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Preface to the 
Fourth Edition

In this new edition, I have tried to maintain all the popular elements of the third edition, 
but have made two important additions. The first of these relates to computer software 
and the second to coverage.

With regards to computer software, previous editions of this book have been written 
assuming the reader is using a spreadsheet such as Excel. I have written the fourth 
edition so that it can be used either by a spreadsheet user or by a user of an econometrics 
software package. The advantage of spreadsheets is that they are commonly used by 
undergraduates for several purposes and are, thus, familiar for the student. However, 
they are very limited in terms of their coverage of econometric models. They are fine 
for basic regression but awkward for more advanced topics, such as time series. The 
alternative to the use of spreadsheets is to use a computer software package specifically 
designed to do econometrics. There are many of these (e.g. Stata, E-views, PCGive, 
Gretl) and the feedback I get from lecturers is that such packages are increasingly being 
used in introductory data analysis courses. They are less familiar to students but are not 
that hard to learn and can easily handle a wide range of econometric models. In previous 
editions, I was reluctant to incorporate material requiring econometrics software pack-
ages for two reasons. The first is that there are just so many packages and I feared that 
if I had used, say, Stata that I would alienate users of, say, E-views. However, I have 
tried to write the new edition so as to be accessible to users of a range of common 
econometrics software packages. The second is cost. Most econometrics software pack-
ages are expensive. This may make it difficult for the student wishing to work on a 
home computer or for lecturers teaching in departments other than economics (which 
may not have site licenses for econometrics software). The development of good freeware 
econometrics packages such as Gretl (http://gretl.sourceforge.net/) have made this worry 
less relevant.

http://gretl.sourceforge.net/
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The use of an econometrics software package has allowed me to widen the coverage 
of the book. This motivated me to add a chapter on qualitative choice models. These 
models are commonly used in a variety of empirical contexts which students come across 
in project or dissertation work. I have always felt it was a shame to leave them out of 
previous editions, but estimating such models in a spreadsheet is hard. With an econo-
metrics software package, estimating a logit or probit model is no harder than estimat-
ing a regression. By including this chapter, my aim is to widen the range of empirical 
problems that can be tackled by a student using the book.

As with previous editions, I would like to thank all the students and lecturers who 
have used the book. In addition, I would like to thank Murat Genç, Peter ten Hacken, 
Nick Weaver and several anonymous reviewers for useful and insightful comments on 
my revision plans for the fourth edition. And, as always, I would like to thank the team 
at Wiley, led by Steve Hardman, for a great deal of assistance.



Preface to the 
Third Edition

I am happy to say that in the years since the second edition was published, Analysis of 
Economic Data has continued to be moderately successful. In writing the third edition, 
I have tried to build upon this success. I have made no major changes in style or content 
in the new edition. This book is still intended to teach the basic tools of the applied 
economist without involving complicated econometric theory. However, I have made 
numerous minor changes. More empirical examples have been added (including more 
empirical project topics) and here and there new important methods have been added 
(for example, the Johansen test for cointegration has been added to Chapter 11). Most 
of the changes to the previous edition have arisen out of the realization that although 
the book has been primarily used in economics courses, it is also being used in an 
increasing number of business and finance courses. This has motivated many of the 
changes and, in particular, the addition of substantial new material on financial volatility 
(including ARCH and GARCH models).

In the prefaces to previous editions, I thanked many people, including students, col-
leagues, reviewers and all the people at Wiley. I would like to thank them all again for 
their assistance.



Preface to the 
Second Edition

When writing the new edition of my book, I tried to take into account the comments 
of many colleagues who used the first edition, the reviewers (some anonymous) who 
Wiley persuaded to evaluate my proposal for a new edition as well as my personal 
experience. With regards to the last, I have used the first edition of the book at three 
different universities (Edinburgh, Glasgow and Leicester) at three different levels. I have 
used it for a third-year course (for students who were not specialist economists and had 
little or no background in statistics), for a second-year course (for students with a fair 
amount of economics training, but little or no training in statistics) and for a first-year 
course (for students facing economic data analysis for the first time). Based on student 
performance and feedback, the book can successfully be used at all these levels. Colleagues 
have told me that the book has also been used successfully with business students and 
MBAs.

The second edition has not deleted anything from the first edition (other than minor 
corrections or typos and editorial changes). However, substantial new material has been 
added. Some of this is to provide details of the (minimal) mathematical background 
required for the book. Some of this provides more explanation of key concepts such as 
index numbers. And some provides more description of data sources. Throughout, I 
have tried to improve the explanation so that the concepts of economic data analysis 
can be easily understood. In light of the book’s use in business courses, I have also added 
a bit more material relevant for business students, especially those studying finance.

I still believe in all the comments I made in the preface for the first edition, especially 
those expressing gratitude to all the people who have helped me by offering perceptive 
comments. To the list of people I thank in that preface, I would like to add the names 
Julia Darby, Kristian Skrede Gleditsch and Hilary Lamaison and all my students from 
the Universities of Edinburgh, Glasgow and Leicester.



Preface to the 
First Edition

This book aims to teach econometrics to students whose primary interest is not in 
econometrics. These are the students who simply want to apply econometric techniques 
sensibly in the context of real-world empirical problems. This book is aimed largely at 
undergraduates, for whom it can serve either as a stand-alone course in applied data 
analysis or as an accessible alternative to standard econometric textbooks. However, 
students in graduate economics and MBA programs requiring a crash-course in the 
basics of practical econometrics will also benefit from the simplicity of the book and its 
intuitive bent.

This book grew out of a course I teach at the University of Edinburgh entitled 
“Analysis of Economic Data”. Before this course was created, all students were required 
to take a course in probability and statistics in their first or second year. Students spe-
cializing in economics were also required to take an econometrics course in their third 
or fourth year. However, non-specialist students (e.g. economics and politics or econom-
ics and business students) were not required to take econometrics, with the consequence 
that they entered their senior undergraduate years, and eventually the job market, with 
only a basic course in probability and statistics. These students were often ill-prepared 
to sensibly analyze real economic data. Since this is a key skill for undergraduate projects 
and dissertations, for graduate school, as well as for most careers open to economists, it 
was felt that a new course was needed to provide a firm practical foundation in the tools 
of economic data analysis. There was a general consensus in the department that the 
following principles should be adhered to in designing the new course:

1.	 It must cover most of the tools and models used in modern econometric research 
(e.g. correlation, regression and extensions for time series methods).

2.	 It must be largely non-mathematical, relying on verbal and graphical intuition.
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3.	 It must contain extensive use of real data examples and involve students in hands-on 
computer work.

4.	 It must be short. After all, students, especially those in joint degrees (e.g. economics 
and business or economics and politics) must master a wide range of material. 
Students rarely have the time or the inclination to study econometrics in depth.

This book follows these basic principles. It aims to teach students reasonably sophis-
ticated econometric tools, using simple non-mathematical intuition and practical exam-
ples. Its unifying themes are the related concepts of regression and correlation. These 
simple concepts are relatively easy to motivate using verbal and graphical intuition and 
underlie many of the sophisticated models and techniques (e.g. cointegration and unit 
roots) in economic research today. If a student understands the concepts of correlation 
and regression well, then he/she can understand and apply the techniques used in 
advanced econometrics and statistics.

This book has been designed for use in conjunction with a computer. I am convinced 
that practical hands-on computer experience, supplemented by formal lectures, is the 
best way for students to learn practical data-analysis skills. Extensive problem sets are 
accompanied by different data sets in order to encourage students to work as much as 
possible with real-world data. Every theoretical point in the book is illustrated with 
practical economic examples that the student can replicate and extend using the com-
puter. It is my strong belief that every hour a student spends in front of the computer 
is worth several hours spent in a lecture.

This book has been designed to be accessible to a variety of students, and thus,  
contains minimal mathematical content. Aside from some supplementary material in 
appendices, it assumes no mathematics beyond the pre-university level. For students 
unfamiliar with these basics (e.g. the equation of a straight line, the summation  
operator, logarithms), a wide variety of books are available that provide sufficient 
background.

I would like to thank my students and colleagues at the University of Edinburgh for 
their comments and reactions to the lectures that formed the foundation of this book. 
Many reviewers also offered numerous helpful comments. Most of these were anony-
mous, but Denise Young, Craig Heinicke, John Hutton, Kai Li and Jean Soper offered 
numerous invaluable suggestions that were incorporated in the book. I am grateful, in 
particular, to Steve Hardman at John Wiley for the enthusiasm and expert editorial 
advice he gave throughout this project. I would also like to express my deepest gratitude 
to my wife, Lise, for the support and encouragement she provided while this book was 
in preparation.



Introduction

CHAPTER 1

There are several types of professional economists working in the world today. Academic 
economists in universities often derive and test theoretical models of various aspects  
of the economy. Economists in the civil service often study the merits and demerits of 
policies under consideration by government. Economists employed by central banks 
often give advice on issues relating to monetary policy, while in the private sector, 
economists often study factors influencing a company’s sales or profits.

For all of these economists, the ability to work with data is an important skill.  
To decide between competing theories, to predict the effect of policy changes, or  
to forecast what may happen in the future, it is necessary to appeal to facts. In econom-
ics, we are fortunate in having at our disposal an enormous amount of facts (in the  
form of “data”) that we can analyze in various ways to shed light on many economic 
issues.

The purpose of this book is to present the basics of data analysis in a simple, non-
mathematical way, emphasizing graphical and verbal intuition. It focuses on the  
tools that economists apply in practice (primarily regression) and develops computer 
skills that are necessary in virtually any career path that the economics student may 
choose to follow.

To explain further what this book does, it is perhaps useful to begin by discussing 
what it does not do. “Econometrics” is the name given to the study of quantitative tools 
for analyzing economic data. The field of econometrics is based on probability and 
statistical theory: it is a fairly mathematical field. This book does not attempt to teach 
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probability and statistical theory. Neither does it contain much mathematical content. 
In both these respects, it represents a clear departure from traditional econometrics 
textbooks. Yet, it aims to teach most of the practical tools used by applied econometri-
cians today.

Books that merely teach the student which buttons to press on a computer without 
providing an understanding of what the computer is doing, are commonly referred to 
as “cookbooks”. The present book is not a cookbook. Some econometricians may interject 
at this point: “But how can a book teach the student to use the tools of econometrics, 
without teaching the basics of probability and statistics?” My answer is that much of 
what the econometrician does in practice can be understood intuitively, without resort-
ing to probability and statistical theory. Indeed, it is a contention of this book that most 
of the tools econometricians use can be mastered simply through a thorough understand-
ing of the concept of correlation and its generalization, regression. If a student under-
stands correlation and regression well, then he or she can understand most of what 
econometricians do. In the vast majority of cases, it can be argued that regression will 
reveal most of the information in a data set. Furthermore, correlation and regression are 
fairly simple concepts that can be understood through verbal intuition or graphical 
methods. They provide the basis of explanation for more difficult concepts and can be 
used to analyze many types of economic data.

This book focuses on the analysis of economic data. That is, it is not a book about col-
lecting economic data. With some exceptions, it treats the data as given and does not 
explain how the data is collected or constructed. For instance, it does not explain how 
national accounts are created or how labor surveys are designed. It simply teaches the 
reader to make sense out of the data that has been gathered.

Statistical theory usually proceeds from the formal definition of general concepts, 
followed by a discussion of how these concepts are relevant to particular examples. The 
present book attempts to do the opposite. That is, it attempts to motivate general concepts 
through particular examples. In some cases formal definitions are not even provided. For 
instance, P-values and confidence intervals are important statistical concepts, providing 
measures relating to the accuracy of a fitted regression line (see Chapter 5). The chapter 
uses examples, graphs and verbal intuition to demonstrate how they might be used in 
practice. But no formal definition of a P-value nor derivation of a confidence interval is 
ever given. This would require the introduction of probability and statistical theory, 
which is not necessary for using these techniques sensibly in practice. For the reader 
wishing to learn more about the statistical theory underlying the techniques, many 
books are available, for instance Wonnacott and Wonnacott (1990). For those interested 
in how statistical theory is applied in econometric modeling, Hill, Griffiths and Judge 
(1997) provide a useful introduction.

This book reflects my belief that the use of concrete examples is the best way to teach 
data analysis. Appropriately, each chapter presents several examples as a means of illus-
trating key concepts. One risk with such a strategy is that some students might interpret 
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the presence of so many examples to mean that a myriad of concepts must be mastered 
before they can ever hope to become adept at the practice of econometrics. This is not 
the case. At the heart of this book are only a few basic concepts, and they appear repeat-
edly in a variety of different problems and data sets. The best approach for teaching 
introductory econometrics, in other words, is to illustrate its specific concepts over and 
over again in a variety of contexts.

Organization of the Book

In organizing the book, I have attempted to adhere to the general philosophy outlined 
above. Each chapter covers a topic and includes a general discussion. However, much 
of the chapter is devoted to empirical examples that illustrate and, in some cases, intro-
duce important concepts. Exercises, which further illustrate these concepts, are included 
in the text. Data required to work through the empirical examples and exercises can be 
found on the website which accompanies this book. By including real world data, it is 
hoped that students will not only replicate the examples, but will feel comfortable 
extending or experimenting with the data in a variety of ways. Exposure to real world 
data sets is essential if students are to master the conceptual material and apply the 
techniques covered in this book.

The empirical examples in this book are mostly done using the computer package 
Excel, although some of the more advanced examples were done using the statistical 
software package Stata. The website associated with this book contains Excel files. Excel 
is a simple and common software package. It is also one that students are likely to use 
in their economic careers. However, the data can be analyzed using one of the many 
specialized statistical software packages such as Stata. These packages recognize Excel 
files and the data sets can be imported directly into them. Appendix B provides more 
detail about the data.

Throughout this book, mathematical material has been kept to a minimum. In some 
cases, a little bit of mathematics will provide additional intuition. For students familiar 
with mathematical techniques, appendices have been included at the end of some chap-
ters. However, students can choose to omit this material without any detriment to their 
understanding of the basic concepts.

The content of the book breaks logically into two parts. Chapters 1–8 cover all the 
basic material relating to graphing, correlation and regression. A very short course 
would cover only this material. Chapters 9–13 cover time series topics and analyze some 
of the more sophisticated econometric models in use today such as those used with 
qualitative choice data. The focus on the underlying intuition behind regression means 
that this material should be easily accessible to students. Nevertheless, students will 
likely find that these latter chapters are more difficult than Chapters 1–8.
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Useful Background

As mentioned, this book assumes very little mathematical background beyond the pre-
university level. Of particular relevance are:

•	 knowledge of simple equations, for instance, the equation of a straight line is used 
repeatedly in this book;

•	 knowledge of simple graphical techniques, for instance, this book is full of graphs 
that plot one variable against another (i.e. standard XY-graphs);

•	 familiarity with the summation operator;
•	 logarithmic and exponential functions, in a few cases.

For the reader unfamiliar with these topics, the appendix at the end of this chapter 
provides a short introduction. In addition, these topics are discussed elsewhere, in many 
introductory mathematical textbooks.

This book also has a large computer component, and much of the computer material 
is explained in the text. There are a myriad of computer packages that could be used 
to implement the procedures described in this book. In the places where I talk directly 
about computer programs, I will largely use the language of spreadsheets and, particu-
larly, that most common of spreadsheets, Excel. I do this largely because the average 
student is more likely to have knowledge of and access to a spreadsheet rather than a 
specialized statistics or econometrics package such as E-views, Stata or Microfit.1 I 
assume that the student knows the basics of Excel (or whatever computer software 
package he or she is using). In other words, students should understand the basics of 
opening data sets, transforming the data and so on. If this material is unfamiliar to the 
student, spreadsheets and statistical software packages have online documentation and 
often simple online tutorials.

Appendix 1.1: Mathematical Concepts  
Used in this Book

This book uses very little mathematics, relying instead on intuition and graphs to 
develop an understanding of key concepts (including understanding how to interpret 
the numbers produced by the computer). For most students, previous study of mathe-
matics at the pre-university level should give you all the background knowledge you 
need. However, here is a list of the concepts used in this book along with a brief descrip-
tion of each.
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The equation of a straight line

Economists are often interested in the relationship between two (or more) variables. 
Examples of variables include house prices, gross domestic product (GDP), interest rates 
and so on. In our context, a variable is something the economist is interested in and 
can collect data on. I use capital letters (e.g. Y or X) to denote variables. A very general 
way of denoting a relationship is through the concept of a function. A common math-
ematical notation for a function of X is f(X). So, for instance, if the economist is inter-
ested in the factors which explain why some houses are worth more than others, he or 
she may think that the price of a house depends on the size of the house. In mathemati-
cal terms, the economist would let Y denote the variable “price of the house” and X 
denote the variable “size of the house” and the fact that Y depends on X is written 
using the notation:

Y f X= ( ).

This notation should be read “Y is a function of X” and captures the idea that the 
value for Y depends on the value of X. There are many functions that one could use, 
but in this book I will usually focus on linear functions. Hence, I will not use this 
general “f(X)” notation in this book.

The equation of a straight line (a “linear function”) is used throughout this book. 
Any straight line can be written in terms of an equation:

Y X= +α β

where α and β are coefficients which determine a particular line. So, for instance, setting 
α = 1 and β = 2 defines one particular line while α = 4 and β = −5 defines a different 
line.

It is probably easiest to understand straight lines by using a graph (and it might be 
worthwhile for you to sketch one at this stage). In terms of an XY graph (i.e. one which 
measures Y on the vertical axis and X on the horizontal axis) any line can be defined 
by its intercept and slope. In terms of the equation of a straight line, α is the intercept 
and β the slope. The intercept is the value of Y when X = 0 (i.e. the point at which 
the line cuts the Y-axis). The slope is a measure of how much Y changes when X is 
changed. Formally, it is the amount Y changes when X changes by one unit. For the 

student with a knowledge of calculus, the slope is the first derivative, 
dY

dX
.

Summation notation

At several points in this book, subscripts are used to denote different observations from 
a variable. For instance, a labor economist might be interested in the wage of every one 
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of 100 people in a certain industry. If the economist uses Y to denote this variable, then 
he or she will have a value of Y for the first individual, a value of Y for the second 
individual and so on. A compact notation for this is to use subscripts so that Y1 is the 
wage of the first individual, Y2 the wage of the second individual and so on. In some 
contexts, it is useful to speak of a generic individual and refer to this individual as the 
ith. We can then write, Yi for i  =  1, . . ., 100 to denote the set of wages for all 
individuals.

With the subscript notation established, summation notation can now be introduced. 
In many cases we want to add up observations (e.g. when calculating an average you 
add up all the observations and divide by the number of observations). The Greek 
symbol Σ is the summation (or “adding up”) operator and superscripts and subscripts 
on Σ indicate the observations that are being added up. So, for instance,

Y Y Y Yi
i=∑ = + + +
1

100

1 2 100…

adds up the wages for all of the 100 individuals. As other examples,

Yi
i=∑ 1

3

adds up the wages for the first three individuals and

Yi
i=∑ 47

48

adds up the wages for the 47th and 48th individuals.
Sometimes, where it is obvious from the context (usually when summing over all 

individuals), the subscript and superscript will be dropped and I will simply write:

Yi∑ .

Logarithms

For various reasons (which are explained later), in some cases the researcher does not 
work directly with a variable but with a transformed version of this variable. Many such 
transformations are straightforward. For instance, in comparing the incomes of different 
countries, GDP per capita is used. This is a transformed version of the GDP, obtained 
by dividing GDP by population.

One particularly common transformation is the logarithmic one. The logarithm (to 
the base B) of a number, A, is the power to which B must be raised to give A. The 
notation for this is: logB(A). So, for instance, if B = 10 and A = 100 then the logarithm 
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is 2 and we write log10(100) =  2. This follows since 102 =  100. In economics, it is 
common to work with the so-called natural logarithm which has B = e where e ≈ 2.71828. 
We will not explain where e comes from or why this rather unusual looking base is 
chosen. The natural logarithm operator is denoted by ln (i.e. ln(A) = loge(A)).

In this book, you do not really have to understand the material in the previous para-
graph. The key thing to note is that the natural logarithmic operator is a common one 
(for reasons explained later on) and it is denoted by ln(A). In practice, it can be easily 
calculated in a computer software package (or on a calculator).

Endnote

1.  I expect that most readers of this book will have access to Excel (or a similar spreadsheet or 
statistics software package) through their university computing lab or on their home comput-
ers. Statistical packages are more powerful than spreadsheets when it comes to working with 
more sophisticated topics such as those in Chapters 9–13. Statistical software packages can 
be expensive but, for the student who is financially constrained, there are an increasing 
number of free statistics packages such as Gretl, which can be freely downloaded at http://
gretl.sourceforge.net/, accessed 14 November 2012.
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Basic Data Handling

CHAPTER 2

This chapter introduces the basics of economic data handling. It focuses on four impor-
tant areas:

•	 the types of data that economists often use;
•	 a brief discussion of the sources from which economists obtain data;1

•	 an illustration of the types of graph that are commonly used to present information 
in a data set;

•	 a discussion of simple numerical measures, or descriptive statistics, often presented 
to summarize key aspects of a data set.

Types of Economic Data

This section introduces common types of data and defines the terminology associated 
with their use.

Time series data

Macroeconomic data measures phenomena such as real gross domestic product (denoted 
GDP), interest rates, the money supply, and so on. This data is collected at specific 
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points in time (e.g. yearly). Financial data measures phenomena such as changes in  
the price of stocks. This type of data is often collected more frequently than macroeco-
nomic data, for instance, every day or even every minute. The data are ordered by  
time and are referred to as time series data. The underlying phenomenon which we 
are measuring (e.g. GDP, wages or interest rates) is referred to as a variable. Time 
series data can be observed at many frequencies. Commonly used frequencies are: annual 
(i.e. a variable is observed every year), quarterly (i.e. four times a year), monthly, weekly 
or daily.

In this book, we will use the notation, Yt, to indicate an observation on variable 
Y (e.g. real GDP) at time t. A series of data runs from period t = 1 to t = T, where 
T indicates the total number of time periods covered in a data set. To give an 
example, if we were to use post-war annual real GDP data from 1946–98 (a period  
of 53 years) then t = 1 would indicate 1946, t = 53 would indicate 1998 and T = 53 
the total number of years. Hence, Y1 would be real GDP in 1946, Y2 real GDP 
for 1947 and so on. Time series data are typically presented in chronological  
order.

Working with time series data often requires some special tools, which are discussed 
in Chapters 9–12.

Cross-sectional data

In contrast to the above, micro- and labor economists often work with data that is 
characterized by individual units. These units might refer to people, companies or 
countries. A common example is data pertaining to many different people within a 
group, such as the wage of every person in a certain company or industry. With such 
cross-sectional data, the ordering of the data typically does not matter (unlike with time 
series data).

In this book, we use the notation, Yi, to indicate an observation on variable Y for 
individual i. Observations in a cross-sectional data set run from individual i = 1 to N. 
By convention, N indicates the number of cross-sectional units (e.g. the number of 
people surveyed). For instance, a labor economist might wish to survey 1000 workers 
in the steel industry, asking each individual questions such as how much they make or 
whether they belong to a union. In this case, N = 1000 and Y1 is the wage (or union 
membership) reported by the first worker, Y2 the wage (or union membership) reported 
by the second worker, and so on.

Similarly, a microeconomist may ask N = 100 representatives from manufacturing 
companies about their profit figures in the last month. In this case, Y1 will equal the 
profit reported by the first company, Y2 the profit reported by the second company, 
through to Y100, the profit reported by the 100th company.
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The distinction between qualitative and quantitative data

The microeconomist’s data on manufacturing companies’ sales will have a number cor-
responding to each firm surveyed (e.g. the first firm might report that last month’s sales 
were £20 000). This is referred to as quantitative data.

The labor economist, when asking whether or not each surveyed employee belongs 
to a union, receives either a “Yes” or a “No” answer. These answers are referred to as 
qualitative data. Such data arise often in economics when choices are involved (e.g. the 
choice to buy or not to buy a product, to take public transport or a private car, to join 
or not to join a club).

Economists will usually convert these qualitative answers into numeric data. For 
instance, the labor economist might set Yes = 1 and No = 0. Hence, Y1 = 1 means that 
the first individual surveyed does belong to a union, Y2 =  0 means that the second 
individual does not. When variables can take on only the values 0 or 1, they are referred 
to as dummy (or binary) variables. Working with such variables is discussed in detail in 
Chapters 7 and 8.

Panel data

Some data sets will have both a time series and a cross-sectional component. This data 
is referred to as panel data. Economists working on issues related to growth often make 
use of panel data. For instance, GDP for many countries for many years is available. A 
panel data set on Y = GDP for 34 countries in the Organisation for Economic Co-operation 
and Development (OECD) would contain the GDP value for each country in 1970 
(N = 34 observations), followed by the GDP for each country in 1971 (another N = 34 
observations), and so on. Over a period of T years, there would be T × N observations 
on Y. Similarly, labor economists often work with large panel data sets created by asking 
many individuals questions such as how much they make every year for several years.

We use the notation Yit to indicate an observation on variable Y for unit i at time t. 
In the economic growth example, Y11 is the GDP in country 1 in year 1, Y12 is GDP 
for country 1 in year 2 and so on. In the labor economics example, Y11 will be the wage 
of the first individual surveyed in the first year, Y12 the wage of the first individual 
surveyed in the second year and so on.

Data transformations: levels versus growth rates

In this book, we mainly assume that the data of interest, Y, is directly available. 
However, in practice, you may be required to take raw data from one source and trans-
form it into a different form for your empirical analysis. For instance, you may take raw 
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time series data on the variables W = total consumption expenditure and X = expendi-
ture on food, and create a new variable: Y = the proportion of expenditure devoted to 

food. Here the transformation would be Y
X

W
= . The exact nature of the transformation 

required depends on the problem at hand, so it is hard to offer any general recommen-
dations on data transformation. Some special cases are considered in later chapters. Here 
it is useful to introduce one common transformation that econometricians use with time 
series data.

Suppose we have annual data on real GDP for 1950–1998 (i.e. 49 years of data) 
denoted by Yt for t = 1 to 49. In many empirical projects, this might be the variable 
of primary interest. We will refer to such series as the level of real GDP. However, people 
are often more interested in how the economy is growing over time, or in real GDP 
growth. A simple way to measure growth is to take the real GDP series and calculate a 
percentage change for each year. The percentage change in real GDP between period t 
and period t + 1 is calculated according to the formula:

Percentage change = − ×+( )
.

Y Y

Y
t t

t

1 100 2

The percentage change in real GDP is often referred to as the growth of GDP or the 
change in GDP. Time series data are discussed in more detail in Chapters 9–12. It is 
sufficient for you to note here that we will occasionally distinguish between the level 
of a variable and its growth rate, and that it is common to transform level data into 
growth rate data.

Index numbers

Many variables that economists work with come in the form of index numbers. Appendix 
2.1 provides a detailed discussion of what these are and how they are calculated. 
However, if you just want to use an index number in your empirical work, a precise 
knowledge of how to calculate indices is probably unnecessary. Having a good intuitive 
understanding of how an index number is interpreted is sufficient. Accordingly, here in 
the body of the text we provide only an informal intuitive discussion of index numbers.

Suppose you are interested in studying a country’s inflation rate, which is a measure 
of how prices change over time. The question arises as to how we measure “prices” in 
a country. The price of an individual good (e.g. milk, oranges, electricity, a particular 
brand of car or a pair of shoes) can readily be measured, but often interest centers not 
on individual goods, but on the price level in the country as a whole. The latter concept 
is usually defined as the price of a “basket” containing the sorts of goods that a typical 
consumer might buy. The price of this basket is observed at regular intervals over time 
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in order to determine how prices are changing in the country as a whole. But the price 
of the basket is usually not directly reported by the government agency that collects 
such data. After all, if you are told the price of an individual good (e.g. an orange costs 
35 cents), you have been told something informative, but if you are told “the price of 
a basket of representative goods is $10.45”, that statement is not very informative. To 
interpret this latter number, you would have to know precisely what was in the basket 
and in what quantities. Given the millions of goods bought and sold in a modern 
economy, far too much information would have to be given.

In the light of such issues, data often comes in the form of a price index. Indices may 
be calculated in many ways and it would distract from the main focus of this chapter 
to talk in detail about how they are constructed (see Appendix 2.1 for more details). 
However, the following points are worth noting at the outset. First, indices almost 
invariably come as time series data. Secondly, one time period is usually chosen as a 
base year and the price level in the base year is set to 100.3 Thirdly, price levels in other 
years are measured in percentages relative to the base year. An example will serve to 
clarify these issues. Suppose a price index for four years exists and the values are 
Y1 =  100, Y2 =  106, Y3 =  109 and Y4 =  111. These numbers can be interpreted as 
follows: The first year has been selected as a base year and, accordingly, Y1 = 100. The 
figures for other years are all relative to this base year and allow for a simple calculation 
of how prices have changed since the base year. For instance, Y2 = 106 means that prices 
have risen from 100 to 106 – a 6% rise since the first year. It can also be seen that prices 
have risen by 9% from year 1 to year 3 and by 11% from year 1 to year 4. Since the 
percentage change in prices is the definition of inflation, the price index allows the 
person looking at the data to easily see what inflation is. In other words, you can think 
of a price index as a way of presenting price data that is easy to interpret and 
understand.

A price index is very good for measuring changes in prices over time, but should not 
be used to talk about the level of prices. For instance, it should not be interpreted as an 
indicator of whether prices are “high” or “low”. A simple example illustrates why this 
is the case. The USA and Canada both collect data on consumer prices. Suppose that 
both countries decide to use 1988 as the base year for their respective price indices. 
This means that the price index in 1988 for both countries is 100. It does not mean 
that prices were identical in both countries in 1988. The choice of 1988 as a base year 
is arbitrary; if Canada were to suddenly change its choice of base year to 1987 then the 
indices in 1988 would no longer be the same for both countries. Price indices for the 
two countries cannot be used to make statements such as “prices are higher in Canada 
than in the USA”. But they can be used to calculate inflation rates. This allows us to 
make statements of the type “inflation (i.e. the change in prices) is higher in Canada 
than in the USA”.

Finance is another field in which price indices often arise since information on stock 
prices is often presented in this form. That is, commonly reported measures of stock 
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market activity, such as the Dow Jones Industrial Average, the FTSE index or the 
S&P500, are all price indices.

In our discussion, we have focused on price indices and these are by far the most 
common type of index numbers. Note that other types of indices (e.g. quantity  
indices) exist and should be interpreted in a similar manner to price indices. That is, 
they should be used as a basis for measuring how phenomena have changed from a given 
base year.

This discussion of index numbers is a good place to mention another transformation 
which is used to deal with the effects of inflation. As an example, consider the most 
common measure of the output of an economy: GDP can be calculated by adding up 
the value of all goods produced in the economy. However, in times of high inflation, 
simply looking at how GDP is changing over time can be misleading. If inflation is 
high, the prices of goods will be rising and thus their value will be rising over time, 
even if the actual amount of goods produced is not increasing. Since GDP measures the 
value of all goods, it will be rising in high inflation times even if production is stagnant. 
This leads researchers to want to correct for the effect of inflation. The way to do this 
is to divide the GDP measure by a price index.4 GDP transformed in this way is called 
real GDP. The original GDP variable is referred to as nominal GDP. This distinction 
between real and nominal variables is important in many fields of economics. The key 
things you should remember is that a real variable is a nominal variable divided by a 
price variable (usually a price index) and that real variables have the effects of inflation 
removed from them.

The case where you wish to correct a growth rate for inflation is slightly different. 
In this case, creating the real variable involves subtracting the change in the price index 
from the nominal variable. So, for instance, real interest rates are nominal interest rates 
minus inflation (where inflation is defined as the change in the price index).

Obtaining Data

All of the data you need in order to understand the basic concepts and to carry out the 
simple analyses covered in this book can be downloaded from the website associated 
with this book. However, in the future you may need to gather your own data for an 
essay, dissertation or report. Economic data come from many different sources and it is 
hard to offer general comments on the collection of data. Below are a few key points 
that you should note about common data sets and where to find them.

Most macroeconomic data is collected through a system of national accounts, made 
available in printed, and increasingly in digital, form in university and government 
libraries. Microeconomic data is usually collected by surveys of households, employment 
and businesses, and are often available from the same sources.
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It is becoming increasingly common for economists to obtain their data over the 
Internet, and many relevant websites now exist from which data can be downloaded. 
You should be forewarned that the Web is a rapidly growing and changing place, so 
that the information and addresses provided here might soon be outdated. This section 
is provided only to give an indication of what can be obtained over the Internet and, 
as such, is far from complete. Before you begin searching, you should also note that 
some sites allow users to access data for free while others charge for their data sets.  
Many will provide free data to non-commercial (e.g. university) users, requiring that 
you register before being allowed access to the data.

An extremely useful American site is Resources for Economists (RFE) on the Internet 
(http://rfe.org, accessed 14 November 2012). This site contains all sorts of interesting 
material on a wide range of economic topics. You might want to take the time to explore 
it. This site also provides links to many different data sources. Many journals encourage 
their authors to make their data publicly available and, hence, in some cases you can 
get data from published academic papers through the Journal Data and Program 
Archives linked from the RFE Data page.	

Another site with useful links is the National Bureau of Economic Research 
(www.nber.org, accessed 14 November 2012). One good data source available through 
this site is the Penn World Table (PWT), which gives macroeconomic data for over 100 
countries for many years. We refer to the PWT below.

The central banks and government statistical agencies of most countries also provide 
a great deal of data. I won’t attempt to list websites since there are so many of them. 
You can find them for your own country using an Internet search engine. International 
organizations such as the World Bank and the International Monetary Fund also have 
websites with much useful data. In Europe, the European Central Bank and Eurostat 
also provide large amounts of data of various sorts.

For financial data, there are many excellent databases of stock prices and account
ing information for all sorts of companies for many years. Unfortunately, these tend  
to be very expensive and, hence, you should see whether your university has a  
subscription to a financial database. Two of the more popular are DataStream 
(www.datastream.com, accessed 14 November 2012) by Thompson Financial  
and Wharton Research Data Services (http://wrds.wharton.upenn.edu/, accessed 14 
November 2012). With regards to free data, a more limited choice of financial data  
is available through popular Internet portals such as Yahoo (http://finance.yahoo. 
com, accessed 14 November 2012). The Federal Reserve Bank of St Louis also  
maintains a free database with a wide variety of data, including some financial  
time series (http://research.stlouisfed.org/fred2/, accessed 14 November 2012). Many 
academics also make the data sets they have used available on their websites.  
For instance, Robert Shiller at Yale University has a website which provides links to 
many interesting financial data sets (http://aida.econ.yale.edu/∼shiller/, accessed 14 
November 2012).

http://rfe.org
http://www.nber.org
http://www.datastream.com
http://wrds.wharton.upenn.edu/
http://finance.yahoo.com
http://finance.yahoo.com
http://research.stlouisfed.org/fred2/
http://aida.econ.yale.edu/<223C>shiller/
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The information listed in this section barely scratches the surface of what is available 
on the Web. The general advice I want to give here is that spending some time search-
ing the Web can often be very fruitful.

Working with Data: Graphical Methods

Once you have your data, it is important for you to summarize it. After all, anybody 
who reads your work will not be interested in the dozens or – more likely – hundreds 
or more observations contained in the original raw data set. Indeed, you can think of 
the whole field of econometrics as one devoted to the development and dissemination 
of methods whereby information in data sets is summarized in informative ways. 
Graphs, charts and tables are very useful ways of presenting your data. There are many 
different types (e.g. bar charts and pie charts). A useful way to learn about charts is to 
experiment with the graphing options of whatever spreadsheet and computer software 
package you are using. In this section, we will illustrate a few of the commonly used 
types of chart.

Since most economic data is either in time series or cross-sectional form, we will 
briefly introduce simple techniques for graphing both types of data.

Time series graphs

Monthly time series data from January 1947 through October 1996 on the UK pound/
US dollar exchange rate5 is shown in Figure 2.1. Such charts are commonly referred to 

Figure 2.1  Time series graph of the exchange rate between the UK pound and the US dollar.
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as time series graphs. The data set contains 598 observations – far too many to be presented 
as raw numbers for a reader to comprehend. However, a reader can easily capture  
the main features of the data by looking at the chart. One can see, for instance, the 
attempt by the UK government to hold the exchange rate fixed until the end of  
1971 (apart from large devaluations in September 1949 and November 1967) and the 
gradual depreciation of the pound as it floated downward through the middle of  
the 1970s.

Exercise 2.1

(a)	 Recreate Figure 2.1 from the data located in file EXRUK.XLS.
(b)	 File INCOME.XLS contains data on the natural logarithm of personal income 

and consumption in the USA from 1954Q1 to 1994Q2.6 Make one time series 
graph that contains both of these variables.

(c)	 Transform the logged personal income data to growth rates. Note that the 
percentage change in personal income between period t − 1 and t is approxi-
mately 100×[ln(Yt) −  ln(Yt−1)] and the data provided in INCOME.XLS is 
already logged. Make a time series graph of the series you have created.

Histograms

With time series data, a graph that shows how a variable evolves over time is often very 
informative. However, in the case of cross-sectional data, such methods are not appropri-
ate and we must summarize the data in other ways.

The file GDPPC.XLS, available on the website associated with this book, contains 
cross-sectional data from the PWT on real GDP per capita in 1992 for 90 countries. 
Real GDP per capita in every country has been converted into US dollars using purchas-
ing power parity exchange rates. This allows us to make direct comparisons across 
countries.

One convenient way of summarizing this data is through a histogram. To construct a 
histogram, begin by constructing class intervals or bins that divide the countries into 
groups based on their GDP per capita. In our data set, GDP per person varies from 
$408 in Chad to $17 945 in the USA. One possible set of class intervals is 0–2000, 
2001–4000, 4001–6000, 6001–8000, 8001–10 000, 10 001–12 000, 12 001–14 000, 
14 001–16 000 and 16 001 and over (where all figures are in US dollars).

Note that each class interval (with the exception of the 16 001+ category) is $2000 
wide. In other words, the class width for each of our bins is 2000. For each class interval 
we can count up the number of countries that have GDP per capita in that interval. 
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For instance, there are seven countries in our data set with real GDP per capita between 
$4001 and $6000. The number of countries lying in one class interval is referred to as 
the frequency7 of that interval. A histogram is a bar chart that plots frequencies against 
class intervals. Figure 2.2 shows a histogram of our cross-country GDP per capita data 
set that uses the class intervals specified in the previous paragraph. Note that, if you do 
not wish to specify class intervals, most computer software packages will do it automati-
cally for you. They will also typically create a frequency table, which is located next to 
the histogram.

The frequency table indicates the number of countries belonging to each class interval 
(or bin). The numbers in the column labeled “Bin” indicate the upper bounds of the 
class intervals. For instance, we can read that there are 33 countries with GDP per capita 
less than $2000; 22 countries with GDP per capita above $2000 but less than $4000; 
and so on. The last row says that there are four countries with GDP per capita above 
$16 000.

This same information is graphed in a simple fashion in the histogram. Graphing 
allows for a quick visual summary of the cross-country distribution of GDP per capita. 
We can see from the histogram that many countries are very poor, but that there is also 
a “clump” of countries that are quite rich (e.g. 19 countries have GDP per capita greater 
than $12 000). There are relatively few countries in between these poor and rich groups 
(i.e. few countries fall in the bins labeled 8000, 10 000 and 12 000).

Growth economists sometimes refer to this clumping of countries into poor and rich 
groups as the “twin peaks” phenomenon. In other words, if we imagine that the histo-
gram is a mountain range, we can see a peak at the bin labeled 2000 and a smaller peak 
at 14 000. These features of the data can be seen easily from the histogram but would 
be difficult to comprehend simply by looking at the raw data.

