feng and Wu (2018). In line with Feng

and Wu (2018), after controlling for endogeneity, there is no strong evidence

on a large and significant estimate of βb. In addition, comparisons between

columns (2) and (3), and between (4) and (5) also confirm the finding in

Table 3.1 of potential cross-region heterogeneity and structural change.

Besides endogeneity, we also consider three other empirical features in

various cases: slope heterogeneity, common factors and a common break in

Table 4.1. Output elasticities estimates: Endogenous regressors.

Dependent variable: Output per labor

FD IV

Independent variables (1) (2) (3) (4) (5)
Infrastructure per
labor

0.077 −0.070 0.033 0.202 −0.202**

(0.150) (0.316) (0.137) (0.199) (0.244)
Noninfrastructure per
labor

0.250*** 0.245* 0.286*** 0.099 0.438***

(0.079) (0.133) (0.074) (0.126) (0.128)
Regions All Noneastern Eastern All All
Periods All All All 1997–2007 2008–2015
Year effects Yes Yes Yes Yes Yes

No. of observations 569 322 187 269 240
Overall R2 0.704 0.614 0.742 0.687 0.510

Instruments Δenbt,Δkt−2

First-stage regression
coefficients

0.256 0.153 0.287 0.241 0.283

First-stage t-ratio (4.61) (2.02) (3.92) (3.15) (3.45)
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slopes. In Table 4.2, columns (1)–(3) of Panel A consider the case of exoge-

nous regressors, including mean group (MG) estimates without consider-

ing unobserved factors in column (1), Pesaran’s (2006) CCE mean group

(CCEMG) estimates in column (2), CCEMG allowing for a common break

in slopes (CCEMG-b) in column (3). Column (1) of Table 4.2 estimates a

heterogeneous model to allow for different elasticities across provinces:

Δgit = βb,iΔbit + βk,iΔkit +Δλt +Δεit. (4.38)

Pesaran’s (2006) CCEMG reported in column (8) of Table 3.1 is included

as column (2) of Table 4.2 as a reference, assuming a factor structure in the

error Δεit = γ′ift + εit in equation (4.38). Column (3) extends Pesaran’s

(2006) approach by allowing for a common break k0 in the slopes:

Δgit = βb,i(k0)Δbit + βk,i(k0)Δkit +Δλt +Δεit,Δεit = γ′ift + εit.

(4.39)

Compared with the first-difference estimates in column (1) of Table 3.1,

CCEMG in column (2) of Table 4.2 accommodates two empirical features:

slope heterogeneity and cross-sectional dependence. CCEMG-b in column

(3) adds one more feature of parameter structural change to CCEMG in

column (2). In column (3) of Table 4.2, using the estimation procedure in

Baltagi, Feng and Kao (2016), the estimated common break 2004 splits

βb and βk in two regimes of 1997–2004 and 2005–2015. The CCEMG-b

estimates of βb and βk deviate moderately from their CCEMG counterparts

in column (2) of Table 4.2 in different directions.

Columns (4)–(6) of Panel B of Table 4.2 are the IV versions of columns

of (1)–(3) of Table 4.2 assuming that Δbit,Δkit are endogenous. MG-IV

in column (4) is the IV version of MG without considering unobserved

common factors. In the simplified case without unobserved common factors,

Yi = Xi(k0)bi + εi, i = 1, . . . , N, Baltagi, Feng and Kao (2019) show that

the OLS estimator k̂, bi can be consistently estimated by the IV estimator

b̂i,IV (k̂) = [Xi(k̂)
′P

Zi(k̂)
Xi(k̂)]

−1
Xi(k̂)

′P
Zi(k̂)

Yi,

where the projection matrix P
Zi(k̂)

= Zi(k̂)[Zi(k̂)
′
Zi(k̂)]

−1
Zi(k̂)

′. The cross-
sectional mean of bi can be consistently estimated by a mean group (called

MG-IV) estimator 1
N

∑N
i=1 b̂i,IV (k̂). CCEMG-IV in column (5) refers to

the estimator (4.36) assuming no break. Column (6) is the IV version of

CCEMG with an estimated common break in the slopes. The instruments

Δenbit, Δkit−2 are used for the endogenous Δbit,Δkit. Compared to the
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Table 4.2. Output elasticities estimates: Common factors and common break.

Dependent variable: Output per labor

Panel A: exogeneity Panel B: endogeneity

MG CCEMG CCEMG-b MG-IV CCEMG-IV CCEMG-IV-b

Independent variables (1) (2) (3) (4) (5) (6)
Infrastructure per labor 0.205*** 0.194*** 0.252*** 0.179*** 0.156 0.165 0.289* 0.468

(0.025) (0.023) (0.044) (0.036) (0.132) (0.137) (0.137) (0.418)
Noninfrastructure per labor 0.361*** 0.407*** 0.386*** 0.441*** 0.231* 0.286* 0.527*** −0.370

(0.031) (0.037) (0.052) (0.047) (0.149) (0.174) (0.168) (0.597)
Periods All All 1997–2004 2005–2015 All All 1997–2004 2005–2015
Year effects Yes Yes Yes Yes Yes Yes

No. of observations 569 569 239 330 509 509 179 330
Overall R2 0.65 0.72 0.78

Empirical features
Slope heterogeneity Yes Yes Yes Yes Yes Yes
Cross-sectional dependence No Yes Yes No Yes Yes
Structural break No No Yes No No Yes
Endogeneity No No No Yes Yes Yes

∗ and ∗∗∗ for 10% and 1% significance, respectively.
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FDIV estimates in column (1) of Table 4.1, the CCEMG-IV estimates in

column (5) of Table 4.2 show a positive and significant βk, but weak evi-

dence on the productivity of infrastructure.

In column (6) of Table 4.2, as suggested by Theorem 1 of Baltagi, Feng

and Kao (2019), with endogenous regressors the estimated common break

date remains the same as 2004 in column (3). Interestingly, CCEMG-IV-

b estimates of βb and βk in the period 1997–2004 are 0.289, 0.527 and

significant, but no longer significant in the period 2005–2015. Compared

with the case of exogenous regressors in column (3), the IV estimates in

column (6) have much bigger standard errors.

To look at the effect of choosing structural break on coefficient estimates,

we also use the imposed break date of 2007 as in the subsample estimates in

columns (4) and (5) of Table 4.1. In this case, the CCEMG-IV-b estimate

of βk becomes 0.765 and significant over the period 2008–2015, but the

coefficient of βb is still insignificant.

This application shows that the proposed panel data model has the

advantage of accommodating more empirical features in the data than

existing models considered the literature in Panel A of Table 4.2. How-

ever, the trade-off seems also pronounced, especially when the endogeneity

issue arises. The estimates in Panel B of Table 4.2 become less accurate

especially when the sample size is not very big. From this point of view,

applied researchers have to strike a balance between model flexibility and

data constraints.

4.8. Recent Development

In this section, we review other approaches on estimating panel regression

models with structural changes in the recent literature. Specifically, we

introduce the Lasso-type approaches proposed by Qian and Su (2016), Li,

Qian and Su (2016) and Okui and Wang (2018).

To facilitate the discussion, we start with a simple setup of time-series

regression with endogenous regressors and multiple structural changes dis-

cussed by Qian and Su (2014):

yt = x′tβt + εt, t = 1, . . . , T, (4.40)

where slopes βt vary over time. In this setup, structural breaks in slopes

are modeled by time-varying coefficients {β1, . . . , βT }, and the sequential

changes in βt are assumed to be sparse. Assume there are m unknown



August 6, 2020 15:30 Large-Dimensional Panel Data Econometrics 9in x 6in b3901-ch04 page 95

Structural Changes in Panel Data Models 95

break points Tm = {T1, . . . , Tm} in slopes that slit the time span into m+1

intervals, i.e.,

βt = αj for t = Tj−1, . . . , Tj − 1 and j = 1, . . . ,m+ 1 (4.41)

with T0 = 1 and Tm+1 = T .

To estimate the number of breaks m, break dates Tm, Qian and Su

(2014) apply the group-fused Lasso approach in a two-step procedure based

on a penalized lease squares

min
{βt}

1

T

T∑
t=1

(yt − x′tβt)
2 + λ

T∑
t=2

‖βt − βt−1‖, (4.42)

where λ is the tuning parameter and ‖ · ‖ denotes the Frobenius norm. In

Step 1, the break date estimates T̃m̂λ
=
{
T̃1, . . . , T̃m̂λ

}
can be obtained by

the solution {β̂t} to (4.42) such that β̂t = β̂s for t, s ∈ [T̂j−1, T̂j − 1] and

β̂T̂j
�= β̂T̂j−1

for j = 1, . . . , m̂λ+1, where m̂λ denotes the estimated number

of breaks.

Qian and Su (2014) prove that if m̂λ is equal to the true number of

breaks, T̃m̂λ
is consistent under certain assumptions. In addition, given that

λ is chosen properly by minimizing a BIC-type information criterion, m̂λ

can be consistently estimated with a probability approaching to one. In Step

2, regime-specific parameters αm = (α′
1, . . . , α

′
m+1)

′ can be consistently

estimated by applying the post-Lasso GMM procedure.

Recently, Qian and Su (2016) extend their work from a time-series

regression model to a panel data model with exogenous regressors:

yit = μi + x′itβt + uit, i = 1, . . . , n; t = 1, . . . , T ≥ 2, (4.43)

where time-varying coefficients {β1, . . . , βT } follow the same modeling setup

(4.41) with parameters of interest: Tm = {T1, . . . , Tm}, number of breaks

m and αm = (α′
1, . . . , α

′
m+1)

′. In this panel data model, first differencing is

used to remove μi,

Δyit = x′itβt − x′i,t−1βt−1 +�uit
= �x′itβt + x′i,t−1(βt − βt−1) +�uit.

As in Qian and Su (2014), a two-step procedure is applied to estimate

parameters of interest. In Step 1, a penalized least squares (PLS) is used
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to obtain shrinkage estimators of breaks T̃m̂ =
{
T̃1, . . . , T̃m̂λ

}
and m̂λ:

min
{βt}

1

n

n∑
i=1

T∑
t=2

(�yit − x′itβt + x′i,t−1βt−1)
2 + λ

T∑
t=2

ẇt ‖βt − βt−1‖,

(4.44)

where λ1 is the tuning parameter. In this adaptive group-fused lasso

(AGFL) approach, weights ẇt are used and treated as known by using

preliminary estimates of {βt}. The new features in this panel data model

include transformed equation due to first differencing and additional dimen-

sion
∑n

i=1 due to the data along the cross-sectional dimension.

Similar to the time-series model (4.42), the estimators of breaks T̃m̂ ={
T̃1, . . . , T̃m̂λ

}
and m̂λ are shown to be consistent under certain con-

ditions given that tuning parameter λ is carefully chosen. In Step 2,

post-Lasso estimation is applied to obtain consistent estimator of slopes

α̃pm̃ = α̃pm̃(T̃m̂λ
) = {α̂j} for each regime, j = 1, . . . , m̂ + 1, based on

T̃m̂λ
=
{
T̃1, . . . , T̃m̂λ

}
in Step 1:

min
αm

1

n

m+1∑
j=1

Tj−1∑
t=Tj−1

n∑
i=1

(�yit −�x′itβt − x′i,t−1(βt − βt−1))
2

= min
αm

1

n

m+1∑
j=1

Tj−1∑
t=Tj−1

n∑
i=1

(�yit −�x′itαj)2

or

min
αm

1

n

m+1∑
j=1

Tj−1∑
t=Tj−1

n∑
i=1

(�yit −�x′itαj)2

+
1

n

m∑
j=1

n∑
i=1

(�yiTj − x′iTj
αj+1 + x′i,Tj−1αj)

2

where the second term is used for asymptotic efficiency.

By generalizing the fixed effects μi in (4.43) to interactive fixed effects

modeled by a factor structure λ′ift, Li, Qian and Su (2016) extend Bai’s

(2009) model to the case of multiple breaks in slopes:

yit = x′itβt + λ′ift + εit, i = 1, . . . , n; t = 1, . . . , T, (4.45)

where {β1, . . . , βT } follow the same modeling setup (4.41) with break dates

Tm = {T1, . . . , Tm}, number of breaks m and αm = (α′
1, . . . , α

′
m+1)

′.
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Here, ft denote unobserved factors and λi are corresponding loading

vectors. To deal with the latent factor structure, a novel penalized prin-

cipal component (PPC) estimation procedure is introduced:

min
{βt,ft,λi}

1

nT

m+1∑
j=1

Tj−1∑
t=Tj−1

n∑
i=1

(yit − x′itβt − λ′ift)
2 +

λ

T

T∑
t=2

ẇt ‖βt − βt−1‖.

(4.46)

The latent factor structure in (4.46) brings rich empirical features, e.g.,

cross-sectional dependence, at a cost of additional unknown parameters

{ft, λi} to estimate, besides {βt} in (4.42) in a time-series setup and in

(4.44) in a panel data model. Thus, an iteration procedure similar to Bai’s

(2009) IPC approach is applied to the first term of estimate {βt, ft, λi} .
Then, the rest procedure falls into the framework of (4.44).

Okui and Wang (2018) consider a group pattern of heterogeneity and

structural breaks in slopes in a panel data model:

yit = x′itβi,t + εit, i = 1, . . . , n; t = 1, . . . , T,

where βi,t are group specific and time-varying within the group

gi, {βg,1, . . . , βg,T }, i.e.,
yit = x′itβgi,t + εit.

In this model, slopes βgi,t vary across groups and over time. The AGFL

approach proposed by Qian and Su (2016) is applied to estimate the group

structure and slopes.

In these Lasso-type papers discussed above, structural breaks in slopes

are modeled by time-varying parameters. Compared with the traditional

modeling of structural breaks by allowing one or very a few jumps in slopes

in time-series literature, this modeling approach is more like a top-down

strategy by allowing changes in any time periods with a sparsity restric-

tion. The model flexibility of this top-down strategy could accommodate

more empirical features in the data than existing methods, and the phe-

nomenon of structural breaks in slopes is considered as a model among a

set of models dependent on values of model parameters. In this way, iden-

tifying structural breaks and parameters is equivalent to a model selection

procedure, and shrinkage or Lasso approaches are thus applied to estimate

slope parameters, break dates, and number of breaks all together.

Compared with the traditional structural break literature, the Lasso-

type approaches have been proved to be more flexible in modeling, but,
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at a cost of being less straightforward to implement the proposed estimation

procedures. In addition, the consistency of Lasso estimators of breaks and

slope parameters depends on a proper choice of tuning parameters, which

requires certain conditions. In empirical studies, it seems unclear whether

the required conditions are guaranteed.

4.9. Technical Details

This section provides technical details required to prove the main findings

above. Since the panel data model (4.6) considered here includes the time-

series model in Bai (1997a) as a special case of n = 1, it can be shown

similarly that k̂ − k0 = Op(1). In the proofs that follow, we assume k̂ − k0
is stochastically bounded. With more information along the cross-sectional

dimension under the common break assumption, we further show that k̂ −
k0

p→ 0 as (n, T ) → ∞.

For i = 1, . . . , n, let SSRi be the sum of squared residuals of regressing

Yi on Xi in case there is no break, i.e., Z2i(k) = 0T×q. Using the identity

SSRi − SSRi(k) = [Yi−Xiβ̂i(k)− Z2i(k)δ̂i(k)]
′[Yi−Xiβ̂i(k)− Z2i(k)δ̂i(k)]

− [Yi −Xiβ̂i(k)]
′[Yi −Xiβ̂i(k)]

= δ̂i(k)
′[Z2i(k)

′MiZ2i(k)]δ̂i(k)

with Mi = I −Xi(X
′
iXi)

−1X ′
i,

k̂ = arg min
1≤k≤T−1

n∑
i=1

SSRi(k) = arg max
1≤k≤T−1

n∑
i=1

SVi(k)

= arg max
1≤k≤T−1

n∑
i=1

[SVi(k)− SVi(k0)],

where SVi(k) = δ̂i(k)
′[Z2i(k)

′MiZ2i(k)]δ̂i(k). Note that SVi(k0) =

δ̂i(k0)
′ [Z ′

0iMiZ0i] δ̂i(k0) is not a function of k.

To prove Theorem 4.1,
∑n
i=1[SVi(k)−SVi(k0)] can be decomposed into

a deterministic part and a stochastic one. Partitioned regression gives

δ̂i(k) = [Z2i(k)
′MiZ2i(k)]

−1
Z2i(k)

′MiYi, i = 1, . . . , n.
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Substituting Yi = Xiβi + Z0iδi + εi into the equation above, we obtain

δ̂i(k) = [Z2i(k)
′MiZ2i(k)]

−1
Z2i(k)

′MiZ0iδi

+ [Z2i(k)
′MiZ2i(k)]

−1
Z2i(k)

′Miεi

and δ̂i(k0) = δi + (Z ′
0iMiZ0i)

−1
Z0i

′Miεi.

To simplify notation, k is suppressed in δ̂i(k) and Z2i(k) when no con-

fusion arises. Since

SVi(k) = δ̂′i(Z
′
2iMiZ2i)δ̂i

= δ′i(Z
′
0iMiZ2i)(Z

′
2iMiZ2i)

−1(Z ′
2iMiZ0i)δi

+ 2δ′i(Z
′
0iMiZ2i)(Z

′
2iMiZ2i)

−1Z ′
2iMiεi

+ ε′iMiZ2i(Z
′
2iMiZ2i)

−1Z ′
2iMiεi,

it follows that

SVi(k)− SVi(k0)

= −δ′i[(Z ′
0iMiZ0i)− (Z ′

0iMiZ2i)(Z
′
2iMiZ2i)

−1(Z ′
2iMiZ0i)]δi (4.47)

+ 2δ′i(Z
′
0iMiZ2i)(Z

′
2iMiZ2i)

−1Z ′
2iMiεi − 2δ′iZ

′
0iMiεi (4.48)

+ ε′iMiZ2i(Z
′
2iMiZ2i)

−1Z ′
2iMiεi − ε′iMiZ0i(Z

′
0iMiZ0i)

−1Z ′
0iMiεi.

(4.49)

The deterministic part is denoted by

J1i(k) = δ′i[(Z
′
0iMiZ0i)− (Z ′

0iMiZ2i)(Z
′
2iMiZ2i)

−1(Z ′
2iMiZ0i)]δi, (4.50)

and the stochastic part is denoted by

J2i(k) = 2δ′i(Z
′
0iMiZ2i)(Z

′
2iMiZ2i)

−1Z ′
2iMiεi

− 2δ′iZ
′
0iMiεi + ε′iMiZ2i(Z

′
2iMiZ2i)

−1Z ′
2iMiεi

− ε′iMiZ0i(Z
′
0iMiZ0i)

−1Z ′
0iMiεi.

Thus SVi(k)− SVi(k0) = −J1i(k) + J2i(k) and

k̂ = arg max
1≤k≤T−1

n∑
i=1

[SVi(k)− SVi(k0)]

= arg max
1≤k≤T−1

[
−

n∑
i=1

J1i(k) +

n∑
i=1

J2i(k)

]
.
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Define

XΔi =

{
X2i −X0i = (0, . . . , 0, xi,k+1, . . . , xi,k0 , 0, . . . , 0)

′
for k < k0,

−(X2i −X0i) = (0, . . . , 0, xi,k0+1, . . . , xi,k, 0, . . . , 0)
′

for k ≥ k0,

and ZΔi can be defined similarly.

For a finite large number Ck and arbitrarily small positive number

a < τ0, define the set K(Ck) = {k : 1 ≤ |k − k0| < Ck, aT < k < (1 − a)T }.
Since k̂−k0 is stochastically bounded, we only consider the values of k that

belong to set K(Ck).

Let λ1(k) be the minimum eigenvalue of 1
n

∑n
i=1R

′(X ′
ΔiXΔi)R. Define

λ1 = mink∈K(Ck) λ1(k). Under Assumption 4.5, λ1(k) > 0 and λ1 > 0.

Lemma 4.1. Under Assumptions 4.1–4.7, for all large n and T, with prob-

ability tending to 1,

inf
K(Ck)

n∑
i=1

J1i(k) ≥ λ1φN .

This lemma is similar to Lemma A.2 in Bai (1997a).

Lemma 4.2. Under Assumptions 4.1–4.7, uniformly on K(Ck),

(i)
∑n

i=1 δ
′
iZ

′
Δiεi = Op(

√
φN );

(ii) 1√
T

∑n
i=1 δ

′
iZ

′
ΔiXi(

X′
iXi

T )−1X
′
iεi√
T

= Op(
√

φN

T );

(iii) 1√
T

∑n
i=1 δ

′
i(Z

′
ΔiMiZ2i)(

Z′
2iMiZ2i

T )−1 Z
′
2iMiεi√
T

= Op(
√

φN

T );

(iv) 1
T

∑n
i=1 ε

′
iMiZΔi(

Z′
2iMiZ2i

T )−1Z ′
ΔiMiεi = Op(

n
T );

(v) 1
T

∑n
i=1 ε

′
iMiZ0i(

Z′
2iMiZ2i

T )−1Z ′
ΔiMiεi = Op(

n
T ) +Op(

√
n
T );

(vi)
∑n

i=1
ε′iMiZ0i√

T

[
(
Z′

2iMiZ2i

T )−1 − (
Z′

0iMiZ0i

T )−1
]
Z′

0iMiεi√
T

= Op(
n
T ).

Proof of Lemma 4.2. (i) Under Assumption 4.3, for large n,

Var

(
n∑
i=1

δ′iZ
′
Δiεi

)
=

n∑
i=1

δ′iZ
′
ΔiΣε,iZΔiδi.

It can be shown equal to O(φN ) under Assumptions 4.4–4.7, implying∑n
i=1 δ

′
iZ

′
Δiεi = Op(

√
φN ) on K(Ck).

The proofs of Lemma 4.2(ii)–(vi) are similar.
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With these lemmas, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. To prove lim(N,T )→∞ P (k̂ = k0) = 1, it is

equivalent to show that, for any given ε > 0, for both large T and n,

P (|k̂−k0| ≥ 1) < ε. It is sufficient to show that P (supK(Ck)

∑n
i=1[SVi(k)−

SVi(k0)] ≥ 0) < ε, or

P

(
sup
K(Ck)

∣∣∣∣∣
n∑
i=1

J2i(k)

∣∣∣∣∣ ≥ inf
K(Ck)

n∑
i=1

J1i(k)

)
< ε.

By Lemma 4.1, it suffices to show P (supK(Ck)
1
φN

|∑n
i=1 J2i(k)| ≥ λ1) < ε.