Figure 2.2  Histogram of the real GDP per capita in 1992 for 90 countries.
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XY-plots

Economists are often interested in the nature of the relationships between two or more 
variables. For instance, questions such as “Are higher education levels and work experi-
ence associated with higher wages among workers in a given industry?”, “Are changes 
in the money supply a reliable indicator of inflation changes?” and “Do differences in 
capital investment explain why some countries are growing faster than others?” all 
involve two or more variables.

The techniques described previously are suitable for describing the behavior of only 
one variable, for instance, the properties of real GDP per capita across countries in  
Figure 2.2. They are not, however, suitable for examining relationships between pairs 
of variables.

Once we are interested in understanding the nature of the relationships between two 
or more variables, it becomes harder to use a graph. Future chapters will discuss regres-
sion analysis, which is the prime tool used by applied economists working with many 
variables. However, graphical methods can be used to draw out some simple aspects of 
the relationship between two variables. XY-plots (also called scatter diagrams) are particu-
larly useful in this regard.

Figure 2.3 shows a graph of data8 on deforestation (i.e. the average annual forest loss 
expressed as a percentage of total forested area) over the period 1981–90 for 70 tropical 
countries, along with data on population density (i.e. the number of people per thousand 
hectares). It is commonly thought that countries with a high population density will 
likely deforest more quickly than those with low population densities, since high popu-
lation density may increase the pressure to cut down forests for fuel wood or for agri-
cultural land required to grow more food.

Figure 2.3 is an XY-plot of these two variables. Each point on the chart represents 
a particular country. Reading up the Y axis (i.e. the vertical one) gives us the rate of 
deforestation in that country. Reading across the X axis (i.e. the horizontal one) gives 
us population density. It is possible to label each point with its corresponding country 
name. We have not done so here, since labels for 70 countries would clutter the chart 
and make it difficult to read. However, one country, Nicaragua, has been labeled. Note 
that this country has a deforestation rate of 2.6% per year (Y = 2.6) and a population 
density of 640 people per thousand hectares (X = 640).

Exercise 2.2

(a)	 Recreate the histogram in Figure 2.2.
(b)	 Create histograms using different class intervals. For instance, begin by letting 

your software package choose default values and see what you get, then try 
values of your own.
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The XY-plot can be used to give a quick visual impression of the relationship between 
deforestation and population density. An examination of this chart indicates some 
support for the idea that a relationship between deforestation and population density 
does exist. For instance, if we look at countries with a low population density (less than 
500 people per hectare, say), almost all of them have very low deforestation rates (less 
than 1% per year). If we look at countries with high population densities, (e.g. over 
1500 people per thousand hectares), almost all of them have high deforestation rates 
(more than 2% per year). This indicates that there may be a positive relationship between 
population density and deforestation (i.e. high values of one variable tend to be associ-
ated with high values of the other; and low values tend to be associated with low values). 
It is also possible to have a negative relationship. This would occur, for instance, if we 
substituted urbanization for population density in an XY-plot. In this case, high levels 
of urbanization might be associated with low levels of deforestation since expansion of 
cities would possibly reduce population pressures in rural areas where forests are located.

It is worth noting that the positive or negative relationships found in the data are 
only tendencies and, as such, do not necessarily hold for every country. That is, there may 
be exceptions to the general pattern of high population density associated with high 
rates of deforestation. For example, in Figure 2.3 we can observe one country with  
a high population density of roughly 1300 and a low deforestation rate of 0.7%. 
Similarly, low population density can also be associated with high rates of deforestation, 
as evidenced by the country with a low population density of roughly 150 but a high 
deforestation rate of almost 2.5%. As economists, we are usually interested in drawing 
out general patterns or tendencies in the data. However, we should always keep in mind 
that exceptions (in statistical jargon, outliers) to these patterns typically exist. In some 

Figure 2.3  XY-plot of population density against deforestation.
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cases, finding out which countries don’t fit the general pattern can be as interesting as 
the pattern itself.

Exercise 2.3

The file FOREST.XLS contains data on the percentage increase in cropland from 
1980 to 1990 and on the percentage increase in permanent pasture over the same 
period.

(a)	 Construct and interpret XY-plots of these two variables (one at a time) against 
deforestation.

(b)	 Does there seem to be a positive relationship between deforestation and expan-
sion of pasture land?

(c)	 How about between deforestation and the expansion of cropland?

Working with Data: Descriptive Statistics

Graphs have an immediate visual impact that is useful for livening up an essay or report. 
However, in many cases it is important to be numerically precise. Later chapters will 
describe common numerical methods for summarizing the relationship between several 
variables in greater detail. Here we discuss briefly a few descriptive statistics for summariz-
ing the properties of a single variable. By way of motivation, we will return to the 
concept of distribution introduced in our discussion on histograms.

In our cross-country data set, real GDP per capita varies across the 90 countries. This 
variability can be seen by looking at the histogram in Figure 2.2, which plots the  
distribution of GDP per capita across countries. Suppose you wanted to summarize  
the information contained in the histogram numerically. One thing you could do is to 
present the numbers in the frequency table in Figure 2.2. However, even this table may 
provide too many numbers to be easily interpretable. Instead it is common to present 
two simple numbers called the mean and the standard deviation.

The mean is the statistical term for the average. The mathematical formula for the 
mean is given by:

Y
Y

N

i
i

N

= =∑ 1

where N is the sample size (in this case, the number of countries) and Σ is the summation 
operator (the total of real GDP per capita for all countries). In our case, mean GDP per 
capita is $5443.80. Throughout this book, we will place a bar over a variable to indicate 
its mean (i.e. Y  is the mean of the variable Y and X is the mean of X).
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The concept of the mean is associated with the middle of a distribution. For example, 
if we look at Figure 2.2, $5443.80 lies somewhere in the middle of the distribution. 
The cross-country distribution of real GDP per capita is quite unusual, having the twin 
peaks property described earlier. It is more common for distributions of economic vari-
ables to have a single peak and to be bell-shaped. Figure 2.4 is a histogram that plots 
just such a bell-shaped distribution. For such distributions, the mean is located precisely 
in the middle of the distribution, under the single peak.

Of course, the mean or average figure hides a great deal of variability across countries. 
Other useful summary statistics, which shed light on the cross-country variation in GDP 
per capita, are the minimum and maximum. For our data set, minimum GDP per capita 
is $408 (Chad) and maximum GDP is $17 945 (USA). By looking at the distance 
between the maximum and minimum we can see how dispersed the distribution is.

The concept of dispersion is quite important in economics and is closely related to 
the concepts of variability and inequality. For instance, real GDP per capita in 1992 in 
our data set varies from $408 to $17 945. If poorer countries were, in the near future, 
to grow quickly, and richer countries to stagnate, then the dispersion of real GDP per 
capita might become significantly less. It may be the case that the poorest country will 
grow so as to have real GDP per capita of $10 000 while the richest country will remain 
at $17 945. If this were to happen, then the cross-country distribution of real GDP per 
capita would be more equal (less dispersed, less variable). Intuitively, the notions of 
dispersion, variability and inequality are closely related. The minimum and maximum, 
however, can be unreliable guidelines to dispersion. For instance, what if, with the 
exception of Chad, all the poor countries, experienced rapid economic growth between 
1992 and 2012, while the richer countries did not grow at all? In this case, cross-country 
dispersion or inequality would decrease over time. However, since Chad and the USA 
did not grow, the minimum and maximum would remain at $408 and $17 945, 
respectively.

Figure 2.4  Histogram showing a bell-shaped distribution.
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A more common measure of dispersion is the standard deviation. Its mathematical 
formula is given by:

s
Y Y

N

i
i

N

=
−

−
=∑ ( )

,
2

1

1

although in practice you will probably never have to calculate it by hand as computer 
software will do it for you.9 The square of the standard deviation is known as the 
variance.

The standard deviation has little direct intuition. In our cross-country GDP data set, 
the standard deviation is $5369.496 and it is difficult to get a direct feel for what  
this number means in an absolute sense. However, the standard deviation can be inter-
preted in a comparative sense. That is, if you compare the standard deviations of two 
different distributions, the one with the smaller standard deviation will always exhibit 
less dispersion. In our example, if the poorer countries were to suddenly experience 
economic growth and the richer countries to stagnate, the standard deviation would 
decrease over time.

Exercise 2.4

Construct and interpret descriptive statistics for the pasture change and cropland 
change variables in FOREST.XLS.

Appendices 2.2 and 2.3 contain a discussion of more advanced topics relating to 
descriptive statistics.

Chapter Summary

1.	 Economic data come in many forms. Common types are time series, cross-
sectional and panel data.

2.	 Economic data can be obtained from many sources. The Internet is a valuable 
repository of data sets.

3.	 Simple graphical techniques, including histograms and XY-plots, are useful 
ways of summarizing the information in a data set.

4.	 Many numerical summaries can be used. The most important are the mean, 
a measure of the location of a distribution, and the standard deviation, a 
measure of how spread out or dispersed a distribution is.
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Appendix 2.1: Index Numbers

To illustrate the basic ideas in constructing a price index, we use the data from Table 
2.1 on the price of various fruits in various years.

Calculating a banana price index

We begin by calculating a price index for a single fruit, bananas, before proceeding to 
the calculation of a fruit price index. As described in the text, calculating a price index 
involves first selecting a base year. For our banana price index, let us choose the year 
2000 as the base year (although, it should be stressed that any year can be chosen). By 
definition, the value of the banana price index is 100 in this base year. How did we 
transform the price of bananas in the year 2000 to obtain the price index value of 100? 
It can be seen that this transformation involved taking the price of bananas in 2000 
and dividing by the price of bananas in 2000 (i.e. dividing the price by itself) and 
multiplying by 100. To maintain comparability, this same transformation must be 
applied to the price of bananas in every year. The result is a price index for bananas 
(with the year 2000 as the base year). This is illustrated in Table 2.2

Table 2.1  Prices of different fruits in different years (£/kg).

Bananas Apples Kiwi fruit

1999 0.89 0.44 1.58
2000 0.91 0.43 1.66
2001 0.91 0.46 1.90
2002 0.94 0.50 2.10
2003 0.95 0.51 2.25

Table 2.2  Calculating a banana price index.

Price of bananas Transformation Price index

1999 0.89 ×100÷0.91 97.8
2000 0.91 ×100÷0.91 100
2001 0.91 ×100÷0.91 100
2002 0.94 ×100÷0.91 103.3
2003 0.95 ×100÷0.91 104.4
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From the banana price index, it can be seen that between 2000 and 2003 the price 
of bananas increased by 4.4% and in 1999 the price of bananas was 97.8% as high as 
in 2000.

Calculating a fruit price index

When calculating the banana price index (a single good), all we had to look at were the 
prices of bananas. However, if we want to calculate a fruit price index (involving several 
goods), then we have to combine the prices of all fruits together somehow. One thing 
you could do is simply average the prices of all fruits in each year and then construct a 
price index in the same manner as for the banana price index. However, this strategy is 
usually inappropriate since it implicitly weights all goods equally to one another (a 
simple average would just add up the prices of the three fruits and divide by three). In 
our example (and in most real-world applications), this equal weighting is unreasonable. 
An exception to this is the Dow Jones Industrial Average which does equally weight 
the stock prices of all companies included in making the index.

An examination of Table 2.1 reveals that the prices of bananas and apples go up only 
slightly over time (and, in some years, their prices do not change or even drop). However, 
the price of kiwi fruit goes up rapidly over time. Bananas and apples are common  
fruits purchased frequently by many people, whereas kiwi fruit is an obscure exotic fruit, 
rarely purchased by a tiny minority of people. In light of this, it is unreasonable to 
weight all three fruits equally when calculating a price index. A fruit price index  
which was based on a simple average would reveal the fruit prices were growing at a 
fairly rapid rate (i.e. combining the slow growth of banana and apple prices with the 
very fast growth of kiwi fruit prices would yield a fruit price index which indicates 
moderately fast growth). However, if the government were to use such a price index to 
report “fruit prices are increasing at a fairly rapid rate”, the vast majority of people 
would find this report inconsistent with their own experience. That is, the vast majority 
of people only buy bananas and apples and the prices of these fruits are growing only 
slowly over time.

The line of reasoning in the previous paragraph suggests that a price index which 
weights all goods equally is not a sensible one. It also suggests how one might construct 
a sensible fruit price index: use a weighted average of the prices of all fruits to construct 
an index where the weights are chosen to reflect the importance of each good. In our 
fruit price index, we would want to attach more weight to bananas and apples (the 
common fruits) and less weight to the exotic kiwi fruit.

There are many different ways of choosing such weights. In the rest of this appendix, 
we describe two common choices based on the idea that the weights should reflect the 
amount of each fruit that is purchased. Of course, the amount of each fruit purchased 
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can vary over time and it is with regards to this issue that our two price indices differ. 
For the student of finance, it should be mentioned that the S&P500 is an index which 
weights stock prices by the size of the company.

The Laspeyres price index (using base year weights)

The Laspeyres price index uses the amount of each fruit purchased in the base year (2000 
in our example) to construct weights. In words, to construct the Laspeyres price index, 
you calculate the average price of fruit in each year using a weighted average where the 
weights are proportional to amount of each fruit purchased in 2000. You then use this 
average fruit price to construct an index in the same manner as we did for the banana 
price index (see Table 2.2).

Intuitively, if the average consumer spends 100 times more on bananas than on kiwi 
fruit in 2000, then banana prices will receive 100 times as much weight as kiwi fruit 
prices in the Laspeyres price index. The Laspeyres price index can be written in terms 
of a mathematical formula. Let P denote the price of a good, Q denote the quantity of 
the good purchased and subscripts denote the good and year with bananas being good 
1, apples good 2 and kiwi fruit good 3. Thus, for instance, P1,2000 is the price of bananas 
in the year 2000 and Q3,2002 is the quantity of kiwi fruit purchased in 2002. See 
Appendix 1.1 if you are having trouble understanding this subscripting notation or the 
summation operator used below.

With this notational convention established, the Laspeyres price index (LPI) in year 
t (for t = 1999, 2000, 2001, 2002 and 2003) can be written as:

LPI
P Q

P Q
t

it i
i

i i
i

= ×=

=

∑
∑

,

, ,

.
2000

1

3

2000 2000
1

3 100

Note that the numerator of this formula takes the price of each fruit and multiplies 
it by the quantity of that fruit purchased in the year 2000. This ensures that bananas 
and apples receive much more weight in the Laspeyres price index. We will not explain 
the denominator other than to note that it is necessary to ensure that the Laspeyres price 
index is a valid index with a value of 100 in the base year. For the more mathematically 
inclined, the denominator ensures that the weights in the weighted average sum to one 
(which is necessary to ensure that it is a proper weighted average). Note also that the 
definition of the Laspeyres price index above has been written for our fruit example 
involving three goods with a base year of 2000. In general, the formula above can be 
extended to allow for any number of goods and any base year by changing the three 
and 2000 as appropriate.
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The calculation of the Laspeyres price index requires us to know the quantities pur-
chased of each fruit (see Table 2.3). Table 2.4 illustrates the calculation of the Laspeyres 
price index for our three fruits.

The Laspeyres fruit price index can be interpreted in the same way as the banana 
price index. For instance, we can say that between 2000 and 2003 fruit prices rose by 
8.7%.

The Paasche price index (using current year weights)

The Laspeyres price index used base year weights to construct an average fruit price 
from the prices of the three types of fruit. However, it is possible that the base year 
weights may be inappropriate if fruit consumption patterns are changing markedly over 
time. In our example, bananas and apples are the predominant fruits and, in all years, 
there are few kiwi fruit eaters. Our Laspeyres price index (sensibly) weighted the prices 
of bananas and apples much more heavily in the index than kiwi fruit. But what would 
have happened if, in 2001, there was a health scare indicating that eating apples was 
unhealthy and people stopped eating apples and ate many more kiwi fruit instead. The 
Laspeyres price index would keep on giving a low weight to kiwi fruit and a high weight 
to apples even though people were now eating more kiwi fruit. The Paasche price index 

Table 2.3  Quantities of fruit purchased (thousands of kg).

Bananas Apples Kiwi Fruit

1999 100 78 1
2000 100 82 1
2001 98 86 3
2002 94 87 4
2003 96 88 5

Table 2.4  Calculating the Laspeyres price index for three fruits.

Numerator =
=∑ P Qit i
i

,2000
1

3
Denominator =

=∑ P Qi i
i

, ,2000 2000
1

3
Laspeyres price index

1999 126.64 127.92 99.0
2000 127.92 127.92 100
2001 130.62 127.92 102.1
2002 137.1 127.92 107.2
2003 139.07 127.92 108.7
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is an index which attempts to surmount this problem by using current year purchases 
to weight the individual fruits in the index.

In words, to construct the Paasche price index, you calculate the average price of fruit 
in each year using a weighted average where the weights are proportional to the amount 
of each fruit purchased in the current year. You then use this average fruit price to 
construct an index in the same manner as we did for the banana price index.

The mathematical formula for the Paasche price index (PPI) in year t (for t = 1999, 
2000, 2001, 2002 and 2003) can be written as:

PPI
P Q

P Q
t

it it
i

i it
i

= ×=

=

∑
∑

1

3

2000
1

3 100
,

.

Note that PPI is the same as LPI except that Qit appears in the PPI formula where 
Qi,2000 appeared in the LPI formula. Thus, the two indices are the same except for the 
fact that PPI is using current year purchases instead of base year purchases.

Table 2.5 shows the calculation of the Paasche price index using the fruit price data 
of Table 2.1 and the data on quantity of fruit purchased in Table 2.3.

Note that, since the Paasche price index does not weight the prices in the same 
manner as the Laspeyres price index, we do not get exactly the same results in Tables 
2.4 and 2.5. For instance, the Paasche price index says that between 2000 and 2003 
fruit prices rose by 10.4% (whereas the Laspeyres price index said 8.7%).

The Paasche and Laspeyres price indices are merely two out of a myriad of possibili-
ties. We will not discuss any of the other possibilities. However, it is important to note 
that indices arise in many places in economics and finance. For instance, measures of 
inflation reported in the newspapers are based on price indices. In the economy, there 
are thousands of goods that people buy and price indices such as the consumer price 
index (CPI) or retail price index (RPI) are weighted averages of the prices of these 
thousands of goods. Information about stock markets is often expressed in terms of stock 
price indices.

Table 2.5  Calculating the Paasche price index for three fruits.

Numerator =
=∑ P Qit it
i 1

3
Denominator =

=∑ P Qi it
i

,2000
1

3
Paasche price index

1999 124.90 126.20 99.0
2000 127.92 127.92 100
2001 134.44 131.14 102.5
2002 140.26 129.59 108.2
2003 147.33 133.50 110.4



28  /  ANALYSIS  OF  ECONOMIC DATA

There is one other issue that sometimes complicates empirical studies, especially 
involving macroeconomic data. Government statistical agencies often update the base 
year they use in calculating their price index. So, when collecting data, you will some-
times face the situation where the first part of your data uses one base year and the last 
part a different one. This problem is not hard to fix if you have one overlap year where 
you know the value of the index in terms of both base years. Table 2.6 provides an 
illustration of how you can splice an index together when the base year changes in this 
manner. The statistical office has constructed a price index using 1995 as a base year 
but discontinued it after 2000 (this is the “old index”). In 2001, the statistical office 
started constructing an index using 2001 as the base year (this is the “new index”) but 
also went back and worked out the value for this index in 2000 using the new base 
year. Note that we have one overlapping year, 2000. In order to make the 2000 value 
for the old index and the new the same we have to take the old index value and multiple 
it by 95 and divide it by 107. In order to be consistent we must apply this same trans-
formation to all values of the old index. The result of transforming all values of the old 
index in this manner is given in the last column of Table 2.6. This spliced index can 
now be used for empirical work as the entire index has the same base year of 2001.

Appendix 2.2: Advanced Descriptive Statistics

The mean and standard deviation are the most common descriptive statistics but many 
others exist. The mean is the simplest measure of location of a distribution. The word 
“location” is meant to convey the idea of the center of the distribution. The mean is 
the average. Other common measures of location are the mode and the median.

Table 2.6  Splicing together an index when the base year changes.

Old index with 
base year 1995

New index with 
base year 2001

Transformation 
to old index

Spliced index 
base year 2001

1995 100 ×95÷107 88.8
1996 102 ×95÷107 90.6
1997 103 ×95÷107 91.5
1998 103 ×95÷107 91.5
1999 105 ×95÷107 93.2
2000 107 95 95
2001 100 100
2002 101 101
2003 105 105
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To distinguish between the mean, the mode and the median, consider a simple 
example. Seven people report their respective incomes in £ per year as £18 000, £15 000, 
£9000, £15 000, £16 000, £17 000 and £20 000. The mean, or average, income of these 
seven people is £15 714.

The mode is the most common value. In the present example, two people have reported 
incomes of £15 000. No other income value is reported more than once. Hence, £15 000 
is the modal income for these seven people.

The median is the middle value. That is, it is the value that splits the distribution 
into two equal halves. In our example, it is the income value at which half the people 
have higher incomes and half the people have lower incomes. Here the median is 
£16 000. Note that three people have incomes less than the median and three have 
incomes higher than it.

The mode and median can also be motivated through consideration of Figures 2.2 
and 2.4, which plot two different histograms or distributions. A problem with the mode 
is that there may not be a most common value. For instance, in the GDP per capita 
data set (GDPPC.XLS), no two countries have precisely the same values. So there is no 
value that occurs more than once. For cases like this, the mode is the highest point of 
the histogram. A minor practical problem with defining the mode in this way is that 
it can be sensitive to the choice of class intervals. In Figure 2.2, the histogram is highest 
over the class interval labeled 2000. Remember, that the label 2000 means that the 
class interval runs from 0 to 2000. Hence, we could say that “the class interval 0 to 
2000 is the modal (or most likely) value”. Alternatively, it is common to report the 
middle value of the relevant class interval as the mode. In this case, we could say, “the 
mode is $1000”. The mode is probably the least commonly used of the three measures 
of location introduced here.

To understand the median, imagine that all the area of the histogram is shaded. The 
median is the point on the X-axis which divides this shaded area precisely in half. 
For Figure 2.4 the highest point (i.e. the mode) is also the middle point that divides 
the distribution in half (i.e. the median). It turns out it is also the mean. However,  
in Figure 2.2 the mean ($5443.80), median ($3071.50) and mode ($1000) are quite 
different.

Other useful summary statistics are based on the notion of a percentile. Consider our 
GDP per capita data set. For any chosen country, say Peru, you can ask “how many 
countries are poorer than Peru?” or, more precisely, “what proportion of countries are 
poorer than Peru?”. When we ask such questions we are asking what percentile Peru is 
at. Formally, the Xth percentile is the data value (e.g. a GDP per capita figure) such 
that X% of the observations (e.g. countries) have lower data values. In the cross-country 
GDP data set, the 37th percentile is $2092. This is the GDP per capita figure for Peru. 
37% of the countries in our data set are poorer than Peru.

Several percentiles relate to concepts we have discussed before. The 50th percentile 
is the median. The minimum and maximum are the 0th and 100th percentile. The 
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percentile divides the data range up into hundredths, while other related concepts use 
other basic units. Quartiles divide the data range up into quarters. Hence, the first 
quartile is equivalent to the 25th percentile, the second quartile to the 50th percentile 
(i.e. the median) and the third quartile to the 75th percentile. Deciles divide the data 
up into tenths. In other words, the first decile is equivalent to the 10th percentile, the 
second decile to the 20th percentile and so on.

After the standard deviation, the second most common measure of dispersion is the 
inter-quartile range. As its name suggests, it measures the difference between the third 
and first quartiles. For the cross-country data set, 75% of countries have GDP per capita 
less than $9802 (the third quartile) and 25% have GDP per capita less than $1162 (the 
first quartile). The inter-quartile range is $9802 − $1162 = $8640.

Appendix 2.3: Expected Values and Variances

In the previous section we talked about means and variances. If this were a statistics 
textbook, we would actually have called them sample means and sample variances. The 
word “sample” is added to emphasize that they are calculated using an actual “sample” 
of data. For instance, in our cross-country GDP data set we took the data we had and 
calculated exact numbers for Y  and s. We found these to be $5443.80 and $5369.496, 
respectively. These are the sample mean and standard deviation calculated using the 
data set at hand.

As another example, suppose we have collected data on the return to holding stock 
in a company for the past 100 months. We can use this data to calculate the mean and 
variance. However, these numbers are calculated based on the historical performance of 
the company’s stock. In finance, we are often interested in predicting future stock 
returns. By definition we do not know exactly what these will be, so we cannot calculate 
sample means and variances as we did above. But a potential investor would be inter-
ested in some similar measures. That is, this investor would be interested in the typical 
return which she might expect. She might also be interested in the risk involved in 
purchasing the stock. The concept of a typical expected value sounds similar to the ideas 
we discussed relating to the mean. The concept of riskiness sounds similar to the idea 
of a variance we discussed above. In short, we need concepts like the sample mean and 
variance, but for cases when we do not actually have data to calculate them. The relevant 
concepts are the population mean and population variance.

If this were a statistics book, we would now get into a long discussion of the distinc-
tion between population and sample concepts involving probability theory and many 
equations. However, for the student who is interested in analyzing economic data, it is 
enough to provide some intuition and definitions.
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A conventional statistics textbook might begin motivating population and sample 
concepts through an example. Consider, for instance, the height of every individual in 
the USA. In the population as a whole there is some average height (the population 
mean height) and some variance of heights (the population variance). This population 
mean and variance are unknown, unless someone actually goes out and measures the 
height of every person in the USA.

However, a researcher might have data on the actual heights of 100 people (e.g. a 
medical researcher might measure the height of each of 100 patients). Using the data 
for 100 people, the researcher could calculate Y  and s2, the sample mean and variance. 
These will be actual numbers. The medical researcher could then use these numbers as 
estimates (or approximations) for what is going on in the country as a whole (i.e. sample 
means and variances can be used as estimates for population means and variances). 
However, despite these relationships it is important to stress that sample and population 
concepts are different with the former being actual numbers calculated using the data 
at hand and the latter being unobserved.

Perhaps the previous two paragraphs are enough to intuitively motivate the distinc-
tion between sample and population means and variances. To see why economists need 
to know this distinction (and to introduce some notation), let us use as an example an 
investor interested in the potential return she might make from buying a stock. Let Y 
denote next month’s return on this stock. From the investor’s point of view, Y is 
unknown. The typical return she might expect is measured by the population mean and 
is referred to as the expected value. We use the notation E(Y) to denote the expected 
return. Its name accurately reflects the intuition for this statistical concept. The “expected 
value” sheds light on what we expect will occur.

However, the return on a stock is rarely exactly what is expected (i.e. rarely will you 
find Y to turn out to be exactly E(Y). Stock markets are highly unpredictable, sometimes 
the return on stocks could be higher than expected, sometimes it could be lower than 
expected. In other words, there is always risk associated with purchasing a stock. A 
potential investor will be interested in a measure of this risk. Variance is a common 
way of measuring this risk. We use the notation var(Y) for this.

To summarize, in the previous section on descriptive statistics we motivated the use 
of the sample mean and variance, Y and s2, to give the researcher an idea of the average 
value and dispersion, respectively, in a data set. In this section, we have motivated their 
population counterparts, E(Y) and var(Y), as having similar intuition but being relevant 
for summarizing information about an uncertain outcome (e.g. the return on a stock 
next month). This is probably enough intuition about the mean and variance operators 
for you to master the concepts and techniques used in this book. However, for the reader 
interested in how E(Y) and var(Y) are calculated, we provide the following example.

Suppose you are an investor trying to decide whether to buy a stock based on its 
return next month. You do not know what this return will be. You are quite confident 
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(say, 70% sure) that the markets will be stable, in which case you will earn a 1% return. 
But you also know there is a 10% chance the stock market will crash, in which case 
the stock return will be −10%. There is also a 20% probability that good news will 
boost the stock markets and you will get a 5% return on your stock.

Let us denote this information as there being three possible outcomes (good, normal, 
bad) which we label as 1, 2, 3. So, for instance, Y1 = 0.05 will denote the 5% return 
if good times occur. We will use the symbol P for probability and the same subscripting 
convention. Thus, P3 = 0.10 will denote the 10% probability of a stock market crash. 
We can now define the expected return as a weighted average of all the possible 
outcomes:

E Y PY PY PY( ) . . . . . ( . ) .= + + = × + × + × − =1 1 2 2 3 3 0 20 0 05 0 70 0 01 0 10 0 10 0 007

In words, the expected return on the stock next month is 0.7% (i.e. a bit less than 1%).
In our example, we have assumed that there are only three possible outcomes  

next month. In general, if there are K possible outcomes, the formula for the expected 
value is:

E Y PYi i
i

K
( ) =

=∑ 1
.

The case where there is a continuity of possible outcomes has similar intuition to the 
case with K outcomes, but is mathematically more complicated. Since we are only 
interested in providing intuition, we do not discuss this case.

The formula for var(Y) is similar to that for s2 presented in this chapter. It also has 
a similar lack of intuition and, hence, we shall not discuss it in detail. For the case 
where we have K possible outcomes, the variance of Y is defined as:

var .Y P Y E Yi i
i

K
( ) = − ( )[ ]

=∑ 2

1

The key thing to remember is that var(Y) is a measure of the dispersion of the pos-
sible outcomes which could occur and, thus, is closely related to the concept of risk.

Endnotes

1.  As emphasized in chapter 1, this is not a book about collecting data. Nevertheless, it is useful 
to offer a few brief pointers about how to look for data sets.

2.  As will be discussed in later chapters, it is sometimes convenient to take the natural loga-
rithm, or ln(.) of a variable. Using the properties of logarithms, it can be shown that the 
percentage change in a variable is approximately 100 × [ln(Yt) −  ln(Yt−1)]. This formula is 
often used in practice and relates closely to ideas in nonstationary time series (see Chapters 
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10 and 11). The definition and properties of logarithms can be found in virtually any intro-
ductory mathematics textbook (see also the appendix to Chapter 1).

3.  Some indices set the base year value to 1.00 instead of 100.
4.  In the case of GDP, the name given to the price index is the “GDP deflator”.
5.  The data are located in file EXRUK.XLS, available on the website associated with this book.
6.  1954Q1 means the first quarter (i.e. January, February and March) of 1954.
7.  Note that the use of the word “frequency” here as meaning “the number of observations that 

lie in a class interval” is somewhat different from the use of the word “frequency” in time 
series analysis (see the discussion of time series data above).

8.  The data are available in file FOREST.XLS.
9.  In some textbooks, a slightly different formula for calculating the standard deviation is given: 

the N−1 in the denominator is replaced by N.



Correlation

CHAPTER 3

Often economists are interested in investigating the nature of the relationship between 
different variables, such as the educational level of workers and their wages, or interest 
rates and inflation. Correlation is an important way of numerically quantifying the 
relationship between two variables. A related concept, introduced in future chapters is 
regression, which is essentially an extension of correlation to cases of three or more vari-
ables. As you will quickly find as you read through this chapter, and those that follow, 
it is no exaggeration to say that correlation and regression are the most important unify-
ing concepts of this book.

In this chapter, we will first describe the theory behind correlation, and then work 
through a few examples designed to think intuitively about the concept in different ways.

Understanding Correlation

Let X and Y be two variables (e.g. population density and deforestation, respectively) 
and let us also suppose that we have data on i = 1, . . ., N different units (e.g. countries). 
The correlation between X and Y is denoted by r, and its precise mathematical formula 
is given in Appendix 3.1. Of course, in practice, you will never actually have to use this 
formula directly. Any spreadsheet or econometrics software package will calculate the 
correlation for you. It is usually clear from the context to which variables r refers. However, 
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Example 3.1:  The correlation between deforestation and population 
density

Let us suppose that we are interested in investigating the relationship between 
deforestation and population density. Remember that file FOREST.XLS contains 
data on these variables (and others) for a cross-section of 70 tropical countries. 
Using this data set, we find that the correlation between deforestation (Y) and 
population density (X) is 0.66. Being greater than zero, this number allows us to 
make statements of the following form:

1.	 There is a positive relationship (or positive association) between deforestation 
and population density.

in some cases we will use subscripts to indicate, for example, that rXY is the correlation 
between variables X and Y and rXZ the correlation between variables X and Z.

Once you have calculated the correlation between two variables you will obtain a 
number (e.g. r = 0.55). It is important that you know how to interpret this number. 
In this section, we will try to develop some intuition about correlation. First, however, 
let us briefly list some of the numerical properties of correlation.

Properties of correlation

•	 r always lies between −1 and 1, which may be written as −1 ≤ r ≤ 1.
•	 Positive values of r indicate a positive correlation between X and Y. Negative values 

indicate a negative correlation. r = 0 indicates that X and Y are uncorrelated.
•	 Larger positive values of r indicate stronger positive correlation. r = 1 indicates perfect 

positive correlation. Larger negative values1 of r indicate stronger negative correlation. 
r = −1 indicates perfect negative correlation.

•	 The correlation between Y and X is the same as the correlation between X and Y.
•	 The correlation between any variable and itself (e.g. the correlation between Y and 

Y) is 1.

Understanding correlation through verbal reasoning

Statisticians use the word “correlation” in much the same way as laypeople do. The 
following continuation of the deforestation/population density example from Chapter 
2 (Example 3.1) will serve to illustrate verbal ways of conceptualizing the concept of 
correlation.
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2.	 Countries with high population densities tend to have high deforestation rates. 
Countries with low population densities tend to have low deforestation rates. 
Note that we use the word “tend” here. A positive correlation does not mean 
that every country with a high population density necessarily has a high defor-
estation rate, but rather, that this is the general tendency. It is possible that a 
few individual countries do not follow this pattern (see the discussion of out-
liers in Chapter 2).

3.	 Deforestation rates vary across countries as do population densities (this is the 
reason we call them “variables”). Some countries have high deforestation rates, 
others have low rates. This high/low cross-country variance in deforestation 
rates tends to “match up” with the observed high/low variance in population 
densities.

All that statements 1 to 3 require is for r to be positive. If r were negative, 
the opposite of these statements would hold. For instance, high values of X 
would be associated with low values of Y. It is somewhat more difficult to get 
an intuitive feel for the exact number of the correlation (e.g. how is the correla-
tion of 0.66 different from a correlation of 0.26?). The XY-plots discussed 
below offer some help, but here we briefly note an important point to which 
we shall return when we discuss regression.

4.	 The degree to which deforestation rates vary across countries can be measured 
numerically using the formula for the variance discussed in Chapter 2. As 
mentioned in statement 3, the fact that deforestation and population density 
are positively correlated means that their patterns of cross-country variability 
tend to match up. The correlation squared (r2) measures the proportion of the 
cross-country variability in deforestation that matches up with, or is explained 
by, the variance in population density. In other words, correlation is a numerical 
measure of the degree to which patterns in X and Y correspond. In our popula-
tion/deforestation example, since 0.662 =  0.44, we can say that 44% of the 
cross-country variance in deforestation can be explained by the cross-country 
variance in population density.

Exercise 3.1

(a)	 Using the data in FOREST.XLS, calculate and interpret the mean, standard 
deviation, minimum and maximum of deforestation and population density.

(b)	 Verify that the correlation between these two variables is 0.66.
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Example 3.2:  House prices in Windsor, Canada

The file HPRICE.XLS contains data relating to N = 546 houses sold in Windsor, 
Canada in the summer of 1987. It contains the selling price (in Canadian dollars) 
along with many characteristics for each house. We will use this data set exten-
sively in future chapters, but for now let us focus on just a few variables. In par-
ticular, let us assume that Y is the sale price of the house and X is the size of its 
lot in square feet.2 The correlation between these two variables is rXY = 0.54. The 
following statements can be made about house prices in Windsor:

1.	 Houses with large lots tend to be worth more than those with small lots.
2.	 There is a positive relationship between lot size and sale price.
3.	 The variation in lot size accounts for 29% (0.542 = 0.29) of the variability in 

house prices.

Now let us add a third variable, Z, the number of bedrooms. Calculating the cor-
relation between house prices and the number of bedrooms, we obtain rYZ = 0.37. 
This result says, as we would expect, that houses with more bedrooms tend to be 
worth more than houses with fewer bedrooms.

Similarly, we can calculate the correlation between the number of bedrooms 
and lot size. This correlation turns out to be rXZ = 0.15 and indicates that houses 
with larger lots also tend to have more bedrooms. However, this correlation is very 
small and unexpectedly, perhaps, suggests that the link between lot size and 
number of bedrooms is quite weak. In other words, you may have expected that 
houses on larger lots, being bigger, would have more bedrooms than houses on 
smaller lots. But the correlation indicates that there is only a weak tendency for 
this to occur.

Example 3.2 allows us to motivate briefly an issue of importance in econometrics, 
namely, that of causality. Indeed, economists are often interested in finding out whether 
one variable “causes” another. We will not provide a formal definition of causality here 
but instead will use the word in its everyday meaning. In this example, it is sensible 
to use the positive correlation between house price and lot size to reflect a causal rela-
tionship. That is, lot size is a variable that directly influences (or causes) house prices. 
However, house prices do not influence (or cause) lot size. In other words, the direction 
of causality flows from lot size to house prices, not the other way around.

Another way of thinking about these issues is to ask yourself what would happen if 
a homeowner were to purchase some adjacent land and thereby increase the lot size of 
his/her house. This action would tend to increase the value of the house (i.e. an increase 
in lot size would cause the price of the house to increase). However, if you reflect on 
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the opposite question: “will increasing the price of the house cause lot size to increase?” 
you will see that the opposite causality does not hold (i.e. house price increases do not 
cause lot size increases). For instance, if house prices in Windsor were suddenly to rise 
for some reason (e.g. due to a boom in the economy) this would not mean that house 
lots in Windsor suddenly got bigger.

The discussion in the previous paragraph could be repeated with “lot size” replaced 
by “number of bedrooms”. That is, it is reasonable to assume that the positive correla-
tion between Y (house prices) and Z (number of bedrooms) is due to Z influencing (or 
causing) Y, rather than the opposite. Note, however, that it is difficult to interpret the 
positive (but weak) correlation between X (lot size) and Z (number of bedrooms) as 
reflecting causality. That is, there is a tendency for houses with many bedrooms to 
occupy large lots, but this tendency does not imply that the former causes the latter.

One of the most important things in empirical work is knowing how to interpret 
your results. Example 3.2 illustrates this difficulty well. It is not enough just to report 
a number for a correlation (e.g. rXY = 0.54). Interpretation is important too. Interpretation 
requires a good intuitive knowledge of what a correlation is in addition to a lot of 
common sense about the economic phenomenon under study. Given the importance of 
interpretation in empirical work, the following section will present several examples to 
show why variables are correlated and how common sense can guide us in interpreting 
them.

Exercise 3.2

(a)	 Using the data in HPRICE.XLS, calculate and interpret the mean, standard 
deviation, minimum and maximum of Y (house price, labeled “sale price” in 
the file), X (lot size) and Z (number of bedrooms, labeled “#bedroom”).

(b)	 Verify that the correlation between X and Y is as given in the example. Repeat 
for X and Z and then for Y and Z.

(c)	 Now add a new variable, W, the number of bathrooms (labeled “#bath”). 
Calculate the mean of W.

(d)	 Calculate and interpret the correlation between W and Y. Discuss to what 
extent it can be said that W causes Y.

(e)	 Repeat part (d) for W and X and then for W and Z.

Understanding Why Variables Are Correlated

In our deforestation/population density example, we discovered that deforestation and 
population density are indeed correlated positively, indicating a positive relationship 
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Example 3.3:  Correlation does not necessarily imply causality

It is widely accepted that cigarette smoking causes lung cancer. Let us assume 
that we have collected data from many people on the number of cigarettes each 
person smokes per week (X) and whether they have ever had or now have lung 
cancer (Y). Since smoking causes cancer we would undoubtedly find rXY  >  0; 
that is, that people who smoke tend to have higher rates of lung cancer than  
non-smokers. Here the positive correlation between X and Y indicates direct 
causality.

Now suppose that we also have data on the same people, measuring the amount 
of alcohol they drink in a typical week. Let us call this variable Z. In practice, it 
is the case that heavy drinkers also tend to smoke and, hence, rXZ > 0. This cor-
relation does not mean that cigarette smoking also causes people to drink. Rather 
it probably reflects some underlying social attitudes. It may reflect the fact, in 
other words, that people who smoke do not worry about their health or that their 
social lives revolve around the pub, where drinking and smoking often go hand 
in hand. In either case, the positive correlation between smoking and drinking 
probably reflects some underlying cause (e.g. social attitude), which in turn causes 
both. Thus, a correlation between two variables does not necessarily mean that 
one causes the other. It may be the case that an underlying third variable is 
responsible.

Now consider the correlation between lung cancer and heavy drinking. Since 
people who smoke tend to get lung cancer more, and people who smoke also tend 
to drink more, it is not unreasonable to expect that lung cancer rates will be higher 
among heavy drinkers (i.e. rYZ > 0). Note that this positive correlation does not 
imply that alcohol consumption causes lung cancer. Rather, it is cigarette smoking 
that causes cancer, but smoking and drinking are related to some underlying social 
attitude. This example serves to indicate the kind of complicated patterns of cau-
sality which occur in practice, and how care must be taken when trying to relate 
the concepts of correlation and causality.

between the two. But what exact form does this relationship take? As discussed above, 
we often like to think in terms of causality or influence, and it may indeed be the case 
that correlation and causality are closely related. For instance, the finding that popula-
tion density and deforestation are correlated could mean that the former directly causes 
the latter. Similarly, the finding of a positive correlation between education levels and 
wages could be interpreted as meaning that more education does directly influence the 
wage one earns. However, as the following examples demonstrate, the interpretation 
that correlation implies causality is not always necessarily an accurate one.
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The general message that should be taken from these examples is that correlations can 
be very suggestive, but cannot on their own establish causality. In Example 3.3, the 
finding of a positive correlation between smoking and lung cancer, in conjunction with 
medical evidence on the manner in which substances in cigarettes trigger changes in 
the human body, have convinced most people that smoking causes cancer. In Example 
3.2, common sense tells us that the number of bedrooms directly influences house prices. 
In economics, the concept of correlation can be used in conjunction with common sense 
or a convincing economic theory to establish causality.

Example 3.4:  Direct versus indirect causality

Another important distinction is that between direct (or immediate) and indirect 
(or proximate) causality. Recall that in our deforestation/population density 
example, population density (X) and deforestation (Y) were found to be positively 
correlated (i.e. rXY > 0). One reason for this positive correlation is that high popu-
lation pressures in rural areas cause farmers to cut down forests to clear new land 
in order to grow food. It is this latter on-going process of agricultural expansion 
which directly causes deforestation. If we calculated the correlation between defor-
estation and agricultural expansion (Z), we would find rYZ > 0. In this case, popu-
lation density would be an indirect cause and agricultural expansion a direct cause 
of deforestation. In other words, we can say that X (population pressures) causes 
Z (agricultural expansion), which in turn causes Y (deforestation). Such a pattern 
of causality is consistent with rXY > 0 and rYZ > 0.

In Example 3.2, however, it is likely that the positive correlations we observed 
reflect direct causality. For instance, having a larger lot is considered by most 
people to be a good thing in and of itself, so that increasing the lot size should 
directly increase the value of a house. There is no other intervening variable here 
and hence we say that the causality is direct.3

Exercise 3.3

People with university education tend to hold higher paying jobs than those with 
fewer educational qualifications. This could be due to the fact that a university 
education provides important skills that employers value highly. Alternatively, it 
could be the case that smart people tend to go to university and that employers 
want to hire these smart people (i.e. a university degree is of no interest in and 
of itself to employers).
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Understanding Correlation Through XY-Plots

Intuition about the meaning of correlations can also be obtained from the XY-plots 
described in Chapter 2. Recall that in Chapter 2 we discussed positive and negative 
relationships based on whether the XY-plots exhibited a general upward or downward 
slope.4 If two variables are correlated, then an XY-plot of one against the other will also 
exhibit such patterns. For instance, the XY-plot of population density against deforesta-
tion exhibits an upward sloping pattern (see Figure 2.3). This plot implies  
that these two variables should be positively correlated, and we find that this is indeed 
the case from the correlation, r = 0.66. The important point here is that positive cor-
relation is associated with upward sloping patterns in the XY-plot and negative correla-
tion is associated with downward sloping patterns. All the intuition we developed  
about XY-plots in the previous chapter can now be used to develop intuition about 
correlation.

Figure 3.1 uses the Windsor house price data set (HPRICE.XLS) to produce an XY-
plot of lot size (X) against house price (Y). Recall that the correlation between these 
two variables was calculated as rXY = 0.54, which is a positive number. This positive 
(upward-sloping) relationship between lot size and house price can be seen clearly in 
Figure 3.1. Houses with small lots (i.e. small X-axis values) also tend to have small 
prices (i.e. small Y-axis values). Conversely, houses with large lots tend to have high 
prices.

The previous discussion relates mainly to the sign of the correlation. However, XY-
plots can also be used to develop intuition about how to interpret the magnitude of a 
correlation, as the following examples illustrate.

Figure 3.2 is an XY-plot of two perfectly correlated variables (i.e. r = 1). Note that 
they do not correspond to any actual economic data, but were simulated on the com-
puter. All the points lie exactly on a straight line.

Figure 3.3 is an XY-plot of two variables which are positively correlated (r = 0.51), 
but not perfectly correlated. Note that the XY-plot still exhibits an upward sloping 
pattern, but that the points are much more widely scattered.

Figure 3.4 is an XY-plot of two completely uncorrelated variables (r = 0). Note that 
the points seem to be randomly scattered over the entire plot.

Suppose you have data on income (Y), number of years of schooling (X) and 
the results of an intelligence test of many people (Z), and that you have calculated 
rXY, rXZ and rYZ. In practice, what signs would you expect these correlations to 
have? Assuming the correlations do have the signs you expect, can you tell which 
of the two stories in the paragraph above is correct?



42  /  ANALYSIS  OF  ECONOMIC DATA

Figure 3.2  XY-plot of two perfectly correlated variables (r = 1).
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Figure 3.1  XY-plot of house price versus lot size.
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Figure 3.3  XY-plot of two positively correlated variables (r = 0.51).
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Figure 3.4  XY-plot of two uncorrelated variables (r = 0).
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Plots for negative correlation exhibit downward sloping patterns, but otherwise the 
same sorts of patterns noted above hold for them. For instance, Figure 3.5 is an XY-plot 
of two variables that are negatively correlated (r = −0.58).

These figures illustrate one way of thinking about correlation: Correlation indicates 
how well a straight line can be fit through an XY-plot. Variables that are strongly cor-
related fit on or close to a straight line. Variables that are weakly correlated are more 
scattered in an XY-plot.

Figure 3.5  XY-plot of two negatively correlated variables (r = −0.58).
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Exercise 3.4

The file EX34.XLS contains four variables: Y, X1, X2 and X3.

(a)	 Calculate the correlation between Y and X1. Repeat for Y and X2, and for Y 
and X3.

(b)	 Create an XY-plot involving Y and X1. Repeat for Y and X2, and for Y 
and X3.

(c)	 Interpret your results for (a) and (b).



CORRELATION  /  45

Correlation Between Several Variables

Correlation is a property that relates two variables. Frequently, however, economists 
must work with several variables. For instance, house prices depend on the lot size, 
number of bedrooms, number of bathrooms and many other characteristics of the house. 
As we shall see in subsequent chapters, regression is the most appropriate tool to use if 
the analysis contains more than two variables. Yet it is also not unusual for empirical 
researchers, when working with several variables, to calculate the correlation between 
each pair. This calculation is laborious when the number of variables is large. For 
instance, if we have three variables, X, Y and Z, then there are three possible correla-
tions (i.e. rXY, rXZ and rYZ). However, if we add a fourth variable, W, the number increases 
to six (i.e. rXY, rXZ, rXW, rYZ, rYW and rZW). In general, for M different variables there will 
be M × (M − 1)/2 possible correlations. A convenient way of ordering all these correla-
tions is to construct a matrix or table, as illustrated by the following example.

CORMAT.XLS contains data on three variables labeled X, Y and Z. X is in the first 
column, Y the second and Z the third. We can create the correlation matrix shown in 
Table 3.1 for these variables.

Table 3.1  Correlation matrix for three variables.

Column 1 Column 2 Column 3

Column 1 1
Column 2 0.318237 1
Column 3 −0.13097 0.096996 1

Exercise 3.5

(a)	 Using the data in FOREST.XLS, calculate and interpret a correlation matrix 
involving deforestation, population density, change in pasture and change in 
cropland.

(b)	 Calculate and interpret a correlation matrix using the following variables in 
the data set HPRICE.XLS: house price, lot size, number of bedrooms, number 
of bathrooms and number of stories. How many individual correlations have 
you calculated?

The number 0.318237 is the correlation between the variable in the first column (X) 
and that in the second column (Y). Similarly, −0.13097 is the correlation between X 
and Z and 0.096996 is the correlation between Y and Z. Note that the 1s in the cor-
relation matrix indicate that any variable is perfectly correlated with itself.
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Appendix 3.1: Mathematical Details

The correlation between X and Y is referred to by the small letter r and is calcu
lated as:
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where X and Y  are the means of X and Y (see Chapter 2). To provide some intuition, 
note that if we were to divide the numerator and denominator of the previous expression 
by N − 1, then the denominator would contain the product of the standard deviations 
of X and Y and the numerator would contain the covariance between X and Y. 
Covariance is a concept that we have not defined here, but you may come across it in 
the future, particularly if you are interested in developing a deeper understanding of 
the statistical theory underlying correlation.

Endnotes

1.  By “larger negative values” we mean values that are more negative. For instance, −0.9 is a 
larger negative value than −0.2.

Chapter Summary

1.	 Correlation is a common way of measuring the relationship between two vari-
ables. It is a number that can be calculated using Excel or any spreadsheet or 
econometric software package.

2.	 Correlation can be interpreted in a common sense way as a numerical measure 
of a relationship or association between two variables.

3.	 Correlation can also be interpreted graphically by means of XY-plots. That 
is, the sign of the correlation relates to the slope of a best fitting line through 
an XY-plot. The magnitude of the correlation relates to how scattered the 
data points are around the best fitting line.

4.	 Correlations can arise for many reasons. However, correlation does not neces-
sarily imply causality between two variables.
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2.  Lot size is the area occupied by the house plus its garden or yard.
3.  An alternative explanation is that good neighborhoods tend to have houses with large lots. 

People are willing to pay extra to live in a good neighborhood. Thus, it is possible that houses 
with large lots tend also to have higher sale prices, not because people want large lots, but 
because they want to live in good neighborhoods. In other words, “lot size” may be acting 
as a proxy for the “good neighborhood” effect. We will discuss such issues in more detail in 
later chapters on regression. You should merely note here that the interpretation of correla-
tions can be quite complicated and a given correlation pattern may be consistent with several 
alternative stories.

4.  We will formalize the meaning of “upward” or “downward” sloping patterns in the XY-plots 
when we come to regression. To aid in interpretation, think of drawing a straight line through 
the points in the XY-plot that best captures the pattern in the data (i.e. is the best fitting 
line). The upward or downward slope discussed here refers to the slope of this line.



Introduction to Simple Regression

CHAPTER 4

Regression is the most important tool that applied economists use to understand the 
relationship between two or more variables. It is particularly useful for the common 
case where there are many variables (unemployment and interest rates, the money 
supply, exchange rates, inflation and so on) and the interactions between them are 
complex.

As another example, consider the problem of trying to explain the price of houses. 
The price of a house depends on many characteristics (e.g. the number of bedrooms, the 
number of bathrooms, the location of the house, the size of the lot). Many variables 
must be included in a model seeking to explain why some houses are more expensive 
than others.

These two examples are not unusual. Most problems in economics are of a similar 
level of complexity. Unfortunately, the basic tool you have encountered so far – simple 
correlation analysis – cannot handle such complexity. For more complex cases – those 
involving more than two variables – regression is the tool to use.

Regression as a Best Fitting Line

As a way of understanding regression, let us begin with just two variables (Y and X). 
We refer to this case as simple regression. Multiple regression, involving many variables, 
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is discussed in Chapter 6. Beginning with simple regression makes sense since graphical 
intuition can be developed in a straightforward manner and the relationship between 
regression and correlation can be illustrated quite easily.

Let us return to the XY-plots used previously (e.g. Figure 2.3 which plots population 
density against deforestation and Figure 3.1 which plots lot size against house price). 
We have discussed in Chapters 2 and 3 how an examination of these XY-plots can reveal 
a great deal about the relationship between X and Y. In particular, a straight line drawn 
through the points on the XY-plot provides a convenient summary of the relationship 
between X and Y. In regression analysis, we formally analyze this relationship.

To start with, we assume that a linear relationship exists between X and Y. As an 
example, you might consider Y to be the house price variable and X to be the lot size 
variable from data set HPRICE.XLS. Remember that this data set contained the sale 
price of 546 houses in Windsor, Canada along with several characteristics of each house. 
It is sensible to assume that the size of the lot affects the price at which a house sells.

We can express the linear relationship between Y and X mathematically as:

Y X= +α β ,

where α is the intercept of the line and β is the slope. This equation is referred to as 
the regression line. If in actuality we knew what α and β were, then we would know what 
the relationship between Y and X was. In practice, of course, we do not have this infor-
mation. Furthermore, even if our regression model, which posits a linear relationship 
between Y and X, were true, in the real world we would never find that our data points 
lie precisely on a straight line. Factors such as measurement error mean that individual 
data points might lie close to but not exactly on a straight line.

For instance, suppose the price of a house (Y) depends on the lot size (X) in the fol-
lowing manner: Y = 34 000 + 7X (i.e. α = 34 000 and β = 7). If X were 5000 square 
feet, this model says the price of the house should be Y = 34 000 + 7 × 5000 = $69 000. 
But, of course, not every house with a lot size of 5000 square feet will have a sale price 
of precisely $69 000. No doubt, the regression model is missing some important vari-
ables (e.g. number of bedrooms) that may affect the price of a house. Furthermore, the 
price of some houses might be higher than they should be (e.g. if they were bought by 
irrationally exuberant buyers). Alternatively, some houses may sell for less than their 
true worth (e.g. if the sellers have to relocate to a different city and must sell their 
houses quickly). For all these reasons, even if Y = 34 000 + 7X is an accurate descrip-
tion of a straight-line relationship between Y and X, it will not be the case that every 
data point lies exactly on the line.

Our house price example illustrates a truth about regression modeling: the linear 
regression model is always only an approximation of the true relationship. The truth 
may differ in many ways from the approximation implicit in the linear regression model. 
In economics, the most probable source of error is due to missing variables, usually 
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because we cannot observe them. In our previous example, house prices reflect many 
variables for which we can easily collect data (e.g. number of bedrooms and number of 
bathrooms). But they also depend on many other factors for which it is difficult if not 
impossible to collect data (e.g. the number of loud parties held by neighbors, the degree 
to which the owners have kept the property well-maintained and the quality of the 
interior decoration of the house). The omission of these variables from the regression 
model will mean that the model makes an error.

We call all such errors e. The regression model can now be written as:

Y X e= + +α β .

In the regression model, Y is referred to as the dependent variable, X as the explanatory 
variable, and α and β as the coefficients. It is common to implicitly assume that the 
explanatory variable “causes” Y and the coefficient β measures the influence of X on Y. 
In light of the comments made in the previous chapter about how correlation does not 
necessarily imply causality, you may want to question the assumption that the explana-
tory variable causes the dependent variable. There are three responses that can be made 
to this statement.

First, note that we talk about the regression model. A model specifies how different 
variables interact. For instance, models of land use posit that population pressures cause 
rural farmers to expand their lands by cutting down forests, thus causing deforestation. 
Such models have the causality “built in” and the purpose of a regression involving Y 
(deforestation) and X (population density) is to measure the magnitude of the effect of 
population pressures only (i.e. the causality assumption may be reasonable and we do 
not mind assuming it). Secondly, we can treat the regression purely as a technique for 
generalizing correlation and interpret the numbers that the regression model produces 
purely as reflecting the association between variables. (In other words, we can drop the 
causality assumption if we wish.) Thirdly, we can acknowledge that the implicit assump-
tion of causality can be a problem and develop new methods. This issue will be discussed 
briefly in Chapter 13.1

In light of the error, e, and the fact that we do not know what α and β are, the first 
problem in regression analysis is how we can make a sensible guess at, or estimate, what 
α and β are. It is standard practice to refer to the estimates of α and β as α̂  and β̂  (i.e. 
α̂  and β̂  are actual numbers that the computer calculates, for instance, α̂ = 34136 and 
ˆ .β = 6 599, which are estimates of the unknown true values α = 34 000 and β = 7). In 
practice, the way we find estimates is by drawing a line through the points on an XY-
plot which fits best. Hence, we must define what we mean by “best fitting line”.

Before we do this, it is useful to make a distinction between errors and residuals. The 
error is defined as the distance between a particular data point and the true regression 
line. Mathematically, we can rearrange the regression model to write ei = Yi − α − βXi. 
This is the error for the ith observation. However, if we replace α and β by their 
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estimates α̂  and β̂ , we get a straight line which is generally a little different from the 
true regression line. The deviations from this estimated regression line are called residu-
als. We will use the notation u when we refer to residuals. That is, the residuals are 
given by u Y Xi i i= − −ˆ ˆα β . If you find the distinction between errors and residuals 
confusing, you can probably ignore it in the rest of this book and assume errors and 
residuals are the same thing. However, if you plan on further study of econometrics, 
this distinction becomes important.

If we return to some basic geometry, note that we can draw one (and only one) straight 
line connecting any two distinct points. Thus, in the case of two points, there is no 
doubt about what the best fitting line through an XY-plot is. However, typically we 
have many points – for instance, our deforestation/population density example has 70 
different countries and the XY-plot contains 70 points – and there is ambiguity about 
what is the “best fitting line”. Figure 4.1 plots three data points (A, B and C) on an 
XY graph. Clearly, there is no straight line that passes through all three points. The 
line I have drawn does not pass through any of them; each point, in other words, is a 
little bit off the line. To put it another way: the line drawn implies residuals that are 
labeled u1, u2 and u3. The residuals are the vertical difference between a data point and 
the line. A good fitting line will have small residuals.

The usual way of measuring the size of the residuals is by means of the sum of squared 
residuals (SSR), which is given by:

SSR
i

N
=

=∑ ui
2

1
,

for i = 1, .  .  ., N data points. We want to find the best fitting line which minimizes 
the sum of squared residuals. For this reason, estimates found in this way are called least 
squares estimates (or ordinary least squares (OLS) to distinguish them from more com-
plicated estimators which we will not discuss until Chapter 13).

In practice, statistical software packages can automatically find values for α̂  and β̂  
which will minimize the sum of squared residuals. The exact formulae for α̂  and β̂  can 

Figure 4.1  XY-plot showing residuals.
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be derived using simple calculus, but we will not derive them here (see Appendix 4.1 
for more details). To provide some more jargon, note that when we estimate a regression 
model it is common to say that “we run a regression of Y on X”. It is easy to calculate 
these numbers in statistical software packages. The more important issue is: how do we 
interpret these numbers?

Example 4.1a:  The regression of deforestation on population density

Consider again the data set FOREST.XLS, which contains data on population 
density and deforestation for 70 tropical countries. It makes sense to assume that 
population density influences deforestation rather than the other way around. Thus 
we choose deforestation as the dependent variable (i.e. Y) and population as 
the explanatory variable (i.e. X). Running the regression using OLS, we obtain 
ˆ .α = 0 06  and ˆ .β = 0 000842.

Example 4.2a:  The cost of production in the electric utility industry

The file ELECTRIC.XLS contains data on the costs of production (measured in 
millions of dollars) for 123 electricity utility companies in the USA in 1970. 
Interest centers on understanding the factors which affect costs. Hence, the cost 
of production is the dependent variable (Y). The costs incurred by an electricity 
utility company can potentially depend on many factors. One of the most impor-
tant of these is the output (measured as thousands of kilowatt hours of electricity 
produced) of the company. We would expect companies that are producing more 
electricity will also be incurring higher costs (e.g. because they have to buy more 
fuel to generate the electricity). Hence, output is a plausible explanatory variable 
(X). If we run the regression of costs on output, we obtain ˆ .α = 2 19 and ˆ .β = 0 005.

Example 4.3a:  The effect of advertising on sales

The file ADVERT.XLS contains data on annual sales and advertising expenditures 
(both measured in millions of dollars) for 84 companies. A company executive 
might be interested in trying to quantify the effect of advertising on sales. This 
suggests running a regression with dependent variable (Y) sales and explanatory 
variable (X) advertising expenditure. Doing so, we obtain the value ˆ .α = 502 02 
and ˆ .β = 0 218, which is indicative of a positive relationship between advertising 
and sales.
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Interpreting OLS Estimates

In the previous examples, we obtained OLS estimates for the intercept and slope of the 
regression line. The question now arises: how should we interpret these estimates? The 
intercept in the regression model, α, usually has little economic interpretation so we 
will not discuss it here. However, β is typically quite important. This coefficient is 
the slope of the best fitting straight line through the XY-plot. In the deforestation/
population density example, β̂  was positive. Remembering the discussion on how to 
interpret correlations in the previous chapter, we note that since β̂  is positive X and Y 
are positively correlated. However, we can go further in interpreting β̂  if we differenti-
ate the regression model and obtain:

dY

dX
= β.

Even if you do not know calculus, the verbal intuition of the previous expression is 
not hard to provide. Derivatives measure how much Y changes when X is changed by 
a small (marginal) amount. Hence, β can be interpreted as the marginal effect of X on 
Y and is a measure of how much X influences Y. To be more precise, we can interpret 
β as a measure of how much Y tends to change when X is changed by one unit.2 The 
definition of “unit” in the previous sentence depends on the particular data set being 
studied and is best illustrated through examples. Before doing this, it should be stressed 
that regressions measure tendencies in the data (note the use of the word “tends” in the 
explanation of β above). It is not necessarily the case that every observation (e.g. every 
country or every house) fits the general pattern established by the other observations. 
In Chapter 2 we called such unusual observations “outliers” and argued that, in some 
cases, examining outliers could be quite informative. In the case of regression, outliers 
are those with residuals that stand out as being unusually large. Hence, examining the 
residuals from a regression is common practice.

Example 4.1b:  The regression of deforestation on population density

We obtained ˆ .β = 0 000842. This is a measure of how much deforestation tends 
to change when population density changes by one unit. Since population density 
is measured in terms of the number of people per 1000 hectares and deforestation 
as the percentage forest loss per year, this figure implies that if we add one more 
person per 1000 hectares (i.e. a change of one unit in the explanatory variable) 
deforestation will tend to increase by 0.000842%.
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Example 4.2b:  The cost of production in the electric utility industry

In the regression of company costs on output, we obtained ˆ .β = 0 005. Remember 
that β units is the effect on the dependent variable of a one unit change in the 
explanatory variable. Since output is measured in thousands of kWh, a one unit 
change in the explanatory variable is 1000 kWh. Since costs are measured in mil-
lions of dollars, β units is β million dollars. Combining these facts we can 
say that “increasing output by 1000 kWh tends to increase costs by $5000 (i.e. 
0.005 × 1000 000 = 5000)”.

Of course, we could also express this in terms of a decrease of one unit. That 
is, we could say, “decreasing output tends to decrease costs by $5000”.

Example 4.3b:  The effect of advertising on sales

Both advertising and sales are measured in millions of dollars and we found that 
ˆ .β = 0 218. Following the same line of reasoning as above, we can say that an 

increase in advertising of $1 000 000 tends to be associated with a $218 000 
increase in sales (i.e. 1 000 000 × 0.218 = 218 000). This result would seem to 
indicate that spending on advertising is rather counterproductive since an extra 
$1 000 000 spent on advertising would only translate into an extra $218 000  
in sales.

Does this mean that the company executive running this regression should 
decide to reduce advertising expenditure? Possibly, but not necessarily. The reason 

Alternatively, we could present this information as follows. The population 
density varies quite a bit across countries: from below 100 people to over 2500 
people per 1000 hectares. Hence it is not surprising that a change of one person 
per hectare will have little effect on deforestation. We could multiply everything 
by 100 and say that “increasing population density by 100 people per thousand 
hectares will tend to increase deforestation by 0.0842%”. Even the latter number 
may seem insignificant, but note that an increase of annual deforestation rates by 
0.0842% per year will result in a country losing an extra 5% of its forest over 50 
years. In the long run and over a large area – the spatial and time scales in which 
environmental economists are accustomed to thinking – this degree of forest loss 
can be substantial.
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Exercise 4.1

The FOREST.XLS data set contains data on deforestation (Y), population density 
(X), change in cropland (W) and change in pasture land (Z).

(a)	 Run a regression of Y on X and interpret the results.
(b)	 Run a regression of Y on W and one of Y on Z and interpret the results.
(c)	 Create a new variable, V, by dividing X by 100. What are the units in terms 

of which V is measured?
(d)	 Run a regression of Y on V. Compare your results to those for part (a). How 

do you interpret your coefficient estimate of β? How does α̂  differ between 
part (a) and part (d)?

(e)	 Experiment with scaling dependent and explanatory variables (i.e. by divid
ing them by a constant) and see what effect this has on your coefficient 
estimates.

for this uncertainty relates to the issue of causality and the question of how cor-
relation or regression results can be interpreted (see Chapter 3 or earlier in this 
chapter). That is, if the regression truly is a causal one (i.e. it is the case that 
advertising has a direct influence on sales), then we can interpret the $218 000 
figure as indicative of what the effect of a change in advertising will be. However, 
if it is not causal, then it is risky to use the regression result to provide strategic 
advice to a company.

It is possible that larger companies tend to have egomaniacs as bosses and ego-
maniacs enjoy seeing their companies advertised. If this (possibly implausible) 
story is true then we would expect to see larger companies advertising more – 
exactly what our regression has found. Such an interpretation would imply that 
it is possible that advertising is not directly influencing sales. The apparent posi-
tive relationship between advertising and sales from the regression analysis may 
be due solely to the behavior of the bosses of large companies.

Deciding whether it is reasonable to assume that a regression model captures a causal 
relationship in which one variable directly influences another is very difficult, and it is 
hard to offer any general rules on the subject. Perhaps the best advice is to draw on 
common sense and economic theory to guide you in interpretation.
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Fitted Values and R2: Measuring the Fit of a 
Regression Model

In the preceding discussion, we learned how to calculate and interpret regression coef-
ficients, α̂  and β̂ . Furthermore, we explained that regression finds the “best fitting” 
line in the sense that it minimizes the SSR. However, it is possible that the “best” fit 
is not a very good fit at all. Accordingly, it is desirable to have some measure of fit (a 
measure of how good the best fitting line is). The most common measure of fit is referred 
to as the R2. It relates closely to the correlation between Y and X. In fact, for the simple 
regression model (but not the multiple regression model), it is the correlation squared. 
This provides the formal statistical link between regression and correlation. This and 
the previous discussion should make the link between correlation and regression clear. 
Both are interested in quantifying the degree of association between different variables 
and both can be interpreted in terms of fitting lines through XY-plots.

To derive and explain R2, we will begin with some background material. We start 
by clarifying the notion of a fitted value. Remember that regression fits a straight line 
through an XY-plot, but does not pass precisely through each point on the plot (i.e. 
for each data point an error is made). In the case of our deforestation/population density 
example, this meant that individual countries did not lie on the regression line. The 
fitted value for observation i is the value that lies on the regression line corresponding 
to the Xi value for that particular observation (e.g. that country or house). In other 
words, if you draw a straight vertical line through a particular point in the XY-plot, 
the intersection of this vertical line and the regression line is the fitted value correspond-
ing to the point you chose.

Alternatively, we can think of the idea of a fitted value in terms of the formula for 
the regression model:

Y X ei i i= + +α β .

Remember that adding i subscripts (e.g. Yi) indicates that we are referring to a par-
ticular observation (the ith country or the ith house). If we ignore the error, we can say 
that the model’s prediction of Yi should be equal to α + βXi. If we replace α and β by 
the OLS estimates α̂  and β̂ , we obtain a so-called “fitted” or “predicted” value for Yi:

ˆ ˆ ˆ .Y Xi i= +α β

Note that we are using the value of the explanatory variable and the OLS estimates 
to predict the dependent variable. By looking at actual (Yi) values versus fitted (Ŷi) 
values we can gain a rough impression of the “goodness of fit” of the regression model. 
Statistical software packages allow you to print out the actual and fitted values for each 
observation. An examination of these values not only gives you a rough measure of how 
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well the regression model fits, they allow you to examine individual observations to 
determine which ones are close to the regression line and which are not. Since the 
regression line captures general patterns or tendencies in your data set, you can see 
which observations conform to the general pattern and which do not.

Exercise 4.2

Using the data in FOREST.XLS (see Exercise 4.1), run a regression of Y on X and 
compare the actual observations to the fitted values.

Exercise 4.3

(a)	 Using the data in FOREST.XLS (see Exercise 4.1) run a regression of Y on 
X and obtain the residuals. How would you interpret the residuals? Are there 
any outliers?

(b)	 Repeat part (a) for the other variables, W and Z in this data set.

We have previously defined the residual made in fitting our best fitting line. Another 
way to express this residual is in terms of the difference between the actual and fitted 
values of Y. That is:

u Y Yi i i= − ˆ .

Software packages can also plot or list the residuals from a regression model. These 
can be examined in turn to give a rough impression of the goodness of fit of the regres-
sion model. We emphasize that unusually big residuals are outliers and sometimes these 
outliers are of interest.

To illustrate the kind of information with which residual analysis can provide us, 
take a look at your computer output from Exercise 4.3(a). It can be seen that observa-
tion 39 has a fitted value of 2.93 and a residual of −1.63. By adding these two figures 
together (or by looking at the original data), you can see that the actual deforestation 
rate for this country is 1.3. What do all these numbers imply? Note that the regression 
model is predicting a much higher value (2.93) for deforestation than actually occurred 
(1.3) in this country. This means that this country may be doing much better at pro-
tecting its forests than the regression model implies, and, consequently, is making better 
efforts at forest conservation than are other countries. This kind of information may be 
important to policymakers in other countries, particularly as this outlier country may 
provide useful lessons that can be applied to them.
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The ideas of a residual and a fitted value are important in developing an informal 
understanding of how well a regression model fits. However, we still lack a formal numer-
ical measure of fit. At this stage, we can now derive and motivate such a measure, R2.

Recall that variance is the measure of dispersion or variability. Here we define a closely 
related concept, the total sum of squares (TSS):

TSS Y Yi= −( )∑ 2.

Note that the formula for the variance of Y is TSS/(N − 1) (see Chapter 2). Loosely 
speaking, the N − 1 term will cancel out in our final formula for R2 and, hence, we 
ignore it. So think of TSS as being a measure of the variability of Y. The regression 
model seeks to explain the variability in Y through the explanatory variable X. It can 
be shown that the total variability in Y can be broken into two parts as:

TSS RSS SSR= + ,

where RSS is the regression sum of squares, a measure of the explanation provided by 
the regression model. RSS is given by:

RSS Y Yi= −( )∑ ˆ .
2

Remembering that SSR is the sum of squared residuals and that a good fitting regres-
sion model will make the SSR very small, we can combine the equations above to yield 
a measure of fit:

R
SSR

TSS
2 1= −

or, equivalently,

R
RSS

TSS
2 = .

Intuitively, R2 measures the proportion of the total variance of Y that can be explained 
by X. Note that TSS, RSS and SSR are all sums of squared numbers and, hence, are all 
non-negative. This implies TSS ≥ RSS and TSS ≥ SSR. Using these facts, it can be seen 
that 0 ≤ R2 ≤ 1.

Further intuition about this measure of fit can be obtained by noting that small values 
of SSR indicate that the regression model is fitting well. A regression line which fits 
all the data points perfectly in the XY-plot will have no errors and hence SSR = 0 and 
R2 = 1. Looking at the formula above, you can see that values of R2 near 1 imply a good 
fit and that R2 = 1 implies a perfect fit. In sum, high values of R2 imply a good fit and 
low values a bad fit.
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An alternative source of intuition is provided by the RSS. RSS measures how much 
of the variation in Y the explanatory variables explain. If RSS is near TSS, then the 
explanatory variables account for almost all of the variability in the dependent variable 
and the fit will be a good one. Looking at the previous formula you can see that R2 is 
near one in this case.

Example 4.2c:  The cost of production in the electric utility industry

In the regression of cost of production (Y) on output (X) for the 123 electricity 
utility companies, R2 = 0.92. This number is quite high and close to one, indicat-
ing that the fit of the regression line is quite good. Put another way, 92% of the 
variation in costs across companies can be explained by the variation in output. 
Note that if you simply calculate the correlation between output and cost, you 
obtain rXY = 0.96. This correlation squared is exactly equal to R2 (i.e. 0.962 = 0.92).

This example highlights the close relationship between correlation and regres-
sion. Notice that R2 from the regression of Y on X is exactly equal to the square 
of the correlation between Y and X. Regression is really just an extension of 
correlation. Yet, regression also provides you with an explicit expression for the 
marginal effect (β), which is often important for policy analysis.

Example 4.3c:  The effect of advertising on sales

The R2 from the regression of sales on advertising expenditures using data set 
ADVERT.XLS is 0.09. This relatively small number indicates that variations in 
advertising expenditure across companies account for only a small proportion of 
the variation in sales. This finding is probably reasonable, in that you would expect 
factors other than advertising (e.g. product quality and pricing) to play a very 
important role in explaining the sales of a company.

Exercise 4.4

(a)	 Using the data in FOREST.XLS (see Exercise 4.1) run a regression of Y on 
X. What is R2?

(b)	 Calculate the correlation between Y and X.
(c)	 Discuss the relationship between your answers in parts (a) and (b).
(d)	 Redo part (a) for various regressions involving the variables W, X, Y and Z 

in the data set. Comment on the fit of each of these regressions.
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Nonlinearity in Regression

So far, we have used the linear regression model and fit a straight line through XY-plots. 
However, this may not always be appropriate. Consider the XY-plot in Figure 4.2.

It looks like the relationship between Y and X is not linear. If we were to fit a straight 
line through the data, it might give a misleading representation of the relationship 
between Y and X. In fact, I have artificially generated this data by assuming the rela-
tionship between Y and X is of the form:

Y Xi i= 6 2,

meaning that the true relationship is quadratic. A cursory glance at an XY-plot can 
often indicate whether fitting a straight line is appropriate or not.

What should you do if a quadratic relationship rather than a linear relationship exists? 
The answer is simple: rather than regressing Y on X, regress Y on X2 instead. Of course, 
the relationship revealed by the XY-plot may be found to be neither linear nor quad-
ratic. It may appear that Y is related to ln(X) or 1/X or X3 or any other transformation 
of X. However, the same general strategy holds: transform the X variable as appropriate 
and then run a regression of Y on the transformed variable. You can even transform Y 
if it seems appropriate.

Figure 4.2  A quadratic relationship between X and Y.
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A very common transformation, of both the dependent and explanatory variables, is 
the logarithmic transformation. Even if you are not familiar with logarithms, they are 
easy to work with in any spreadsheet or statistical software package. Often economists 
work with natural logarithms, for which the symbol is ln. In this book, we always use 
natural logarithms and simply refer to them as “logs” for short. It is common to say 
that “we took the log of variable X” or that “we worked with log X”. The mathematical 
notation is ln(X). One thing to note about logs is that they are only defined for positive 
numbers. So if your data contains zeros or negative numbers, you cannot take logs (i.e. 
the software will display an error message).

Why is it common to use ln(Y) as the dependent variable and ln(X) as the explana-
tory variable? First, the expressions will often allow us to interpret results quite easily. 
Second, in practice data transformed in this way often does appear to satisfy the linearity 
assumption of the regression model.

To fully understand the first point, we need some background in calculus, which is 
beyond the scope of this book. Fortunately, the intuition can be stated verbally. In the 
following regression:

ln( ) ln( ) ,Y X e= + +α β

β can be interpreted as an elasticity. Recall that, in the basic regression without logs, 
we said that “Y tends to change by β units for a one unit change in X”. In the regres-
sion containing both logged dependent and explanatory variables, we can now say that 
“Y tends to change by β% for a 1% change in X”. That is, instead of having to worry 
about units of measurements, regression results using logged variables are always inter-
preted as elasticities. Logs are convenient for other reasons too. For instance, as discussed 
in Chapter 2, when we have time series data, the percentage change in a variable is 
approximately 100 × [ln(Yt) − ln(Yt−1)]. This transformation will turn out to be useful 
in Chapters 9–12, which discuss time series data.

The second justification for the log transformation is purely practical. With many 
data sets, if you take the logs of dependent and explanatory variables and make an XY-
plot, the resulting relationship will look linear. For example, Figure 4.3 is an XY-plot 
of two data series, Y and X, neither of which has been transformed in any way. Figure 
4.4 is an XY-plot of ln(X) and ln(Y). Note that the points in the first figure do not 
seem to lie along a straight line. Rather the relationship is one of a steep-sloped pattern 
for small values of X that gradually flattens out as X increases. This is a typical pattern 
for data which should be logged. Figure 4.4 shows that, once the data is logged, the 
XY-plot indicates a linear pattern. An OLS regression will fit a straight line with a high 
degree of accuracy in Figure 4.4. However, fitting an accurate straight line through 
Figure 4.3 is very difficult (and probably not the best thing) to do.

On what basis should you log your data (or for that matter make any other transfor-
mation)? There is no simple rule that can be given. Examining XY-plots of the data 
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Figure 4.3  A plot of untransformed X and Y.
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Figure 4.4  A plot of ln(X) against ln(Y).
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transformed in various ways is often instructive. For instance, begin by looking at a plot 
of X against Y. This may look roughly linear. If so, just go ahead and run a regression 
of Y on X. If the plot does not look linear, it may exhibit some other pattern that you 
recognize (e.g. the quadratic form of Figure 4.2 or the logarithmic form of Figure 4.3). 
If so, create an XY-plot of suitable transformed variables (e.g. ln(Y) against ln(X)) and 
see if it looks linear. Such a strategy will likely work well in a simple regression con-
taining only one explanatory variable. In Chapter 6, we look at cases with several 
explanatory variables. In these cases, the examination of XY-plots may be quite com-
plicated since there are so many possible XY-plots that could be constructed but other 
strategies for detecting nonlinearity will be introduced there.

Exercise 4.5

Using the data in FOREST.XLS examine different XY-plots involving the vari-
ables X, Y, W and Z (see Exercise 4.1 for a definition of these variables). Does 
there seem to be a nonlinear relationship between any pair of variables? Repeat 
the exercise using the data in the advertising example (ADVERT.XLS).

Exercise 4.6

Data set EX46.XLS contains two variables, labeled Y and X.

(a)	 Make an XY-plot of these two variables. Does the relationship between Y and 
X appear to be linear?

(b)	 Calculate the square root of variable X.
(c)	 Make an XY-plot of the square root of X against Y. Does this relationship 

appear to be linear?

Exercise 4.7

Use the data in Example 4.1 (costs of production in the electricity utility industry, 
ELECTRIC.XLS), where Y is the cost of production and X is the output.

(a)	 Run a regression of Y on X.
(b)	 Take a log transformation of both variables.
(c)	 Run a regression of ln(Y) on ln(X) and interpret your results verbally.
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Optional Exercise

Take first and second derivatives with respect to α̂  and β̂  of the above expression 
for SSR. Use these to find values of α̂  and β̂  that minimize SSR. Verify that the 
solution you have found does indeed minimize (rather than maximize) SSR.