For any k ∈ K(Ck),∣∣∣∣∣
n∑
i=1

J2i(k)

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

[
2δ′i(Z

′
0iMiZ2i)(Z

′
2iMiZ2i)

−1Z ′
2iMiεi − 2δ′iZ

′
0iMiεi

]∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=1

[
ε′iMiZ2i(Z

′
2iMiZ2i)

−1Z ′
2iMiεi

− ε′iMiZ0i(Z
′
0iMiZ0i)

−1Z ′
0iMiεi

] ∣∣∣∣∣.
Consider the first term, Z2i = Z0i + ZΔi for k < k0,∣∣∣∣∣

n∑
i=1

[
2δ′i(Z

′
0iMiZ2i)(Z

′
2iMiZ2i)

−1Z ′
2iMiεi − 2δ′iZ

′
0iMiεi

]∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

[
2δ′iZ

′
ΔiMiεi − 2δ′i(Z

′
ΔiMiZ2i)(Z

′
2iMiZ2i)

−1Z ′
2iMiεi

]∣∣∣∣∣
≤ 2

∣∣∣∣∣
n∑
i=1

δ′iZ
′
Δiεi

∣∣∣∣∣+ 2√
T

∣∣∣∣∣
n∑
i=1

δ′iZ
′
ΔiXi

(
X ′
iXi

T

)−1
X ′
iεi√
T

∣∣∣∣∣
+

2√
T

∣∣∣∣∣
n∑
i=1

δ′i

[
(Z ′

ΔiMiZ2i)

(
Z ′
2iMiZ2i

T

)−1
Z ′
2iMiεi√
T

]∣∣∣∣∣.
By (i), (ii) and (iii) of Lemma 4.2, the first term∣∣∣∣∣

n∑
i=1

[
2δ′i(Z

′
0iMiZ2i)(Z

′
2iMiZ2i)

−1Z ′
2iMiεi − 2δ′iZ

′
0iMiεi

]∣∣∣∣∣ = Op(
√
φN ).

(4.51)
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Now consider the second term∣∣∣∣∣
n∑
i=1

[
ε′iMiZ2i(Z

′
2iMiZ2i)

−1Z ′
2iMiεi − ε′iMiZ0i(Z

′
0iMiZ0i)

−1Z ′
0iMiεi

]∣∣∣∣∣
≤ 1

T

∣∣∣∣∣
n∑
i=1

ε′iMiZΔi

(
Z ′
2iMiZ2i

T

)−1

Z ′
ΔiMiεi

∣∣∣∣∣
+2

1√
T

∣∣∣∣∣
n∑
i=1

ε′iMiZ0i√
T

(
Z ′
2iMiZ2i

T

)−1

Z ′
ΔiMiεi

∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=1

ε′iMiZ0i√
T

[(
Z ′
2iMiZ2i

T

)−1

−
(
Z ′
0iMiZ0i

T

)−1
]
Z ′
0iMiεi√
T

∣∣∣∣∣.
Similarly, by (iv), (v) and (vi) of Lemma 4.2, the second term∣∣∣∣∣

N∑
i=1

[
ε′iMiZ2i(Z

′
2iMiZ2i)

−1Z ′
2iMiεi − ε′iMiZ0i(Z

′
0iMiZ0i)

−1Z ′
0iMiεi

]∣∣∣∣∣
= Op

( n
T

)
+Op

(√
n

T

)
. (4.52)

Combining (4.51) and (4.52), we obtain

1

φN

∣∣∣∣∣
n∑
i=1

J2i(k)

∣∣∣∣∣ = 1

φN

[
Op(

√
φN ) +Op

( n
T

)
+Op

(√
n

T

)]

= Op

(
1√
φN

)
+

1

φN

[
Op

(n
T

)
+Op

(√
n

T

)]
.

Under Assumption 4.2, 1
φN

|∑n
i=1 J2i(k)| vanishes for any k ∈ K(Ck), so

does its maximum.

Proof of Theorem 4.2. Compared with (4.8) of Model 1, equation (4.21)

of Model 2 has the same form using transformed data {Ỹi, X̃i, i = 1, . . . , n},
except for the additional term MwFγi. The focus of the proof of The-

orem 4.2 is on showing that MwFγi can be ignored asymptotically as

(n, T ) → ∞.
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For i = 1, . . . , n, let S̃SRi be the sum of squared residuals of

regressing Ỹi on X̃i alone. Using the identity S̃SRi − S̃SRi(k) =

δ̃i(k)
′[Z̃2i(k)

′M̃iZ̃2i(k)]δ̃i(k) with M̃i = I − X̃i(X̃
′
iX̃i)

−1X̃ ′
i, we obtain

k̃ = arg min
1≤k≤T−1

n∑
i=1

S̃SRi(k) = arg max
1≤k≤T−1

n∑
i=1

S̃V i(k)

= arg max
1≤k≤T−1

n∑
i=1

[S̃V i(k)− S̃V i(k0)],

where S̃V i(k) = δ̃i(k)
′[Z̃2i(k)

′M̃iZ̃2i(k)]δ̃i(k).

Partitioned regression gives

δ̃i(k) =
[
Z̃2i(k)

′M̃iZ̃2i(k)
]−1

Z̃2i(k)
′M̃iỸi.

Substituting Ỹi = X̃iβi + Z̃0iδi + ε̃0i into the equation above, we obtain

δ̃i(k) =
[
Z̃2i(k)

′M̃iZ̃2i(k)
]−1

Z̃2i(k)
′M̃iZ̃0iδi

+
[
Z̃2i(k)

′M̃iZ̃2i(k)
]−1

Z̃2i(k)
′M̃iε̃

0
i

and δ̃i(k0) = δi +
(
Z̃ ′
0iM̃iZ̃0i

)−1
Z̃0i

′M̃iε̃
0
i .

The rest of proof can proceed in the same way as that of Theorem 4.1

using the new notations with “˜”. Note that there is an additional term

MwFγi in ε̃
0
i =MwFγi+ ε̃i in Model 2. In what follows, we show that each

element of MwFγi is of order Op(
1√
n
), which implies that ε̃0i behaves as εi

as in Model 1 asymptotically as n→ ∞.

To examine the effect of this extra term on the estimated k̃ and b̃i, we

introduce some new matrix notation. Since xit = Γ′
ift + vit in (4.3), we

write

Xi
T×p

= F
T×m

Γi
m×p

+ Vi
T×p

,

where Vi = (vi1, . . . , viT )
′. Denote F0 = (0, . . . , 0, fk0+1, . . . , fT )

′ and V0i =
(0, . . . , 0, vi,k0+1, . . . , vi,T )

′. Thus,

X0i = (0, . . . , 0, xi,k0+1, . . . , xi,T )
′

= (0, . . . , 0,Γ′
ifk0+1 + vi,k0+1, . . . ,Γ

′
ifT + vi,T )

′

= F0Γi + V0i.
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For the error term (4.18), denote

ūt =

⎛⎜⎝ε̄t +
n∑
i=1

θiv
′
itβi

v̄t

⎞⎟⎠ and

Δūt(k0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
0

0

)
, t = 1, . . . , k0,⎛⎜⎝

n∑
i=1

θiv
′
itRδi

0

⎞⎟⎠, t = k0 + 1, . . . , T.

Thus, ūt(k0) =
∑n

i=1 θiuit(k0) = ūt + Δūt(k0). Denote Ū = (ū1, . . . , ūT )
′

and

ΔŪ(k0) =

⎛⎜⎝(
0

0

)
, . . . ,

(
0

0

)
,

⎛⎜⎝
n∑
i=1

θiv
′
i,k0+1Rδi

0

⎞⎟⎠ , . . . ,

⎛⎜⎝
n∑
i=1

θiv
′
i,TRδi

0

⎞⎟⎠
⎞⎟⎠

′

.

Thus, stacking cross-sectional averages w̄t = C̄(k0)
′ft + ūt(k0), we obtain

W̄
T×(p+1)

= (w̄1, . . . , w̄k0 , w̄k0+1, . . . , w̄T )
′

= (C̄′
1f1 + ū1, . . . , C̄

′
1fk0 + ūk0 , C̄

′
2fk0+1 + ūk0+1, . . . , C̄

′
2fT + ūT )

′

= FC̄1 + F0(C̄2 − C̄1) + Ū +ΔŪ(k0).

Denote

F
T×2m

= (F, F0), C
2m×(p+1)

= (C̄′
1, (C̄2 − C̄1)

′)′ and Ū
T×(p+1)

=Ū +ΔŪ(k0).

Therefore,

W̄ = FC+ Ū. (4.53)

With this notation, we obtain lemmas, which can be proved similarly to

Lemmas 1–3 in Pesaran (2006).
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Lemma 4.3. Under Assumptions 4.1, 4.2, 4.8–4.15, uniformly on K(Ck),

(i) ūt = Op(
1√
n
), Δūt(k0) = Op(

1√
n
);

(ii) 1
T Ū

′Ū = Op(
1
n );

1
T F

′Ū = Op(
1√
nT

), 1
T V

′
i F = Op(

1√
T
);

(iii) 1
T V

′
i Ū = Op(

1
n ) + Op(

1√
nT

), 1
T ε

′
iŪ = Op(

1
n ) + Op(

1√
nT

), 1
T V

′
0iŪ =

Op(
1
n ) +Op(

1√
nT

);

(iv) 1
TX

′
iŪ = Op(

1
n ) +Op(

1√
nT

); 1
TX

′
0iŪ = Op(

1
n ) +Op(

1√
nT

).

Lemma 4.4. Under Assumptions 4.1, 4.2, 4.8–4.15, uniformly on K(Ck),

(i) 1
T F

′F = Op(1);
1
T F

′F = Op(1);

(ii) 1
TX

′
iF = Op(1);

1
T Xi(k)

′F = Op(1).

Proof. Item (i) is obvious by Assumption 4.8.

(ii) Since Xi = FΓi + Vi = (F, F0)(Γ
′
i, 0)

′ + Vi,
1
TX

′
iF can be written as

(Γ′
i, 0)(

1
T F

′F)+ 1
T V

′
i F. By (i) and Lemma 4.3(iv), 1

TX
′
iF = Op(1). Similarly,

1
T Xi(k)

′F = Op(1).

With Lemmas 4.3 and 4.4, we are ready to establish the property of

the T ×m matrix MwFγi, which will be frequently used in the derivations

below. Denote

E
(p+1)×(p+1)

=
1

T
C

′
F
′
Ū+

1

T
Ū

′
FC+

1

T
Ū

′
Ū;

f(E)
(p+1)×(p+1)

=

∞∑
k=1

(−1)k+1

[(
1

T
C

′
F
′
FC

)−1

E

]k (
1

T
C

′
F
′
FC

)−1

.

By Lemma 4.4(v), E = Op(
1
n )+Op(

1√
nT

), thus f(E) = Op(
1
n )+Op(

1√
nT

).

In addition, denote

D1
2m×m

= −Cf(E)C
′F′F
T

+ C

[(
C

′F′F
T

C

)−1

+ f(E)

]
Ū′F
T

(4.54)

and

D2
(p+1)×m

= −
[(

C
′F′

F

T
C

)−1

+ f(E)

](
C

′F′F
T

+
Ū

′F
T

)
. (4.55)
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Since C = O(1), F
′F
T and F

′
F

T are Op(1), f(E) = Op(
1
n ) + Op(

1√
nT

), and
Ū

′F
T = Op(

1√
nT

),

D1 = Op(1)

[
Op

(
1

n

)
+Op

(
1√
nT

)]
Op(1)

+Op(1)

[
Op(1) +Op

(
1

n

)
+Op

(
1√
nT

)]
Op

(
1√
nT

)
= Op

(
1

n

)
+Op

(
1√
nT

)
.

Similarly,

D2 =

[
Op(1) +Op

(
1

n

)
+Op

(
1√
nT

)][
Op(1) +Op

(
1√
nT

)]
= Op(1).

Lemma 4.5. Under Assumptions 4.1, 4.2, 4.8–4.15, uniformly on K(Ck),

MwFγi = FD1γi + ŪD2γi.

By Lemma 4.3(i) where each element of Ū is Op(
1√
n
), each element of

MwFγi is of order Op(
1√
n
).

Proof. Plugging in (4.53), we obtain

1

T
W̄ ′W̄ =

1

T
C

′
F
′
FC+

1

T
C

′
F
′
Ū+

1

T
Ū

′
FC+

1

T
Ū

′
Ū

=
1

T
C

′
F
′
FC+ E.

By Lemma 4.4(i), 1
T C

′
F′FC is Op(1). Since E = Op(

1
n )+Op(

1√
nT

), it could

be very small when both n and T are large. By Horn and Johnson (1985,

p. 335)(
1

T
C

′
F
′
FC

)−1

−
(
1

T
W̄ ′W̄

)−1

=

(
1

T
C

′
F
′
FC

)−1

−
(
1

T
C

′
F
′
FC+ E

)−1
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=

(
1

T
C

′
F
′
FC

)−1

−
[
I +

(
1

T
C

′
F
′
FC

)−1

E

]−1(
1

T
C

′
F
′
FC

)−1

=

∞∑
k=1

(−1)k+1

[(
1

T
C

′
F
′
FC

)−1

E

]k (
1

T
C

′
F
′
FC

)−1

= f(E).

This yields (
1

T
W̄ ′W̄

)−1

=

(
1

T
C

′
F
′
FC

)−1

+ f(E).

It follows that

MwF =

[
IT − W̄

(
1

T
W̄ ′W̄

)−1
1

T
W̄ ′

]
F

=

[
IT − (

FC+ Ū
) [( 1

T
C

′
F
′
FC

)−1

+ f(E)

]
1

T
(FC+ Ū)′

]
F

= [IT − (FC)(C
′
F
′
FC)

−1
(FC)′]F − (FC)

{
f(E)

(
1

T
FC

)′

+

[(
1

T
C

′
F
′
FC

)−1

+ f(E)

]
1

T
Ū

′
}
F

− Ū

[(
1

T
C

′
F
′
FC

)−1

+ f(E)

](
1

T
FC+

1

T
Ū

)′
F.

As discussed in Pesaran (2006), M
FC

= IT − (FC)(C
′
F′FC)

−1
(FC)′ = IT −

F(F′F)−1F under the rank assumption. This implies that the first term is

0. Therefore, plugging in (4.54) and (4.55), we obtain

MwFγi = FD1γi + ŪD2γi. (4.56)

4.10. Exercises

(1) (Westerlund, 2019) Consider a panel model

yit = α1i1 (t ≤ k0) + α2i1 (t > k0) + λift + εit,
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where 1 (A) is the indicator function, k0 is the breakpoint, ft is a the

common factor and λi is the loading. We can use the common correlated

effects (CCE) of Pesaran (2006) to approximate ft by yt

yt = α11 (t ≤ k) + α21 (t > k) + λft + εi,

and

ft = λ
−1

[yt − α11 (t ≤ k)− α21 (t > k)− εi].

Then

yit = δ1i1 (t ≤ k) + δ2i1 (t > k) + λiλ
−1
yt + εit

with

δ1i = α1i − λiλ
−1
α1,

δ2i = α2i − λiλ
−1
α2,

and

εit = εit − λiλ
−1
εt.

Define

k̂ = arg min
1≤k<T−1

RRSn(k)

with

RRSn(k) =

n∑
i=1

[
yi −D(k)δ̂i

]′
My

[
yi −D(k)δ̂i

]
,

where

yi = δ1iD1(k) + δ2iD2(k) + λiλ
−1
εt;

yi = [yi1, . . . , yiT ]
′
, yi = [y1, . . . , yT ]

′
, and εi = [εi1, . . . , εiT ]

′
. Also

δi = [δ1i, δ2i] , D (k) = [D1(k), D2(k)] , D1(k) =
[
1′k, 0

′
T−k

]′
, D2(k) =[

0′k, 1
′
T−k

]′
, MA = IT −A(A′A)−1A′. Show that

P
(
k̂ = k

) → 1

as n→ ∞ for any fixed T .

(2) (Pestova and Pesta, 2017) Consider

yit = αi1 (t > k) + σiεit,
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where σi > 0. Define

k̂ = argmin
k

n∑
i=1

{
1

w (t)

k∑
t=1

(yit − yik)
2
+

1

w (T − k)

T∑
t=k+1

(yit − ỹik)
2

}
,

where w (t) is a weight, yik is the average of the first k and ỹik is

the average of the last T − k observations for each i. Show that if
1
n

∑n
i=1 δ

2
i → ∞

P
(
k̂ = k

)→ 1

as n→ ∞ for a fixed T.

(3) (Bhattacharjee, Banerjee and Michailidis, 2017) Consider

xit =

{
μi1 + εit, t = 1, 2, . . . , [Tτ ],

μi2 + εit, t = [Tτ ] + 1, 2, . . . , T.

Define

τ̂ = argmin
k

n∑
i=1

⎡⎣[Tτ ]∑
t=1

(xit − μ̂i1 (τ))
2 +

T∑
t=[Tτ ]+1

(xit − μ̂i2 (τ))
2

⎤⎦
with

μ̂i1 (τ) =
1

[Tτ ]

[Tτ ]∑
t=1

xit

and

μ̂i2 (τ) =
1

T − [Tτ ]

T∑
t=[Tτ ]+1

xit.

Let

μ1 = (μ11, . . . , μn1)

and

μ2 = (μ12, . . . , μn2).

Show that

T ‖μ1 − μ2‖22 (τ̂ − τ) = Op (1).
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(4) (Aue, Hormann, Horvath and Reimherr, 2009) Let {yt}Tt=1 be a time

series of dimension n with E(yt) = 0 and Σ = E(yty
′
t). Define

Sk =
1√
T

(
k∑
t=1

vech[yty
′
t]−

k

T

k∑
t=1

vech[yty
′
t]

)
,

ΛT = max
k

S′
kΣ̂

−1
T Sk,

and

Ωn =
1

T

T∑
k=1

S′
kΣ̂

−1
T Sk

with ∣∣Σ̂T − Σ
∣∣
E
= op (1)

k = 1, . . . , T, where, for an n × n matrix M , |M |E = supx 	=0
|Mx|
|x|

denotes the matrix norm induced by the Euclidean norm on Rn. Show

that under the null as T → ∞
H0 : Cov(y1) = · · · = Cov(yT )

ΛT
d→ Λ(d) = sup

r

d∑
l=1

B2
l (r)

and

ΩT
d→ Ω (d) =

d∑
l=1

B2
l (r) dr,

where d = n(n+1)
2 , Bl (r) , 1 ≤ l ≤ d, are independent standard Brown-

ian bridges.

(5) (Kao, Trapani and Urga, 2018) Let

wt = vec(yt, y
′
t),

wt = vec(yt, y
′
t − Σ),

Σ̂τ =
1

[Tτ ]

[Tτ ]∑
t=1

yty
′
t,

and

Σ̂1−τ =
1

[T (1− τ)]

T∑
t=[Tτ ]+1

yty
′
t.
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Define

V̂Σ,τ =
1

T

T∑
t=1

wtw
′
t −

{
τ
[
vec

(
Σ̂τ

)][
vec

(
Σ̂τ

)]′
+
(
1− τ

)[
vec

(
Σ̂1−τ

)][
vec

(
Σ̂1−τ

)]′
}
,

ṼΣ,τ =
(
Ψ̂0,τ+Ψ̂0,1−τ

)
+

m∑
l=1

(
1− l

m

)[(
Ψ̂l,τ+Ψ̂′

l,τ

)(
Ψ̂l,1−τ+Ψ̂l,1−τ

)]
with

Ψ̂l,τ =
1

T

[Tτ ]∑
t=l+1

[
wt − vec

(
Σ̂τ

)][
wt−l − vec

(
Σ̂τ

)]
and

Ψ̂l,1−τ =
1

T
(
1− τ

) T∑
t=
[
Tτ
]
+1

[
wt − vec

(
Σ̂1−τ

)][
wt−l − vec

(
Σ̂1−τ

)]
.

Let

ΛT (τ) = R×Dλr.

Show that

sup
[Tr]

‖V ‖.

(6) (Yao and Davis, 1986) Consider x1, . . . , xk
i.i.d.∼ N

(
μ, σ2

)
and

xk+1, . . . , xn
i.i.d.∼ N

(
μ+ θ, σ2

)
. We want to test H0 : k = n versus

Ha : k < n. Define

Tn = max
k

∣∣∣ Sk√
n
− k

n
Sn√
n

∣∣∣√(
k
n

) (
1− k

n

)
with

Sk = x1 + · · ·+ xk.

Show that under the null

lim
n→∞P

(
1

an
(Tn − bn) ≤ c

)
= exp(−2π−1/2e−c)
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with

an =
1√

2 ln2 n
,

bn =
1

an
+

1

2
an ln3 n

and lnk is the kth iterated logarithm, where −∞ < c <∞.

(7) (Bai, Han and Shi, 2019) Consider

yit =

{
λ′i1ft + εit, t = 1, . . . , k0,

λ′i2ft + εit, t = k0 + 1, . . . , T,

where k0 = [Tτ0] , ft is a r × 1 vector of unobserved factors, k0 is the

unknown break date, λi1 and λi2 are the pre- and post-break factor

loadings, and εit is the idiosyncratic error. Let

yt =

{
Λ1ft + εt, t = 1, . . . , k0,

Λ2ft + εt, t = k0 + 1, . . . , T

with

yt = (y1t, . . . , ynt)
′ ,

Λ1 = (λ11, . . . , λn1)
′
,

and

Λ2 = (λ12, . . . , λn2)
′
.

Let F̃
(1)
k denote

√
k times the first r eigenvalues of Y

(1)
k Y

(1)′

k and F̃
(2)
k

denote
√
T − k times the first r eigenvalues of Y

(2)
k Y

(2)′

k , where

Y
(1)
k = (x1, . . . , xk)

′

and

Y
(2)
k = (xk+1, . . . , xT )

′
.

Let f̃t denote the transpose of the tth row of F̃ =
[
F̃

(1)
k , F̃

(2)
k

]
. Define

k̃ = argmin
k

SSR(k, F̃ )
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with

SSR(k, F̃ ) =

n∑
i=1

k∑
t=1

(
yit − f̃ ′

tλ̃i1
)2

+

n∑
i=1

T∑
t=k+1

(
yit − f̃ ′

tλ̃i2
)2
,

λ̃i1 =
F̃

(1)′

k Y
(1)
k,i

k
,

λ̃i2 =
F̃

(2)′

k Y
(2)
k,i

T − k
,

Y
(1)
k,i = (yi1, . . . , yik)

′
,

Y
(1)
k,i = (yi1, . . . , yiT )

′
.

Show that

(a) if

n1−α log logT
T

→ 0,

log logT

n
→ 0,

and

log log n

T
→ 0,

then

lim
(n,T )→∞

P (k̃ = k0) = 1,

where 0 < α ≤ 1.

(b) if α = 0, n log log T
T → 0 and log log T

n → 0, then

k̃ − k0 = Op (1).