Chapter Summary

1.	 Simple regression quantifies the effect of an explanatory variable, X, on a 
dependent variable, Y. Hence, it measures the relationship between two 
variables.

2.	 The relationship between Y and X is assumed to take the form, Y = α + βX, 
where α is the intercept and β the slope of a straight line. This is called the 
regression line.

3.	 The regression line is the best fitting line through an XY-plot.
4.	 No line will ever fit perfectly through all the points in an XY-plot. The 

distance between each point and the line is called a residual.
5.	 The ordinary least squares (OLS) estimator is the one which minimizes the 

sum of squared residuals.
6.	 OLS provides estimates of α and β which are labeled α̂  and β̂ .
7.	 Regression coefficients should be interpreted as marginal effects (i.e. as 

measures of the effect on Y of a small change in X).
8.	 R2 is a measure of how well the regression line fits through the XY-plot.
9.	 OLS estimates and R2 are calculated in statistical software packages and 

spreadsheets.
10.	 Regression lines do not have to be linear. To carry out nonlinear regression, 

merely replace Y or X (or both) in the regression model by a suitable non-
linear transformation (e.g. ln(Y) or X2).

Appendix 4.1: Mathematical Details

The OLS estimator defines the best fitting line through the points on an XY-plot. 
Mathematically, we are interested in choosing α̂  and β̂  so as to minimize the sum of 
squared residuals. The SSR can be written as:

SSR ( ) .2
1

= − −
=∑ Y Xi i
i

N
ˆ ˆα β
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If you have done the previous exercise correctly, you should have obtained the 
following:

ˆ
( )( )

( )
β =

− −

−
=

=

∑
∑

Y Y X X

X X

i i
i

N

i
i

N
1

2

1

and

ˆ ˆ ,α β= −Y X

where Y  and X are the means of Y and X (see Chapter 2). These are the OLS estimators 
for α and β. There are several equivalent ways of writing the formula for β̂ . If you 
consult other textbooks you will find alternative expressions for the OLS estimator.

These equations can be used to demonstrate the consequences of taking deviations from 
means. By way of explanation, note that we have assumed above that the dependent and 
explanatory variables, X and Y, are based on the raw data. However, in some cases, 
researchers do not work with just X and Y, but rather with X and Y minus their respec-
tive means:

y Y Yi i= −

and

x X Xi i= − .

Consider using OLS to estimate the regression:

y a bx e= + + ,

where we have used the symbols a and b to distinguish them from the coefficients α 
and β in the regression involving Y and X.

It turns out that the relationship between OLS estimates from the original regression 
and from the regression where deviations from means have been taken is a simple one. 
The OLS estimate of b is always the same as β̂  and the OLS estimate of a is always 
zero. In other words, taking deviations from means simplifies the regression model by 
getting rid of the intercept (there is no point in including an intercept since its coef-
ficient is always zero). This simplification does not have any effect on the slope coefficient 
in the regression model. It is unchanged by taking deviations from means and still has 
the same interpretation as a marginal effect.

It is not too hard to prove the statements in the previous paragraph and, if you are 
mathematically inclined, you might be interested in doing so. As a hint, note that the 
means of y and x are zero.
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In Chapter 6, we consider the case where there are several explanatory variables. In 
this case, if you take deviations from means of the dependent and all of the explanatory 
variables, you obtain the same result. That is, the intercept disappears from the regres-
sion but all other coefficient estimates are unaffected.

Endnotes

1.  Some statistics books draw a dividing line between correlation and regression. They argue 
that correlation should be interpreted only as a measure of the association between two vari-
ables, not the causality. In contrast, regression should be based on causality, in the manner 
of such statements as “economic theory tells us that X causes Y”. This division simplifies the 
interpretation of empirical results. After all, it is conceptually easier to think of your depend-
ent variable – isolated on one side of the regression equation – as being “caused” by the 
explanatory variables on the other. However, it can be argued that this division is in actuality 
an artificial one. As we saw in Chapter 3, there are many cases for which correlation does 
indeed reflect causality. In future chapters, we encounter some cases in which the regressions 
are based on causality, some in which they are not and others about which we are unsure. 
The general message here is that you need to exercise care when interpreting regression results 
as reflecting causality. The same holds for correlation results. Commonsense and economic 
theory will help you in your interpretation.

2.  If you cannot see this, construct your own numerical example. That is, choose any values for 
α, β and X, then use the equation Y = α + βX to calculate Y (call this “original Y”). Now 
increase X by 1, leaving α and β unchanged and calculate a new Y. No matter what values 
you originally chose for α, β and X, you will find new Y minus original Y is precisely β. In 
other words, β is a measure of the effect on Y of increasing X by one unit.



Statistical Aspects of Regression

CHAPTER 5

Statistics is a field of study based on mathematics and probability theory. However, since 
this book assumes you have no knowledge of these topics, a complete understanding of 
statistical issues in the regression model will have to await further study.1 What we will 
do instead in this chapter is to:

•	 discuss what statistical methods in the regression model are designed to do;
•	 show how to carry out a regression analysis using these statistical methods and inter-

pret the results obtained;
•	 provide some graphical intuition in order to gain a little insight into where statistical 

results come from and why these results are interpreted in the manner that they are.

We begin by stressing a distinction which arose in Chapter 4 between the regression 
coefficients, α and β, and the ordinary least squares (OLS) estimates of the regression 
coefficients, α̂  and β̂ . Remember that we began Chapter 4 with a regression model of 
the form:

Y X ei i i= + +α β ,

for i = 1, . . ., N observations. As noted previously, α and β measure the relationship 
between Y and X. We pointed out that we do not know what this relationship is, i.e., 
we do not know what precisely α and β are. We derived OLS estimates which we 
then labeled α̂  and β̂. We emphasized that α and β are the unknown true coefficients 
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while α̂  and β̂  are merely estimates (and almost certainly not precisely the same as 
α and β).

These considerations lead us to ask whether we can gauge how accurate these esti-
mates are. Fortunately we can, using statistical techniques. In particular, these tech-
niques enable us to provide confidence intervals for and carry out hypothesis tests on our 
regression coefficients.

To provide some jargon, we say that OLS provides point estimates for β (e.g. 
ˆ .β = 0 000842 is the point estimate of β in the regression of deforestation on population 

density in Chapter 4). You can think of a point estimate as your best guess at what β 
is. Confidence intervals provide interval estimates, allowing us to make statements that 
reflect the uncertainty we may have about the true value of β, for example, that “we are 
confident that β is greater than 0.0006 and less than 0.0010”. We can obtain different 
confidence intervals corresponding to different levels of confidence. For instance, in the 
case of a 95% confidence interval we can say that “we are 95% confident that β lies in 
the interval”; in the case of a 90% confidence interval we can say that “we are 90% 
confident that β lies in the interval”; and so on. The degree of confidence we have in a 
chosen interval (e.g. 95%) is referred to as the confidence level.

The other major activity of the empirical researcher is hypothesis testing. An example 
of a hypothesis that a researcher may want to test is β = 0. If the latter hypothesis is 
true, then this means that the explanatory variable has no explanatory power. Hypothesis 
testing procedures allow us to carry out such tests.

Both confidence intervals and hypothesis testing procedures are explained further in 
the rest of this chapter. For expository purposes, we focus on β, since it is usually more 
important than α in economic problems. However, all the procedures we discuss for β 
apply equally to α.

Which Factors Affect the Accuracy of the Estimate b̂ ?

We have artificially simulated four data sets for X and Y from regression models with 
α = 0 and β = 1. XY-plots for these four different data sets are presented in Figures 
5.1, 5.2, 5.3 and 5.4.

All of these data sets have the same true coefficient values of α = 0 and β = 1 and 
we hope to obtain α̂  and β̂  values that are roughly equal to 0 and 1, respectively, when 
we run a regression using any of these four data sets. However, if you imagine trying 
to fit a straight line (as does OLS) through these XY-plots, you would not expect all 
four of these lines to be equally accurate.

How confident would you feel about the accuracy of the straight line that you  
have just fitted? It is intuitively straightforward to see that the line fitted for  
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Figure 5.1  XY-plot with a very small sample size.
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Figure 5.2  XY-plot with a large sample size and a large error variance.
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Figure 5.4  XY-plot with a limited range of X values.
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Figure 5.3  XY-plot with a large sample size and a small error variance.
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Figure 5.3 would be the most accurate. That is, the straight-line relationship between 
X and Y “leaps out” in Figure 5.3. Even if you were to draw a best-fitting line by 
hand through this XY-plot you would find that the intercept (α) was very close to 
zero and the slope (β) close to 1. In contrast, you would probably be much less confident 
about the accuracy of a best-fitting straight line that you drew for Figures 5.1, 5.2  
and 5.4.

These figures illustrate three main factors that affect the accuracy of OLS estimates 
and the uncertainty that surrounds our knowledge of what the true value of β really is:

•	 Having more data points improves the accuracy of estimation. This can be seen by 
comparing Figure 5.1 (N = 5) with Figure 5.3 (N = 100).

•	 Having smaller errors improves accuracy of estimation. Equivalently, if the SSR is 
small or the variance of the errors is small, the accuracy of the estimation will be 
improved. This can be seen by comparing Figure 5.2 (large variance of errors) with 
Figure 5.3 (small variance of errors).2

•	 Having a larger spread of values (i.e. a larger variance) of the explanatory variable (X) 
improves accuracy of estimation. This can be seen by comparing Figure 5.3 (values 
of the explanatory variable spread all the way from 0 to 6) to Figure 5.4 (values of 
the explanatory variable are clustered around 3).

The influence of these three factors is intuitively reasonable. With regards to the  
first two factors, it is plausible that having either more data or smaller errors should 
increase the accuracy of estimation. The third factor is perhaps less intuitive, but a 
simple example should help you to understand it.

Suppose you are interested in investigating the influence of education levels (X is the 
number of years of schooling) on the income people receive (Y). To understand 
the nature of this relationship, you will want to go out and collect data on all types  
of people (e.g. people with no qualifications, people with secondary school education, 
people with some post-secondary vocational training, people with a university  
degree, people with a PhD and so on). In other words, you will want to survey a broad 
spectrum of the population in order to capture as many of these different education 
levels as possible. In statistical jargon, this means that you will want X to have a high 
variance. If you do not follow this strategy – for example, were you to survey only those 
people possessing a PhD – you would get a very unreliable picture of the effect of edu-
cation on income. If you only surveyed PhDs, you would not know whether the rela-
tionship between education and income was positive. For instance, without collecting 
data on people who quit school at age 16 you would not know for sure that they are 
making less income than the PhDs.

In summary, having a large spread of values (i.e. a larger variance) for the explanatory 
variable, X, is a desirable property in an analysis, whereas having a large spread of values 
(i.e. a larger variance) for the error, e, is not.
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Calculating a Confidence Interval for β
The above three factors are reflected in a commonly used interval estimate for β: the 
confidence interval. This interval reflects the uncertainty surrounding the accuracy of 
the estimate β̂ . If the confidence interval is small, it indicates accuracy. Conversely, a 
large confidence interval indicates great uncertainty over the true value of β. In many 
cases, researchers choose to present the confidence interval in addition to the OLS point 
estimate.

The mathematical formula for the confidence interval for β is:3

[ , ].ˆ ˆβ β− +t s t sb b b b

An equivalent way of expressing the equation above is to say that there is a high level 
of confidence that the true value of β obeys the following inequality:

ˆ ˆ .β β β− ≤ ≤ +t s t sb b b b

The equations above use three numbers that must be calculated, β̂ , tb and sb. The 
first of these, β̂ , is the OLS estimate which we have already discussed in detail; the 
latter two you may not have seen before. The confidence interval will be calculated 
automatically by your statistical software package or spreadsheet. Thus, you can calcu-
late confidence intervals without knowing either the above formula or the precise defini-
tions of tb and sb. At the most basic level, you can just think of β̂, tb and sb as three 
numbers calculated by the computer. However, it is worthwhile to have at least some 
intuition about where the confidence interval comes from as this will aid in your under-
standing of results. Below, we discuss each of the three numbers required to calculate 
a confidence interval, relating them to the issues raised in the material above on the 
factors affecting the accuracy of estimation of β̂ .

First, β̂  is always included in the confidence interval (in fact, it will be right in the 
middle of it).

Secondly, sb is the standard deviation of β̂ . Somewhat confusingly, sb is often referred 
to as the standard error as opposed to the standard deviation. In Chapter 2, we introduced 
the standard deviation as a measure of dispersion (i.e. spread or variability) of a variable. 
For instance, Figure 2.2 plots a histogram for the variable GDP per capita using the 
cross-country data set GDPPC.XLS. In Chapter 2, we argued that the standard deviation 
of GDP per capita was a measure of how much GDP per capita varied across countries. 
We can treat β̂  as a variable in the same way as GDP per capita is a variable. In other 
words, we can calculate its standard deviation and use it as a measure of our uncertainty 
about the accuracy of the estimate. Large values of sb imply a large degree of uncertainty 
– β̂  may be a very inaccurate estimate of β. In contrast, small values of sb imply a small 
degree of uncertainty – β̂ will be an accurate estimate of β.
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In other chapters, we have put mathematical formulae in appendices. However, to 
properly draw out the connections between the formula for the confidence interval and 
the graphical intuition provided in Figures 5.1–5.4, a small amount of mathematics is 
required. We present (but do not derive) the following formula for the standard devia-
tion of β̂ :

s
SSR

N X X
b

i

=
− −∑( ) ( )

.
2 2

This expression, which measures the variability or uncertainty in β̂ , reflects all of the 
issues raised in the context of our discussion of Figures 5.1, 5.2, 5.3 and 5.4.

Looking at the formula for the confidence interval, we can see that the larger sb is, 
the wider the confidence interval is. If we combine this consideration with a careful 
analysis of the components of the formula for sb, we can say that sb and, hence, the width 
of the confidence interval:

•	 vary directly with SSR (i.e. more variable errors or residuals imply less accurate 
estimation);

•	 vary inversely with N (i.e. more data points imply more accurate estimation);
•	 vary inversely with ( )X Xi −∑ 2  (i.e. more variability in X implies more accurate 

estimation).4

We stress that these three factors (i.e. N, SSR and the standard deviation of X), which 
affect the width of the confidence interval, are the same as those discussed above as 
affecting the accuracy of the OLS estimate β̂ .

The third number in the formula for the confidence interval is tb. It is hard to provide 
much intuition about this number without some knowledge of statistics.5 Some infor-
mal intuition for what it means, however, can be obtained from Example 5.1.

Example 5.1:  Election polls

You may have encountered point estimates and something akin to a confidence 
interval in political polls, which are regularly taken in the weeks and months 
before an election. These are usually carried out by staffers telephoning a few 
hundred potential voters and asking them which party they intend to support on 
election day. Suppose Party A is running in the election. The newspaper reports 
that 43% of those surveyed will support Party A. This is the newspaper’s point 
estimate of what voters will do on election day. Of course, in reality the actual 
result on election day will rarely, if ever, be exactly that indicated by the  
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Note that, the more confident you wish to be about your interval, the wider it 
becomes. For instance, 99% confidence intervals will always be wider than 95% confi-
dence intervals. The number tb controls the confidence level. If the level of confidence 
is high (e.g. 99%) tb will be large, while if the level of confidence is low (e.g. 50%) tb 
will be small.

To return to the general statistical theory of regression, we should stress (without 
explanation beyond that given in Example 5.1) the following:

•	 tb decreases with N (i.e. the more data points you have the smaller the confidence 
interval will be).

•	 tb increases with the level of confidence you choose.

Researchers usually present 95% confidence intervals, although other intervals are 
possible (e.g. 99% or 90% confidence intervals are sometimes presented). A useful (but 
formally incorrect) intuition for 95% confidence intervals is conveyed by the following 
statement: “There is a 95% probability that the true value of β lies in the 95% confi-
dence interval.” A correct (but somewhat awkward) interpretation of this statement is: 
“If you repeatedly used (in different data sets) the above formula for calculating confi-

pre-election poll. This discrepancy illustrates a point we stressed earlier in this 
chapter in the context of the regression model: a point estimate (e.g. β̂ ) will rarely, 
if ever, be identical to the true value (e.g. β).

Newspapers typically recognize that their surveys will not be precisely accurate 
and often add statements to their coverage such as: “This result is accurate to 
within +/−2 percentage points.” Although they do not explicitly say it, they are 
getting this result from a confidence interval (usually a 95% confidence interval).6 
An equivalent statement would be: “We are 95% confident that Party A will 
receive between 41% and 45% of the vote on election day.”

This example provides some additional intuition about what confidence inter-
vals are. If you understand this example, you can also see that different confidence 
levels imply different confidence intervals. As a trivial example, consider the 100% 
confidence level. We can be certain that Party A is going to receive between 0% 
and 100% of the vote on election day. A 100% confidence interval for Party A’s 
percentage of the vote would thus be [0,100].

Now consider the other extreme: how confident can we be that Party A is going 
to receive almost precisely 43% of the vote? Probably not very confident for,  
as noted, in reality we rarely find that opinion polls and election day results  
match identically. For this reason, a confidence interval right around 43% (e.g. 
[42.9,43.1]) will have a very low confidence level (perhaps 10%).
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dence intervals, 95% of the confidence intervals constructed would contain the true 
value for β.” Similar statements can be made for 99% or 90% confidence intervals, 
simply by replacing “95%” with the desired confidence level.

The preceding material is intended to provide some intuition and motivation for the 
statistical theory underlying confidence intervals. Even if you do not fully understand 
this material, confidence intervals can be calculated quite easily in most spreadsheets 
and statistical software packages.

Example 5.2:  Confidence intervals for the data sets in Figures 5.1–5.4

Figures 5.1 through 5.4 contained four different data sets, all of which were arti-
ficially generated on the computer with α = 0 and β = 1. Thus, unlike with real 
data, in this case we know the true values of α and β. Remember that the data 
set used in Figure 5.3 has some very desirable properties, i.e. large sample size, 
spread-out values for the explanatory variables, and small errors. These properties 
are missing to varying degrees in the other three data sets. Table 5.1 contains OLS 

point estimates, β̂ , and 90%, 95% and 99% confidence intervals for these four 
data sets.

The following points are worth emphasizing:

•	 Reading across any row, we can see that as the confidence level gets higher the 
confidence interval gets wider. The widest interval is the 99% confidence inter-
val for the data set in Figure 5.4. In this case, if you want to be 99% confident, 
you have to say β could be anywhere between –2.98 and 6.02.

•	 The data set in Figure 5.3 – the one with the most desirable properties of all 
the data sets – yields an OLS estimate of 1.00 which is equal to the true value 
to two decimal places (more precisely, ˆ .β =1 002577 for this data set).

Table 5.1  OLS point estimates and confidence intervals for four data sets.

Data Set β̂
90% confidence

interval
95% confidence

interval
99% confidence

interval

Figure 5.1 0.91 [−0.92, 2.75] [−1.57, 3.39] [−3.64, 5.47]
Figure 5.2 1.04 [0.75, 1.32] [0.70, 1.38] [0.59, 1.49]
Figure 5.3 1.00 [0.99, 1.01] [0.99, 1.02] [0.98, 1.03]
Figure 5.4 1.52 [−1.33, 4.36] [−1.88, 4.91] [−2.98, 6.02]
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Exercise 5.1

The data sets used to calculate Figures 5.1, 5.2, 5.3 and 5.4 are in FIG51.XLS, 
FIG52.XLS, FIG53.XLS and FIG54.XLS.

(a)	 Calculate the OLS estimates α̂  and β̂  for these four data sets. How close are 
they to 0 and 1 (the values we used to artificially simulate the data)?

(b)	 Calculate confidence intervals for α for the four data sets. Examine how the 
width of the confidence interval relates to N and the variability of the errors.

(c)	 Calculate 99% and 90% confidence intervals for the data sets. How do these 
differ from the 95% confidence intervals in part (b)?

Example 5.3a:  The regression of deforestation on population density

Let us go back to our deforestation (Y) and population density (X) data set 
(FOREST.XLS). We saw in Chapter 4 that ˆ .β = 0 000842. In other words, the 
marginal effect of population density on deforestation was 0.000842. A 95% 
confidence interval for this effect is [0.00061,0.001075], indicating (with a great 
deal of certainty) that the marginal effect of population on deforestation is greater 
than 0.00061 and less than 0.001075.

•	 The data set in Figure 5.3 yields confidence intervals which are much narrower 
than those for Figures 5.1, 5.2 and 5.4. This makes sense since we would expect 
the OLS estimate using the data set in Figure 5.3 to be more accurate than the 
other data sets.

•	 The data sets in Figures 5.1, 5.2 and 5.4 yield a variety of results. Figure 5.2 
contains a data set of the sort usually found in a well-designed empirical project 
(rarely does one get a data set as good as Figure 5.3). This data set has mostly 
desirable properties, but the errors are moderately large, reflecting the measure-
ment error and imperfections in the underlying economic theory which so often 
occur in practice. For this representative data set, ˆ .β =1 04 which is not too far 
off the true value of β = 1. With respect to this data set, we can make state-
ments of the form: “the value of β lies in the interval [0.70,1.38] with a 95% 
confidence level” or “we are 99% confident that β lies between 0.59 and 1.49”.
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Example 5.4a:  The regression of lot size on house price

In Chapter 4, we investigated the effect of lot size (X) on the sale price (Y) of a 
house, using data on 546 houses sold in Windsor, Canada (see data set HPRICE.
XLS). Running a regression of Y on X we obtain the following estimated 
relationship:

Y X= +34136 6 59.

or, equivalently, α̂ = 34136 and ˆ .β = 6 59. We can say that the OLS estimate of 
the marginal effect of X on Y is 6.59. This means that our best guess would be 
that increasing lot size by an extra square foot is associated with a $6.59 increase 
in house price.

The 95% confidence interval for β is [5.72,7.47]. This means that, although 
the effect of lot size on house price is estimated at $6.59, we are not certain that 
this figure is exactly correct. However, we are extremely confident (i.e. 95% con-
fident) that the effect of lot size on house price is at least $5.72 and at most $7.47. 
This interval would be enough for a potential buyer or seller to have a good idea 
of the value of lot size.

Exercise 5.2

The file ADVERT.XLS contains data on annual sales (Y) and advertising expendi-
ture (X) (both measured in millions of dollars) for 84 companies in the USA.

(a)	 Run a regression of Y on X and obtain 95% confidence intervals for 
α and β.

(b)	 Write a sentence explaining verbally what the 95% confidence interval for β 
means in terms of the possible range of values that the effect of the explana-
tory variable on the dependent variable may take.

Exercise 5.3

The file ELECTRIC.XLS contains data on the costs of production (Y, measured 
in millions of dollars) and output (X, measured in thousands of kilowatt hours) 
for 123 electricity utility companies in the USA. Repeat Exercise 5.2 for this  
data set.
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Testing whether β = 0

Hypothesis testing is another exercise commonly carried out by the empirical economist. 
As with confidence intervals, we will not go into the statistical theory that underlies 
hypothesis testing. Instead, we focus on the practical details of how to carry out hypoth-
esis tests and interpret the results. Classical hypothesis testing involves specifying a 
hypothesis to test. This is referred to as the null hypothesis, and is labeled as H0. It is 
compared to an alternative hypothesis, labeled H1. A common hypothesis test is whether 
β = 0. Formally, we say that this is a test of H0: β = 0 against H1: β ≠ 0.

Note that, if β =  0 then X does not appear in the regression model; that is, the 
explanatory variable fails to provide any explanatory power whatsoever for the dependent 
variable. If you think of the kinds of questions of interest to economists (e.g. “Does 
education increase an individual’s earning potential?”, “Will a certain advertising strat-
egy increase sales?”, “Will a new government training scheme lower unemployment?”) 
you will see that many are of the form “Does the explanatory variable have an effect on 
the dependent variable?” or “Does β = 0 in the regression of Y on X?”. The purpose of 
the hypothesis test of β = 0 is to answer this question.

The first point worth stressing is that hypothesis testing and confidence intervals are 
closely related. In fact, one way of testing whether β = 0 is to look at the confidence 
interval for β and see whether it contains zero. If it does not then we can, to introduce 
some statistical jargon, “reject the hypothesis that β = 0” or conclude “X has significant 
explanatory power for Y” or “β is significantly different from zero” or “β is statistically 
significant”. If the confidence interval does include zero then we change the word 
“reject” to “accept” and “has significant explanatory power” to “does not have significant 
explanatory power” and so on. This confidence interval approach to hypothesis testing 
is exactly equivalent to the formal approach to hypothesis testing discussed below.

Just as confidence intervals came with various levels of confidence (e.g. 95% is the 
usual choice), hypothesis tests come with various levels of significance. If you use the 
confidence interval approach to hypothesis testing, then the level of significance is 100% 
minus the confidence level. That is, if a 95% confidence interval does not include zero, 
then you may say “I reject the hypothesis that β = 0 at the 5% level of significance” 
(i.e. 100% − 95% = 5%). If you had used a 90% confidence interval (and found it did 
not contain zero) then you would say: “I reject the hypothesis that β = 0 at the 10% 
level of significance.”

The alternative way of carrying out hypothesis testing is to calculate a test statistic. 
In the case of testing whether β = 0, the test statistic is known as a t-statistic (or t-ratio 
or t-stat). It is calculated as:

t
sb

=
ˆ
.

β
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Large values7 of t indicate that β  ≠  0, while small values indicate that β  =  0. 
Mathematical intuition for the preceding sentence is given as: if β̂  is large relative to 
its standard deviation, sb, then we can conclude that β is significantly different from 
zero. The question arises as to what we mean by “large” and “small”. In a formal sta-
tistical sense, the test statistic is large or small relative to a “critical value” taken from 
statistical tables of the “Student-t distribution”. A discussion of how to do this is given 
in Appendix 5.1. Fortunately, we do not have to trouble ourselves with statistical tables 
since most common computer software packages print out something called a P-value 
automatically. The P-value provides a direct measure of whether t is “large” or “small”. 
A useful (but formally incorrect) intuition would be to interpret the P-value as measur-
ing the probability that β = 0. If the P-value is small, β = 0 is unlikely to be true. 
Accordingly, the following strategy is commonly used.

•	 If the P-value is less than 5% (usually written as 0.05 by the computer) then t is 
“large” and we conclude that β ≠ 0.

•	 If the P-value is greater than 5% then t is “small” and we conclude that β = 0.

The preceding test used the 5% level of significance. However, if we were to replace 
the figure 5% in the above expressions with 1% (i.e. we reject β = 0 if the P-value is 
less than 1%) our hypothesis test would be carried out at the 1% level of significance.

As an aside, it is worth noting that we are focusing on the test of β = 0 partly because 
it is an important one, but also because it is the test that is usually printed out by 
computer packages. You can use it without fully understanding the underlying statis-
tics. However, in order to test other hypotheses (e.g. H0: β = 1 or hypotheses involving 
many coefficients, in the multiple regression case in Chapter 6) you would need more 
statistical knowledge than is covered here (see Appendix 5.1 for more details). The 
general structure of a hypothesis test is always of the form outlined above:

1.	 Specify the hypothesis being tested.
2.	 Calculate a test statistic.
3.	 Compare the test statistic to a critical value.

The first of these three steps is typically easy, but the second and third can be much 
harder. In particular, to obtain the test statistic for more complicated hypothesis tests 
will typically require some extra calculations beyond merely running the regression. 
Obtaining the critical value will involve the use of statistical tables. Hence, if you wish 
to do more complicated hypothesis tests you will have to resort to a basic statistics or 
econometrics textbook.

As a practical summary, note that regression techniques provide the following infor-
mation about β:

•	 β̂ , the OLS point estimate, or best guess, of what β is;
•	 the 95% confidence interval, which gives an interval in which we are 95% confident 

that β lies;
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•	 the standard deviation (or standard error) of β̂ , sb, which is a measure of how accurate 
β̂  is;

•	 the test statistic, t, for testing β = 0;
•	 the P-value for testing β = 0.

These five components, (β̂ , the confidence interval, sb, t and the P-value) are usually 
printed out in a row by statistical software packages. In practice, the most important 
are β̂ , the confidence interval and the P-value. You can usually interpret your empirical 
findings without explicit reference to t and sb. Example 5.3b serves to illustrate how 
regression results are presented and can be interpreted.

Example 5.3b:  The regression of deforestation on population density

If we regress deforestation (Y) on population density (X), the output in Table 5.2 
is produced.

The row labeled “Intercept” contains results for α and the row labeled “X variable” 
contains results for β. We focus discussion on this latter row. The column labeled 
“Coefficient” presents the OLS estimate and, as we have seen before, ˆ .β = 0 000842, 
indicating that increasing the population density by one person per hectare is 
associated with an increase in deforestation rates of 0.000842%. The columns 
labeled “Lower 95%” and “Upper 95%” give the lower and upper bounds of the 
95% confidence interval. For this data set, as discussed previously, the 95% con-
fidence interval for β is [0.00061,0.001075]. Thus, we are 95% confident that 
the marginal effect of population density on deforestation is between 0.00061% 
and 0.001075%.

The columns labeled “Standard error” and “t-stat” indicate that sb = 0.000117 
and t = 7.227937. These numbers are not essential to carrying out a hypothesis 
test of β = 0 when the P-value is given. For most purposes, we can ignore these 
two columns.8

The hypothesis test of β = 0 can be done in two equivalent ways. First, we can 
use the 95% confidence interval for β of [0.00061,0.001075]. Since this interval 

Table 5.2  Regression of deforestation on population density.

Coefficient
Standard

error t-stat P-value
Lower
95%

Upper
95%

Intercept 0.599965 0.112318 5.341646 1.15E-06 0.375837 0.824093
X variable 0.000842 0.000117 7.227937 5.5E-10 0.00061 0.001075
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does not contain 0, we can reject the hypothesis that β = 0 at the 5% level of 
significance. In other words, there is strong evidence for the hypothesis that β ≠ 0 
and that population density has significant power in explaining deforestation. 
Second, we can look at the P-value which is 5.5 × 10−10 and much less than 0.05.9 
This means that we can reject the hypothesis that population density has no effect 
on deforestation at the 5% level of significance. In other words, we have strong 
evidence that population density does indeed affect deforestation rates.

Exercise 5.4

Using Table 5.2 (or running a regression yourself using data set FOREST.XLS), 
test the hypothesis that α = 0.

Exercise 5.5

In addition to deforestation rate (Y), data set FOREST.XLS also contains data on 
W, the percentage increase in cropland (labeled “Crop ch”), and Z, the percentage 
change in pasture land (labeled “Pasture Ch”).

(a)	 Run a regression of Y on W and interpret your results. Can you reject the 
hypothesis that expansion of cropland has an effect on deforestation rates?

(b)	 Run a regression of Y on Z and interpret your results. Can you reject the 
hypothesis that expansion of pastureland has an effect on deforestation rates?

Exercise 5.6

Use data sets FIG51.XLS, FIG52.XLS, FIG53.XLS and FIG54.XLS.

(a)	 Test whether β = 0 using the confidence interval approach for each of the four 
data sets.

(b)	 Test whether β = 0 using the P-value approach for each of the four data sets. 
Use the 5% level of significance.

(c)	 Redo parts (a) and (b) for α.
(d)	 Redo parts (a), (b) and (c) using the 1% level of significance.
(e)	 Are your results sensible in light of the discussion in this chapter of the factors 

affecting the accuracy of OLS estimates?
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Example 5.4b:  The regression of lot size on house price

Previously, we found a 95% confidence interval in the regression of Y, house price, 
on X, lot size, to be [5.27,7.47]. Since this interval does not contain zero, we can 
reject the hypothesis that β = 0 at the 5% level of significance. Lot size does indeed 
seem to have a statistically significant effect on house prices.

Alternatively, we see that the P-value is 6.77 × 10−42, which is much less than 
0.05. As before, we can reject the hypothesis that β = 0 at the 5% level of signifi-
cance. Note also that, since, 6.77 × 10−42 is less than 0.01 we can also reject the 
hypothesis that β =  0 at the 1% level of significance. This is strong evidence 
indeed that lot size affects house price.

Exercise 5.7

We have used the file ADVERT.XLS before. Remember that it contains data on 
the sales and advertising expenditure of 84 companies. Set up and run a regression 
using this data and discuss your results verbally as you would in a report. Include 
a discussion of the marginal effect of advertising on sales and a discussion of 
whether this marginal effect is statistically significant.

Hypothesis Testing Involving R2: The F-Statistic

Most computer packages which include regression also print out results for the test of 
the hypothesis H0: R

2 = 0. The definition and interpretation of R2 was given in Chapter 
4. Recall that R2 is a measure of how well the regression line fits the data or, equiva-
lently, of the proportion of the variability in Y that can be explained by X. If R2 = 0 
then X does not have any explanatory power for Y. The test of the hypothesis R2 = 0 
can therefore be interpreted as a test of whether the regression explains anything at all. 
For the case of simple regression, this test is equivalent to a test of β = 0.

In Chapter 6, we discuss the case of multiple regression (where there are many 
explanatory variables), in which case this test will be different. To preview our discus-
sion of the next chapter, note that the test of R2 = 0 will be used as a test of whether 
all of the explanatory variables jointly have any explanatory power for the dependent 
variable. In contrast, the t-statistic test of β = 0 is used to investigate whether a single 
explanatory variable has explanatory power.

The strategy and intuition involved in testing R2 = 0 proceed along the same lines 
as above. That is, the computer software calculates a test statistic which you must then 
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compare to a critical value. Alternatively, a P-value can be calculated which directly 
gives a measure of the plausibility of the null hypothesis R2 = 0 against the alternative 
hypothesis, R2 ≠ 0. Most statistical software packages automatically calculate the P-value 
and, if so, you don’t need to know the precise form of the test statistic or how to use 
statistical tables to obtain a critical value. For completeness, though, we present the 
test statistic, the F-statistic,10 which is calculated as:

F
N R

R
= −

−
( )

( )
.

2

1

2

2

As before, large values of the test statistic indicate R2 ≠ 0 while small values indicate 
R2 = 0. As for the test of β = 0, we use the P-value to decide what is “large” and what 
is “small” (i.e. whether R2 is significantly different from zero or not). The test is per-
formed according to the following strategy:

•	 If the P-value for the F-statistic is less than 5% (i.e. 0.05), we conclude R2 ≠ 0.
•	 If the P-value for the F-statistic is greater than 5% (i.e. 0.05), we conclude R2 = 0.

This strategy provides a statistical test with a 5% level of significance. To carry out 
a test at the 1% level of significance, merely replace 5% (0.05) by 1% (0.01) in the 
preceding sentences. Other levels of significance (e.g. 10%) can be calculated in an 
analogous manner.

Example 5.3c:  The regression of deforestation on population density

In the case of the deforestation and population density data set, F = 52.24308. Is 
this “large”?

If you said “yes”, you are right, since the P-value for the F-statistic is 5.5 × 10−10, 
which is less than 0.05. We can conclude in light of this finding that population 
density does have explanatory power for Y. Formally, we can say that “R2 is sig-
nificantly different from zero at the 5% level” or that “X has statistically signifi-
cant explanatory power for Y” or that “the regression is significant”. Note that 
the P-value for the F-statistic is equal to the P-value in the test of β = 0, stressing 
the equivalence of these two tests in the case of simple regression.

Exercise 5.8

Use data sets FIG51.XLS, FIG52.XLS, FIG53.XLS and FIG54.XLS. Test whether 
R2 = 0 for each of the four data sets. Compare your results with those of Exer
cise 5.6.
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Example 5.5:  Cost of production in the electricity utility industry

We used the file ELECTRIC.XLS in Chapter 4. Recall that it contains data on the 
costs of production (Y) and output (X) in 123 electricity utility companies. If we 
run the regression of Y on X, we obtain the results shown in Table 5.3. Furthermore, 
R2 = 0.916218. The P-value for testing R2 = 0 is 5.36E-67.

It is worthwhile, by way of summary of the material in Chapters 4 and 5, to 
illustrate how the results presented in Table 5.3 might be written up in a formal 
report. A typical report would include presentation of the statistical material in 
a table followed by a verbal summary discussing the economic intuition behind 
the analysis and the statistical findings in the light of this intuition. The report 
might go as follows:

The above table presents results from an OLS regression using the electricity 
industry data set. Since we are interested in investigating how different output 
choices by firms influence their costs of production, we select the cost of produc-
tion as our dependent variable and output as the explanatory variable. The table 
reveals that the estimated coefficient on output is 0.004789 and suggests that 
electricity utility firms with higher levels of output tend to have higher costs of 
production. In particular, increasing output by 1000 kWh tends to increase costs 
by $4789.

It can be observed that the marginal effect of output on costs is strongly  
statistically significant, since the P-value is very small (much smaller, say,  
than 1%). An examination of the 95% confidence interval shows that we can  
be quite confident that increasing output by 1000 kWh is associated with an 
increase in costs of at least $4528 and at most $5049. An examination of  
R2 reinforces the view that output provides a large part of the explanation for 
why costs vary across utilities. In particular, 92% of the variability in costs of 
production across firms can be explained by different output levels. The P-value 
for the F-statistic is much smaller than 1%, indicating significance of R2 at the 
1% level.

Table 5.3  Regression of costs of production on output.

Coefficient
Standard

error t-stat P-value
Lower
95%

Upper
95%

Intercept 2.186583 1.879484 1.163395 0.246958 −1.534354 5.90752
X variable 0.004789 0.000132 36.37623 5.36E-67 0.004528 0.005049
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Chapter Summary

1.	 The accuracy of OLS estimates depends on the number of data points, the 
variability of the explanatory variable and the variability of the errors.

2.	 The confidence interval provides an interval estimate of β (i.e. an interval in 
which you can be confident that β lies). It is calculated in most computer 
software packages.

3.	 The width of the confidence interval depends on the same factors as affect the 
accuracy of OLS estimates. In addition, the width of the confidence interval 
depends on the confidence level (i.e. the degree of confidence you want to have 
in your interval estimate).

4.	 A hypothesis test of whether β  =  0 can be used to find out whether the 
explanatory variable belongs in the regression. The P-value, which is calcu-
lated automatically in most spreadsheet or statistical computer packages, is a 
measure of how plausible the hypothesis is.

5.	 If the P-value for the hypothesis test of whether β = 0 is less than 0.05 then 
you can reject the hypothesis at the 5% level of significance. Hence, you can 
conclude that X does belong in the regression.

6.	 If the P-value for the hypothesis test of whether β = 0 is greater than 0.05 
then you cannot reject the hypothesis at the 5% level of significance. Hence, 
you cannot conclude that X belongs in the regression.

7.	 A hypothesis test of whether R2 = 0 can be used to investigate whether the 
regression helps explain the dependent variable. A P-value for this test is 
calculated automatically in most spreadsheet and statistical computer pack-
ages and can be used in a similar manner to that outlined in points 5 and 6.

Appendix 5.1: Using Statistical Tables to Test 
Whether β = 0

The P-value is all that you need to know in order to test the hypothesis that β = 0. 
Most computer software packages (e.g. Excel, Stata, Gretl or E-views) automatically 
provide P-values. However, if you do not have such a computer package or are reading 
a paper which presents the t-statistic, not the P-value, then it is useful to know how to 
carry out hypothesis testing using statistical tables. Virtually any statistics or econo-
metrics textbook will describe the method in detail and will also provide the necessary 
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statistical table for you to do so. Here we offer only a brief discussion along with a rough 
rule of thumb which is applicable to the case when the sample size, N, is large.

Remember that hypothesis testing involves the comparison of a test statistic to a 
number called a “critical value”. If the test statistic is larger (in absolute value) than 
the critical value, the hypothesis is rejected. Here, the test statistic is the t-stat 
given in the body of the chapter. This must be compared to a critical value taken  
from the Student-t statistical table. It turns out that this critical value is precisely 
what we have called tb in our discussion of confidence intervals. If N is large and you 
are using the 5% level of significance, then tb = 1.96. This suggests the following rule 
of thumb:

If the t-statistic is greater than 1.96 in absolute value (i.e. |t| >  1.96), then reject 
the hypothesis that β = 0 at the 5% level of significance. If the t-statistic is less than 
1.96 in absolute value, then accept the hypothesis that β  =  0 at the 5% level of 
significance.