(8) (Chen, 2015) Consider

yt =

{
Λ1ft + εt, t = 1, . . . , k0,

Λ2ft + εt, t = k0 + 1, . . . , T.
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Define the least squares (LS) estimator of the break point as

k̂ = argmin
k

[
min

Λ1,Λ2,F
Snt (k, F,Λ1,Λ2)

]
with

Snt (k, F,Λ1,Λ2) =

k∑
t=1

‖yt − Λ1ft‖2 +
T∑

t=k+1

‖yt − Λ2ft‖2 .

Let τ̂ =
̂k
T . Show that τ̂ − τ = Op

(
1
δnt

)
where δnt = min{√n,√T}.
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Chapter 5

Latent-Grouped Structure in Panel
Data Models

5.1. Panel Latent Group Structure Models

In this chapter, we study the issues of homogeneity pursuit in panel mod-

els. How to control for unobserved heterogeneity is critical to economists.

This chapter considers panel models where individuals may be grouped at

different levels. Panel data models with grouped heterogeneity have gained

popularity to model the unobserved heterogeneity recently, e.g., Bonhomme

and Magresa (2015), Su, Shi and Phillips (2016), Vogt and Linton (2017).

Suppose we observe panel data (yit, xit), i = 1, . . . , n, t = 1, . . . , T, where

yit is the scalar-dependent variable and xit is a covariate vector

yit = x′itβ + αit + εit,

where αit are unit-specific effects such as, e.g.,

αit = ηi + δt.

We assume that the individual units are grouped into K groups so that

αit = αgit,

where gi ∈ {1, . . . ,K} denotes group membership and (αg1, . . . , αgT ) are

K group-specific sequences of time effects.

Bonhomme and Manresa (2015) consider a panel model with grouped

fixed effects (GFE)

yit = x′itβ
0 + α0

g0i t
+ εit. (5.1)

115
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Model (5.1) contains three types of parameters: the common parameter β;

the group-specific time effects αgt for all gi ∈ {1, . . . ,K}; and the group

membership variable gi for all i. We denote α as the set of all αgt’s, and γ

as the set of all gi’s.

The grouped fixed effect estimator in model (5.1) is defined as

(
β̂, α̂, γ̂

)
= arg min

(θ,α,γ)

n∑
i=1

T∑
t=1

(
yit − x′itβ − αgit

)2
,

where the minimum is taken over all possible groupings γ = {g1, . . . , gn} of

the n units into K groups, common parameters β, and group-specific time

effects α.

5.2. K-means Clustering

K-means clustering is a method of vector quantization, originally from sig-

nal processing, that is popular for cluster analysis in data mining. K-means

is one of the most popular clustering algorithms. K-means stores k cen-

troids that it uses to define clusters. K-means finds the best centroids by

alternating between (1) assigning data points to clusters based on the cur-

rent centroids and (2) choosing centroids (points which are the center of a

cluster) based on the current assignment of data points to clusters. Let us

consider the K-means clustering method where there are no covariates in

the model, i.e., β = 0. Denote

yi = (yi1, . . . , yiT )
′
.

Let

αg = (αg1, αg2, . . . , αgT )
′

and

α =
(
α′
1, α

′
1, . . . , α

′
K

)′
be a KT × 1 vector that stacks all αgt’s. The K-means grouping procedure

prescribes a criterion for partitioning a set of points into K groups: to

divide points y1, . . . , yn in RT according to this criterion, first choose cluster



August 6, 2020 13:0 Large-Dimensional Panel Data Econometrics 9in x 6in b3901-ch05 page 117

Latent-Grouped Structure in Panel Data Models 117

centers α1, . . . , αG in RT to minimize

Qn =

n∑
i=1

min
g∈{1,...,K}

‖yi − αg‖2

=

n∑
i=1

min
g∈{1,...,K}

T∑
t=1

(yit − αgt)
2
,

i.e.,

α̂ = argmin
α

Qn, (5.2)

where ‖ · ‖ denotes the usual Euclidean norm, then assign each yi to its

nearest group center. Note that the global minimization is NP-hard and

requires integer programming due to the discrete feature of g ∈ {1, . . . ,K}.
There are almost Kn ways to partition n observations into K groups. That

is, in practice, finding α at which Qn attains its global minimum involves

a prohibitive amount of calculation, except in the one-dimensional case. It

is also well known that, in general, the K-means algorithm terminates in a

local optimum and does not necessarily find the global optimum. The mean

of the points must equal to αgt, otherwise Qn could be decreased by the

first replacing αgt by that cluster mean then, if necessary, reassigning some

of the y’s to new groups. The criterion is, therefore, equivalent to that of

minimizing the within group sum of squares.

min
g̃

1

T

T∑
t=1

(
α̂g̃t − α0

gt

)2
= op (1).

Now we assume yi are i.i.d. across individuals and have finite second

moments. Define

α = argmin
α
E

[
T∑
t=1

(
yit − αĝi(α)t

)2]
.

Next we show

α̂
p→ α

as n → ∞ with T fixed. For the purpose of illustration consider K = 2

and T = 1. Now the problem is to choose optimal centers α̂1 and α̂2
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to minimize

Qn (α1, α2) =
1

n

n∑
i=1

min
( |yi − α1|2 , |yi − α2|2

)
(5.3)

then allocate each yi to its nearest center. The optimal centers must lie at

the mean of those observations drawn into their clusters. Next we show that

α̂ = (α̂1, α̂2)
′ converges in probability to α = (α1, α2)

′ as n→ ∞, where α

minimizes

Q (α1, α2) = E
[
min

( |y − α1|2 , |y − α2|2
)]
.

Clearly, we can use the uniform law of large numbers to show that

Qn (α1, α2) converges in probability uniformly to Q (α1, α2) as n → ∞.

This suggests that α̂ which minimizes Qn (α1, α2) converges in probability

to α that minimizes Q (α1, α2). Assume there exists a unique α minimiz-

ing Q (α1, α2) . What happens when this uniqueness condition is violated?

We may relax the assumption that Q (α1, α2) has a unique minimum, by

assuming Q (α1, α2) achieves its minimum for each (α1, α2) in a region D

and argue the distance from the optimal (α̂1, α̂2) to D converges to zero in

probably (or almost surely).1 Suppose yi
i.i.d.∼ U [0, 1] , then

E
[
min

( |y − α1|2 , |y − α2|2
)]

=

∫ 1

0

min
( |y − α1|2 , |y − α2|2

)
dy.

By symmetry we may assume α1 ≤ α2. We can show that

Q (α1, α2) =

∫ [{
0 ≤ y ≤ 1

2
(α1 + α2)

}
|y − α1|2

+

{
1

2
(α1 + α2) ≤ y ≤ 1

}
|y − α2|2

]
dy

=
α3
1

3
+

(1− α2)
3

3
+

(α2 − α1)
3

12
.

It is easy to show that Q (α1, α2) takes a minimum value of 1
48 at α1 = 1

4

and α2 = 3
4 . The values of α̂ are found by minimizing Qn (α1, α2). Clearly,

Qn (α1, α2)
p→ Q (α1, α2) =

1

48
.

1This example is taken from Pollard (1981).
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Thus,

lim supQn (α̂1, α̂2) ≤ 1

48

because Qn (α̂1, α̂2) ≤ Qn
(
1
4 ,

3
4

)
. Then we can show α̂

p→ α easily.

Next we show that

√
n (α̂− α)

d→ N (0,Ω), (5.4)

where the matrix Ω involves the integrals of the population density over

the faces of the optimal clusters. The proof of (5.4) depends on a quadratic

approximation

Qn (α̂) = Q (α)− 1√
n
Z ′
n (α̂− α) +

1

2
(α̂− α)′ Γ (α̂− α)

+ op

(
1√
n
rn

)
+ op

(
r2n
)
, (5.5)

where rn = ‖α̂− α‖, Γ is a positive definite matrix and Zn has an asymp-

totic N (0, V ) . The optimal α̂ that minimizes Qn (α) lies close to the vector

α + 1√
n
Γ−1Zn that minimizes (5.5) in the sense that

√
n (α̂− α) − Γ−1Zn

converges to zero in probability.

Again consider K = 2 and T = 1.2

m (α1, α2, y) = min
( |y − α1|2 , |y − α2|2

)
.

Note

√
n (Qn (α1, α2)−Q (α1, α2))

=
1√
n

n∑
i=1

(m (α1, α2, yi)− E (m (α1, α2, yi)))

= An (α1, α2).

Note that near optimal centers, α1 = 1
4 and α2 = 3

4 ,

Q (α1, α2) =
1

48
+

3

8

(
α1 − 1

4

)2

− 1

4

(
α1 − 1

4

)(
α2 − 3

4

)
+

3

8

(
α2 − 3

4

)
+ cubic terms.

2This example is taken from Pollard (1982a, 1984).
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Note thatQ (α1, α2) has partial derivatives with respect to α1 and α2 except

at y = 1
2 (α1 + α2) . This suggests

∂Q (α1, α2)

∂α1
= −2

(
y − 1

4

){
0 ≤ y ≤ 1

2

}
and

∂Q (α1, α2)

∂α1
= −2

(
y − 3

4

){
1

2
≤ y ≤ 1

}
.

Then concentrate on values of (α1, α2) close to the population optimal

values
(
1
4 ,

3
4

)
α1 =

1

4
+

1√
n
s

and

α2 =
3

4
+

1√
n
t.

Now we take a Taylor expansion of m about
(
1
4 ,

3
4

)
An

(
1

4
+

1√
n
s,

3

4
+

1√
n
t

)
= An

(
1

4
,
3

4

)
+ 2

1√
n
sBn + 2

1√
n
tCn,

where

Bn =
1√
n

n∑
i=1

(
y − 1

4

){
0 ≤ y ≤ 1

2

}
and

Cn =
1√
n

n∑
i=1

(
y − 3

4

){
1

2
≤ y ≤ 1

}
.

Then we get an approximation for Qn (α1, α2) near the optimal centers

Qn

(
1

4
+

1√
n
s,

3

4
+

1√
n
t

)
= Q

(
1

4
+

1√
n
s,

3

4
+

1√
n
t

)
+

1√
n
An

(
1

4
,
3

4

)
+ 2

1

n
(sBn + tCn)

+ higher order terms
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=
1

48
+

1

n

(
3s2

8
− st

4
+

3t2

8

)
+

1√
n
An

(
1

4
,
3

4

)
+ 2

1

n
(sBn + tCn) + higher order terms

=
1

48
+

1√
n
An

(
1

4
,
3

4

)
+

1

n
(quadratic in s and t) + higher order terms.

To accuracy of the order 1√
n
, the location of the minimum of Qn can

be found by minimizing the quadratic term such that

α̂1 =
1

4
+

1√
n
(linear function of Bn and Cn) + higher order terms

and

α̂2 =
3

4
+

1√
n
(linear function of Bn and Cn) + higher order terms.

The linear functions of Bn and Cn have an asymptotic joint normal distri-

butions, because Bn and Cn have to form a normalized sum of independent

random variables. Then optima centers follow a central limit theorem(√
n

(
α̂1 − 1

4

)
,
√
n

(
α̂1 − 3

4

))
d→ N (0,Ω),

where

Ω = Γ−1V Γ−1,

Γ =

[
3
4 − 1

4

− 1
4 − 1

4

]

and

V =

[
1
24 0

0 1
24

]
.

Next we consider the case with large n and large T . Assume β = 0. Let

γ0 =
{
g01 , . . . , g

0
n

}
denote the population grouping. Let γ = {g1, . . . , gn}

denote any grouping of cross-sectional units into K groups. Note that the

dimension of α diverges as T tends to infinity and hence the standard

techniques (e.g., Newey and McFadden, 1994) cannot be used to show the
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asymptotics. Clearly, the grouped fixed model is related to interactive fixed

effects (Bai, 2009) with

αgit = (α1t, α2t, . . . , αKt)× (0, 0, . . . , 1, . . . , 0)

=

G∑
g=1

1 {gi = g}αgt.