If the hypothesis that β = 0 is rejected, then we say that “X is significant” or that 
“X provides statistically significant explanatory power for Y”.

This rule of thumb is likely to be quite accurate if sample size is large. Formally,  
the critical value equals 1.96 if the sample size is infinity. However, even moderately 
large sample sizes will yield similar critical values. For instance, if N = 120, the critical 
value is 1.98. If N = 40, it is 2.02. Even the quite small sample size of N = 20 yields 
a critical value of 2.09 which is not that different from 1.96. However, you should be 
careful when using this rule of thumb if N is very small or the t-statistic is very close 
to 2.00. If you look back at the examples included in the body of this chapter you can 
see that the strategy outlined here works quite well. For instance, in Example 5.5, the 
t-statistic for testing whether β = 0 was 36.4, which is much larger than 1.96. Hence 
we concluded that output is a statistically significant explanatory variable for cost of 
production. In this example (and all others), both the P-value and confidence interval 
approaches lead to the same conclusion as the approximate strategy described in this 
appendix.

The previous discussion related to the 5% level of significance. The large sample 
critical value for the 10% level of significance is 1.65. For the 1% level of significance, 
it is 2.58.

By far the most common hypothesis to test for is H0: β = 0. Using the techniques 
outlined in this appendix we can generalize this hypothesis slightly to that of H0: β = c, 
where c is some number that may not be zero (e.g. c = 1). In this case, the test statistic 
changes slightly, but the critical value is exactly the same as for the test of β = 0. In 
particular, the test statistic becomes:

t
c

sb
= −ˆ

.
β
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This will not be produced automatically by a computer package, but it can be cal-
culated quite easily in a spreadsheet or statistical software package. That is, β̂  and sb 
are calculated by the computer and you have to provide c, depending on the hypothesis 
that you are interested in testing. These three numbers can be combined using the 
equation above to give you a value for your test statistic. If this value is greater than 
1.96 in absolute value, you will conclude that β ≠ c at the 5% level of significance. The 
caveats about using this rule of thumb if your sample size is very small apply here.

Endnotes

  1.  As mentioned previously, a good basic statistics book is the one by Wonnacott and Wonnacott 
(1990). Introductory econometrics textbooks include those by Hill, Griffiths and Judge 
(1997) and Koop (2008).

  2.  If you are having trouble grasping this point, draw a straight line with intercept = 0 and 
slope =  1 through Figures 5.2 and 5.3 and then look at some of the resulting residuals 
(constructed as in Figure 4.1). You should see that most of the residuals in Figure 5.2 will 
be much bigger (in absolute value) than those in Figure 5.3. This will result in a larger SSR 
(see the formula in Chapter 4) and, since residuals and errors are very similar things, a bigger 
variance of errors (see the formula for the standard deviation of a variable in the descriptive 
statistics section of Chapter 2 and remember that the variance is just the standard deviation 
squared).

  3.  The notation that “the variable W lies between a and b” or “W is greater than or equal to 
a and less than or equal to b” is expressed mathematically as “W lies in the interval [a,b]”. 
We use this mathematical notation occasionally in this book.

  4.  Note that, as described in Chapter 2, ( )X Xi −∑ 2 is a key component of the standard 

deviation of X. In particular, large values of this expression are associated with large standard 
deviations of X.

  5.  For those with some knowledge of statistics, note that tb is a value taken from statistical 
tables for the Student-t distribution. Appendix 5.1 provides some additional discussion 
about tb.

  6.  The choice of a 95% confidence interval is by far the most common one, and whenever a 
confidence interval is not specified you can assume it is 95%.

  7.  We mean large in an absolute value sense.
  8.  In the examples in this book we never use sb and rarely use t. For future reference, the only 

places we use t are in the Dickey–Fuller and Engle–Granger tests which are discussed in 
Chapters 10 and 11, respectively.

  9.  Note that 5.5E-10 is the way most computer packages write 5.5 × 10−10 which can also be 
written as 0.00000000055.

10.  Formally, the F-statistic is only one in an entire class of test statistics that take their critical 
values from the so-called “F-distribution”. Appendix 12.1 offers some additional discussion 
of this topic.
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Multiple Regression

CHAPTER 6

The discussion of simple regression in Chapter 5 involved two variables: the depend­
ent variable, Y, and the explanatory variable, X. As we discussed at the beginning of 
Chapter 4, most empirical economic questions involve many variables. Multiple regres­
sion extends simple regression to the case where there are many explanatory variables. 
Since it is the most common tool used in applied economics, this chapter is very  
important. Fortunately, most of the intuition and statistical techniques of multiple 
regression are very similar to those of simple regression. The key elements of Chapters 
4 and 5 were:

•	 the development of graphical intuition for regression techniques as the fitting of a 
straight line through an XY-plot;

•	 the introduction of the regression coefficient as measuring a marginal effect;
•	 the description of the ordinary least squares (OLS) estimate as a best fitting line (in 

terms of minimizing the sum of squared residuals) through an XY-plot;
•	 the introduction of R2 as a measure of fit of a regression model;
•	 the introduction of statistical techniques such as confidence intervals and hypothesis 

tests.

With some exceptions (highlighted below) these five elements do not differ for the 
multiple regression model. You should look back at Chapters 4 and 5 if you are having 
difficulty remembering the underlying intuition or statistical aspects of regression. This 
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chapter covers these five elements for the multiple regression case very briefly, sum­
marizing similarities with and differences from the simple regression model. Much of 
the chapter will involve the discussion of an example that illustrates how to interpret 
multiple regression results.

Example 6.1a:  Explaining house prices

Much research in applied microeconomics and marketing focuses on the pricing 
of goods. One common approach involves building a model in which the price of 
a good depends on the characteristics of that good.

Data set HPRICE.XLS contains data on an application of this so-called “hedonic” 
pricing approach to the housing market. We worked with part of this data set in 
previous chapters. Recall that it contains data on N = 546 houses sold in Windsor, 
Canada. Our dependent variable, Y, was the selling price of the house in Canadian 
dollars and our explanatory variable, X, was the lot size.

Of course, the price of a house is affected by more than just lot size. Any serious 
attempt to explain the determinants of house prices must include explanatory 
variables other than the lot size. In this chapter, we focus on the following four 
explanatory variables:

•	 X1 = the lot size of the property (in square feet)
•	 X2 = the number of bedrooms
•	 X3 = the number of bathrooms
•	 X4 = the number of storeys (excluding the basement).

The data set HPRICE.XLS contains other explanatory variables that we will 
use in later chapters and in exercises.

Exercise 6.1

(a)	 Create XY-plots using the four explanatory variables in the house pricing 
example one at a time (i.e. plot Y and X1, then plot Y and X2 and so on).

(b)	 Perform simple regressions using the explanatory variables one at a time (i.e. 
regress Y on X1, then regress Y on X2 and so on).

(c)	 Comment on the relationships you find in parts (a) and (b).
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Regression as a Best Fitting Line

As we saw in Chapter 4, the simple regression model can be thought of as a technique 
aimed at fitting a line through an XY-plot. Since multiple regression implies the exist­
ence of more than two variables (e.g. X1, X2, X3, X4 and Y), we cannot draw an XY-plot 
on a two-dimensional graph, in which one variable is plotted on the vertical axis and 
the other on the horizontal axis. Nevertheless, the same line-fitting intuition holds 
(although this could only be illustrated if we could somehow create high-dimensional 
graphs). For instance, if we have three explanatory variables, we could show how mul­
tiple regression involves fitting a line through a four-dimensional graph, in which Y is 
plotted on one axis, X1 on the second, X2 on the third and X3 on the fourth. The graph 
would be impossible to create (what does a four-dimensional graph look like?).

OLS Estimation of the Multiple Regression Model

The multiple regression model with k explanatory variables is written as:

Y X X X ek k= + + + + +α β β β1 1 2 2 … . 1

Instead of estimating just α and β, we now have α and β1, β2, . . ., βk. However, the 
strategy for finding estimates for all these coefficients is exactly the same as for the 
simple regression model. That is, we define the sum of squared residuals:

SSR Y X Xi i k ki= − − − −∑( ) ,
� �

…
�

α β β1 1
2

where X1i is the ith observation on the first explanatory variable (for i = 1, . . ., N obser­
vations, e.g., the lot size of house i for houses i = 1, . . ., 546). The other explanatory 
variables are defined in an analogous way. The OLS estimates (which can be interpreted 
as providing the best fitting line) are found by choosing the values of 

�α  and 
�
β1, �

β2, . . ., 
�
βk that minimize the SSR. Conceptually, this is a straightforward mathematical 

problem.2 The resulting formulae are complicated and are not listed here3 but statistical 
software packages will calculate these OLS estimates (α̂ , β̂1, . . ., β̂k) automatically.

Statistical Aspects of Multiple Regression

As noted, the statistical aspects of multiple regression are essentially identical to the 
simple regression case (see Chapter 5). In particular, R2 is still a measure of fit and is 
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calculated in the same way. Note, however, that it should be interpreted as a measure 
of the explanatory power of all the explanatory variables together rather than as a 
measure of just the one explanatory variable in the simple regression model. Similarly, 
the F-statistic for testing if R2 = 0 has a slightly different formula (N − 2 is replaced 
by N −  k −1) but is essentially the same and P-values for this test are produced by 
relevant computer software packages. If we find that R2 ≠ 0, then we can say that “the 
explanatory variables in the regression, taken together, help explain the dependent vari­
able”, whereas if we find R2 =  0, we can say that “the explanatory variables are not 
significant and do not provide any explanatory power for the dependent variable.”

The general formulae for calculating confidence intervals for the regression coeffi­
cients and for testing whether they are equal to zero are the same as in Chapter 5. 
However, the actual numbers that comprise the formulae (e.g. sb) are calculated in a 
slightly more complicated way. Nevertheless, the practical intuition remains unchanged. 
In other words, a 95% confidence interval will provide an interval estimate such that 
you can say, “I am 95% confident that my coefficient lies in the 95% confidence inter­
val”. Similarly, most computer software packages will produce P-values for testing the 
hypothesis that each coefficient in the regression equals zero. If the P-value is less than 
0.05, we can conclude that the relevant explanatory variable is significant at the 5% 
level. It is worth stressing that there is now a P-value and a confidence interval associ­
ated with each of the coefficients, β1, . . ., βk rather than just the one β in the simple 
regression model. However, from the point of view of a researcher wishing to interpret 
computer output for use in a report, the statistical aspects of multiple regression are 
essentially the same as for simple regression.4

Interpreting OLS Estimates

It is in the interpretation of OLS estimates that some subtle (and important) distinctions 
exist between the simple and multiple regression cases. This section will provide a few 
ways of thinking about or interpreting coefficients in the multiple regression model. 
Before we begin, it is important to be clear about the notation we will use.

When we speak of a property that holds generally for any of the coefficients we will 
denote the coefficient by βj, (i.e. the coefficient on the jth explanatory variable where j 
could be any number between 1 and k). When we wish to talk about a specific coefficient 
we will give an exact number for j (e.g. β1 has j = 1 and is the coefficient on the first 
explanatory variable).

In the simple regression case, we saw how β could be interpreted as a marginal effect 
(i.e. as a measure of the effect that a change in X has on Y or as a measure of the influ­
ence of X on Y). In multiple regression, βj can still be interpreted as a marginal effect, 
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but in a slightly different way. In particular, βj is the marginal effect of Xj on Y when 
all other explanatory variables are held constant.5 The preceding sentence is of critical 
importance to the correct interpretation of regression results. For this reason, we spend 
some time illustrating precisely what we mean by it, by way of consideration of our 
house price example.

Example 6.1b:  Explaining house prices

Table 6.1 contains results from the regression of sale price (Y) on lot size (X1), 
number of bedrooms (X2), number of bathrooms (X3) and number of storeys (X4). 
The table is in the form that many statistical software packages produce regression 
output.6

The first column lists the explanatory variables. In this example, there are four 
(plus the intercept). Each row contains the same information as in the table for 
the simple regression model (i.e. the OLS estimate of the relevant coefficient fol­
lowed by its standard deviation, t-statistic, P-value for testing whether βj = 0 and 
the lower and upper bounds of the 95% confidence interval for the coefficient). 
As stressed above, each of these statistical results is available for each coefficient 
and they will all be different (e.g. the P-value for testing β1 = 0 is different from 
the P-value for testing β3 = 0).

Using the information in the table, we can write the fitted regression equa­
tion as:

ˆ . . . . . .Y X X X X= − + + + +4009 55 5 43 2824 61 17105 17 7634 901 2 3 4

Table 6.1  Regression of sale price on lot size, number of bedrooms, number of bathrooms 
and number of storeys, R2 = 0.54 and the P-value for testing R2 = 0 is 1.18E-88.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept −4009.5500 3603.109 −1.1128 0.266287 −11087.3 3068.248
X1 5.4291737 0.369250 14.70325 2.05E-41 4.703835 6.154513
X2 2824.61379 1214.808 2.325153 0.020433 438.2961 5210.931
X3 17105.1745 1734.434 9.862107 3.29E-21 13698.12 20512.22
X4 7634.897 1007.974 7.574494 1.57E-13 5654.874 9614.92
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Consider the coefficient for the first explanatory variable, lot size. It can be seen 
that ˆ .β1 5 43= . Below are some (very similar) ways of verbally stating what this 
value means:

•	 An extra square foot of lot size will tend to add another $5.43 to the price of 
a house, ceteris paribus.

•	 If we consider houses with the same number of bedrooms, bathrooms and 
storeys, an extra square foot of lot size will tend to add another $5.43 to the 
price of the house.

•	 If we compare houses with the same number of bedrooms, bathrooms and 
storeys, those with larger lots tend to be worth more. In particular, an extra 
square foot of lot size is associated with an increased price of $5.43.

It is worth expanding on the motivation for the latter two expressions. We cannot 
simply say that “houses with bigger lots are worth more” since this is not the  
case (e.g. some nice houses on small lots will be worth more than poor houses  
on large lots). However, we can say that “if we consider houses that vary in lot 
size, but are comparable in other respects, those with larger lots tend to be worth 
more”. The two expressions above explicitly incorporate the qualification “but are 
comparable in other respects”. We did not have to include this qualification in 
Chapter 4.

Alternatively, let us consider β̂2 (the coefficient on the number of bedrooms), 
which is 2842.61. This might be expressed as:

•	 Houses with an extra bedroom tend to be worth $2842.61 more than those 
without the extra bedroom, ceteris paribus.

•	 If we consider comparable houses (e.g. those with a 5000 square foot lot, two 
bathrooms and two storeys), those with three bedrooms tend to be worth 
$2842.61 more than those with two bedrooms.

There are many ways to express the interpretation of these coefficients. However, 
the general point we wish to make is as follows: in the case of simple regression, 
we say that “β measures the influence of X on Y”; in the case of multiple regres­
sion, we say that “βj measures the influence of Xj on Y, all other explanatory vari­
ables being equal”. The expressions above are just different ways of verbally saying 
“all other explanatory variables being equal”.

The coefficients on the other explanatory variables can be interpreted in analo­
gous ways. For instance, ˆ .β3 17105 174= . In words, we might say that “houses 
with an extra bathroom tend to be worth $17 105.17 more, ceteris paribus”. Since 
ˆ .β4 7634 897= , we might say “if we compare houses that are similar in all other 

respects, those with an extra storey tend to be worth $7634.90 more”.
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Pitfalls of Using Simple Regression in a Multiple 
Regression Context

To emphasize the difference between simple and multiple regression, we will run a 
simple regression of sales price (Y) on number of bedrooms (X2). Table 6.2 contains the 
results from this regression.

Since ˆ .β =13269 98  in this simple regression, we are able to make statements of the 
kind: “the marginal effect of the number of bedrooms on house prices is $13 269.98” 
or “houses with an extra bedroom tend to cost $13 269.98 more.” You should contrast 
this statement with the statement about β̂2  in Example 6.1b. For the simple regression, 
we have left out the ceteris paribus conditions that are implicit in the part of the sentence 
“if we consider comparable houses”. Note that the coefficient on the number of bed­
rooms in the simple regression is much higher than for the multiple regression. Why 

Remember that, in a discussion of the statistical properties of the regression 
coefficients, the confidence interval and the P-value are the most important 
numbers. They can be interpreted in the same way as for the simple regression. 
For instance, since the P-values for all of the explanatory variables (except the 
intercept) are less than 0.05 we can say that “the coefficients β1, β2, β3 and β4 are 
statistically significant at the 5% level” or, equivalently, that “we can reject the 
four separate hypotheses that any of the coefficients is zero at the 5% level of 
significance”.

By way of another example, let us consider the 95% confidence interval for β2, 
which is [438.2761,5210.931]. This information might be presented verbally as, 
“although our point estimate indicates that the marginal effect of number of 
bedrooms on house prices (holding other explanatory variables constant) is 
$2842.61, this estimate is imprecise. The 95% confidence interval indicates  
that we can only be confident that this marginal effect lies somewhere between 
$438.28 and $5210.93”. Alternatively, as the confidence interval for β4 is 
[5654.874,9614.92], we can say that “we are 95% confident that the marginal 
effect of the number of storeys on house price (holding other explanatory variables 
constant) lies between $5654.87 and $9614.92.”

The hypothesis test of whether R2 = 0 yields a P-value of much less than 5%, 
indicating that X1, X2, X3 and X4 have statistically significant explanatory power 
for the dependent variable. In fact, the value R2 implies that variations in lot size 
and the number of bedrooms, bathrooms and storeys account for 54% of the vari­
ability in house prices.
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is this the case? To answer this question, first imagine that a friend in Windsor wanted 
to build an extra bedroom in her house and asked you, the economist, how much that 
extra bedroom would add to the value of the house. How would you answer?

The simple regression here contains data only on house price and number of bed­
rooms. You can think of it as observing all the houses in the sample and concluding 
that those with more bedrooms tend to be more expensive (e.g. those with three bed­
rooms tend to be worth $13 269.98 more than those with two bedrooms).

However, this does not necessarily mean that adding an extra bedroom to the house 
will raise its price by $13 269.98. The reason is that there are many factors other than 
the number of bedrooms that potentially influence house prices. Furthermore, these 
factors may be highly correlated (in practice, bigger houses tend to have more bedrooms, 
more bathrooms, more storeys and a larger lot size). To investigate the possibility, let 
us first examine the correlation matrix (see Chapter 3) of all the variables in this example, 
shown in Table 6.3.

Table 6.3  Correlation matrix for the house price variables.

Sale price Lot size No. bedrooms No. bathrooms No. storeys

Sale price 1
Lot size 0.535795 1
No. bedrooms 0.366447 0.151851 1
No. bathrooms 0.516719 0.193833 0.373768 1
No. storeys 0.421190 0.083674 0.407973 0.324065 1

Table 6.2  Regression of sale price on number of bedrooms.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 28 773.4327 4413.753 6.519 1.6E-10 20 103.34 37 443.53
X2 13 269.9801 1444.598 9.186 8.5E-19 10 432.30 16 107.66

Since all the elements of the correlation matrix are positive, it follows that each pair 
of variables is positively correlated (e.g. the correlation between the number of bath­
rooms and the number of bedrooms is 0.37, indicating that houses with more bathrooms 
also tend to have more bedrooms). In cases like this, simple regression cannot disentan­
gle the influences of the individual variables on house prices. So when the simple regres­
sion method examines all the houses and notes that those with more bedrooms cost 
more, this does not necessarily mean that bedrooms directly add value to the house. 
Buyers may value bathrooms or lot size over bedrooms. In other words, houses with 
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more bathrooms may be worth more but houses with more bathrooms also have more 
bedrooms. The simple regression model simply looks at house price and number of 
bedrooms and sees that those with more bedrooms tend to be worth more. What it does 
not realize is that it is really the number of bathrooms that people value. Thus, if you 
advise your friend that an extra bedroom is worth $13 269.98, you may be seriously 
misleading her. In essence, in the simple regression model, we leave out important 
explanatory variables such as lot size, the number of bathrooms and the number of 
storeys. The regression combines the contribution of all these factors and allocates it to 
the only explanatory variable it can: bedrooms. Hence β̂  is very big.7

In contrast, multiple regression allows us to disentangle the individual contributions 
of the four explanatory variables assumed to affect house prices. The figure of 
ˆ $ .β2 2842 61=  comes closer to being a genuine measure of the effect of adding an extra 

bedroom.8 By presenting this figure to your friend, you can be confident that you are 
not making the error above. That is, you can be sure that it is more likely to be the 
bedroom that is adding the value and that you are not confounding the contributions 
of the various explanatory variables.

Omitted Variables Bias

The problems discussed in the previous section relate to a statistical issue called omitted 
variables bias. We will not develop the statistical theory necessary to formally explain 
what this means. Informally, however, we can say that if we omit explanatory variables 
that should be present in the regression and if these omitted variables are correlated 
with explanatory variables that are included, then the coefficients on the included vari­
ables will be wrong. In Table 6.2, the simple regression of sales price on number of 
bedrooms omitted many variables that are important for explaining house prices (e.g. 
lot size and number of bathrooms). These omitted variables are also correlated with 
number of bedrooms. Hence the simple regression estimate ˆ .β =13269 98 is unreliable 
due to omitted variables bias.

The intuition behind why the omission of variables causes bias is provided in the 
previous section. For instance, lot size is an important explanatory variable for house 
prices and thus “wants to” enter into the regression. If we omit it from the regression, 
it will try to enter in the only way it can – through its positive correlation with the 
explanatory variable number of bedrooms. In other words, the coefficient on number of 
bedrooms will combine the effect of bedrooms and lot size on house prices.

One practical consequence of the omitted variables bias is that you should try to 
include all explanatory variables that could affect the dependent variable. Unfortunately, 
in practice, this is rarely possible. House prices, for instance, depend on many more 
explanatory variables than those found in the data set HPRICE.XLS (e.g. the state of 
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repair of the house, how pleasant the neighbors are, the amount of storage space, whether 
the house has hardwood floors, the quality of the garden and so on). In practice, there 
are too many variables on which to collect data, and many will be subjective (e.g. how 
do you measure “pleasantness of the neighbors”?). You will virtually always have omitted 
variables and there is little that can be done about it – other than to hope that the 
omitted variables do not have much explanatory power and that they are not correlated 
with the explanatory variables included in the analysis.

The previous paragraphs provide a justification for working with as many explanatory 
variables as possible. However, there is a counter argument to be made for using as few 
explanatory variables as possible. It can be shown that the inclusion of irrelevant vari­
ables decreases the accuracy of the estimation of all the coefficients (even the ones that 
are not irrelevant). This decrease in accuracy will be reflected in overly large confidence 
intervals and P-values.

How should we trade off the benefits of including many variables (i.e. reducing the 
risk of omitted variables bias) with the costs of including irrelevant variables (i.e. reduc­
ing the accuracy of estimation)? A common practice is to begin with as many explana­
tory variables as possible, then discard those that are not statistically significant (and 
re-run the regression with the new set of explanatory variables). Statistical significance 
of an individual explanatory variable can, of course, be assessed using the P-values pro­
duced by a computer package. Once you have discarded the insignificant explanatory 
variables, you can run a new regression involving fewer explanatory variables, in which 
the risk of including irrelevant variables is greatly reduced.

Exercise 6.2

Using data set HPRICE.XLS, let house price be the dependent variable (Y) and 
consider the following potential explanatory variables:

•	 X1 = the lot size of the property (in square feet)
•	 X2 = the number of bedrooms
•	 X3 = the number of bathrooms
•	 X4 = the number of storeys (excluding the basement).

(a)	 Regress Y on X1, X2, X3 and X4 (i.e. recreate Table 6.1) and discuss your 
results.

(b)	 Regress Y on various subsets of X1, X2, X3 and X4 and discuss your results.
(c)	 Comparing your results for parts (a) and (b), examine the effect of omitting 

explanatory variables.
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Multicollinearity

Multicollinearity is a statistical issue that relates to the previous discussion. It is a 
problem that arises if some or all of the explanatory variables are highly correlated with 
one another. If multicollinearity is present, the regression model has difficulty telling 
which explanatory variables are influencing the dependent variables. A multicollinearity 
problem reveals itself through low t-statistics and, therefore, high P-values. In these 
cases, you may conclude that coefficients are insignificant and hence should be dropped 
from the regression. In an extreme case, it is possible for you to find that all the coef­
ficients are insignificant using t-statistics, while R2 is quite large and significant. 
Intuitively, this means that the explanatory variables together provide a great deal of 
explanatory power, but that multicollinearity makes it impossible for the regression to 
decide which particular explanatory variables provide the explanation.

There is not too much that can be done to correct this problem other than to drop 
some of the highly correlated variables from the regression. However, there are many 
cases when you would not want to do so. For instance, in our house price example, if 
the number of bedrooms and the number of bathrooms had been found to be highly 
correlated, multicollinearity would be a problem. But you may hesitate to throw out 
one of these variables since common sense indicates that both of them influence housing 
prices. Examples 6.2 and 6.3 illustrate the multicollinearity problem and how to correct 
for it by omitting an explanatory variable.

Example 6.2:  The effect of interest rates on the exchange rate9

Suppose you want to examine the effect of interest rate policy on the exchange 
rate. One way to would be to select an exchange rate (e.g. the pound–dollar 
exchange rate) as the dependent variable and run a regression of it on the interest 
rate. But there are many possible interest rates that could be used as explanatory 
variables (e.g. the bank prime rate or the Treasury bill rate). These interest  
rates are very similar to one another and will be highly correlated. If you  
include more than one of them, you are likely to run into a multicollinearity 
problem. The solution to this problem is clear: include only one of the interest 
rates. Since the various interest rates are essentially measures of the same phenom­
enon, common sense says that throwing out all but one of the interest rate variables 
will not cause any loss in explanatory power and will address the multicollinearity 
problem.
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Example 6.3:  Multicollinearity illustrated using artificial data

To illustrate the multicollinearity problem and how to address it, we first artifi­
cially generate N = 50 data points from the regression model:

Y X X e= + +0 5 21 2. .

We expect OLS estimates to be roughly α̂ = 0, ˆ .β1 0 5=  and β̂2 2=  since these 
values were used to create the data. However, the data generated have a correlation 
between X1 and X2 that is extremely high. In fact, it equals 0.98, indicating 
that multicollinearity could be a problem. Table 6.4 gives regression results using 
this data.

These results are very different from those we had hoped to get. The OLS point 
estimates are very different from those used to generate the data. For instance, 
ˆ .β1 2 08=  even though β1 = 0.5 was used to generate the data. In fact, the OLS 
estimate for β1 is almost exactly the same as the true value for β2! This result 
illustrates how OLS estimates can get confused about the role played by individual 
explanatory variables when they are highly correlated.

Note also that one of the explanatory variables is not statistically significant  
at the 5% level and that the other is only marginally significant. Furthermore, 
the 95% confidence intervals for all coefficients are very large. These results 
suggest that the explanatory variables have only weak explanatory power. In con­
trast, the R2 is very large and strongly statistically significant, suggesting that the 
explanatory variables have excellent explanatory power.

Given the problem of multicollinearity, many econometricians would advocate 
omitting X2 from the regression. If we follow their advice and rerun the regres­
sion, we obtain Table 6.5.

Note that these results look much better from a statistical point of view. β1 is 
strongly statistically significant and the confidence interval indicates it is estimated 

Table 6.4  Regression results for generated data (R2 = 0.76 and the P-value for testing 
if R2 = 0 is 1.87E-15).

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 0.166191 0.1025278 1.57859 0.121137 −0.045601 0.377983
X1 2.083733 0.952938 2.18664 0.033782 0.16667 4.00080
X2 0.147775 0.965767 0.153013 0.879043 −1.7951 2.09065
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Exercise 6.3

Use data set FOREST.XLS with deforestation (Y), population density (X1), % 
change in cropland (X2) and % change in pasture land (X3). Carry out a multiple 
regression analysis of this data set addressing the issues raised in this chapter. For 
instance, you may want to:

quite precisely. So, in one sense, omitting X2 has solved the multicollinearity 
problem. The only problem is that β̂1 is nowhere near its true value of 0.5 (and 
the confidence interval does not contain 0.5). What is happening is that, since X2 
is omitted from the model, X1 attempts to take its place. Since X1 is so highly 
correlated with X2, the former can proxy for the latter quite well. Hence β̂1 
combines the effects of both explanatory variables. In other words, just as omitting 
important explanatory variables in the house price example gave us a biased view 
of the effect of bedrooms on house prices, omitting X2 here gives us a biased view 
of the effect of X1 on Y. There is nothing you can really do about this other than 
to note that it may occur if multicollinearity is present and interpret your results 
with caution.

Note that, multicollinearity involves correlations between explanatory varia­
bles, not between explanatory variables and the dependent variable. A high cor­
relation between an explanatory variable and a dependent variable is a good thing, 
indicating that the explanatory variable has a lot of explanatory power for the 
dependent variable.

For multicollinearity to be a problem, the correlations between explanatory 
variables must be extremely high. If we return to the house pricing example, we 
can see from Table 6.3 that the explanatory variables are moderately correlated 
with one another (e.g. some correlations are around 0.3 or 0.4). But this moderate 
correlation does not lead to a multicollinearity problem since all the coefficients 
are significantly different from zero (see the P-values in Table 6.1).

Table 6.5  Regression results for part of generated data (R2 = 0.76 and the P-value for testing if 
R2 = 0 is 1.2E-16).

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 0.166715 0.104146 1.60078 0.115989 −0.042685 0.376115
X1 2.22690 0.178806 12.4543 1.2E-16 1.86739 2.58641
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Example 6.4:  The cost of production in the electricity utility industry

The ability to interpret multiple regression results is probably the most important 
skill that the applied economist can develop. Below we offer another example, 
with results written as they might be in a brief report.

Microeconomic theory tells us that the cost of production of a firm depends  
on the prices of the inputs used in the production process as well as the amount 
of output produced. Thus, in an investigation of the costs of productions, costs 
should be the dependent variable, and output and input prices should be explana­
tory variables. We use data from file ELECTRIC.XLS on these variables for 123 
electric utility companies in the USA in 1970. Specifically, the data measures:

•	 Y = costs of production (measured in millions of dollars per year)
•	 X1 = output (measured in thousands of kWh per year)
•	 X2 = price of labor (measured in dollars per worker per year)
•	 X3 = price of capital (measured in dollars per unit of capital per year)
•	 X4 = price of fuel (measured in dollars per million BTUs).

Results from the regression involving these variables are given in Table 6.6.

Table 6.6  Regression results for electricity utility industry variables (R2 = 0.94 
and the P-value for testing if R2 = 0 is 9.73E-73).

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept −70.49511 12.69501 −5.55298 1.76E-07 −95.6347 −45.3556
X1 0.00474 0.00011 43.22597 3.41E-74 0.004514 0.004948
X2 0.00363 0.00106 3.43660 0.000814 0.001537 0.005717
X3 0.28008 0.12949 2.16301 0.032557 0.023663 0.536503
X4 0.78346 0.16579 4.72566 6.39E-06 0.455154 1.11177

(a)	 Regress Y on X1, X2 and X3 and verbally interpret the coefficient estimates 
you obtain.

(b)	 Discuss the statistical significance of the coefficients. Are there explanatory 
variables that can be dropped?

(c)	 Discuss the fit of the regression.
(d)	 Calculate a correlation matrix. Through consideration of it and the regression 

results, discuss the issue of multicollinearity.
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Note that the coefficients all have the expected sign: increasing the output or 
prices of any of the inputs tends to increase costs. The magnitudes of the coeffi­
cients are also reasonable. Hence:

•	 Increasing output by 1000 kWh tends to increase costs by $4740, ceteris paribus. 
We are 95% confident that this marginal effect is at least $4514 and at most 
$4948.

•	 Increasing the annual salary of an average worker by $1 tends to increase costs 
by $3630 per year, ceteris paribus. We are 95% confident that this marginal effect 
is at least $1537 and at most $5717. This indicates a fair degree of uncertainty, 
despite the fact that this coefficient is strongly significant (the P-value is less 
than 0.01).

•	 Increasing the price of capital by $1 per unit tends to increase costs by $280 080 
per year, ceteris paribus. The 95% confidence interval for this coefficient is also 
quite wide.

•	 Increasing the price of fuel by $1 per million BTUs tends to increase costs by 
$783 460 per year, ceteris paribus.

Since R2 = 0.94, the explanatory variables jointly account for 94% of the vari­
ability in costs. This is a very high number and is strongly statistically significant. 
The fact that we are explaining the dependent variable almost perfectly indicates 
that it is unlikely that any important explanatory variables have been omitted.  
If we look at the coefficients individually, we can see that the P-values are all 
statistically significant at the 5% level. The correlation matrix in Table 6.7 shows 
that the explanatory variables are not strongly correlated with one another. The 
maximum correlation is the one between the price of labor and the price of fuel 
and it is only 0.32. Other correlations are much smaller, indicating that multicol­
linearity is not a problem.

A possible exception to the generally strong statistically significant results in 
Table 6.6 involves X3, the price of capital. The coefficient on this variable has a 
slightly broader confidence interval and the P-value for testing the hypothesis that 

Table 6.7  Correlation matrix for the electricity utility industry variables.

Output Price of labor Price of capital Price of fuel

Output 1
Price of labor 0.056399 1
Price of capital 0.021481 −0.078686 1
Price of fuel 0.053507 0.318349 0.155224 1
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β3 = 0 is a little over 3%. This means that we cannot reject the hypothesis that 
β3 = 0 at the 1% level of significance. In practice, you are unlikely to use the 1% 
level of significance (5% is more common). However, for the sake of the present 
illustration, let us assume that you do. In this case, you would conclude that β3 
was not statistically significant and omit the price of capital as an explanatory 
variable. If you were to do so and then rerun the regression excluding X3, you 
would obtain Table 6.8.10

Table 6.8 is presented merely to illustrate a common statistical strategy (i.e. 
drop explanatory variables which are insignificant and rerun the regression). Since 
omitting X3 does not change the results very much, we do not repeat the discus­
sion about interpreting the results.

Chapter Summary

1.	 The multiple regression model is very similar to the simple regression model. 
This chapter emphasizes differences between the two.

2.	 The interpretation of regression coefficients is subject to ceteris paribus condi­
tions: βj measures the marginal effect of Xj on Y, holding the other explana­
tory variables constant.

3.	 If important explanatory variables are omitted from the regression the esti­
mated coefficients can be misleading, a condition known as “omitted variables 
bias”. The problem gets worse if the omitted variables are strongly correlated 
with the included explanatory variables.

4.	 If the explanatory variables are highly correlated with one another, coefficient 
estimates and statistical tests may be misleading. This is referred to as the 
“multicollinearity” problem.

Table 6.8  Regression results for electricity utility industry variables omitting the price of 
capital (R2 = 0.94 and the P-value for testing if R2 = 0 is 3.5E-73).

Coefficient Standard error t-stat P-value Lower 99% Upper 99%

Intercept −49.75804 8.449311 −5.88900 3.68E-08 −71.8765 −27.6396
X1 0.004736 0.000111 42.6218 6.4E-74 0.004445 0.005027
X2 0.003313 0.0001061 3.12145 0.002259 0.000535 0.006091
X4 0.851586 0.165266 5.15282 1.03E-06 0.418956 1.284216
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Appendix 6.1: Mathematical Interpretation of 
Regression Coefficients

Readers who know some calculus can use this knowledge to obtain a mathematical 
intuition of the difference between simple and multiple regression. In the case of the 
simple regression model, basic calculus can be used to derive the relationship:

dY

dX
= β.

That is, the regression coefficient, β, can be interpreted as a measure of how much Y 
changes when X is changed a small amount. This is a total derivative.

In the case of the multiple regression model, we can say:

∂
∂

βY

Xj
j= .

In other words, the coefficients are partial derivatives rather than total derivatives. This 
partial derivative can be interpreted as measuring the effect of a small change in Xj on 
Y, treating all the other explanatory variables as though they are constant.

Endnotes

  1.  Formally, we should put an i subscript on all the variables to indicate each observation. In 
other words, we should have written: Yi = α + β1X1i + β2X2i + . . . + βkXki + ei. However, 
adding so many subscripts is messy and makes the equation hard to read. So here, and 
throughout this book, we often drop the i subscript (and the t subscript with time series 
data) unless it is important to specify the individual observations.

  2.  Readers familiar with calculus should note that we can find OLS estimates in the multiple 
regression model using standard methods for finding the minimum of a function. That is, 

we can take first derivatives with respect to α and 
�
β1, 
�
β2, . . ., 

�
βk , set these derivatives to 

zero, and then solve.
  3.  Matrix algebra is essential for theoretical derivations or proofs involving the multiple regres­

sion model, since the formulae can be extremely complex without it. Matrix algebra is 
beyond the scope of this book, but if you do further study in econometrics you will come 
to see the value of its use.

  4.  With regards to hypothesis testing, the methods described for one explanatory variable in 
Appendix 5.1 also apply to the case of many explanatory variables. That is, each coefficient 
will have a t-statistic that can be compared to the critical value of 1.96 if the sample size 
is large. In cases where there are many explanatory variables you might also want to test 
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complicated hypotheses involving several coefficients (e.g. H0: β1 + β2 = β3). These tests are 
more difficult to carry out than those covered here. However, you may wish to consult 
Appendix 12.1, which has some discussion of hypothesis testing in such cases.

  5.  The Latin phrase for this concept is ceteris paribus, a commonly used phrase in economics.
  6.  Note that in Table 6.1, as elsewhere, we write numbers as the computer produces them. 

That is, we include as many decimal places as possible and use the E notation for exponents. 
In a report, you would probably want to use only a few decimal places and replace the E 
notation, for example, 1.57E-13 would become 1.57 × 10−13.

  7.  If you find this reasoning confusing, think back to Chapter 3. There we considered  
an example involving the variables cigarette smoking, alcohol drinking and lung cancer. 
We pointed out that scientific studies indicate that smoking causes lung cancer. How­
ever, smokers also tend to drink more alcohol than non-smokers. Hence, the correlation 
between drinking and lung cancer is positive even though drinking does not cause  
lung cancer. This type of issue is exactly the sort we are getting at in this example.  
That is, a simple regression involving only the lung cancer and drinking variables would 
indicate that the effect of drinking on lung cancer is large, even though drinking does  
not cause lung cancer. Why does this occur? Because we have left out the smoking  
variable which is an important explanatory variable for lung cancer. The omitted explanatory 
variable is correlated with the explanatory variable used in the simple regression (i.e. 
drinking).

  8.  Even this multiple regression, however, is likely to omit some important explanatory 
variables.

  9.  We do not give a numerical example here since interest rates and exchange rates are time 
series data. As we shall see in future chapters, a naive use of multiple regression techniques 
with time series data can yield misleading results.

10.  Note that, since we are using the 1% level of significance, the table now has a 99% confi­
dence interval.



Regression with Dummy Variables

CHAPTER 7

Previous chapters have used quantitative data to demonstrate important statistical con­
cepts. However, much of the data economists use is qualitative. See Chapter 2 for a 
discussion of the distinction between qualitative and quantitative data. Dummy vari­
ables, briefly described in Chapter 2, are a way of turning qualitative variables into 
quantitative variables. This chapter is concerned with dummy explanatory variables; if 
a dependent variable is a dummy, the techniques covered in Chapter 8 should be used.

Once qualitative explanatory variables have been transformed into dummy variables, 
regression can be carried out in the standard way and all the theory and intuition devel­
oped in previous chapters can be used.

Why, then, are we allocating an entire chapter to this topic? There are two answers 
to this question. First, regression with dummy explanatory variables is extremely common 
and the interpretation of coefficient estimates is somewhat different. For this reason it 
is worthwhile to discuss the interpretation in detail. Secondly, regression with dummy 
explanatory variables is closely related to another set of techniques called “analysis of 
variance” (ANOVA). ANOVA is rarely used in economics but is an extremely common 
tool in other social and physical sciences such as sociology, education, medical statistics 
and epidemiology.

While most spreadsheets and statistical software packages have ANOVA capabili­
ties, the terminology of ANOVA is quite different from that used by economists, so 
ANOVA may seem confusing and unfamiliar to you. What we note here, however, is 
that regression with dummy explanatory variables can do anything ANOVA can. In 
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fact, regression with dummy variables is a more general and more powerful tool than 
ANOVA.

Formally, a dummy variable is a variable that can take on only two values: 0 or 1. 
Example 7.1 shows how this might apply in the context of the variables that affect 
house prices.

Example 7.1a:  Explaining house prices

In Chapter 6, we worked through an extended example that investigated the 
factors influencing housing prices in Windsor, Canada. Recall that the explanatory 
variables were all quantitative (e.g. lot size of property measured in square feet 
and the number of bathrooms). However, other factors that might influence hous­
ing prices are not directly quantitative. Examples include the presence of a drive­
way, air conditioning, a recreation room, a basement or gas central heating. All 
these variables are Yes/No qualitative variables (e.g. “Yes” means the house has a 
driveway and “No” means the house does not have a driveway).

In order to carry out a regression analysis using these explanatory variables, we 
first need to transform them into dummy variables by changing the Yes and No 
values into 1 and 0. Using the letter D to indicate dummy explanatory variables, 
we can define:

•	 D1 = 1 if the house has a driveway (and 0 if it does not);
•	 D2 = 1 if the house has a recreation room (and 0 if not);
•	 D3 = 1 if the house has a basement (and 0 if not);
•	 D4 = 1 if the house has gas central heating (and 0 if not);
•	 D5 = 1 if the house has air conditioning (and 0 if not).

For instance, a house with a driveway, a basement and gas central heating but no 
air conditioning or recreation room would have values for these variables of D1 = 1, 
D2 = 0, D3 = 1, D4 = 1 and D5 = 0. These variables (and several others) are in the 
HPRICE.XLS data set.

Exercise 7.1

Using the data set HPRICE.XLS, calculate and interpret descriptive statistics and 
a correlation matrix for the five dummy variables listed in Example 7.1. How can 
you interpret the mean of a dummy variable?
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Example 7.1b:  Explaining house prices

Table 7.1 gives computer output from a regression of house prices (Y) on the air-
conditioning dummy variable (D) using data from HPRICE.XLS.

Table 7.1  Regression of house price on air-conditioning dummy variable.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 59884.85 1233.50 48.55 7.1E-200 57461.84 62307.86
D 25995.74 2191.36 11.86 4.9E-29 21691.18 30300.32

Note that an examination of the P-value or the confidence interval shows us 
that β is strongly significant. Furthermore, α̂ = 59 885 and β̂ = 25996. How can 
we interpret these numbers? We can use the same marginal effect intuition as we 
used in Chapter 4. That is, we can say that β is a measure of how much Y tends 
to change when X is changed by one unit. With the dummy explanatory variable, 
a one-unit change implies a change from “no air conditioner” to “having an air 
conditioner”. That is, we can say “houses with air conditioning tend to be worth 
$25 996 more than houses without air conditioning.”

Simple Regression with a Dummy Variable

We begin by considering a regression model with one dummy explanatory variable, D:

Y D e= + +α β .

If we carry out ordinary least squares (OLS) estimation of the above regression model, 
we obtain α̂  and β̂. We can look at confidence intervals for α or β; examine P-values 
to test whether the coefficients are statistically significant; calculate R2; perform an F-
test for the significance of the regression; and so on, exactly as before. Refer back to 
Chapters 4, 5 and 6 if you are still unfamiliar with any of this material. What is new 
is the interpretation of the coefficients, a topic to which we now turn.

The straight-line relationship between Y and D gives a fitted value for the ith obser­
vation of:

ˆ ˆ ˆ .Y Di i= +α β

Note, since Di is either 0 or 1, ˆ ˆYi = α  or ˆ ˆ ˆYi = +α β . Example 7.2 illustrates how 
this fact can be used to interpret regression results.
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However, there is another, closely related, way of thinking about regression 
results when the explanatory variable is a dummy. In the case of houses without 
air conditioning Di =  0 and hence Ŷi = 59 885. In other words, our regression 
model finds that houses without air conditioning are worth on average $59 885. 
In the case of houses with air conditioning, Di = 1 and the regression model finds 
that ˆ ˆ ˆYi = + =α β 85881. Thus, houses with air conditioning are worth on average 
$85 881. This is one attractive way of presenting the information provided by the 
regression.

To provide more intuition, note that if we had not carried out a regression, but 
simply calculated the average price for houses with air conditioning, we would 
have found this figure to be $85 881. If we had then calculated the average price 
for houses without air conditioning, we would have found them to be worth 
$59 885. That is, we would have found exactly the same results as in the regres­
sion analysis.

Remember, however, the discussion of the omitted variables bias in Chapter 6. 
The simple regression in this example omits many important explanatory varia­
bles. We definitely cannot use the results of this simple regression to make state­
ments like “adding air conditioning to your house will raise its value by $25 996”. 
Since air conditioning costs a few hundred (or at most a few thousand) dollars, 
the previous statement is clearly ridiculous.

Multiple Regression with Dummy Variables

Now, consider the multiple regression model with several dummy explanatory 
variables:

Y D D ek k= + + + +α β β1 1 … .

OLS estimation of this regression model and statistical analysis of the results can be 
carried out in the standard way. To learn about interpretation of these results, we return 
to the house-pricing example.

Example 7.1c:  Explaining house prices

Consider the case where we have two dummy explanatory variables, D1 = 1 if the 
house has a driveway (0 if not) and D2 = 1 if the house has a recreation room (0 
if not). These dummy variables can be used to classify the houses in the data set 
into four groups:
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•	 houses with a driveway and recreation room (D1 = 1 and D2 = 1);
•	 houses with a driveway but no recreation room (D1 = 1 and D2 = 0);
•	 houses with no driveway but with a recreation room (D1 = 0 and D2 = 1);
•	 houses with no driveway and no recreation room (D1 = 0 and D2 = 0).

Keep this classification in mind as we interpret Table 7.2, which contains results 
from a regression of house price (Y) on D1 and D2.

Table 7.2  Regression of house price on two dummy variables.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 47 099.08 2837.62 16.60 2.42E-50 41 525.02 52 673.14
D1 21 159.91 3062.44 6.91 1.37E-11 15 144.22 27 175.60
D2 16 023.69 2788.63 5.75 1.52E-08 10 545.86 21 501.51

Putting in values of 0 or 1 for the dummy variables, we obtain the fitted values 
for Y shown in Table 7.3.

Table 7.3  Prices of houses in the four categories.

D1 D2 Formula for Ŷ Price

1 1 ˆ ˆ ˆ ˆY = + +α β β1 2 47 099 + 21 160 + 16 024 = 84 283
1 0 ˆ ˆ ˆY = +α β1 47 099 + 21 160 = 68 259
0 1 ˆ ˆ ˆY = +α β2 47 099 + 16 024 = 63 123
0 0 ˆ ˆY = α 47 099

In other words, the average price of a house:

•	 with a driveway and a recreation room is $84 283;
•	 with a driveway but no recreation room is $68 259;
•	 with no driveway but a recreation room is $63 123;
•	 with no driveway and no recreation room is $47 099.

In short, multiple regression with dummy variables may be used to classify the 
houses into different groups and to find the average house price for each group. 
Alternatively, results may be presented directly as coefficient estimates. For in­
stance, β̂1 is a measure of the extra value of a house with a driveway relative to a 
house with no driveway, holding the other features of the house (in this case the 
presence or absence of a recreation room) constant.
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Exercise 7.2

Interpret the statistical information in Example 7.3. Are all of the explanatory 
variables statistically significant?

Exercise 7.3

Using the house price data from HPRICE.XLS, let the dependent variable (Y) be 
the price of a house. The dummy variable D1 = 1 if the house has a driveway (0 
otherwise) and D2 = 1 if the house has a recreation room (0 otherwise).

(a)	 Without using regression techniques, calculate the average price of the four 
types of house listed in Example 7.3.

(b)	 How do these average prices relate to the regression coefficients and results 
in Example 7.3?

Exercise 7.4

Use data set HPRICE.XLS and the five dummy variables, D1 to D5 (i.e. the 
dummy variables for whether a house has a driveway, a recreation room, a base­
ment, gas central heating and air conditioning) listed in Example 7.1.

(a)	 With five dummy variables, how many different categories of house are pos­
sible (e.g. houses with a driveway, a recreation room, a basement and gas 
central heating but no air conditioning comprise one class.) What implica­
tions does this have for interpreting regression results?

(b)	 How would you calculate the number of houses in each category? For instance, 
of the 546 houses in the data set, how many have a driveway, gas central 
heating and air conditioning but no recreation room and no basement?

(c)	 Run a regression of the price of a house (Y) on the five dummy variables.
(d)	 Discuss the statistical significance of the explanatory variables.
(e)	 Calculate the average price for a few categories of housing (e.g. those with a 

driveway, a recreation room and a basement but no gas central heating and 
no air conditioning).

(f)	 Which house characteristic tends to raise the price of a house the most?
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Multiple Regression with Dummy and Non-dummy 
Explanatory Variables

In the previous discussion, we have assumed that all the explanatory variables are 
dummies. In practice, you may have a mix of different types of explanatory variable. 
The simplest such case is where there is one dummy variable (D) and one quantitative 
explanatory variable (X) in a regression:

Y D X e= + + +α β β1 2 .

The interpretation of results from such a regression can be illustrated in the context 
of Example 7.4.

Example 7.1d:  Explaining house prices

If we regress house price (Y) on the air-conditioning dummy variable (D) and lot 
size (X), we obtain α̂ = 32693, β̂1 20175=  and ˆ .β2 5 638= . We have previously 
noted that the dummy can only take on the values 0 or 1 and we demonstrated 
that the fitted value for Y can take on a different value for each group of houses. 
Hence, the regression results could be interpreted as revealing the average price 
of a house in each possible group.

Here things are not quite so simple since we obtain ˆ .Y Xi i= +52868 5 638  if 
Di =  1 (i.e. the ith house has an air conditioner) and ˆ .Y Xi i= +32693 5638  if 
Di = 0 (i.e. the ith house does not have an air conditioner). In other words, there 
are two different regression lines depending on whether the house has an air con­
ditioner or not.

Contrast this point with the discussion in Example 7.2, where we had only one 
dummy explanatory variable. In that case, the regression implied that the average 
price of the house differed between houses with and without air conditioners. Here 
we are saying each group of houses has a wholly different regression line. In other 
words, we cannot simply state (as we did in the previous examples) the average 
value of different categories of houses.

We can, however, say that β̂1 20175=  is a measure of the extra value that an 
air conditioner will add to the value of a house, ceteris paribus. In other words, if 
we compare two houses with the same value of X (in this case, lot size), Ŷi will 
always be $20 175 higher for the house with an air conditioner than for a house 
with no air conditioner.

It is worthwhile to examine more closely the two different regression lines that 
exist for houses with and without air conditioners. Note that they both have the 



114  /  ANALYSIS  OF  ECONOMIC DATA

Example 7.1e:  Explaining house prices

If we regress house price (Y) on dummy variables for driveway (D1) and recreation 
room (D2) and non-dummy variables for lot size (X1) and number of bedrooms 
(X2), we obtain α̂ = −2736, β̂1 12598= , β̂2 10 969= , ˆ .β3 5 197=  and β̂4 10 562= . 
We can interpret these results by figuring out what the fitted regression lines (i.e. 
Ŷ ) are for the different possible values of the dummy variables. As you can see in 
Table 7.4, with two dummy variables we have four different regression lines. All 
of these lines have the same slope but different intercepts. The coefficients on the 
dummy variables, β̂1 and β̂2, measure the additional value associated with having 
a driveway and a recreation room, respectively. The coefficients on the non-dummy 
variables, β̂3 and β̂4, can be interpreted as the marginal effects of lot size and of 
number of bedrooms, respectively.

Table 7.4  Prices of houses in the four categories.

D1 D2 Formula for Ŷ Regression line

1 1 ˆ ˆ ˆ ˆ ˆα β β β β+ + + +1 2 3 1 4 2X X 20 831 + 5.197X1 + 10 562X2

1 0 ˆ ˆ ˆ ˆα β β β+ + +1 3 1 4 2X X 9862 + 5.197X1 + 10 562X2

0 1 ˆ ˆ ˆ ˆα β β β+ + +2 3 1 4 2X X 8233 + 5.197X1 + 10 562X2

0 0 ˆ ˆ ˆα β β+ +3 1 4 2X X −2736 + 5.197X1 + 10 562X2

same slope, ˆ .β2 5 638=  and that they differ only in the intercept (i.e. if Di = 1 the 
intercept is 52 868 and if Di = 0 the intercept is 32 693). Since they have the same 
slope (and the slope is the marginal effect), the marginal effect of lot size on house 
price is the same for houses with and without air conditioning. For instance, we 
can say “an extra square foot of lot size is associated with adding an extra $5.63 
to the price of a house.”

We can extend the previous discussion to the case of many dummy and non-dummy 
explanatory variables. The following regression model has two dummy and two non-
dummy explanatory variables:

Y D D X X e= + + + + +α β β β β1 1 2 2 3 1 4 2 .

The interpretation of results from this regression model combines elements from all 
the previous examples in this chapter.
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Exercise 7.5

Use data set in HPRICE.XLS. Consider the five dummy variables, D1 to D5, listed 
in Example 7.1 and the following four non-dummy explanatory variables:

•	 X1 = the lot size of the property (in square feet)
•	 X2 = the number of bedrooms
•	 X3 = the number of bathrooms
•	 X4 = the number of storeys (excluding the basement).

(a)	 Run a regression of Y on D1, . . ., D5, X1, . . ., X4.
(b)	 Discuss which variables are statistically significant.
(c)	 Which of the characteristics measured by the dummies has the largest effect 

on housing prices?
(d)	 Choose particular configurations of the dummy variables (e.g. one indicat­

ing a house with a driveway, no recreation room, a basement, no gas central 
heating and no air conditioner) and write out the formula for the regres­
sion line.

(e)	 Discuss results relating to the non-dummy explanatory variables, paying 
particular reference to the ceteris paribus conditions.

The following are a few of the types of verbal statement that we can make about 
the regression results:

•	 Houses with driveways tend to be worth $12 598 more than similar houses with 
no driveway.

•	 If we consider houses with the same number of bedrooms, then adding an extra 
square foot of lot size will tend to increase the price by $5197.

•	 An extra bedroom will tend to add $10 562 to the value of a house, ceteris paribus.

We should stress, however, that all such statements assume that omitted  
variables bias is not a problem in the regression. Furthermore, statements which 
imply causality (e.g. “adding an extra square foot of lot size will tend to increase 
the price of the house by $5197”) are only valid if it is truly the case that the 
explanatory variable causes the dependent variable (see Chapters 4 and 6 for further 
discussion of causality in regression).
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Interacting Dummy and Non-dummy Variables

We used the dummy variables above in a way that allowed for different intercepts in 
the regression line, but the slope of the regression line was always the same. We can, 
however, allow for different slopes by interacting dummy and non-dummy variables. 
To understand this, consider the following regression model:

Y D X Z e= + + + +α β β β1 2 3 .

D and X are dummy and non-dummy explanatory variables, as above. However, we 
have added a new variable Z into the regression, defined as Z = DX.

How do we interpret results from a regression of Y on D, X and Z? This ques­
tion can be answered by noting that Z is either 0 (for observations with D = 0) or X 
(for observations with D = 1). If, as before, we consider the fitted regression lines, we 
obtain:

•	 If D = 1 then ˆ ( ˆ ˆ ) ( ˆ ˆ )Y X= + + +α β β β1 2 3 .
•	 If D = 0, then ˆ ˆ ˆY X= +α β2 .

In other words, the two regression lines corresponding to D =  0 and D =  1 have 
different intercepts and slopes. One implication is that the marginal effect of X on 
Y is different for D = 0 and D = 1. In a written report, you could write up each of 
the regression lines separately using the terminology and interpretation of Chapters  
4 and 6.

Example 7.1f:  Explaining house prices

If we regress house price (Y) on three explanatory variables: air-conditioning 
dummy (D), lot size (X) and Z = DX, we obtain α̂ = 35684, β̂1 7613= , ˆ .β2 5 02=  
and ˆ .β3 2 25= . This implies that the marginal effect of lot size on housing is 7.27 
(i.e. adding an extra square foot of lot size is associated with a $7.27 increase in 
house prices) for houses with air conditioners and only $5.02 for houses without. 
Furthermore, since the P-value corresponding to β̂3 is 0.02, the difference in 
marginal effect is statistically significant. This finding indicates that increasing 
lot size tends to add more to the value of a house if it has air conditioning than 
if it does not.
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Exercise 7.6

Use data set HPRICE.XLS. Consider the five dummy variables, D1 to D5, and the 
four non-dummy variables, X1 to X4, discussed in Exercise 7.5.

(a)	 Experiment with different configurations of these explanatory variables with 
some interaction terms (e.g. try including 10 explanatory variables: D1 to D5, 
X1 to X4 and an interaction term, such as, Z = D1X2).

(b)	 Can you find any interaction terms that are statistically significant? Explain 
in words what your findings are.

Exercise 7.7

WAGEDISC.XLS contains data on N = 100 employees in a particular occupation. 
Suppose that interest centers on investigating the factors that explain salary dif­
ferences with a view to addressing the issue of sex discrimination in this occupa­
tion. The data set contains the following variables:

•	 Y = salary (measured in thousands of dollars)
•	 X1 = education level (measured in years of schooling)
•	 X2 = experience level (measured in years of employment)
•	 D = sex (1 for male, 0 for female).

(a)	 Calculate and discuss descriptive statistics for this data set. For instance, what 
is the mean salary?

(b)	 Calculate the mean salary for female employees and male employees separately. 
Compare.

(c)	 Run a simple regression of Y on D. Is the slope coefficient in this regression 
statistically significant? Compare your regression result with your finding in 
part (b). Can you use these findings to conclude that women are discriminated 
against in this occupation?

(d)	 Run a multiple regression of Y on X1, X2 and D. Write a short report outlin­
ing your findings and addressing the issue of wage discrimination in this 
occupation. Are your results statistically significant?

(e)	 Compare your results in part (d) to the results in part (c). Why do they differ? 
Hint: Calculate a correlation matrix for all the explanatory variables and think 
intuitively about what the correlations mean.

(f)	 Construct a new variable Z = DX2 and run a regression of Y on X1, X2, D 
and Z. Is Z statistically significant? How would the short report you wrote 
in part (d) change? Explain verbally what the coefficient on Z measures.
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Chapter Summary

1.	 Dummy variables can take a value of either 0 or 1. They are often used with 
qualitative data.

2.	 The statistical techniques associated with the use of dummy explanatory vari­
ables are exactly the same as with non-dummy explanatory variables.

3.	 A regression involving only dummy explanatory variables implicitly classifies 
the observations into distinct groups (e.g. houses with air conditioning and 
those without). Interpretation of results is aided by careful consideration of 
the groups.

4.	 A regression involving dummy and non-dummy explanatory variables implic­
itly classifies the observations into groups and says that each group will have 
a regression line with a different intercept. All these regression lines have the 
same slope.

5.	 A regression involving dummy, non-dummy and interaction (i.e. dummy 
times non-dummy) explanatory variables implicitly classifies the observations 
into groups and says that each group will have a different regression line with 
a different intercept and slope.



Qualitative Choice Models

CHAPTER 8

In Chapter 7, we discussed dummy explanatory variables. In this chapter, we consider 
the case where the dependent variable is a dummy. This often occurs when a choice is 
made and, hence, the terminology “qualitative choice model” is used. As an example, 
suppose a researcher is interested in investigating why some people choose to travel to 
work by car and others choose to travel by public transport. The data available to the 
researcher is based on a survey where commuters are asked whether they traveled by  
car or public transport and are asked to provide personal characteristics (e.g. distance 
to work, their salary, etc.). If the researcher tried to construct a regression model, the 
explanatory variables would be these personal characteristics. However, the dependent 
variable in the regression would be a dummy variable (i.e. with a value of 1 if the com-
muter travelled by car and a value of 0 if commuter travelled by public transport). 
Similar examples abound in economics (e.g. the choice of a product in a supermarket; 
the choice of whether to take a job or not).

The standard regression methods of the previous chapters are inappropriate when the 
dependent variable is a dummy. In this chapter, we discuss the logit and probit models, 
which are the most popular models for use with dummy dependent variables. These 
models are used when a choice is made between two things (e.g. the commuter faces 
the choice of taking a car or public transport). There are some cases where a choice is 
made between several options (e.g. the commuter faces the choice of taking a car, public 
transport or a bicycle). To address these cases, extensions of the logit and probit models 
are possible.
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Logit and probit models are not regression models, but share many similarities with 
them. It is worth stressing that, although some of the terminology and methods in this 
chapter may sound new and unfamiliar, the same basic ideas hold as in previous chapters. 
That is, we are seeking to relate a dependent variable to explanatory variables and esti-
mate the impacts of the latter on the former.

Example 8.1:  Choosing to have an affair

To illustrate logit and probit models, we take a data set from a popular paper by 
Fair (1978). This paper used surveys conducted by a popular magazine to construct 
a data set to shed light on the factors which influence the decision to have an 
extramarital affair. The data set contains N = 601 observations on the following 
variables:

•	 AFFAIR = 1 if individual has had an affair (0 otherwise);
•	 MALE = 1 if the individual is male (0 if female);
•	 YEARS = the number of years the individual has been married;
•	 KIDS = 1 if the individual has children from the marriage (0 otherwise);
•	 RELIG  =  1 if the individual classifies him or herself as religious (0 

otherwise);
•	 EDUC = the number of years of schooling completed;
•	 HAPPY = 1 if the individual person views his or her marriage as happier than 

average (0 otherwise).

The dependent variable, Y, is a dummy variable. The remaining variables are 
explanatory variables.

The Economics of Choice

Before getting into details of the probit and logit models, it is worthwhile to bring in 
a little economics to help motivate how they arise. This will help us when it comes to 
interpretation.

Probit and logit models often (but not invariably) arise in cases where an individual 
is making a choice. Assume that an individual has to make a choice between two alter-
natives, 0 or 1. An economist would formalize such a situation by specifying a utility 
function and saying the individual will make the choice which yields the highest utility. 
Let Ui0 be the utility that individual i (for i = 1, . . ., N) gets if alternative 0 is chosen 
and Ui1 be the utility of choice 1. The individual makes choice 1 if Ui1 > Ui0 and makes 
choice 0 otherwise. Since Ui1 > Ui0 is equivalent to Ui1 − Ui0 > 0, the choice can be seen 
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to depend on the difference in utilities across the two alternatives and we define this 
difference as Yi = Ui1 − Ui0.

In our transport example, this is simply saying that the individual’s choice of whether 
to take the car or public transport depends on which yields him higher utility. The 
transport economist would say that Y should depend on an individual’s characteristics 
(e.g. salary, the time it takes to drive to work or take public transport and so on). The 
econometrician would say that this sounds like a multiple regression model:

Y X X X ek k= + + + + +α β β β1 1 2 2 …

where X1, . . ., Xk are explanatory variables that might affect the individual’s utility.
Thus, the economic theory of utility maximization leads us to a regression model. 

The problem is that the dependent variable in the regression is the difference in utility 
across the two choices which is not something that we can observe. This also complicates 
the interpretation of coefficients in a qualitative choice model. In previous chapters, we 
have stressed that the regression coefficients, β1, .  .  ., βk, are interpreted as marginal 
effects. That is, each coefficient measures the impact of a one unit change in an explana-
tory variable on the dependent variable, holding the other explanatory variables con-
stant. With qualitative choice models, this interpretation of the marginal effect of a 
coefficient does not convey any useful meaning. That is, in Chapter 6, I made statements 
such as “an extra square foot of lot size will tend to add another $5.43 on to the price 
of a house, holding other explanatory variables constant.” This statement conveys to the 
reader information that is easy to interpret and useful.

The comparable sort of statement in a qualitative choice model would be “an extra 
year of schooling will tend to add another 0.01 on to the utility difference between 
having an affair and not having an affair, holding other explanatory variables constant.” 
Since utility is not something we directly observe and has no natural numerical units 
this conveys no useful information. The sign of the coefficients provides some informa-
tion. For instance, the fact that 0.01 is a positive number means an extra year of school-
ing tends to increase the utility of choice 1 relative to choice 0, thus making more 
educated people more likely to have an affair. However, we have no idea of the magni-
tude of the effect. For instance, does an extra year of schooling make it much more 
likely that one has an affair? Or just a little more likely? Such questions cannot be 
directly answered by looking at a coefficient in a qualitative choice regression such as 
the one above.

Choice Probabilities and the Logit and Probit Models

The concerns expressed in the previous section lead to the logit and probit models. 
Remember that we began this chapter by saying we wanted to treat the case where the 



122  /  ANALYSIS  OF  ECONOMIC DATA

dependent variable was a dummy variable. We then discussed the economics of utility 
maximization and showed how this led to a regression where the dependent variable 
was a utility difference. How do we reconcile these two different treatments of the 
dependent variable?

To address this question, let us keep notation where Yi is the difference in utility that 
individual i obtains between making choice 1 and choice 0. This is unobservable. 
However, we can observe the choice that individual i actually makes. Let Di = 1 if choice 
1 is made (e.g. individual i chose to have an affair) and Di = 0 if choice 0 is made. The 
link between Y and D is summarized in the following equations:

D Yi i= >1 0if

D Yi i= ≤0 0if .

These equations repeat what we have already said in words: that the individual makes 
choice 1 if the utility associated with that alternative is higher (otherwise alternative 0 
is chosen).

Given this relationship, how do we develop econometric methods for estimating 
regression coefficients and how do we interpret the results? For both purposes, it proves 
convenient to think in terms of the probability of making a choice. Let Pr(Di = 1) be 
the probability that individual i chooses alternative 1. The probability of making choice 
0 will be one minus this probability. What qualitative choice models do is calculate the 
choice probabilities implied by the regression model with Y as the dependent variable. 
Because this calculation involves the use of mathematical methods for probability we 
will put this derivation into Appendix 8.1. Here, we just summarize the main ideas so 
as to provide you with some intuition.

The two main qualitative choice models are called probit and logit. They make dif-
ferent assumptions about the errors in the regression with Y as the dependent variable. 
Thus, they lead to different formulas for the choice probabilities. These choice probabili-
ties provide the link between the two different treatments of the dependent variable.

Estimation of probit and logit models involves econometric concepts beyond the 
scope of this book. However, econometrics software packages will automatically estimate 
either model for you. Hence, with the intuition provided here, you should be able to 
work with probit and logit and sensibly interpret your results.

The estimation procedure

The intuition for the estimation procedure is as follows. The formulae for the choice 
probabilities provided by probit or logit depend on the coefficients. Logit and probit 
choose values for β1, . . ., βk which yield choice probabilities which match up as closely 
as possible with the actual choices made. As an example, suppose there is only one 
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explanatory variable with coefficient β and Di = 1 so that individual i chose alternative 
1. What if the probit model implies that β = −20 leads to Pr(Di = 1) = 0.20 and that 
β = 20 leads to Pr(Di = 1) = 0.90. The probit model would say that β = 20 is a much 
better value to choose for the coefficient. It implies there is a 90% chance that individual 
i would make choice 1 (which, in practice she did) instead of the mere 20% chance to 
which β = −20 leads. The probit model does this for every individual and finds the 
value of β that leads to the closest match between the choice probabilities and the actual 
choices made. Similar statements hold for logit.

In conventional regression, goodness of fit is measured using R2. With probit and 
logit models, there is not a goodness-of-fit measure with the simple interpretation of 
the conventional R2. But there are other measures, typically called pseudo-R2 measures, 
which are very similar. We will not explain these here, but note that any econometrics 
software package which calculates probit or logit will produce one or more of them. 
You will not go too far wrong in interpreting them as being similar to a conventional 
R2 (e.g. as measures of fit with values near 1 indicating good fit and values near zero 
indicating poor fit).

Statistical software packages calculate choice probabilities for every observation. 
These can also be used to shed light on the fit of a probit or logit model. If one of these 
models estimates Pr(Di = 1) to be high this implies individual i is very likely to make 
choice 1. A common practice is to say that if Pr(Di = 1) > 0.5 then the model is pre-
dicting that Di = 1 and if Pr(Di = 1) ≤ 0.5 then it is predicting that Di = 0. If the 
model’s predictions correspond to the actual choice of individual i, then it is fitting 
well. Most statistical software packages will automatically produce the number of 
correct predictions and this indicates how well the probit or logit model is fitting the 
observed choices.

Hypothesis testing

With conventional regression we also discussed hypothesis testing and, in particular, 
testing whether regression coefficients are equal to zero using t-tests. Remember that 
coefficients are significantly different from zero if the P-value is less than the level of 
significance (usually 0.05). Any statistical software package which estimates logit and 
probit models will also provide P-values for testing whether coefficients equal zero.

Thus, it is straightforward to obtain estimates of coefficients in probit or logit models 
(i.e. of β1, . . ., βk in the regression with the utility difference being the dependent vari
able) and test whether they are zero or not. Complications arise in the interpretation of 
the coefficients. As discussed above, it is hard to interpret the meaning of β1, . . ., βk 
in a logit or probit model directly. However, statistical software packages allow you a 
different sort of marginal effect which does have a simple intuitive meaning in terms 
of the choice probability.
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Example 8.2:  Choosing to have an affair (logit model)

The data set described in Example 8.1 is found in AFFAIR.XLS. AFFAIR is the 
dependent variable and the others are the explanatory variables. Table 8.1 presents 
results from estimating a logit model using this data.

Table 8.1  Results from a logit model of the affair data.

Variable Logit coefficient P-value for βj = 0 Marginal effect

Intercept −1.290 0.074 —
MALE 0.246 0.257 0.043
YEARS 0.049 0.025 0.009
KIDS 0.439 0.124 0.073
RELIG −0.893 3.33 × 10−5 −0.151
EDUC 0.014 0.747 0.003
HAPPY −0.869 2.71 × 10−5 −0.166

Remember that the interpretation of marginal effects in a conventional regression is 
“how much does Y change when you change X?” and β is the answer to this. With 
qualitative choice models, we alter this to “how much does the probability of making 
choice 1 change when you change X?”, but it is not simply β which is the answer. 
For the reader familiar with probability theory, Appendix 8.1 discusses this issue in 
more detail. For the user of logit and probit models, the key thing is that marginal 
effects on the choice probabilities can be calculated in any relevant statistical software 
package.

However, this raises a final complication. The formulae for the marginal effect of X 
on the probability of making choice 1 depends on X. Consider, for instance, an empiri-
cal exercise involving a choice between car and public transport where X is commuting 
time. A 30-minute drive to work will have a different marginal effect on the choice 
probability than a 60-minute drive to work. In light of this, it is common for computer 
packages to evaluate such marginal effects at the average value for the explanatory 
variables.

A final question you may be asking is “how do I know whether to use probit or 
logit?”. To be honest, in the majority of empirical applications, it does not matter too 
much. Probit and logit models tend to yield very similar results. However, it is worth 
mentioning that various tests do exist and, with a little bit of additional reading in a 
more advanced textbook, it is not hard to figure out how to use them in practice.
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Column 2 gives the estimates of β1, .  .  ., βk for each explanatory variable. 
Remember that the logit coefficients do not directly measure marginal effects, so 
it is hard to interpret them. We can interpret the signs on the coefficients. For 
instance, the fact that the coefficients on RELIG and HAPPY are negative means 
that individuals who are either religious or happily married are less likely to have 
an extramarital affair. The fact that the coefficient on YEARS is positive means 
that individuals who have been married longer are more likely to have affairs. 
However, it is difficult to interpret the magnitude of the coefficients.

An examination of the P-values for testing the hypothesis that the individual 
coefficients are zero reveals that YEARS, RELIG and HAPPY are statistically 
significant but that MALE, KIDS and EDUC are not. Thus, we can conclude that 
the gender, education and number of children have no significant impact on an 
individual having an affair.

It is the numbers in the last column (“Marginal effect”) which are typically the 
most important. These measure the impact of each explanatory variable on  
the probability of having an affair. Consider, for instance, the marginal effect of 
0.009 for the variable YEARS. This can be interpreted as “if length of a marriage 
increases by one, then the probability of having an affair goes up by 0.009, holding 
other explanatory variables constant.” Alternatively, since probabilities can be 
interpreted as percentages (i.e. 0.009 is the same as 0.9% which is roughly 1%), 
we could say “every extra year of marriage increases the probability of having an 
affair by about 1%, holding other explanatory variables constant.”

There are two significant dummy explanatory variables, RELIG and HAPPY. 
Their marginal effects can be interpreted as “being religious tends to lower the 
probability of having an affair by 15%, ceteris paribus” and “being in a happy mar-
riage tends to decrease the probability of having an affair by 17%, holding other 
explanatory variables constant.”

As for goodness of fit, the logit model correctly predicts 75.2% of the observed 
choices.

Table 8.2 repeats the analysis of Example 8.2 with the probit model. These 
results are not discussed in detail since, with one exception, they are very similar 
to the logit model. The marginal effects column in the logit table is virtually 
identical to the comparable column in the probit table and the conclusions 
obtained from the P-values regarding the significance of coefficients are also the 
same in both tables. The exception is that the probit coefficient values are quite 
different from the logit coefficient values. This merely illustrates that the coeffi-
cients in the probit and logit models are not comparable to one another and, in 
any case, do not have a convenient interpretation.
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Exercise 8.1

The data set in COMMUTE.XLS contains data from N = 390 individuals on their 
commuting choice between public transport and car. The data takes the form:

•	 Choice = 0 if the individual takes public transport and 1 if the individual takes 
a car to work;

•	 Income = income (in thousands of dollars);
•	 Distance = distance to work (in miles).

(a)	 Estimate a logit model using Choice as the dummy dependent variable and 
Income and Distance as explanatory variables. Interpret the signs of the 
coefficients.

(b)	 Display and interpret the actual choices made and the fitted choice probability 
for all the individuals.

(c)	 Repeat parts (a) and (b) using a probit model.

Exercise 8.2

The data set in SMOKING.XLS is part of the data set taken by Mullahy (1997) 
from the Child Health Supplement to the 1988 National Health Interview Survey. 
In this exercise, we focus on the decision whether to smoke or not. The data set 
is based on a survey of N =  1196 men. The dependent variable is the dummy 
variable smoker which is 1 for smokers (and 0 for non-smokers).

The explanatory variables are:

•	 educ = number of years of schooling;
•	 age = age in years;
•	 income = family income in US dollars.

Table 8.2  Results from a probit model of the affair data.

Variable Probit coefficient P-value for βj = 0 Marginal effect

Intercept −0.738 0.079 —
MALE 0.150 0.233 0.046
YEARS 0.029 0.026 0.009
KIDS 0.249 0.124 0.073
RELIG −0.510 3.31 × 10−5 −0.151
EDUC 0.006 0.808 0.002
HAPPY −0.514 3.42 × 10−5 −0.167
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(a)	 Estimate a logit model using this data set and discuss the significance of each 
explanatory variable.

(b)	 What does the sign of each coefficient tell you about the effect of each explana-
tory variable on choosing to smoke?

(c)	 Calculate the marginal effect of each explanatory variable on the probability 
of choosing to smoke. Interpret these marginal effects.

(d)	 Repeat parts (a) to (c) for a probit model.
(e)	 Compare your logit and probit results. Do they lead to similar conclusions 

on which factors affect the decision to smoke?
(g)	 Which of the logit and probit models fits better, if you measure fit by the 

number of correct predictions each makes?

Chapter Summary

1.	 If a regression model has a dummy dependent variable, then conventional 
ordinary least squares regression methods are usually avoided and, instead, 
logit or probit models are used.

2.	 Logit and probit models can be motivated using the economics of choice. 
Individuals are assumed to choose the alternative which yields the highest 
utility. The difference in utility between the two options is the dependent 
variable in a regression.

3.	 Logit and probit models are easy to estimate using a statistical software 
package, but interpretation of the regression coefficients is complicated by the 
fact that the dependent variable in the regression is the unobservable utility 
difference.

4.	 Statistical software packages produce the standard statistical results (e.g. 
measures of goodness of fit and P-values for testing the hypothesis that a coef-
ficient equals zero) for logit and probit models.

5.	 Marginal effects are usually presented with respect to choice probabilities. 
Such marginal effects are calculated by the statistical software package and 
are interpreted as the effect of a one-unit change in an explanatory variable 
on the probability of choosing option 1, holding other explanatory variables 
constant.
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Appendix 8.1: Choice Probabilities in the Logit Model

In the body of the text, we discuss the important role of choice probabilities in qualita-
tive choice models and state that statistical software packages can calculate marginal 
effects in terms of these choice probabilities. This appendix provides the formulae for 
the choice probabilities and the marginal effects for the case of the logit model.

We do not discuss the probit model; the derivations are similar but are based on the 
normal distribution. The normal distribution is not discussed in this book; readers 
familiar with probability theory may wish to repeat the derivations below for the probit 
model as an exercise.

We use the simple regression model to simplify notation, but the extension to mul-
tiple regression is immediate. Our discussion of the economics of qualitative choice 
models began with a regression model where Y was the difference in utility between 
the two choices:

Y X ei i i= +β .

The problem is that Y is unobservable and, thus, interest centers on the choice prob-
abilities: Pr(Di = 1) with Pr(Di = 0) = 1 − Pr(Di = 1). We know the individual i will 
choose option 1 if the utility difference is positive. In terms of equations, this means

Pr Pr Pr Pr .D Y X e e Xi i i i i i=( ) = >( ) = + >( ) = > −( )1 0 0β β

In words, individual i makes choice 1 if the regression error is greater than −βXi. 
We can use the rules of probability to obtain a formula for this. Different qualitative 
choice models arise from different assumptions about the probability distributions of 
the errors. The probit model arises if the errors have a normal distribution and the logit 
model arises if the errors have a logistic distribution. Since this book does not discuss 
probability distributions, you may not know what that means – all you need to know 
is that, for the logit model, the choice probability has the following form:

Pr
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This formula is used by econometric software packages when estimating the logit model. 
It can also be used to help interpret results in two ways.

First, remember that β is hard to interpret directly which is why, in our empirical 
illustration, we presented results in terms of the marginal effect on the choice probabil-
ity. That is, we presented results for a marginal effect which answers the question “if X 
changes by one unit, by how much does the probability of making choice 1 change?” 
With logit models, we can calculate another sort of marginal effect in terms of an “odds 
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ratio”, which is the ratio of the probabilities of two events occurring. In the context of 
a qualitative choice model, it is:

odds
D

D
i

i

= =( )
=( )

Pr

Pr
.

1

0

For the logit model, the odds ratio simplifies to:

odds Xi= ( )exp .β

The properties of the exponential and log operators can be used to obtain an even simpler 
expression:

ln .odds Xi( ) = β

In the body of the chapter, we said that β is difficult to interpret with qualitative 
choice models. However, for the logit model, you can see that it does have some inter-
pretation. That is, the preceding equation implies that β is a marginal effect in term 
of the logarithm of the odds ratio. Thus, we can make statements such as “if X changes 
by one unit, then the log of the odds ratio tends to change by β units.” Admittedly, 
this is still not a very simple interpretation (most people find thinking in terms of logs 
of odds ratios awkward) but it may be useful in some cases.