Bonhomme and Manresa took the advantage of this connection to establish

the consistency ofK-means estimator when the dimension α is large. Define

Q̂ (α, γ) =
1

nT

n∑
i=1

T∑
t=1

(yit − αgit)
2
.

Note

Q̂ (α, γ) =
1

nT

n∑
i=1

T∑
t=1

(yit − αgit)
2

=
1

nT

n∑
i=1

T∑
t=1

(
εit + α0

g0i t
− αgit

)2
=

1

nT

n∑
i=1

T∑
t=1

ε2it + 2
1

nT

n∑
i=1

T∑
t=1

εit
(
α0
g0i t

− αgit
)

+
1

nT

n∑
i=1

T∑
t=1

(
α0
g0i t

− αgit
)2
.

We also define

Q̃ (α, γ) =
1

nT

n∑
i=1

T∑
t=1

(
yit − αg0i t

)2
such that

Q̃ (α, γ) =
1

nT

n∑
i=1

T∑
t=1

(
αg0i t − αgit

)2
+

1

nT

n∑
i=1

T∑
t=1

ε2it.

Following Bonhomme and Manresa (2015) we can show

sup
α,γ

∣∣Q̂ (α, γ)− Q̃ (α, γ)
∣∣ = op (1) (5.6)

as (n, T ) → ∞.
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Next we establish that α̂ is consistent for α0. We consider the following

Hausdorff distance dH :

dH
(
αa, αb

)
= max

{
max
g

(
min
g̃

1

T

T∑
t=1

(
αag̃,t − αbg,t

)2)
,

max
g̃

(
min
g

1

T

T∑
t=1

(
αag̃,t − αbg,t

)2)}
.

We can show

dH
(
α̂, α0

)
= op (1) .

We note that there exists a permutation σ such that

1

T

T∑
t=1

(
α0
σ(g),t − α̂g,t

)2
= op (1).

We obtain σ (g) = g by relabeling. Define

Nη =

{
α :

1

T

T∑
t=1

(
α0
g,t − αg,t

)2
< η, ∀g

}
.

Let

ĝi = argmin
g

T∑
t=1

(yit − αg,t)
2.

We can show that for η > 0 small enough, we have, for δ > 0,

sup
α

1

n

n∑
i=1

1
{
ĝi (α) 
= g0i

}
= op(T

−δ).

Let

(α̂, γ̂) = argmin
α,γ

n∑
i=1

T∑
t=1

(yit − αgi,t)
2

and

α̃ = argmin
α

n∑
i=1

T∑
t=1

(
yit − αg0i ,t

)2
.
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Note that α̃ is the estimator of α when the group membership γ0 is known.

Let

ng =

n∑
i=1

1
{
g0i = g

}
for all g. We also can show that for all g and t as (n, T ) → ∞

α̃g,t − α0
g,t = Op

(
1√
n

)
(5.7)

if
ng

n → π and for any δ > 0

α̃g,t − α0
g,t = op

(
T−δ). (5.8)

Then we can show

α̂g,t − α0
g,t = Op

(
1√
n

)
(5.9)

and

√
n
(
α̂g,t − α0

g,t

) d→ N

(
0,
ωgt
π2
g

)
, (5.10)

where

ωgt = lim
n→∞

1

n

n∑
i=1

n∑
j=1

E
(
1
{
g0i = g0j = g

}
εitεjt

)
.

We can also show

1

nT

n∑
i=1

T∑
t=1

(
α̂ĝi,t − α0

g0i ,t

)2
= op (1). (5.11)

Bonhomme, Lamadon and Manresa (2017) study panel data estima-

tors based on a discretization of unobserved heterogeneity when individual

heterogeneity is not necessarily discrete in the population. They focus on a

two-step grouped fixed effect estimator, where the individual units are clas-

sified into groups in a first step using K-means method and the model is

estimated in a second step allowing for group-specific heterogeneity. Again

we assume β = 0. Let f (yi|αi0) be the conditional density of yi conditioning

on α0
i .
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In the classification step, one relies on a set of individual-specific

moments

hi =
1

T

T∑
t=1

h (yit)

to learn about the unobserved heterogeneity αi. Classification consists in

partitioning individual units into G groups based on the moments. The

partition units ĝi is obtained by

(
ĥ, ĝ1, . . . , ĝn

)
= arg min

˜h,g1,...,gn

n∑
i=1

∥∥hi − h̃ (gi)
∥∥2,

where {gi} are partitions of {1, . . . , n} into at most K groups and h̃ =(
h̃ (1) , . . . , h̃ (G)

)′
. In the estimation step, one maximizes the log-likelihood

function with respect to group-specific effects, where the groups are given

by ĝi from the first step. Let

li (αi) =
1

T
log f (yi|αi)

and

α̂ = argmax
α

n∑
i=1

li (αi (ĝi))

with

α =
(
α (1)′ , . . . , α (K)′

)′
.

Assume there is a Lipschitz continuous function ϕ such that as (n, T ) → ∞
1

n

n∑
i=1

∥∥hi − ϕ
(
α0
i

)∥∥2 = Op

(
1

T

)
.

Let Bα (K) be the approximation bias of α0
i

Bα (K) = min
α,{gi}

1

n

n∑
i=1

∥∥α0
i − α (gi)

∥∥2 .
Bonhomme et al. (2017) provide an upper bound on the rate of convergence

of ĥ (ĝi) of ϕ
(
α0
i

)
1

n

n∑
i=1

∥∥ĥ (ĝi)− ϕ
(
α0
i

) ∥∥2 = Op

(
1

T

)
+Op (Bα (K)). (5.12)
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5.3. Conclusion

This chapter reviews the recent developments in homogeneity pursuit in

panel models. It focuses on the asymptotics, e.g., consistency and limiting

distribution, of K-means-based methods. Other related issues on homo-

geneity pursuit are taken from the literature and put in exercises. A major

challenge in homogeneity pursuit is estimation of the appropriate of groups

or clusters. Many existing methods focus on the within-group dispersion,

e.g., BIC in Bonhomme and Manresa (2015), resulting from a grouping of

the data into K groups.

5.4. Exercises

Please spell out all the conditions and assumptions you need for the proofs.

(1) (Steinley and Brusco, 2011) Show that the minimum ratio of the

within-cluster sum of squares to the corrected total sum of squares

for a uniform and a standard normal partitioned into two groups is 1
4

and 1− 2
π , respectively.

(2) (Mahajan, Nimbhorkar and Varadarajan, 2012) In the K-means clus-

tering problem, we are given a finite set of points S in Rd, an integer

k ≥ 1, and the goal is to find k centers to minimize the sum of the

squared Euclidean distance of each point in S to its closest center.

Show that K-means clustering is NP-hard even in d = 2 dimensions.

(3) Pollard (1981, 1982a,b) has found regularity conditions which assure

consistency and asymptotic normality, with a convergence rate of
√
n,

of the K-means estimators. One of the regularity conditions is that

the Hessian between group sum of squares is nonsingular. Serinko and

Babu (1992) consider K = 2 and T = 1 as in (5.3) and yi has a double

exponential distribution3

m (α1, α2, y) = min
( |y − α1|2 , |y − α2|2

)
.

3The pdf is

f (x) =
1

2
β−1 exp [−β |x|]

with β > 0.
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Show that

n1/4 (α̂j − αj)
d→ aj sign(Z)

√
|Z|

j = 1, 2, where Z ∼ N (0, 1) and aj are constants.

(4) Qu and Gao (2018) consider a time-invariant group fixed effect model

yit = xitβ + αgi + vit,

xit = φzit + δαgi + εit,

i = 1, . . . , n; t = 1, . . . , T ; gi ∈ {1, . . . ,K}, where E (vitxjs) = 0 for

i 
= j, t 
= s. The grouped fixed effect (GFE) estimator of (β, α, γ) is(
β̂, α̂, γ̂

)
= arg min

(θ,α,γ)

n∑
i=1

T∑
t=1

(yit − xitβ − αgi)
2
.

Now let P (gi = 1) = P (gi = 2) = 1
2 , K = 2 and T = 1. Show that

β̂
p→ β

with

β = β +
a

b

a = δ
1

2

(
α2
1 + α2

1

)− 1

2
δA2 − 1

2
δ [(α1 + α2)−A]2 +

2σ√
2π
e−

(α1−α2)2

8σ2 δ

and

b = φ2σ2
z + δ2

1

2

(
α2
1 + α2

2

)
+ σ2

ε −
δ2

2
A2 − δ2

2
[(α1 + α2)−A]

2

as n→ ∞.

(5) (Bonhomme and Manresa, 2015). We assume that the group-specific

effects are time-invariant, β = 0, and K = 2:

yit = αgit + εit,

where εit
i.i.d.∼ N

(
0, σ2

)
and gi = {1, 2}. Without loss of generality, we

assume α1 < α2. Show that

P (ĝi (α) = 2|gi = 1) = 1− Φ

(√
T
α2 − α1

2σ

)
,

where Φ (·) is the cdf of a standard normal. This implies that the group

misclassification probability tends to zero at an exponential rate.
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(6) Bonhomme and Manresa (2015) consider the following model:

yit = x′itβ
0 + α0

g0i
+ vit

with vit
i.i.d.∼ N

(
0, σ2

)
, where the true number of groups is K0 = 1,

and where α0 = α0
1 denotes the true value of α. Let (β̂, α̂) be the GFE

estimator of
(
β0, α0

)
with K = 2 groups. Show that as T is fixed and

n→ ∞

β̂
p→ β0

and

α̂g
p→ α0 ± σ

√
2

πT

for g = 1, 2.

(7) One of the most pressing questions, in practice is how to determine

the number of groups. A popular method for determining the number

of groups is the information criteria, such as the Bayesian information

criterion (BIC) as in Bonhomme and Manresa (2015)

I (K) =
1

nT

n∑
i=1

T∑
t=1

(
yit − αKit

)2
+KhnT

and

K̂ = arg min
K∈{1,...,Kmax}

I(K),

where Kmax is an upper bound. Show that the estimated number

of groups K̂ is consistent for K if, as (n, T ) → ∞, hnT → 0 with

min (n, T )hnT → ∞.

(8) Prove (5.6).

(9) Prove (5.7)–(5.11).

(10) Prove (5.12).

(11) Let K denote the number of groups and G = {g1, . . . , gn} denote the

grouped membership such that gi = {1, . . . ,K} . Ando and Bai (2016)

consider a panel grouped factor model

yit = x′itβ + fgi,tλgi,i + εit,
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i = 1, . . . , n, t = 1, . . . , T, where xit is a p × 1 vector and fgi,t is

an r × 1 vector of unobservable group-specific factors that affect the

units only in group gi. Here λgi,i are the factor loadings and εit is the

unit-specific error. Let

yi = (yi1, . . . , yiT )
′
,

xi =
(
x′i1, . . . , x

′
iT

)′
,

fj =
(
f ′
j,1, . . . , f

′
j,T

)′
,

and

εi = (εi1, . . . , εiT )
′

where, for gi = j, fgi = fj. Let

Λj = (λj,1, . . . , λj,n)

be an r × n factor loading matrix. Define(
β̂, Ĝ, f̂1, . . . , f̂S , Λ̂1, . . . , Λ̂S

)
= argmin

S∑
j=1

∑
i:gi=j

‖yi − xiβ − fgiλgi,i‖2 + nT · pk,γ (|β|),

where pk,γ (|β|) is the penalty function. Show that∥∥β̂ − β0
∥∥ = op (1)

and for all τ > 0

P

(
sup

i∈{1,...,n}

∣∣ĝi(β̂, F̂ , Λ̂)− g0i
∣∣ > 0

)
= op (1) + o

( n

T τ

)
as (n, T ) → ∞.