A second way that the logit formula for the choice probability can be used is to 
calculate the probability of making a choice for selected individuals. As an example, let 
us return to the transportation example where D = 1 denotes the choice to commute 
by car and X is an explanatory variable which measures the time it takes to drive to 
work (in minutes). Once you have estimated a logit model, you can estimate, e.g., the 
probability that individuals with a 30-minute drive will take the car as:

Pr |
exp

exp
.D X= =( ) = ( )

+ ( )
1 30

30

1 30

β
β

and the probability that individuals with a 60-minute drive will take the car as:

Pr |
exp

exp
.D X= =( ) = ( )

+ ( )
1 30

60

1 60

β
β

In these formulae you would replace β by its estimate provided by the statistical 
software package. Note, though, that calculating choice probabilities for individuals 
with specific characteristics is not something that statistical software packages will do 
for you automatically. With a typical package, you would have to estimate the logit 
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model and then write out a line or two of computer code to evaluate the formula above. 
This is not hard to do, but does take more effort than just clicking on the “logit” option 
to estimate the model.
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Regression with Time Lags: 
Distributed Lag Models

CHAPTER 9

Many fields of economics (e.g. macroeconomics and finance) are concerned with the 
analysis of time series data. However, you may have noticed that all the examples in 
Chapters 3–8 use cross-sectional data. So far we have intentionally avoided discussing 
time series data since it involves issues that do not arise with cross-sectional data. The 
purpose of this chapter is to offer an introduction to these issues and to explain why we 
devote several chapters of this book to time series topics as distinct from regression. 
After this introductory material, we consider the simplest tool for working with time 
series data: the distributed lag model.

The goal of the economist working with time series data does not differ too much 
from that of the economist working with cross-sectional data: Both aim to develop a 
regression relating a dependent variable to some explanatory variables. However, the 
economist using time series data faces two problems that the economist using cross-
sectional data will not encounter:

•	 One time series variable can influence another with a time lag.
•	 If the variables are nonstationary, a problem known as spurious regression may arise.

At this stage, you are not expected to understand the second of these problems. The 
terms nonstationary, stationary and spurious regression are discussed in detail in the 
remaining chapters of this book. But keep in mind this general rule: If you have nonsta-
tionary time series variables then you should not include them in a regression model. The 
appropriate route is to transform the variables to make them stationary before running a 
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regression. There is one exception to this general rule (which we discuss later), which 
occurs where the variables in a regression model are cointegrated. We will elaborate on 
what we mean by these terms later. If you find it confusing for them to be introduced now 
without definitions, just think in the following terms: Some problems arise with time 
series data that do not arise with cross-sectional data. These problems make it risky to 
naively use multiple regression in the manner of Chapters 4–7. The purpose of Chapters 
9–12 is to show you how to correctly use multiple regression with time series data.

In this chapter, we assume all variables in the regression are stationary. Chapter 10 
explains what this means. At this point, note only that spurious regression will not 
occur and that we can therefore focus on how one time series variable influences another 
with a time lag.

When we estimate a regression model we are interested in measuring the effect of 
one or more explanatory variables on the dependent variable. In the case of time series 
data, we have to be very careful in our choice of explanatory variables since their effect 
on the dependent variable may take time to manifest. For instance, if a central bank is 
worried that inflation is rising it might raise interest rates. The impact of such interest 
rate changes would likely take more than a year to feed through the economy and to 
affect other important variables (e.g. the unemployment rate). In general, all of the  
basic tools of monetary and fiscal policy the government has at its disposal will have 
impacts that are felt only in some future period. This problem is most common in 
macroeconomics, but can also occur in microeconomics. To give an example: a firm’s 
decision to carry out a new investment (e.g. to purchase new computers) will not imme-
diately affect production. It takes time to purchase the computers, install them and 
train workers in their use. Investment will only influence production some time in the 
future.

To put this concept into the language of regression, we say that the value of the 
dependent variable at a given point in time should depend not only on the value of the 
explanatory variable at that time period, but also on values of the explanatory variable 
in the past. The simplest model to incorporate such dynamic effects is known as the 
distributed lag model. It is a regression model of the form:1

Y X X X et t t q t q t= + + + + +− −α β β β0 1 1 … .

This is precisely the same as the multiple regression model in Chapter 6, with the 
exception that the explanatory variables are not entirely different variables (e.g. lot size, 
number of bathrooms or number of bedrooms) but are one explanatory variable that is 
observed at different time periods. In this model, the right-hand side variables are 
referred to as lagged variables and q is the lag order or lag length. We focus on the case 
where the dependent variable depends on one explanatory variable and its lags. However, 
everything we say can be generalized in a straightforward fashion to several explanatory 
variables, all having time lags.
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Since the distributed lag model is a regression model, everything we said in Chapters 
4–6 about regression is relevant here. For instance, computer packages can provide 
ordinary least squares (OLS) estimates of coefficients, confidence intervals and P-values 
for testing whether coefficients are equal to zero. Coefficients can be interpreted as 
measures of the influence of the explanatory variable on the dependent variable. In this 
case, we have to be careful with timing. For instance, we interpret results as “β2 measures 
the effect of the explanatory variable two periods ago on the dependent variable, ceteris 
paribus”. Other than these minor differences, the statistical methods and interpretation 
are very similar to the tools we described previously. Nevertheless, it is worth discussing 
this class of models separately, as it will help us to develop some time series terminology 
and introduce ideas that we will build on in subsequent chapters.

Before turning to an example of how to work with distributed lag models, we make 
two brief detours. One of them describes lagged variables and how to calculate them 
in a spreadsheet software package. Even if you are not using a spreadsheet, you may find 
this material useful to clearly see what lagged variables are and how the computer cal-
culates them. The other clarifies the notation that is used in this and the subsequent 
chapters.

Lagged Variables

The concept of a lagged variable is fundamental to time series data, so we will describe 
in some detail what it means and how to construct and work with lagged variables on 
the computer.

Suppose we have time series data for t = 1, . . ., T periods on a variable X. As before, 
we denote individual observations by Xt for t = 1, . . ., T. Consider creating new vari-
ables W, which has observations Wt = Xt for t = 2, . . ., T, and Z, which has observations 
Zt = Xt−1 for t = 2, . . ., T. Why do we write t = 2, . . ., T instead of t = 1, . . ., T? If 
we had written t = 1, .  .  ., T then the first observation, Z1, would be equal to X0. But 
we do not know what X0 is since variable X is observed only from t = 1, . . ., T. So we 
instead work with t = 2, . . ., T and, thus, W and Z have only T − 1 observations. Note 
also that if we had written Zt = Xt−2 then the new variable Z would have had observa-
tions from t = 3, . . ., T and only T − 2 observations.

The new variables W and Z both have T − 1 observations. If we imagine W and Z 
as two columns containing T − 1 numbers (as in a spreadsheet), we can see that the first 
element of W is X2 and the first element of Z is X1. The second element of W and Z 
are X3 and X2 and so on. In words, we say “W contains X and Z contains X one period 
ago” (or “lagged one period”). In general, we can create variables “X lagged one period” 
(“lagged X” for short), “X lagged two periods” or, in general, “X lagged j periods”. You 
can think of “X”, “X lagged one period” and “X lagged two periods” as different 
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explanatory variables in the same way as you can of “house price”, “lot size”, or “number 
of bedrooms” as different explanatory variables.

Note, however, that if you want to include several explanatory variables in a multiple 
regression model, all variables must have the same number of observations. Let us con-
sider the implication of this statement in the present context. Suppose a regression 
includes an explanatory variable of the interest rate (X) lagged j periods. If you begin 
with t = 1, . . ., T observations on the interest rate, then X lagged j periods will contain 
only T − j observations. Since this variable contains only T − j observations you must 
make sure that all the other variables in the model also contain exactly T − j observa-
tions. In words, each variable in a time series regression must contain the number of 
observations equal to T minus the maximum number of lags that any variable has.

Many of the more sophisticated econometric software packages create lagged variables 
automatically with a simple command but most spreadsheet packages, such as Excel, 
do not. This is a key reason why, when working with time series data, it is easier to use 
a statistical software package instead of a spreadsheet. When working with a spreadsheet 
you have to create lagged variables before running a regression involving them. A brief 
explanation of how to do this is useful when you work with spreadsheets and provides 
a practical way to illustrate the material above.

As an example, suppose we have 10 observations on variables Y and X (i.e. t  = 
1, . . ., 10) and we wish to run a regression model that includes X, lagged X, X lagged 
two periods and X lagged three periods. That is, we wish to estimate the following 
regression model:

Y X X X X et t t t t t= + + + + +− − −α β β β β0 1 1 2 2 3 3 .

Figure 9.1 shows how the data would look in a spreadsheet format. Note that spread-
sheets label each observation by row and column. Each column contains a variable (e.g. 

Figure 9.1  How Lagged Variables Appear in a Spreadsheet.
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column C contains the variable X lagged one period) and each row contains an observa-
tion. Note that each of the variables contains seven observations, which is T minus the 
maximum number of lags (i.e. 10 − 3 = 7). Looking across any row (e.g. row 5), you 
can see that:

•	 Y and X contain data at a particular point in time (e.g. Y7 and X7 or t = 7).
•	 X lagged one period contains the observation from one period previously (e.g. X6).
•	 X lagged two periods contains the observation from two periods previously (e.g. X5).
•	 X lagged three periods contains the observation from three periods previously 

(e.g. X4).

Notation

It is also important to make sure that our notation is clear. Consider a variable, X (e.g. 
population density). After collecting data on X, we have observations Xi for i = 1, . . ., 
N for cross-sectional data and Xt for t = 1, . . ., T for time series data (see Chapter 2).

In other words, X is a generic notation for the variable and Xi or Xt indicates a par-
ticular observation of the variable (i.e. Xi is the population density in the ith country 
and Xt is the population density in the tth time period). In our discussion of regression 
in Chapters 4–7 we often wrote equations of the form:

Y X e= + +α β .

Expressed in words, the above implied that “the dependent variable Y depends on 
the explanatory variable X”. When we have actual data we can write,

Y X ei i i= + +α β .

Expressed in words, “observation i of Y depends on observation i of X”. For instance, 
“deforestation in country i depends on the population density in country i”. Both of 
these equations are perfectly correct. But, since the subscript i in the latter equation is 
obvious (e.g. it is obvious that deforestation in Jamaica depends on population density 
in Jamaica – it certainly will not depend on population density in Uganda), you often 
see the i subscript dropped from the latter equation for simplicity’s sake.

We complicated our notation in Chapter 6, in which X1, X2, . . ., Xk were k different 
explanatory variables. Here the subscript on X indicated which explanatory variable we 
were referring to, not which observation. In the rare cases when we wanted to be more 
explicit we wrote, for example, X2i, to indicate the ith observation of the second explana-
tory variable. However, since it is usually obvious in the multiple regression case that 
Yi (e.g. deforestation in country i) depends on X1i (e.g. population density in country 
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Example 9.1a:  The effect of safety training on accidents

Losses due to industrial accidents can be quite substantial in large companies. 
Accordingly, many companies provide safety training to their workers in an effort 
to reduce accidents. They are often interested in learning how effective their safety 
training programs are. The data set in SAFETY.XLS contains safety data from a 
particular company collected on a monthly basis over five years (i.e. 60 months) 
on the following variables:

•	 Y = losses due to accidents (£s per month);
•	 X = hours of safety training provided to each worker per month.

Since this is time series data and it is likely that previous months’ safety train-
ing affects current accident rates, it is necessary to include lags of X in the regres-
sion. Table 9.1 contains OLS estimates of the coefficients in a distributed lag model 
in which losses are allowed to depend on present safety training and safety training 
up to four months ago. That is,

Y X X X X X et t t t t t t= + + + + + +− − − −α β β β β β0 1 1 2 2 3 3 4 4 .

Table 9.1  Regression of accident losses on hours of training in a distributed lag model.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 92001.51 2001.71 45.96 5.86E-42 87978.91 96024.11
Xt −145.00 47.62 −3.04 0.0037 −240.70 −49.30
Xt−1 −462.14 47.66 −9.70 5.52E-13 −557.91 −366.38
Xt−2 −424.47 46.21 −9.19 3.12E-12 −517.33 −331.62
Xt−3 −199.55 47.76 −4.18 0.00012 −295.52 −103.58
Xt−4 −36.90 47.45 −0.78 0.44 −132.25 58.45

i) and on X2i (e.g. change in pastureland in country i), the i subscript was often dropped 
from the equation.

In short, throughout this book our subscript notation, which distinguishes between 
a variable and a particular observation of a variable, has been a little loose. This is okay 
(and common in textbooks), since the meaning is fairly obvious from the context and 
the alternative is to clutter up equations with numerous subscripts. In Chapters 9–12, 
we show similar informality, using the notation Xt−j to indicate both a particular obser-
vation (e.g. if t = 1968 and j = 3, then Xt−j is the value of variable X in 1965) and the 
variable X lagged j periods. It will be clear from the context which is which.
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What can the company conclude about the effectiveness of its safety training 
programs? Increasing the safety training of each worker by one hour per month 
in a given month is associated with:

•	 an immediate reduction in losses due to accidents of £145.00, ceteris paribus;
•	 a reduction in losses of £462.14 one month later, ceteris paribus;
•	 a reduction in losses of £424.47 two months later, ceteris paribus;
•	 a reduction in losses of £199.55 three months later, ceteris paribus;
•	 a reduction in losses of £36.90 four months later, ceteris paribus.

Confidence intervals can be interpreted in the standard way. For instance, we 
are 95% confident that the immediate reduction in losses due to accidents is at 
least £49.30 and at most £240.70, ceteris paribus.

To provide some intuition about what the ceteris paribus condition implies in 
this context note that, for example, we can also express the second of these state-
ments as “increasing safety training in a given month will tend to reduce losses 
due to accidents in the following month by £462.12, assuming that no other 
changes in the company’s safety training policy are made.”

If we examine the statistical results in Table 9.1, we can see that all of the 
coefficients are statistically significant, except for β4. The P-value for this coeffi-
cient is 0.44 which is not less than .05. Also we note that the confidence interval 
for β4 includes zero. Hence we cannot reject the hypothesis that β4 = 0. In words, 
we cannot reject the hypothesis that safety training four months ago has no effect 
on current losses due to accidents. Perhaps workers forget their safety training 
after four months. This is likely to be useful information for the company since 
it may suggest that they should hold safety training sessions every four months.

In general the effect of safety training on accidents exhibits a hump-shaped 
pattern over time. The immediate effect of training on accidents is fairly small 
(£145). The effect then increases to over £400 for each of the two subsequent 
months, falls to roughly £200 three months later, and then drops to about zero four 
months later. Note that increasing safety training in a given period will tend to 
reduce losses not only immediately, but also for the next few periods. If we add up 
the benefit of increasing one hour of safety training in each period (i.e. £145.00 + 
£462.14 + £424.47 + £199.55 + £36.90 = £1268.06)2 we receive a measure of the 
total benefit of the safety training program. In other words, we can say that “adding 
one hour of safety training tends to yield a benefit which totals £1268.06 over the 
month in which the training is carried out and the subsequent four months”.

By calculating this total benefit and examining the pattern of the coefficients 
over time, the company gains important information which it can then use to 
redesign its safety training programs.
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Results such as those in Example 9.1 assume that the distributed lag model is not 
missing any explanatory variables. For instance, we are implicitly assuming that Xt−5 
(i.e. safety training five months ago) has no effect on current accident losses. If this 
assumption is incorrect, our estimates of the benefit of safety training may be incorrect. 
This issue relates closely to the problem of omitted variables bias discussed in Chapter 
6, and emphasizes the importance of correct choice of lag length (i.e. q in the distributed 
lag model), a topic to which we now turn.

Selection of Lag Order

When working with distributed lag models, we rarely know beforehand exactly how 
many lags we should include. In the previous example, why did we assume that losses 
depend on safety training up to four months ago? Why not three, six or even eight? 
That is, we don’t know which explanatory variables in a distributed lag model belong 
in the regression before we actually sit down at the computer and start working with 
the data. Accordingly, the issue of lag length selection becomes a data-based one, where 
we use statistical means to decide how many lags to include.

There are many different approaches to lag length selection in the econometrics lit-
erature. Here we outline a common one that does not require any new statistical tech-
niques beyond those developed in Chapter 5. This method uses t-tests for whether βq = 0 
to decide lag length. A common strategy is to begin with a fairly large lag length,3 qmax, 

Exercise 9.1

The data set SAFETY.XLS contains T = 60 observations on accident losses (Y) 
and hours spent in safety training (X).

(a)	 Create the explanatory variables you would use in a distributed lag model 
with lag length equal to four. How many observations do the explanatory 
variables have?

(b)	 Using your answer to part (a), recreate the table in Example 9.1.
(c)	 Create the explanatory variables you would use in a distributed lag model 

with lag length equal to two. How many observations do the explanatory 
variables have?

(d)	 Using your answer to part (c), estimate the distributed lag model with q = 2.
(e)	 Compare your answers to parts (d) and (b). Discuss why they differ, paying 

particular attention to the question of omitted variables bias (see Chapter 6 
if you have forgotten what this is).
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and test whether the coefficient on the maximum lag is equal to zero (i.e. test whether 
βqmax = 0). If it is, drop the highest lag and re-estimate the model with maximum lag 
equal to qmax−1. If you find βqmax−1 = 0 in this new regression, then lower the lag order 
by one and re-estimate the model. Keep on dropping the lag order by one and 
re-estimating the model until you reject the hypothesis that the coefficient on the 
longest lag is equal to zero. This informal description of lag length selection can be 
formalised in the following series of steps:

1.	 Choose the maximum possible lag length, qmax.
2.	 Estimate the distributed lag model:

Y X X X et t t q t q t= + + + + +− −α β β β0 1 1 … max max .

If the P-value for testing βqmax = 0 is less than the significance level you choose (e.g. 
0.05) then go no further. Use qmax as the lag length.

3.	 Estimate the distributed lag model:

Y X X X et t t q t q t= + + + + +− − − +α β β β0 1 1 1 1… max max .

If the P-value for testing βqmax−1 = 0 is less than the significance level you choose 
(e.g. 0.05) then go no further. Use qmax−1 as the lag length.

4.	 Estimate the distributed lag model:

Y X X X et t t q t q t= + + + + +− − − +α β β β0 1 1 2 2… max max .

If the P-value for testing βqmax−2 = 0 is less than the significance level you choose 
(e.g. 0.05) then go no further. Use qmax−2 as the lag length.

Keep repeating similar steps until you find a lag length for which the P-value is less 
than the significance level.

Example 9.1b:  The effect of safety training on accidents

Suppose we have selected qmax as four in the distributed lag regression of accident 
losses on safety training. In other words, we believe that four months is the 
maximum time period that we can reasonably expect safety training to impact on 
losses due to accidents. The strategy outlined above says we should begin by 
estimating a distributed lag model with lag length equal to four. The results are 
given in Table 9.1. Since the P-value corresponding to the explanatory variable 
Xt−4 is greater than 0.05 we cannot reject the hypothesis that β4 = 0 at the 5% 
level of significance. Accordingly, we drop this variable from the model and re-
estimate with lag length set equal to three, yielding the results in Table 9.2.
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Table 9.2  Regression of accident losses on hours of training with lag length of three (q = 3).

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 90402.22 1643.18 55.02 9.19E-48 87104.94 93699.51
Xt −125.90 46.24 −2.72 0.0088 −218.69 −33.11
Xt−1 −443.49 45.88 −9.67 3.32E-13 −535.56 −351.42
Xt−2 −417.61 45.73 −9.13 2.18E-12 −509.38 −325.84
Xt−3 −179.90 46.25 −3.89 0.0003 −272.72 −87.09

The P-value for testing β3 = 0 is 0.0003, which is much less than 0.05. We 
therefore conclude that the variable Xt−3 does indeed belong in the distributed lag 
model. Hence q = 3 is the lag length we select for this model. In a formal report, 
we would present the results in Table 9.2. Since these results are similar to those 
discussed in Example 9.1, we will not repeat the interpretation of them.

Exercise 9.2

Use the data set, SAFETY.XLS, which contains T = 60 observations on accident 
losses (Y) and hours spent in safety training (X). Suppose you believe that six 
months is the maximum time that safety training might affect accident losses 
and, accordingly, you set qmax = 6. Using the strategy described above, select the 
lag length of the distributed lag model.

Exercise 9.3

Development economists are often interested in the effect of education spending 
on economic growth. However, they suspect that the positive effects of raising 
education levels may take five or 10 years to manifest themselves in higher growth 
rates.

In the light of these considerations, use the data set in EDUC.XLS to estimate 
a model and write a brief report on the effect of primary education spending on 
economic growth. The data set contains annual data for a country from 1910 to 
1995 on the variables:

•	 Y = GDP growth (measured as % change per year);
•	 X = education spending (measured as $ per child under age 16).
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Appendix 9.1: Other Distributed Lag Models

The distributed lag model considered in this chapter is very general. There are no 
restrictions on what values the coefficients, β0, β1, . . ., βq, can take. There are, however, 
many other models in the literature which are distributed lag models that place restric-
tions on the coefficients. A polynomial distributed lag (or Almon lag) model can be 
taken as representative of these types of models and we use it to illustrate the main 
issues involved.

A polynomial distributed lag model is the same as the distributed lag model with 
the added restriction that:

β γ γ γi ii i= + +0 1
2.

That is, the distributed lag coefficients are restricted to be a quadratic function of 
lag length (a quadratic function is the most popular choice but others, such as a cubic, 
are possible). This quadratic function depends on three unknown coefficients, γ0, γ1 and 
γ2 which have to be estimated. Note that, once we obtain estimates of γ0, γ1 and γ2, we 
can use them and the above equation to obtain estimates of βi for i = 0, 1, . . ., q. Once 
we have estimates for the latter coefficients we can interpret them in the same way as 
before.

Chapter Summary

1.	 Regressions with time series variables involve two issues we have not dealt 
with in the past. First, one variable can influence another with a time lag. 
Secondly, if the variables are nonstationary, the spurious regressions problem 
can result.

2.	 Distributed lag models have the dependent variable depending on an explana-
tory variable and time lags of the explanatory variable.

3.	 If the variables in the distributed lag model are stationary, then OLS estimates 
are reliable and the statistical techniques of multiple regression (e.g. looking 
at P-values or confidence intervals) can be used in a straightforward manner.

4.	 The lag length in a distributed lag model can be selected by sequentially 
using t-tests beginning with a reasonable large lag length.
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How do we obtain estimates of γ0, γ1 and γ2? We can run an OLS regression, but one 
with rather unusual explanatory variables. We illustrate this for the case q =  3. The 
distributed lag model can be written as:

Y X X X X et t t t t t= + + + + +− − −α β β β β0 1 1 2 2 3 3 .

If we replace the βi coefficients using the quadratic equation above, we can write the 
polynomial distributed lag model as:

Y V W Z et t t t t= + + + +α γ γ γ0 1 2 ,

where Vt = Xt + Xt−1 + Xt−2 + Xt−3, Wt = Xt−1 + 2Xt−2 + 3Xt−3 and Zt = Xt−1 + 4Xt−2 + 9Xt−3. 
In other words, we can obtain OLS estimates of γ0, γ1 and γ2 by running a regression of 
Y on V, W and Z.

We have now seen what a polynomial distributed lag model is and how to estimate 
it. However, it is probably unclear why you should use such an estimate. There are two 
related reasons for considering putting these restrictions on a distributed lag model:

•	 The polynomial distributed lag model will have fewer coefficients to estimate. In the 
quadratic case above, it will always have three coefficients, γ0, γ1 and γ2. The distrib-
uted lag model will have q + 1 coefficients. In practice, q might be quite large (e.g. 
you might want q = 12 if you have monthly data and want a time lag of up to a 
year). It can be difficult to get reliable estimates for a large number of coefficients 
unless the number of observations is large.

•	 Distributed lag models can sometimes suffer from multicollinearity (see Chapter 6). 
For instance, Xt and Xt−1 can be highly correlated with one another. By way of 
example, suppose X is an interest rate. Since interest rates usually change very slowly 
over time Xt and Xt−1 will often be very similar (or even identical) to one another. 
This causes them to be highly correlated and leads to multicollinearity problems. 
Polynomial distributed lag models usually do not suffer from multicollinearity (e.g. 
V, W and Z in the example above are typically not highly correlated).

In many cases, however, the latter of these reasons is not a problem for the analysis. 
When it is, it is often due to the explanatory variable being nonstationary. We discuss 
nonstationary explanatory variables in Chapter 11 and show you a way to solve the 
multicollinearity problem in this case without having to place restrictions on the 
coefficients.

The first justification for the use of polynomial distributed lag models can be compel-
ling if you have very few observations. But with the moderately large data sets available 
to macroeconomists today, the justification loses its force. Furthermore, placing restric-
tions on the coefficients can lead to misleading results if the restrictions are wrong. 
Remember that βi measures the influence of a change in the explanatory variable i 
periods ago on the current value of the dependent variable. In the distributed lag model, 
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this influence can be of any magnitude. The polynomial distributed lag model states 
that the βi coefficients must bear a quadratic relationship to one another. If they do not, 
results from the polynomial distributed lag model can be very misleading.

Overall, we would argue that there is rarely a compelling case for placing restrictions 
on distributed lag models and, for this reason, do not emphasize them here.

Endnotes

1.  We can, of course, label our coefficients using any convention we want. The convention chosen 
here relates the subscript on β to the number of periods ago to which the explanatory variable 
refers. For instance, β1 is the coefficient on Xt−1 , which is the value of the explanatory vari-
able one period ago.

2.  The value £1268.06 is the estimate of the total benefit. It is possible to calculate a confidence 
interval as well, but this would require a more complicated formula and is beyond the scope 
of this book.

3.  Although not too large! Remember that each variable in a distributed lag model has a number 
of observations equal to T minus the maximum number of lags. If you set the maximum 
number of lags too large, you will be left with very few observations.



Univariate Time Series Analysis

CHAPTER 10

In Chapter 9, we discussed distributed lag models, which are a simple type of regression 
model for use with time series data. Remember that they assume that the dependent 
variable, Yt, depends on an explanatory variable, Xt, and lags of the explanatory variable, 
Xt−1, . . ., Xt−q. Such models are a useful first step in understanding important concepts 
in time series analysis.

In many cases, distributed lag models can be used without any problems. However, 
they can be misleading in cases where:

•	 the dependent variable Yt depends on lags of the dependent variable, as well as, pos-
sibly Xt, Xt−1, . . ., Xt−q;

•	 the variables are nonstationary.

In this chapter and the next, we develop tools for dealing with both issues and define 
what we mean by “nonstationary”. To simplify the analysis, in this chapter we ignore 
X, and focus solely on Y. In statistical jargon, we concentrate on univariate time series 
methods. As the name suggests, these relate to one variable or, in the jargon of statistics, 
one series (e.g. Y = real GDP). As we shall see, it is important to understand the prop-
erties of each individual series before proceeding to regression modeling involving 
several series.
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Example 10.1a:  US personal income

Figure 10.1 is a time series plot of one series, the natural logarithm of personal 
income in the USA from the first quarter of 1954 through to the last quarter of 
1994.1 In other words, Yt is personal income for t = 1954Q1, . . ., 1994Q4. The 
data is available in INCOME.XLS. The original personal income variable is meas-
ured in millions of dollars.

Note that personal income seems to be increasing over time at a roughly con-
stant rate. You can see some variation (e.g. the brief falls in personal income cor-
responding to the recessions of the mid-1970s and early 1980s) but, overall, the 
time series plot is roughly a straight line with a positive slope. This sustained (in 
this case upward) movement is referred to as a trend. Many macroeconomic vari-
ables (e.g. GDP, the price level, industrial production, consumption and govern-
ment spending) exhibit trends of this sort.

It is convenient at this point to introduce the concept of differencing. Formally, 
if Yt (t = 1, . . ., T) is a time series variable, then ΔYt = Yt − Yt−1 is the first differ-
ence of Yt.

2 ΔYt measures the change or growth in a variable over time. If we take 
natural logarithms of the original series, Yt, then ΔYt measures the percentage 
change in the original variable between time t − 1 and t. ΔYt is often called “ΔY”, 
“delta Y” or “the change in Y”. Moreover, it is common to refer to Yt−1 as “Yt lagged 
one period” or “personal income lagged one period” or “lagged Y” and so on. Figure 
10.2 plots the change in personal income using the data in INCOME.XLS.

Note that Figure 10.2 looks very different from Figure 10.1. The trend behavior 
noted in Figure 10.1 has disappeared completely (we will return to this point 
later). Figure 10.2 indicates that personal income tends to be growing around 1% 
per quarter, although there is considerable variability in this growth rate over 
time. In some recessionary periods, personal income is falling; in some expansion-
ary periods, it is growing by as much as 3 or 4% per quarter.

Exercise 10.1

The file INCOME.XLS contains data on the logs of personal income and personal 
consumption.

(a)	 Calculate and interpret descriptive statistics for personal income data and the 
change in personal income data.

(b)	 Do the same for the personal consumption data and its change.
(c)	 Plot and interpret graphs analogous to Figures 10.1 and 10.2 using the per-

sonal consumption variable and its change.
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Figure 10.1  US personal income.
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Figure 10.2  Change in US personal income.
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Another property of time series data, not usually present in cross-sectional data, is 
the existence of correlation across observations. Personal income today, for example, is 
highly correlated with personal income last quarter.3 In the jargon of Chapter 9, the 
variable “personal income” is correlated with the variable “personal income lagged one 
period”. In fact, if we calculate the correlation between personal income and lagged 
personal income, we obtain 0.999716. Yet, if we calculate the correlation between the 
change in personal income and the change in personal income lagged once, we obtain 
−0.00235. These findings make intuitive sense. Macroeconomic time series, such as 
income, GDP and consumption, change only slowly over time; even in a deep recession 
they rarely fall by more than 1–2% per quarter. Consequently, this quarter’s income 
tends to be quite similar to last quarter’s and both are highly correlated. Yet, the change 
or growth of macroeconomic time series is more erratic. This quarter’s and last quarter’s 
change in personal income can be quite different, as reflected in the near-zero correlation 
between them.

Figures 10.1 and 10.2 and the correlation results discussed in the previous paragraph 
were calculated using US personal income. Other macroeconomic time series in many 
other countries exhibit very similar types of behavior. Y, in other words, tends to exhibit 
trend behavior and to be highly correlated over time, but ΔY tends to the opposite, i.e. 
it exhibits no trend behavior and is not highly correlated over time. These properties 
are quite important to regression modeling with time series variables as they relate 
closely to the issue of nonstationarity. Appropriately, we will spend the rest of this 
chapter developing formal tools and models for dealing with them.

The Autocorrelation Function

The correlations discussed above are simple examples of autocorrelations (i.e. correla-
tions involving a variable and a lag of itself). The autocorrelation function is a common 
tool used by researchers to understand the properties of a time series. We use expressions 
such as “the correlation between Y and lagged Y” and we denote this as r1. If you need 
a review of lagged variables, you might wish to go back and look at the section on 
Lagged Variables in Chapter 9.

Exercise 10.2

The file INCOME.XLS contains data on personal income and consumption in  
the USA.

(a)	 For each of these two series, individually create an XY-plot between the vari-
able and the variable lagged one period.
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(b)	 For each of these variables, calculate r1.
(c)	 First difference each of these variables and repeat parts (a) and (b). How would 

you interpret the data you have constructed and the correlations and 
XY-plots?

In general, we may be interested in the correlation between Y and Y lagged p periods. 
For instance, our personal income data is observed quarterly, so the correlation between 
Y and Y lagged p = 4 periods is the correlation between income now and income a year 
ago (i.e. a year is equal to four quarters). We denote this correlation by rp and refer to 
it as “the autocorrelation at lag p”. The autocorrelation function treats rp as a function 
of p (i.e. it calculates rp for p = 1, . . ., P). P is the maximum lag length considered and 
is typically chosen to be quite large (e.g. P = 12 for monthly data). The autocorrelation 
function is a commonly used tool in univariate time series analysis, precisely because it 
reveals quite a bit of information about the series.

The following points are worth noting:

•	 rp is the correlation between a variable (say, Y) and Y lagged p periods. In our discus-
sion of r1 we noted that Y1 lagged one period was Y0, which did not exist. For this 
reason, we used data from t =  2, .  .  ., T to define lagged Y and calculate r1. An 
even more extreme form of the problem occurs in the calculation of rp. Consider 
creating a new variable W which has observations Wt = Yt for t = p + 1, . . ., T and 
a new variable Z which has observations Zt = Yt−p for t = p + 1, . . ., T. The correla-
tion between W (i.e. Y) and Z (i.e. Y lagged p periods) is rp. Note that each of the 
new variables contains T − p observations. So when we calculate rp we are implicitly 
“throwing away” the first p observations. If we considered extremely long lags, we 
would be calculating autocorrelations with very few observations. In the extreme case, 
if we set p = T we have no observations left to use. This is a justification for not 
letting p get too big. The issues raised in this paragraph are very similar to those 
raised in connection with distributed lag models (see the section on lagged variables 
in Chapter 9).

•	 The autocorrelation function involves autocorrelations with different lag lengths. In 
theory, we can use data from t = 2, . . ., T to calculate r1; data from t = 3, . . ., T to 
calculate r2 and so on, ending with data from t = P + 1, . . ., T to calculate rp. But, 
note that this means that each autocorrelation is calculated with a different number 
of data points. For this reason, it is standard practice to select a maximum lag (P) 
and use data from t = P + 1, . . ., T to calculate all of the autocorrelations.
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Example 10.1b:  US personal income

Table 10.1 presents the autocorrelation functions for US personal income (Y) 
and the change in personal income (ΔY) using data from INCOME.XLS and a 
maximum lag of 12 (i.e. P = 12).

This information can also be presented graphically by making a bar chart with 
the lag length on the X-axis and the autocorrelation on the Y-axis, as in Figures 
10.3 and 10.4.

A striking feature of Table 10.1 and Figures 10.3 and 10.4 is that autocorrela-
tions tend to be virtually one for personal income even in the case of high lag 
lengths. In contrast, the autocorrelations for the change in personal income are 
very small and exhibit a pattern that looks more or less random; the autocorrela-
tions, in other words, are essentially zero. This pattern is common to many or 
most macroeconomic time series: The series itself has autocorrelations near one, 
but the change in the series has autocorrelations that are much smaller (often near 
zero). Below are a few ways of thinking about these autocorrelations:

•	 Y is highly correlated over time. Personal income even three years ago (i.e. 
p = 12) is highly correlated with income today. ΔY does not exhibit this prop-
erty. The growth in personal income this quarter is essentially uncorrelated with 
the growth in previous quarters.

Table 10.1  Autocorrelation functions for US personal income and its change.

Lag length (p) Personal income Change in personal income

1 0.9997 −0.0100
2 0.9993 0.0121
3 0.9990 0.1341
4 0.9986 0.0082
5 0.9983 −0.1562
6 0.9980 0.0611
7 0.9978 −0.0350
8 0.9975 −0.0655
9 0.9974 0.0745
10 0.9972 0.1488
11 0.9969 0.0330
12 0.9966 0.0363
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Figure 10.3  Autocorrelation function for personal income.
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Figure 10.4  Autocorrelation function for change in personal income.
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•	 If you knew past values of personal income, you could make a very good esti-
mate of what personal income is this quarter. However, knowing past values of 
the change in personal income will not help you predict the change in personal 
income this quarter.

•	 Generally, Y “remembers the past” (i.e. it is highly correlated with past values 
of itself). This is an example of “long-memory behavior”. ΔY does not have this 
property.

•	 Y is a nonstationary series while ΔY is stationary. We have not formally defined 
the words “nonstationary” and “stationary”, but they are quite important in 
time series econometrics. We will have more to say about them later, but note 
for now that the properties of the autocorrelation function for Y are character-
istic of nonstationary series.

Exercise 10.3

Use the data on personal consumption (Y) given in INCOME.XLS.

(a)	 Calculate the autocorrelation function for Y and ΔY with a maximum lag of 
four (i.e. P = 4).

(b)	 Plot these autocorrelation functions in a bar chart.
(c)	 Interpret the results you have obtained in parts (a) and (b).

The Autoregressive Model for Univariate Time Series

The autocorrelation function is a useful tool for summarizing the properties of a time 
series. You may remember that, in Chapters 3 and 4, we argued that correlations have 
their limitations and that regression was therefore a preferable tool. The same reasoning 
holds here: Autocorrelations, in other words, are just correlations, and for this reason it 
may be desirable to develop more sophisticated models to analyze the relationships 
between a variable and its lags. Many such models have been developed in the statistical 
literature on univariate time series analysis but the most common model, which can 
also be interpreted as a regression model, is the “autoregressive” (AR) model. As the 
name suggests, it is a regression model where the explanatory variables are lags of the 
dependent variable (i.e. “auto” means “self” and hence an autoregression is a regression 
of a variable on lags of itself).
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We begin by discussing the autoregressive model with the explanatory variable being 
the dependent variable lagged one period. This is called the AR(1) model:

Y Y et t t= + +−α φ 1 ,

for t = 2, . . ., T. It looks exactly like the regression model discussed in previous chap-
ters,4 except that the dependent variable is Yt−1. The value of ϕ in the AR(1) model is 
closely related to the behavior of the autocorrelation function and to the concept of 
nonstationarity.

In order to understand the types of behavior characteristic of the AR(1) series, let us 
artificially simulate three time series using three values of ϕ: 0, 0.8 and 1. All three 
series have the same value for α (i.e. α = 0.01) and the same error. Figures 10.5, 10.6 
and 10.7 provide time series plots of the three data sets.

Note that Figure 10.5 (with ϕ = 0) exhibits random fluctuations around an average 
of about 0.01 (the value of α). In fact, it is very similar to Figure 10.2, which contains 
a time series plot of the change in personal income. Figure 10.7 (with ϕ = 1) exhibits 
trend behavior and looks very similar to Figure 10.1, which plots personal income. 
Figure 10.6 (with ϕ = 0.8) exhibits behavior that is somewhere between the random 
fluctuations of Figure 10.5 and the strong trend of Figure 10.7.

Figure 10.5  AR(1) time series with ϕ = 0.
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Figure 10.6  AR(1) time series with ϕ = 0.8.
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Figure 10.7  AR(1) time series with ϕ = 1.
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Figures 10.5, 10.6 and 10.7 illustrate the types of behavior that AR(1) models can 
capture and show why they are commonly used in macroeconomics. For different values 
of ϕ, these models can allow for the randomly fluctuating behavior typical of growth 
rates of many macroeconomic time series; for the trend behavior typical of the macr-
oeconomic series themselves; or for intermediate cases between these extremes.

Note also that ϕ = 1 implies the type of trend behavior we have referred to as non-
stationary above, while the other values of ϕ imply stationary behavior. This allows us 
to provide a formal definition of the concepts of stationarity and nonstationarity, at least 
for the AR(1) model: For the AR(1) model, we can say that Y is stationary if |ϕ| < 1 
and is nonstationary if ϕ = 1. The other possibility, |ϕ| > 1, is rarely considered in eco-
nomics. The latter possibility implies that the time series is exhibiting explosive behav-
ior over time. Since such explosive behavior is only observed in unusual cases (e.g. 
hyperinflation), it is of little empirical relevance and we shall not discuss it here. 
Mathematical intuition for the properties of the AR(1) model and how it relates to the 
issue of nonstationarity is given in Appendix 10.1.

Exercise 10.4

Use the data in files FIG105.XLS, FIG106.XLS and FIG107.XLS, which were 
used to create Figures 10.5–10.7.

(a)	 Calculate the autocorrelation function for each time series using a maximum 
lag of four.

(b)	 Relate your findings in part (a) to your answers to Exercise 10.3. Focus in 
particular on the question of whether the AR(1) model is capable of generat-
ing the types of behavior observed in the macroeconomic time series on 
personal consumption.