(12) Su, Shi and Phillips (2016) propose a classifier Lasso (C-Lasso)

approach to achieve classification and estimation for panel models

in which the penalty takes an additive-multiplicative form that forces

the parameters to form into different groups. Define

QnT (β) =
1

nT

n∑
i=1

T∑
t=1

ψ (wit;βi, μ̂i (β))
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with

μ̂i (β) = argmin
μi

1

T

T∑
t=1

ψ (wit;βi, μi),

where ψ (wit;βi, μi) denotes the logarithm of the pseudo-true condi-

tional density function of yit given xit, μi are individual effects and βi
is a p× 1 parameter of interest. Assume the true values of βi, β

0
i , to

follow a group pattern

β0
i =

K0∑
k=1

α0
k1
{
i ∈ G0

k

}
, (5.13)

where α0
j 
= α0

k for any j 
= k,
⋃K0

k=1G
0
k = {1, . . . , n} and G0

k ∩G0
j = ∅

for any j 
= k. Shi et al. propose a classifier Lasso (C-Lasso) esti-

mates, β̂ and α̂ to estimate β = (β1, . . . , βn) and α = (α1, . . . , αk) by

minimizing the following penalized profile likelihood function:

QnT,λ (β, α) = QnT (β) +
λ

n

n∑
i=1

K0∏
k=1

‖βi − αi‖,

where λ is a tuning parameter. Show that

β̂i − β0
i = Op

(
1√
T

+ λ

)
and

1

n

n∑
i=1

∥∥∥β̂i − β0
i

∥∥∥2 = Op

(
1

T

)
.

(13) Huang, Jin and Su (2018) consider a panel cointegrated model with

latent group structure

yit = μi + β′
1,ix1,it + β′

2,ix2,it + uit

and

x1,it = x1,it−1 + ε1,it,

where μi is the unobserved individual fixed effects, x1,it are I(1) and

x2,it are I(0) for all i. We allow the true value of β1,i, β
0
1,i, to follow a
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grouped pattern

β0
1,i =

⎧⎪⎪⎨⎪⎪⎩
α0
1 if i ∈ G0

1

...
...

α0
K if i ∈ G0

K ,

where α0
j 
= α0

k for any j 
= k,
⋃K
k=1G

0
k = {1, 2, . . . , n} , andG0

k

⋂
G0
j =

∅ for any j 
= k. Let α = (α1, . . . , αK) , β1 = (β1,1, . . . , β1,n) and

β2 = (β2,1, . . . , β2,n). Here, we assume μi = 0 and β2,i = 0 for all i.

Let βi = β1,i and β = β1, and

QnT (β) =
1

nT 2

n∑
i=1

‖yi − x1,iβi‖2 .

Huang et al. propose to estimate β and α by minimizing the following

C-Lasso-based penalized least squares(
β̂, α̂
)
= argmin

β,α
QKnT,λ (β, α), (5.14)

where

QKnT,λ (β, α) = QnT (β) +
λ

n

n∑
i=1

K∏
k=1

‖βi − αk‖

and λ = λ (n, T ) is a tuning parameter. Show that∥∥β̂i − β0
i

∥∥ = Op

(
1

T
+ λ

)
and

1

n

n∑
i=1

∥∥β̂i − β0
i

∥∥2 = Op

(
bT
T 2

)
,

where bT = log logT.

(14) Lu and Su (2017) propose a testing procedure to determine the num-

ber of groups in panel latent group models. Lu and Su consider the

following linear panel regression model:

yit = x′itβ
0
i + μi + εit.

Assume n individuals belong to K groups and all individuals in

the same group share the same slope coefficients. That is, β0
i s are
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homogeneous within each of the K groups but heterogeneous across

the K groups as in (5.13). Let β̂i be the C-Lasso estimator similar to

(5.14). Let ỹit = yit − yi, where yi =
1
T

∑T
t=1 yit and x̃it is defined

similarly. Let

QnT (β) =
1

nT

n∑
i=1

(ỹit − x̃itβi)
2
,

QKnT,λ (β, α) = QnT (β) +
λ

n

n∑
i=1

K0∏
k=1

‖βi − αk‖,

and (
β̂, α̂
)
= argmin

β,α
QKnT,λ(β, α),

where λ is a tuning parameter, β̂ = (β̂1, . . . , β̂n) and α̂ = (α̂1, . . . , α̂K0)

be the C-Lasso estimators. Define

ε̂it = yit − x′itβ̂i − μ̂i

with

μ̂i =
1

T

T∑
t=1

(
yit − x′itβ̂i

)
and

ε̂it = (yit − yi.)− (xit − xi.)
′
β̂i.

Let ε̂i = (ε̂i1, . . . , ε̂iT )
′
, xi = (xi1, . . . , xiT )

′
, M0 = IT − 1

T iT i
′
T and

iT is a T × 1 vector of 1s. Lu and Su propose to use a residual-based

Lagrange multiplier (LM) statistic

LM(K0) =

n∑
i=1

ε̂′iM0xi
(
x′iM0xi

)−1
x′iM0ε̂i

to test the hypothesis

H0 : K = K0

versus

H1 : K0 < K ≤ Kmax,

where K0 and Kmax are prespecified by researchers. Define

JnT (K0) =

1√
n
LM(K0)−BnT√

VnT
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with

BnT =
1√
n

n∑
i=1

T∑
t=1

εithi,tt

and

VnT =
4

nT 2

n∑
i=1

T∑
t=1

E [εit],

where Ωi = E(Ω̂i) and Ω̂i =
1
T x

′
iM0xi. Show that JnT (K0)

d→ N (0, 1)

as (n, T ) → ∞.

(15) Let Qi,τ be the conditional τ -quantile function of yit given xit with

the form

Qi,τ (yit|xit, αi (τ)) = x′itβ (τ) + αi(τ),

where τ ∈ (0, 1) is the quantile index, and individual fixed effects αi (τ)

taking only K different values, α1 (τ) , . . . , αK (τ). Gu and Volgushev

(2019) consider a penalized estimator(
β̂, α̂1, . . . , α̂n

)
= arg min

β,α1,...,αn

Θ(β, α1, . . . , αn)

with

Θ (β, α1, . . . , αn) =

n∑
i=1

T∑
t=1

ρτ
(
yit − x′itβ − αi

)
+
∑
i�=j

λij |αi − αj |,

where ρτ (u) = {τ − I (u ≤ 0)}. Here u is the check function and λij
are the penalty parameters. Show that

β̂ − β0 + op
(∥∥β̂ − β0

∥∥) = Γ−1
n

[
1

nT

n∑
i=1

T∑
t=1

{τ − I (uit ≤ 0)}
]

(16) Saggio (2012) considers a nonlinear group fixed effects (NLGFE)

estimator

yit = 1
{
x′itβ

0 + αg0i + vit > 0
}
,

where β is the common parameter and αg is the group-specific param-

eter. Superscript denotes the true parameter values such as g0i denotes

the true group membership indicators and αg0i the true group effect

associated with units that belongs to group g0. The group membership
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variables gi assign each individual i ∈ {1, . . . , n} into the K groups.

Let α = (αg1 , . . . , αgn) and γ = {g1, . . . , gn} ∈ ΓK , where ΓK is the set

of all possible groupings of all {1, . . . , n} into K groups. The NLGFE

is given by

(
β̂, α̂, γ

)
= arg max

β,α,γ

n∑
i=1

T∑
t=1

yit logΦ
(
x′itβ + αgi

)
+
(
1− yit

)
log
[
1− Φ

(
x′itβ + αgi

)]
.

Define

ĝi
(
β, α
)
= arg max

g∈{1,2,...,G}

n∑
i=1

T∑
t=1

yit logΦ
(
x′itβ + αgi

)
+
(
1− yit

)
log
[
1− Φ

(
x′itβ + αgi

)]
,

which corresponding to the optimal assignment for each i. Then

θ̂ =
(
β̂, α̂
)
= argmax

β,α

n∑
i=1

T∑
t=1

yit logΦ
(
x′itβ + αĝi(β,α)

)
+
(
1− yit

)
log
[
1− Φ

(
x′itβ + αĝi(β,α)

)]
.

Let θ̃ be the infeasible NLGFE

θ̃ =
(
β̃, α̃
)
= argmax

β,α

n∑
i=1

T∑
t=1

yit logΦ
(
x′itβ + αg0i

)
+
(
1− yit

)
log
[
1− Φ

(
x′itβ + αg0i

)]
.

Show that

√
nT
(
θ̃ − θ

) d→ N
(
0,Σ
)

and

√
nT
(
θ̂ − θ

) d→ N
(
0,Σ
)

as
(
n, T

) → ∞ and n = exp(ε
√
T ) with ε > 0, where Σ is a positive

definite matrix. Spell out the conditions you need.
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(17) Denoted observed data as {wit}, where i = 1, . . . , n, t = 1, . . . , T.

Define

QnT (β, α1, . . . , αn) =
1

nT

n∑
i=1

T∑
t=1

ϕ (wit, β, αi).

Let β be the common parameter, {αi} be individual specific parame-

ters, and f (wit, β, αi) be the density function of wit. Let

Ig = {i : individual i belongs to group g}
g = 1, . . . ,K. Bester and Hansen (2016) consider a grouped fixed effect

estimator

(
β̂, {γ̂g}

)
= arg max

(θ,{γg}K
g=1)

K∑
g=1

QgT (β, γ),

where

QgT (β, γ) =
1

ng

∑
i∈Ig

1

T

T∑
t=1

log f (wit, β, γ)

with αi = γg for all i ∈ Ig, where ng is the number of individuals in

group g. Show that (
β̂, {γ̂g}

) p→ (
β0,
{
α0
i

})
and

√
nT
(
β̂ − β0

) d→ N
(
0, J−ΩJ−1

)
.

Let

β̂FE = argmax
β

1

n

n∑
i=1

QiT (β, α̂i (β))

and

α̂i (β) = argmax
α

QiT (β, α).

Show that
√
nT
(
β̂FE − β0

) d→ N
(
cB, J−ΩJ−1

)
as n

T → c, where B is a bias term.
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(18) Vogt and Linton (2017) consider a nonparametric panel regression

yit = mi (xit) + uit

and

uit = αi + γt + εit,

where mi are unknown nonparametric functions and uit denotes the

error term. Let G1, . . . , GK be a fixed number of disjoint sets which

partition the index set {1, . . . , n}, i.e., G ∪ · · · ∪ GK = {1, . . . , n}.
Suppose for each k ∈ {1, . . . ,K}

mi = mj

for all i, j ∈ Gk. Let gk be the group-specific regression. Vogt and

Linton propose a thresholding procedure to estimate the groups

G1, . . . , GK . Let S ⊆ {1, . . . , n} be some index set and pick an index

i ∈ S. Let G ∈ {G1, . . . , GK} be the class to which i belongs and

suppose that G ⊆ S. We would like to infer which indices in S belong

to the group G. Define

Δij =

∫
{mi (x)−mj (x)}2 π (x) dx,

Δ̂ij =

∫
{m̂i (x)− m̂j (x)}2 π (x) dx,

m̂i (x) =

∑T
t=1Wh (xit − x) ŷit∑T
t=1Wh (xit − x)

,

and

ŷit = yit − yi − y
(i)
t + y(i) (5.15)

with

yi =
1

T

T∑
t=1

yit,

y
(i)
t =

1

n− 1

n∑
j=1,j �=i

yit,

and

y(i) =
1

(n− 1)T

n∑
j=1,j �=i

T∑
t=1

yit,
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where π is some weight function, Wh (x) = 1
hW

(
x
h

)
, W is a kernel

function, and h is the bandwidth. Define the ordered distances as

Δi(1) ≤ Δi(2) ≤ · · · ≤ Δi(nS)

and

Δ̂i[1] ≤ Δ̂i[2] ≤ · · · ≤ Δ̂i[nS ],

where nS = |S| , the cardinality of S. Note that ( · ) and [ · ] are used

to distinguish between the orderings of true and estimated distances.

Note that

Δi(j)

{
= 0 for j ≤ p,

≥ c for j > p,

max
i,j

∣∣Δ̂ij −Δij

∣∣ = op (1),

and

Δ̂i[j]

{
= 0 for j ≤ p,

≥ c+ op (1) for j > p

with some constant c > 0. This implies that we can estimate G =

{(1) , . . . , (p)} by G̃ = {[1] , . . . , [p]} if p were known. Let

p̂ = max
{
j : {1, . . . , nS} : Δ̂i[j] ≤ τn,T

}
,

where τn,T is the threshold parameter such that

max
j∈G

Δ̂ij ≤ τn,T .

Then define Ĝ = {[1] , . . . , [p̂]} . Define

ĝk (x) =
1

|Ĝk|
∑
i∈ ̂Gk

m̂i(x),

where |Ĝk| denotes the cardinality of the set Ĝk. Show that

ĝk (x)− gk (x) = Op

(
1√
nkTh

+ h2
)

and √
n̂kTh (ĝk (x)− gk (x))

d→ N (Bk, Vk (x))
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as n→ ∞, h
(n̂kT )−1/5

p→ ck, for some constant ck > 0, where n̂k = |Ĝk|,
nk = |Gk|,

Bk (x) =
c
5/2
k

2

∫
W (ϕ)ϕ2dϕ lim

n→∞

{
1

nk

∑
i∈Gk

g′′kfi (x) + 2g′k (x) f
′
i (x)

fi (x)

}
,

and

Vk (x) =

∫
W 2 (ϕ) dϕ lim

n→∞

{
1

nk

∑
i∈Gk

σ2
i (x)

fi (x)

}
.

(19) Vogt and Linton (2019) propose multiscale estimators of the unknown

groups and their unknown number which are free of bandwidth or

smoothing parameters. Consider

yit = mi (xit) + uit

and

uit = αi + γt + εit.

Assume there are K groups, G1, . . . , GK , with
⋃K
k=1Gk = {1, . . . , n}

such that

mi = mj

for all i, j ∈ Gk. That is, for each 1 ≤ k ≤ K0,

mi = gk

for all i ∈ Gk where gk is the group-specific regression function asso-

ciated with the class Gk. Define a local linear kernel estimator of mi

m̂i,h (x) =

∑T
t=1Wit (x, h) ŷ

∗
it∑T

t=1Wit (x, h)
,

with the weights Wit (x, h) and ŷ
∗
it is defined in (5.15). Define a mul-

tiscale statistic as

d̂ij = max
(x,h)

{
ψ̂ij (x, h)− λ (2h)

}
such that hmin ≤ h ≤ hmax and x ∈ [0, 1], where

ψ̂ij (x, h) =
√
Th

m̂i,h (x) − m̂j,h (x)√
υ̂ij (x, h)

,
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and υ̂ij (x, h) is a scaling factor. Let S ⊆ {1, . . . , n} and S′ ⊆
{1, . . . , n} be two sets of time series. Let

Δ̂
(
S, S′) = max

i∈S,j∈S′
d̂ij . (5.16)

To partition the set of {1, . . . , n} into groups, Vogt and Linton suggest

to combine the multiscale dissimilarity measure in (5.16) with a hier-

archical agglomerative clustering algorithm. Let Ĝ
[0]
i = {i} denote the

ith singleton cluster for 1 ≤ i ≤ n and define
{
Ĝ

[0]
1 , . . . , Ĝ

[0]
n

}
to be the

initial partition of {1, . . . , n} into clusters. Let Ĝ
[r−1]
1 , . . . , Ĝ

[r−1]
n−(r−1) be

the n− (r − 1) clusters from the previous step. Determine the pair of

clusters Ĝ
[r−1]
k and Ĝ

[r−1]
k′ for which

Δ̂
(
Ĝ

[r−1]
k , Ĝ

[r−1]
k′

)
= min

1≤l<l′≤n−(r−1)
Δ̂
(
Ĝ

[r−1]
l , Ĝ

[r−1]
l′

)
and merge them into a new cluster. Iterating this procedure for

r = 1, . . . , n− 1 yields a tree of nested partitions Ĝ
[r]
1 , . . . , Ĝ

[r]
n−r. That

is, the hierarchical agglomerative clustering algorithm merges the n

singleton clusters Ĝ
[0]
i = {i} step by step until we end up with the

cluster {1, . . . , n} . In each step of the algorithm, the closest two clus-

ters are merged, the distance between clusters is measured by Δ̂. Let

K̂ = min
{
K = 1, 2, . . . , max

1≤k≤K
Δ̂
(
Ĝ

[n−K]
k

) ≤ πn,T
}
,

where πn,T is a threshold sequence. Show that

P
({
Ĝ

[n−K]
1 , . . . , Ĝ

[n−K]
K

}
= {G1, . . . , GK} )→ 1

and

P
(
K̂ = K

)→ 1.

(20) Okui and Wang (2019) consider the following panel group structure

model:

yit = x′itβgi,t + εit.

Let G = {1, . . . ,K} be the set of groups where gi ∈ G indicates

the group membership of unit i. Units in the same group share the

same time-varying βg,t where g ∈ G. For each group, there are mg

breaks and
{
Tg,1, . . . , Tg,mg

}
denotes a set of break dates. Let αg,j ,
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j = 1, . . . ,mg, be the values of coefficients until the jth break date

and αg,mg+1 be the value of coefficients in the last period

βg,t = αg,j

if Tg,j−1 ≤ t ≤ Tg,j, where Tg,0 = 1 and Tg,mg+1 = T + 1. Let

β =
(
β′
1,1, . . . , β

′
1,T , β

′
2,1, . . . , β

′
K,T

)
, γ = {g1, . . . , gn}. Define

(
β̂, γ̂
)
= argmin

β,γ

1

nT

n∑
i=1

T∑
t=1

(
yit − x′itβgi,t

)2
+λ
∑
g∈G

T∑
t=2

ẇg,t ‖βg,t − βg,t−1‖

where λ is a tuning parameter and ẇg,t is a data-driven weight

defined by

ẇg,t =
∥∥β̇g,t − β̇g,t−1

∥∥−κ
with κ being a user specific constant and β̇ being a preliminary esti-

mate of β. Define

β̊ = argmin
β

1

nT

n∑
i=1

T∑
t=1

(
yit−x′itβg0i ,t

)2
+λ
∑
g∈G

T∑
t=2

ẇg,t ‖βg,t − βg,t−1‖

where β̊ is the estimator of β when the group memberships γ are

known. Denote ng as the number of units in group g,

ng =

n∑
i=1

1
{
g0i = g

}
for g ∈ G. Show that for all g and t

β̂g,t − β̊g,t = op

(
1

T−δ

)
and

β̂g,t − β0
g,t = Op

(
1√
n

)
for δ > 0 if nb

n → πg and (n, T ) → ∞ for 0 < πg < 1.

(21) Let x1, . . . , xn be a random sample from the mixture of exponentials,

(1− α)Ex (1)+αEx (θ) , where Ex (θ) denotes the exponential distri-

bution with mean θ. Show that under the homogeneous model where
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α = 0, the only way to ensure a finite Fisher information is to require

0 < θ < 2.

(22) Consider a sample normal mixture model given by (1− α)N (0, 1) +

αN (μ, 1) . Consider the likelihood ratio test for the hypothesis H0 :

μ = 0. Show that the likelihood ratio test statistic goes to infinity in

probability as n→ ∞.

(23) Let xi, . . . , xn be a random sample of size n from a mixture population

with the probability density function (pdf)

f (x;α, θ1, θ2) = (1− α)N (0, 1) + αN (θ, 1),

where 0 ≤ α ≤ 1 and |θ| ≤M. Let Rn be the log-likelihood ratio test

statistic for testing H0 : αθ = 0 versus Ha : αθ 
= 0. Chen and Chen

(2001) show that as n→ ∞

Rn
d→
{

sup
|t|≤M

ξ (t)

}2

,

where ξ (t) is a Gaussian process with zero mean and the covariances

Cov(ξ(s), ξ(t)) = sgn(st)
est − 1√

(es2 − 1)(et2 − 1)
.

(24) (Bickel and Chernoff, 1993) Suppose that x1, . . . , xn are i.i.d. standard

normal random variables. Denote

Sn (t) =
1√
n

(
etxi− t2

2 − 1
)
e−

t2

2

and

Mn = sup
t
Sn (t) .

Show that

lim
n→∞P

{
(log logn)

1/2 [
Mn − (log logn)

1/2 ]
+ log

(√
2π
) ≤ x

}
= exp

(−e−x).
(25) (von Luxburg, 2010) Stability is a useful tool for selecting the num-

ber of clusters, K. The general rule is to choose K which leads to

the most stable clustering results. The clustering CK of a data set
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S = {x1, . . . , xn} is a function that assigns labels to all points of S,

that is

CK : S → {1, . . . ,K},

where K is the number of clusters. Define the instability of a clus-

tering algorithm as the expected distance between two clusterings

CK (Sn) , CK
(
S′
n

)
on different data sets Sn, S

′
n of size n:

Instab(K,n) = E
(
d
(
CK
(
Sn
)
, CK

(
S′
n

)))
,

where d
(
C,C′) is a distance between clustering C and C′. Define

Înstab(K,n) =
1

b2max

bmax∑
b,b′=1

d (Cb, Cb′)

and

K̂ = argmin
k

Înstab(K,n).

Let

Qn (c1, . . . , cK) =
1

n

n∑
i=1

min
k

‖xi − ck‖2

and

Q = E
[
min
k

‖x− ck‖2
]

=

∫
min
k

‖x− ck‖2 dP,

where P is the underlying probability distribution of x. Show that if Q

has a unique global minimum, then the K-means algorithm is stable

as n→ ∞,

lim
n→∞ Instab(K,n) = 0

and if Q has several global minima, then the K-means algorithm is

unstable as n→ ∞,

lim
n→∞ Instab(K,n) > 0.
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(26) (Continued) Assume that the underlying distribution P is a mixture

of two well-separated Gaussian. Denote the means of the Gaussian by

μ1 and μ2.

(a) Assume that we run the K-means algorithm with K = 2 and we

use an initialization scheme that places on initial center in each

of the true clusters. Show that the K-means algorithm is stable.

That is, it terminates in a solution with one center close to μ1 and

one center close to μ2.

(b) Assume that we run the K-means algorithm with K = 3 and

we use an initialization scheme that places at least one of the

initial centers in each of the true clusters. Show that the K-means

algorithm is unstable in the sense that with probability close to

0.5 it terminates in a solution that considers the first Gaussian as

cluster, but splits the second Gaussian into two clusters; and with

probability close to 0.5, it does it the other way round.
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