Nonstationary versus Stationary Time Series

Above we introduced the terms “nonstationary” and “stationary” without providing any 
formal definition (except for the AR(1) model). As we shall see, the distinction between 
stationary and nonstationary time series is an extremely important one. To formally 
define these concepts requires that we get into statistical issues that are beyond the 
scope of this book. But we provide some general intuition for these concepts below.

Formally, “nonstationary” merely means “anything that is not stationary”. Economists 
usually focus on the one particular type of nonstationarity that seems to be present in 
many macroeconomic time series: unit root nonstationarity. We will generalize this 
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concept later, but at this stage it is useful to think of a unit root as implying ϕ = 1 in 
the AR(1) model. The following list contains different ways of thinking about whether 
a time series variable, Y, is stationary or has a unit root:

•	 In the AR(1) model, if ϕ = 1, then Y has a unit root. If |ϕ| < 1, then Y is stationary.
•	 If Y has a unit root then its autocorrelations will be near one and will not drop much 

as lag length increases.
•	 If Y has a unit root, then it will have a long memory. Stationary time series do not 

have long memory.
•	 If Y has a unit root, then the series will exhibit trend behavior (especially if α is 

non-zero).
•	 If Y has a unit root, then ΔY will be stationary. For this reason, series with unit roots 

are often referred to as difference stationary series.

The final point can be seen most clearly by subtracting Yt−1 from both sides of the 
equation in the AR(1) model, yielding:

∆Y Y et t t= + +−α ρ 1 ,

where ρ = ϕ − 1. Note that, if ϕ = 1, then ρ = 0 and the previous equation can be 
written solely in terms of ΔYt, implying that ΔYt fluctuates randomly around α. For 
future reference, note that we can test for ρ  =  0 to see if a series has a unit root. 
Furthermore, a time series will be stationary if −1 <  ϕ <  1 which is equivalent to 
−2 < ρ < 0. We will refer to this as the stationarity condition.

By way of providing more intuition (and jargon!) for the AR(1) model, let us consider 
the case where ϕ =  1 (or, equivalently, ρ =  0). In this case, we can write the AR(1) 
model as:

Y Y et t t= + +−α 1 .

This is referred to as the random walk model. More precisely, the random walk model 
has no intercept (i.e. α = 0), while the preceding equation is referred to as a random 
walk with drift. The presence of the intercept allows for changes in variables to be, on 
average, non-zero. So, for instance, if Y is (the log of) a stock price of a particular 
company then the random walk with drift model can be written as:

Y Y et t t− = +−1 α .

Since the left-hand side of this equation is the percentage change in the stock price, 
which is the stock return (exclusive of dividends), then the model says stock returns are 
equal to α (e.g. a benchmark return relevant for this company taking into account its 
risk, etc.) plus a random error. This model is commonly thought to hold for phenomena 
such as stock prices and the prices of other financial assets. In the random walk model, 
since ϕ = 1, Y has a unit root and is nonstationary.
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Extensions of the AR(1) Model

We have argued that the AR(1) model can be interpreted as a simple regression model 
where last period’s Y is the explanatory variable. However, it is possible that more lags 
of Y should be included as explanatory variables. This can be done by extending the 
AR(1) model to the autoregressive model of order p, the AR(p) model:

Y Y Y et t p t p t= + + + +− −α φ φ1 1 … ,

for t = p + 1, .  .  ., T. We will not discuss the properties of this model, other than to 
note that they are similar to the AR(1) model but are more general in nature. That is, 
this model can generate the trend behavior typical of macroeconomic time series and 
the randomly fluctuating behavior typical of their growth rates.

In discussing unit root behavior it is convenient to subtract Yt−1 from both sides of 
the previous equation. With some rearranging we obtain:

Example 10.1c:  US personal income

The AR(1) model is a regression model. Accordingly, we can use ordinary least 
squares (OLS) to regress the variable Y on lagged Y.5 If we do this, we find 
ˆ .α = 0 039 and ˆ .φ = 0 996. Since the OLS estimate, φ̂ , and the true value of the 
AR(1) coefficient, ϕ, will rarely if ever be identical, it is quite possible that ϕ = 1 
since the OLS estimate is very close to one.

If we regress ΔYt on Yt−1, we obtain an OLS estimate of ρ which is −0.004. 
Note that we are finding ˆ ˆρ φ= −1, just as we would expect.

Exercise 10.5

Use the data in files FIG105.XLS, FIG106.XLS and FIG107.XLS, which were 
used to create Figures 10.5–10.7.

(a)	 Calculate OLS estimates of ρ and ϕ in the two variants of the AR(1) model.
(b)	 Relate your results in part (a) to the question of whether any of the series 

contain a unit root.
(c)	 Repeat parts (a) and (b) using the personal consumption data in INCOME.

XLS.
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∆ ∆ ∆Y Y Y Y et t t p t p t= + + + + +− − − − +α ρ γ γ1 1 1 1 1… ,

where the coefficients in this regression, ρ, γ1, . . ., γp−1 are simple functions of ϕ1, . . ., 
ϕp. For instance, ρ = ϕ1 +, . . ., + ϕp − 1. Note that this is identical to the AR(p) model, 
but is just written differently. Hence we refer to both previous equations as AR(p) 
models. In case you are wondering where the Yt−p term from the first equation went to 
in the second, note that it appears in the second equation in the ΔYt−p+1 term (i.e. 
ΔYt−p+1 = Yt−p+1 − Yt−p). Note also that both variants have the same number of coefficients, 
p + 1 (i.e. the first variant has α, ϕ1, . . ., ϕp while the second variant has α, ρ, γ1, . . ., 
γp−1). However, the second variant of the AR(p) model has last coefficient γp−1. Don’t let 
this confuse you, it is just a consequence of the way we have rearranged the coefficients 
in the original specification.

The key points to note here are that the above equation is still in the form of a regres-
sion model and ρ =  0 implies that the AR(p) time series Y contains a unit root; if 
−2 < ρ < 0, then the series is stationary. Looking at the equation with ρ = 0 clarifies 
an important way of thinking about unit root series which we have highlighted previ-
ously: If a time series contains a unit root then a regression model involving only ΔY 
is appropriate (i.e. if ρ = 0 then the term Yt−1 will drop out of the equation and only 
terms involving ΔY or its lags appear in the regression). It is common jargon to say 
that “if a unit root is present, then the data can be differenced to induce stationarity”.

As we will discuss in Chapter 11, with the exception of a case called cointegration, 
we do not want to include unit root variables in regression models. This suggests that, 
if a unit root in Y is present, we will want to difference it and use ΔY. In order to do 
so, we must first know if Y has a unit root. In the past, we have emphasized that unit 
root series exhibit trend behavior. Does this mean that we can simply examine time 
series plots of Y for such trending to determine if it has a unit root? The answer is no. 
To explain why, let us introduce another model.

We showed previously that many macroeconomic time series contain trends and that 
AR models with unit roots also imply trend behavior. However, there are other models 
that also imply trend behavior. Imagine that Figure 10.1 or Figure 10.7 is an XY-plot 
where the X axis is labeled time, and that we want to build a regression model using 
this data. You might be tempted to fit the following regression line:

Y t et t= + +α δ ,

where the coefficient on the explanatory variable, time, is labeled δ to distinguish it 
from ϕ in the AR(1) model. Note that you can interpret this regression as involving 
the variable Y and another variable with observations 1, 2, 3, 4, . . ., T. This is another 
regression model which yields trend behavior. To introduce some jargon, the term δt is 
referred to as a deterministic trend since it is an exact (i.e. deterministic) function of 
time. In contrast, unit root series contain a “stochastic” trend.6
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We can combine this model with the AR(1) model to obtain:

Y Y t et t t= + + +−α φ δ1 .

Figure 10.8 is a time series plot of artificial data generated from the previous model 
with α = 0, ϕ = 0.2 and δ = 0.01. Note that this series is stationary since |ϕ| < 1. Yet, 
Figure 10.8 looks a bit like Figures 10.1 and 10.7. Stationary models with a determin-
istic trend can yield time series plots that closely resemble those from nonstationary 
models having a stochastic trend. Thus, you should remember that looking at a time 
series plot alone is not enough to tell whether a series has a unit root.

The discussion in the previous paragraph motivates jargon that we will use and 
introduce in the context of the following summary:

•	 The nonstationary time series variables on which we focus are those containing a unit 
root. These series contain a stochastic trend. But if we difference these time series, the 
resulting time series will be stationary. For this reason, they are also called difference 
stationary.

•	 The stationary time series on which we focus have −2 < ρ < 0 in the AR(p) model. 
However, these series can exhibit trend behavior through the incorporation of a 
deterministic trend. In this case, they are referred to as trend stationary.

Figure 10.8  Trend stationary series.
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If we add a deterministic trend to the AR(p) model, we obtain a very general model 
that is commonly used in univariate time series analysis:

∆ ∆ ∆Y Y Y Y t et t t p t p t= + + + + + +− − − − +α ρ γ γ δ1 1 1 1 1… .

We refer to the above as the “AR(p) with deterministic trend model” and use it 
later. You may wonder why we don’t just use the original AR(p) specification introduced 
at the beginning of this section (i.e. the one where the explanatory variables are  
Yt−1, .  .  ., Yt−p). There are two reasons. First, we are going to test for a unit root. 
With the present specification, this is simply a test of ρ = 0. Testing for whether regres-
sion coefficients are zero is a topic about which we have learned previously (refer to 
Chapter 5). With the original AR(p) model, testing for a unit root is more complicated. 
Secondly, Yt−1, Yt−2, . . ., Yt−p are often highly correlated with each other (see the auto-
correlation function in Figure 10.3). If we were to use them as explanatory variables in 
our regression we would no doubt run into serious multicollinearity problems (see 
Chapter 6). However, in the present model we use Yt−1, ΔYt−1, . . ., ΔYt−p+1 as explana-
tory variables, which tend not to be highly correlated (see Figure 10.4), thereby avoiding 
the problem.

Exercise 10.6

The data in FIG108.XLS was used to create Figure 10.8.

(a)	 Calculate the autocorrelation function for this trend stationary series.
(b)	 In the light of your answer to part (a), discuss whether the autocorrelation 

function is a useful tool for testing for a unit root.

Example 10.1d:  US personal income

Table 10.2 contains output from an OLS regression of ΔYt on Yt−1, ΔYt−1, ΔYt−2, 
ΔYt−3 and a deterministic time trend, created by using the data on personal income 
from INCOME.XLS. In other words, it provides regression output for the AR(4) 
with deterministic trend model. We suspect this personal income series may 
contain a unit root, a supposition supported somewhat by the table. In particular, 
a unit root is present if ρ (the coefficient on Yt−1) is zero. As we can see, the esti-
mate of ρ is indeed very small (i.e. ˆ .ρ = −0 018 ).
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You should note that when time series data exhibit seasonal patterns, or seasonality, 
further extensions of the AR(p) with deterministic trend model are required. Examples 
of time series that contain seasonal patterns can easily be found. For instance, an excep-
tionally large level of consumer spending takes place in the period around Christmas 
(i.e. in the fourth quarter of the year). Likewise, a large proportion of construction  
in the building sector is carried out in the summer (when the weather is best). 
Unemployment rates also exhibit seasonal variation in that they tend to be lowest in 
the summer when construction and agricultural employment are at their highest. All 
of these variables have a predictable seasonal pattern which we might want to incorpo-
rate in a regression model.

Note that government statistical agencies typically provide de-seasonalized data. This 
type of data removes seasonal patterns so that you do not have to worry about them. 
However, in some cases you may not have such de-seasonalized data or you may be 
interested in the seasonal patterns themselves. In these cases, you will need to know 
how to work with this particular type of data.

It is beyond the scope of this book to discuss the procedures for dealing with season-
ality in any detail, but one such method of which you should be aware involves the use 
of dummy variables and can be briefly mentioned here.7 Remember, at its most basic 
level, regression analysis seeks to explain the properties of the dependent variable using 
explanatory variables. Since seasonal patterns can be important properties of the depend-
ent variable, we want explanatory variables to explain them. One set of explanatory 
variables that can be used are seasonal dummies. We can include such dummy variables 
as additional explanatory variables in the AR(p) with deterministic trend model. For 
instance, with quarterly data, you can create the following dummy variables:

•	 D1 = 1 if an observation is from the first quarter (0 otherwise);
•	 D2 = 1 if an observation is from the second quarter (0 otherwise);
•	 D3 = 1 if an observation is from the third quarter (0 otherwise).

Table 10.2  AR(4) with a deterministic trend model.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 0.138 0.108 1.279 0.203 −0.075 0.351

Yt−1 −0.018 0.015 −1.190 0.236 −0.049 0.012

ΔYt−1 −0.017 0.081 −0.217 0.829 −0.177 0.142

ΔYt−2 0.014 0.081 0.172 0.863 −0.145 0.173

ΔYt−3 0.130 0.080 1.627 0.106 −0.028 0.288
time 0.00012 0.00012 0.955 0.341 −0.00013 0.00037
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Note that if you include these three dummy variables as explanatory variables in the 
AR(p) with deterministic trend model, no new statistical issues arise. That is, OLS 
provides good estimates of all coefficients and you can use P-values to test whether their 
coefficients are zero. In short, you can add seasonal dummies in a straightforward manner 
to any of the time series models you encounter in this book.

You may be wondering why we included dummies for only three seasons (i.e. D1, D2 
and D3). The reason is that had we included a dummy for the fourth quarter, we would 
have encountered a case of perfect multicollinearity.8 It is a bit hard to show why, non-
technically, but if you want to verify this statement yourself, run a regression with 
quarterly time series data using an intercept and D1, D2, D3 and D4 as explanatory 
variables and see what happens. To understand further how to interpret results when 
dummy explanatory variables are used, look back at Chapter 7. The section called 
“Multiple Regression with Dummy and Non-dummy Explanatory Variables” is particu-
larly relevant.

Testing in the AR(p) with Deterministic Trend Model

In Chapters 5 and 6, we described how to test whether regression coefficients were equal 
to zero. These techniques can be used in the AR(p) with deterministic trend model (i.e. 
if you wish to omit explanatory variables whose coefficients are not significantly differ-
ent from zero). In particular, testing is usually done to help choose lag length (p) and 
to decide whether the series has a unit root. In fact, it is common to first test to select 
lag length and then test for a unit root.

However, there is one important complication that occurs in the AR(p) model that 
did not apply in the earlier chapters. To understand it, let us divide the coefficients in 
the model into two groups: α, γ1, . . ., γp−1 and δ; and ρ. In other words, we consider 
hypothesis tests involving ρ independently of those involving the other coefficients.

Tests involving α, γ1, . . ., γp−1 and δ
Many sophisticated statistical criteria and testing methods exist to determine the appro-
priate lag length in an AR(p) model. Nonetheless, simply looking at the t-statistics or 
P-values in regression outputs can be quite informative. For instance, an examination 
of Table 10.2 reveals that the P-values associated with the coefficients on the lagged 
ΔY terms are insignificant and that they may be deleted from the regression (i.e. the 
P-values are greater than 0.05). Alternatively, a more common route is to proceed 
sequentially, as we did in the distributed lag model. That is, the researcher can choose 
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a maximum lag length, pmax, and then sequentially drop lag lengths if the relevant coef-
ficients are insignificant.

More specifically, begin with an AR(pmax). If the pmaxth lag is insignificant, reduce the 
model to AR(pmax − 1). If the (pmax − 1)th lag is insignificant in the AR(pmax − 1) model, 
then drop it and use AR(pmax − 2), and so on. Generally, you should start with a fairly 
large choice for pmax.

In the AR(p) with deterministic trend model we also have to worry about testing 
whether δ = 0. This can be accomplished in the standard way by checking whether its 
P-value is less than the level of significance (e.g. 0.05).9 This test can be done at any 
stage, but it is common to carry it out after following the sequential procedure for 
choosing p. A summary of this testing strategy is outlined below:

1.	 Choose the maximum lag length, pmax, that seems reasonable to you.
2.	 Estimate using OLS the AR(pmax) with deterministic trend model:

∆ ∆ ∆Y Y Y Y t et t t p t p t= + + + + + +− − − − +α ρ γ γ δ1 1 1 1 1… max max .

If the P-value for testing γpmax−1 =  0 is less than the significance level you choose 
(e.g. 0.05) then go to Step 5, using pmax as the lag length. Otherwise go to Step 3.

3.	 Estimate the AR(pmax − 1) model:

∆ ∆ ∆Y Y Y Y t et t t p t p t= + + + + + +− − − − +α ρ γ γ δ1 1 1 2 2… max max .

If the P-value for testing γpmax−2 =  0 is less than the significance level you choose 
(e.g. 0.05) then go to Step 5, using pmax − 1 as the lag length. Otherwise go to Step 4.

4.	 Repeatedly estimate lower order AR models until you find an AR(p) model where 
γp−1 is statistically significant (or you run out of lags).

5.	 Now test for whether the deterministic trend should be omitted; that is, if the P-
value for testing δ = 0 is greater than the significance level you choose then drop 
the deterministic trend variable.

Example 10.1e:  US personal income

If we carry out this strategy on the personal income data, beginning with pmax = 4, 
the model reduces to:

∆Y Y et t t= + +−α ρ 1 .

That is, we first estimated an AR(4) with deterministic trend (see Table 10.2) 
and found the coefficient on ΔYt−3 to be insignificant. Accordingly, we estimated 
an AR(3) with deterministic trend and found the coefficient on ΔYt−2 to be insig-
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These results lead us to the next, most important, testing question: Does Y contain 
a unit root? Remember that if ρ = 0, then Y contains a unit root. In this case, the series 
must be differenced in the regression model (i.e. it is difference stationary). You may 
think that you can simply test ρ = 0 in the same manner as you tested the significance 
of the other coefficients. For instance, the P-value listed in Table 10.3 for the coefficient 
ρ is 0.035. Since this is less than 0.05, you may be tempted to conclude that ρ is not 
zero and, therefore, that Y does not have a unit root. This is incorrect! In hypothesis 
testing, ρ is different from other coefficients and we must treat it differently.

Tests involving ρ
To fully understand why you cannot carry out a unit root test of ρ = 0 in the manner 
in which you would test other coefficients requires that you have knowledge of statistics 
beyond that covered in this book. Suffice it to note here that most regression packages 
implicitly assume that all of the variables in the model are stationary when they calculate 
P-values. If the explanatory variable Yt−1 is nonstationary, its P-value will be incorrect. 
The correct way of testing for a unit root is known as the Dickey–Fuller test.10 The 
Dickey–Fuller test recommends using the familiar t-statistic for testing ρ = 0, but cor-
recting the P-value.

We can motivate the Dickey–Fuller test in terms of the following: In Chapter 5, we 
said that testing could be done by comparing a test statistic (here the t-stat) to a critical 
value to determine whether the former was “small” (in which case the hypothesis was 
accepted) or “large” (in which case the hypothesis was rejected). In the standard (station-
ary) case, the critical values are taken from statistical tables of the Student-t distribution. 

nificant. We then ran an AR(2) and so on. Eventually, after finding the determin-
istic trend to be insignificant, we settled on the AR(1) model. OLS estimation 
results for this model are given in Table 10.3.

This is the table of results you might report in a paper or empirical project, 
including a brief but coherent explanation of the strategy that you used to arrive 
at this final specification.

Table 10.3  AR(1) model results.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 0.039 0.014 2.682 0.008 0.010 0.067
Yt−1 −0.004 0.002 −2.130 0.035 −0.0077 −0.0003
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Dickey and Fuller demonstrated that this is incorrect in the unit root case. They calcu-
lated the correct statistical tables from which to take critical values.

The previous paragraphs were meant to motivate why the standard testing proce
dure is incorrect. In practice, statistical software packages have facilities for doing the 
Dickey–Fuller test and automatically reporting the correct critical values and P-values. 
Alternatively, you can read further in time series econometrics and learn how to use  
the Dickey–Fuller statistical tables.11 However, a rough rule of a thumb can be used 
that will not lead you too far wrong if your number of observations is moderately large 
(e.g. T > 50). This approximate rule is given in the following strategy for testing for a 
unit root:

1.	 Use the strategy outlined in the previous section to estimate the AR(p) with deter-
ministic trend model. Record the t-stat corresponding to ρ (i.e. the coefficient on 
Yt−1).

2.	 If the final version of your model includes a deterministic trend, the Dickey–Fuller 
critical value is approximately −3.45. If the t-stat on ρ is more negative than −3.45, 
reject the unit root hypothesis and conclude that the series is stationary. Otherwise, 
conclude that the series has a unit root.

3.	 If the final version of your model does not include a deterministic trend, the Dickey–
Fuller critical value is approximately −2.89. If the t-stat on ρ is more negative than 
−2.89, reject the unit root hypothesis and conclude that the series is stationary. 
Otherwise, conclude that the series has a unit root.12

In Example 10.5, the final version of the AR(p) model did not include a deterministic 
trend. The t-stat on ρ is −2.13, which is not more negative than −2.89. Hence we can 
accept the hypothesis that the personal income data does contain a unit root. Be careful 
using this crude rule of thumb when your t-stat is close to the critical values listed here.

Exercise 10.7

In this chapter we have recommended a strategy according to which you begin 
with an AR(p) with deterministic trend model, choose a lag length (p), decide 
whether the deterministic trend should be included or excluded and then test for 
a unit root. Carry out this strategy using the following series:

•	 those in FIG105.XLS and FIG106.XLS (which you know are stationary);
•	 that in FIG107.XLS (which you know has a unit root);
•	 that in FIG108.XLS (which is trend stationary, but exhibits strong trending 

behavior);
•	 that in INCOME.XLS labeled “consumption”.
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Some words of warning about unit root testing: The Dickey–Fuller test exhibits what 
statisticians refer to as low power. In other words, the test can make the mistake of 
finding a unit root even when none exists. Intuitively, trend stationary series can look 
a lot like unit root series (compare Figures 10.7 and 10.8) and it can be quite hard to 
tell them apart. Furthermore, other kinds of time series models can also appear to exhibit 
unit root behavior, when in actuality they do not have unit roots. A prime example is 
the time series model characterized by abrupt changes or breaks. These structural breaks 
can occur in macroeconomic time series models, and can be precipitated by events such 
as wars or crises in supply (e.g. the OPEC oil embargo). Stock prices can exhibit struc-
tural breaks due to market crashes; commodity prices can exhibit structural breaks due 
to droughts and other natural disasters. All in all, structural breaks are potentially a 
worry for many types of time series data and some caution needs to be taken when 
interpreting the results of Dickey–Fuller tests.

Exercise 10.8

In Exercise 10.7, we tested for unit roots in many series. We noted that if a time 
series has one unit root, then its difference will be stationary. Verify that this is 
true for the series in Exercise 10.7 with unit roots. That is, discuss how you would 
test to see if the change in the series has a unit root. Then carry out this test.

Chapter Summary

1.	 Many time series exhibit trend behavior, while their differences do not exhibit 
such behavior.

2.	 The autocorrelation function is a common tool for summarizing the relation-
ship between a variable and its lags.

3.	 Autoregressive models are regression models used for working with time series 
variables. Such models can be written in two ways: one with Yt as the depend-
ent variable, the other with ΔYt as the dependent variable.

4.	 The distinction between stationary and nonstationary models is a crucial one.
5.	 Series with unit roots are the most common type of nonstationary series con-

sidered in economics.
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Appendix 10.1: Mathematical Intuition for  
the AR(1) Model

Mathematical insight into the properties of the AR(1) model can be gained by writing 
it in a different way. For simplicity, we will set α = 0 in order to focus on the role that 
lagged Y plays. Note that the AR(1) model will hold at any point in time so we can 
lag the whole AR(1) equation given in the body of the chapter and write:

Y Y et t t− − −= +1 2 1φ .

If we substitute this expression for Yt−1 into the original AR(1) model we obtain:

Y Y e et t t t= + +− −φ φ2
2 1.

Note that the previous expression depends on Yt−2, but we can write:

Y Y et t t− − −= +2 3 2φ ,

and substitute this expression for Yt−2 in the other equation. If this procedure is repeated, 
we end up with this alternative expression for the AR(1) model:

Y Y et
t i

t i

i

t

= +−
−

=

−

∑φ φ1
1

0

2

.

This expression looks complicated, but we can consider two special cases as a means of 
breaking it down. In the first of these, we assume ϕ =  1 and the previous equation 
reduces to:

Y Y et t i

i

t

= + −
=

−

∑1

0

2

.

6.	 If Yt has a unit root then the AR(p) model with ΔYt as the dependent variable 
can be estimated using OLS. Standard statistical results hold for all coefficients 
except the coefficient on Yt−1.

7.	 The Dickey–Fuller test is a test for the presence of a unit root. It involves 
testing whether the coefficient on Yt−1 is equal to zero. Software packages such 
as Excel do not print out the correct P-value for this test.
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The important point to note about the two terms on the right-hand side of the previ-
ous equation is that they illustrate a long memory property; the value the time series 
starts at, Y1, which always enters the expression for Yt, even if t becomes very large. 
That is, the time series “never forgets” where it started from. It also “never forgets” past 
errors (e.g. e1 always enters the above formula for Yt even if t gets very large). It can be 
shown that the trending behavior of this model arises as a result of the second term, 
which says that current Y contains the sum of all past errors. Statisticians view these 
errors as random or “stochastic” and this model is often referred to as containing a 
stochastic trend. This is a key property of nonstationary series.

A second special case stands in contrast to the properties described above. If we 
suppose |ϕ| < 1, we can see that ϕt−1 will be decreasing as t increases (e.g. if ϕ = 0.5, 
then ϕ2 = 0.25, ϕ10 = 0.001, ϕ100 = 7.89 × 10−31 and so on). The influence of Y1 and 
past errors on Yt will gradually lessen as t increases and Y slowly “forgets the past”. Y 
will not exhibit the long memory property we observed for the case where ϕ = 1. This 
is a key property of stationary series.

Endnotes

  1.  Details about logarithms are given in any standard mathematical economics textbook  
and are also discussed in Chapters 2 and 4 (see especially the discussion in Chapter 4 on 
Nonlinearity in Regression). This footnote is intended to refresh your memory of this mate-
rial. In macroeconomics, it is common to take the natural logarithm of the time series if it 
seems to be growing over time. If a series, Y, is growing at a roughly constant rate, then 
the time series plot of ln(Y) will approximate a straight line. In this common case, ln(Y) 
will generally be well behaved. Note also that in regressions of logged variables, the coef-
ficients can be interpreted as elasticities. It can also be shown that ln(Yt)  −  ln(Yt−1) is 
approximately equal to the percentage change in Y between periods t −  1 and t. For all 
these reasons, it is often convenient to work with logged series. Note that this log transfor-
mation is so common that many reports and papers will initially explain that the variables 
are logged, but thereafter drop the explicit mentioning of the log transformation. For 
instance, an author might refer to “the natural log of personal income” as “personal income” 
for brevity. We will follow this tradition in the examples in this book.

  2.  Since Y0 is not known, ΔYt runs from t = 2, . . ., T rather than from t = 1, . . ., T. We focus 
on the empirically useful case of first-differencing but we can define higher orders of dif-
ferencing. For instance, the second difference of Yt is defined as Δ2Yt = ΔYt − ΔYt−1.

  3.  Put another way, if you knew personal income was today, let’s say, $1 trillion, you could 
make a pretty good guess about roughly what it would be next quarter. That is, it might 
go up or down a couple percentage points in an expansion or a recession, but it is highly 
unlikely to be, say, $500 billion or $1.5 trillion. This ability to predict well is evidence of 
high correlation.
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  4.  It is common practice to use Greek letters to indicate coefficients in regression models. We 
can, of course, use any Greek symbol we want to denote the slope coefficient in a regression. 
Here we have called it ϕ rather than β. We reserve β (perhaps with a subscript) to indicate 
coefficients relating to the explanatory variable X.

  5.  Small statistical problems arise with OLS estimation of this model, particularly if the model 
is nonstationary or nearly so (i.e. if ρ is close to zero). Nevertheless, OLS is still a very 
common estimation method for AR models, which suggests that these problems are not 
that important. If you take a course in econometrics or time series statistics, you will 
undoubtedly learn about other estimators.

  6.  Justification for the term “stochastic trend” is given in Appendix 10.1.
  7.  Many time series books devote a great deal of space to the topic of seasonality. One intro-

ductory text is that by Franses (1998).
  8.  This statement assumes that there is an intercept in the model.
  9.  This way of treating the deterministic term is commonly done in practice. But it is formally 

correct only if the series is trend stationary. If the series has a unit root, then the t-statistic 
no longer has a Student-t distribution and the P-value reported by an OLS regression 
command will be incorrect. If you are worried by this, you can always simply include the 
deterministic trend (although this could make your unit root test less powerful).

10.  Some authors use the term “Dickey–Fuller test” for testing for ρ = 0 in the AR(1) model 
and use the term “augmented Dickey–Fuller test” for testing in the AR(p) model (i.e. the 
basic unit root test is “augmented” with extra lags).

11.  A good place to start is the work of Hill, Griffiths and Judge (1997, Chapter 16).
12.  Formally, −3.45 and −2.89 are the critical values for T = 100 using a 5% level of signifi-

cance. Critical values for values of T between 50 and infinity are within 0.05 of these values.
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Regression with Time  
Series Variables

CHAPTER 11

In regression analysis, researchers are typically interested in measuring the effect of an 
explanatory variable or variables on a dependent variable. As mentioned in Chapter 9, 
this goal is complicated when the researcher uses time series data since an explanatory 
variable may influence a dependent variable with a time lag. This often necessitates the 
inclusion of lags of the explanatory variable in the regression. Furthermore, as discussed 
in Chapter 10, the dependent variable may be correlated with lags of itself, suggesting 
that lags of the dependent variable should also be included in the regression.

These considerations motivate the commonly-used autoregressive distributed lag 
(or ADL) model which includes lags of both the dependent and the explanatory 
variables:

Y t Y Y X X X et t p t p t t q t q t= + + + + + + + + +− − − −α δ φ φ β β β1 1 0 1 1… … .

In this model, the dependent variable, Y, depends on p lags of itself, the current value 
of an explanatory variable, X, and q lags of X. The model also allows for a deterministic 
trend (t). Since the model contains p lags of Y and q lags of X we denote it by ADL(p,q).1 
In this chapter, we focus on the case where there is only one explanatory variable, X. 
Note, however, that we could equally allow for many explanatory variables in the 
analysis.

Estimation and interpretation of the ADL(p,q) model depend on whether the series, 
X and Y, are stationary or not. We consider these two cases separately here. Note 
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though, that we assume throughout that X and Y have the same stationarity properties. 
That is, that they either must both be stationary or both have a unit root. Intuitively, 
regression analysis involves using X to explain Y. If the properties of X differ from 
those of Y it becomes difficult for X to explain Y. For instance, it is hard for a station-
ary series to explain the stochastic trend variation in a unit root series. In practice this 
means that, before running any time series regression, you should examine the univariate 
properties of the variables you plan to use. In particular, you should carry out unit root 
tests along the lines described in Chapter 10 for every variable in your analysis.

Time Series Regression when X and Y are Stationary

When X and Y are stationary, ordinary least squares (OLS) estimation of the ADL(p,q) 
regression model can be carried out in the standard way described in Chapters 4–7. 
Testing for the significance of variables can be done using the t-stats and P-values. Such 
tests can in turn be used to select p and q, the number of lags of the dependent and 
explanatory variables, respectively. You should note, however, that the verbal interpreta-
tion of results is somewhat different from the standard case, as elaborated below.

In the case of the AR(p) model in Chapter 10, it proved convenient, both for OLS 
estimation and interpretation of results, for us to rewrite the model with ΔY as the 
dependent variable. Similar considerations hold for the ADL(p,q) model, which can be 
rewritten as:

∆ ∆ ∆
∆ ∆

Y t Y Y Y

X X X

t t t p t p

t t q t q

= + + + + +
+ + + +

− − − − +

− +

α δ ρ γ γ
θ ω ω

1 1 1 1 1

1 1

…
… ++ et.

It should be emphasized that this model is the same as that in the original form of 
the ADL(p,q) model; it has merely undergone a few algebraic manipulations. Just as we 
had two variants of the AR(p) model in Chapter 10, we now have two variants of the 
ADL(p,q) model. As before, we use new Greek letters for the coefficients in the regres-
sion to distinguish them from those in the original variant of the ADL(p,q) model.2 This 
model may look complicated, but it is still nevertheless just a regression model.

As discussed in Chapter 10, macroeconomic time series are often highly correlated 
with their lags. This implies that the original form of the ADL model frequently runs 
into multicollinearity problems. With the rewritten form we do not typically encounter 
such problems. Most importantly, as we shall see, it has a further benefit, one that lies 
in the interpretation of the coefficients. For these reasons we will work mainly with this 
second variant of the ADL(p,q) model.

In Chapter 6, we discussed how to interpret regression coefficients, placing special 
emphasis on ceteris paribus conditions. Recall that we made statements of the form, “The 
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coefficient measures the influence of lot size on the sales price of a house, ceteris paribus.” 
In the ADL(p,q) model, such an interpretation can still be made, but it is not that com-
monly done. How then can we interpret the coefficients in the ADL model? The most 
common way is through the concept of a multiplier. You are probably familiar with 
this idea since it is very common in the social sciences; economists, for instance, use a 
multiplier when they measure the effect of a change in government spending on national 
income. In the present context, this concept is a little more complicated since we have 
to specify a timing for the effect.

It is common to focus on the long run or total multiplier, which is what we will do 
here. To motivate this measure, suppose that X and Y are in an equilibrium or steady 
state, i.e. are not changing over time. All of a sudden, X changes by one unit, affecting 
Y, which starts to change, eventually settling down in the long run to a new equilibrium 
value. The difference between the old and new equilibrium values for Y can be inter-
preted as the long-run effect of X on Y and is the long run multiplier. This multiplier 
is often of great interest for policymakers who want to know the eventual effects of their 
policy changes in various areas.

It is worth stressing that the long run multiplier measures the effect of a permanent 
change in X. That is, the story in the previous paragraph had X being at some value, 
then X changed permanently to a new level one unit higher than the original value. 
The long run multiplier measures the effect of this sort of change. In some cases, you 
might be interested in the effect of a temporary change in X (i.e. X starts at some 
original level, then increases by one unit for one period before going back to the original 
level the next). The long run multiplier does not measure the effect of this type of 
change. We can use the traditional “marginal effect” interpretation of regression coef-
ficients for such temporary changes. The example in Chapter 9, which discussed the 
effect of safety training on accident losses, illustrates some ways of reporting the effect 
of a temporary change in the explanatory variable (e.g. there we were interested in the 
effect of increasing safety training in one particular month on accident losses. We did 
not discuss the effect of increasing safety training permanently).

It can be shown (although we will not prove it here3), that the long run multiplier 
for the ADL(p,q) model is:

− θ
ρ

.

In other words, only the coefficients on Xt and Yt−1 in the rewritten ADL model 
matter for long run behavior. This means that we can easily obtain an estimate of the 
long run multiplier.

It is worth repeating that we are assuming X and Y are stationary. In Chapter 10, 
we discussed how ρ = 0 in the AR(p) model implied the existence of a unit root. The 
ADL model is not the same as the AR model but, to provide some rough intuition, 
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Example 11.1:  The effect of computer purchases on sales

Over the last decade, companies have been purchasing more computers under the 
assumption that this will improve workforce productivity. The purpose of this 
example is to investigate this assumption empirically. Data set COMPUTER.XLS 
contains data collected by a company for 98 months on their computer purchases 
and a variable reflecting the productivity of their sales force. In particular, the 
dependent and explanatory variables are:

•	 Y = the percentage change in sales relative to the previous month;
•	 X  =  the percentage change in computer purchases relative to the previous 

month.

The means of these two variables are 0.30% and 0.01% per month, indicating 
that this company has not increased spending on computers by much on average. 
Note, however, that this average hides wide variation. In some months computer 
spending increased considerably, while in other months it decreased. Assuming 
that both variables are stationary, we can estimate an ADL(2,2) model using OLS. 
Remember that, if the variables in a model are stationary, then the standard regres-
sion quantities (e.g. OLS estimates, P-values, confidence intervals) can be calcu-
lated in the same way as in Chapters 4–7. Table 11.1 contains the results of this 
procedure.

Using the formula for the long run multiplier, we can see that its OLS estimate 
is −(0.125/−0.120) = 1.042. There are different ways of expressing this informa-

note that if ρ = 0 then the long run multiplier is infinite. In fact, it can be shown that 
for the model to be stable, then we must have ρ < 0.4 In practice, if X and Y are sta-
tionary, this condition will be satisfied.

Table 11.1  ADL(2,2) with deterministic trend model.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept −0.028 0.041 −0.685 0.495 −0.110 0.054
Yt−1 −0.120 0.013 −9.46 4.11E-15 −0.145 −0.095
ΔYt−1 0.794 0.031 25.628 7.41E-43 0.733 0.856
Xt 0.125 0.048 2.605 0.011 0.030 0.221
ΔXt 0.838 0.044 19.111 2.96E-33 0.750 0.925
ΔXt−1 0.002 0.022 0.103 0.918 −0.041 0.046
time 0.001 0.001 0.984 0.328 −0.001 0.002
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tion verbally (remember that the dependent and explanatory variables are meas-
ured as % changes):

•	 On average, computer purchases in this company have been increasing by 
0.01% per month and sales by 0.30% per month. If the company decides that 
its computer budget should increase by 1.01% in each month (i.e. increase by 
one unit from 0.01 to 1.01), then in the long run sales should start increasing 
by 1.342% per month (i.e. the initial 0.30 plus the long run multiplier of 
1.042).5

•	 The long run multiplier effect of computer purchases on sales is 1.042%.
•	 If X permanently increases by 1%, the equilibrium value of Y will increase by 

1.042%.

The statistical information, though, indicates that this might not be a good 
model, since some of the explanatory variables are not significant (e.g. the P-values 
for the coefficients on ΔXt−1 and the time trend both imply insignificance at the 
5% level). This raises the issue of lag length selection in the ADL(p,q) model. We 
will not discuss this topic here, other than to note that the strategy for selecting 
q in the distributed lag model (see Chapter 9) and the strategy for selecting p in 
the AR(p) model (see Chapter 10) can be combined. There is no general conven-
tion about whether you should first select p, then q, then decide whether the 
deterministic trend should be included, or make another ordering (e.g. select q, 
then p then the trend or select q then the trend then p). As long as you are careful, 
you will not be led too far wrong in selecting a good model.

Exercise 11.1

Use the variables Y = percentage change in sales and X = percentage change in 
computer purchases in data set COMPUTER.XLS to decide whether the model 
estimated in Table 11.1 is a good one. In particular,

(a)	 Establish whether Y and X really do not have unit roots as was assumed in 
Example 11.1.

(b)	 Beginning with an ADL(3,3) model with deterministic trend, perform sta-
tistical tests to choose suitable lag lengths. Were good choices for p and q 
made in Example 11.1? Should we have included a deterministic trend?

(c)	 If you found the variables do not have unit roots and made different choices 
from p and q than the ones in Example 11.1, calculate the long run multiplier 
and compare to the result in Example 11.1.
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Time Series Regression when Y and X Have Unit 
Roots: Spurious Regression

For the remainder of this chapter, we assume that Y and X have unit roots. In practice, 
of course, you would have to test whether this was the case using the Dickey–Fuller 
test (see Chapter 10). We begin by focusing on the case of regression models without 
lags, then proceed to models similar to the ADL(p,q) model.

Suppose we are interested in estimating the following regression:

Y X et t t= + +α β .

If Y and X contain unit roots, then OLS estimation of this regression can yield results 
which are completely wrong. For instance, even if the true value of β is 0, OLS can 
yield an estimate, β̂ , which is very different from zero. Statistical tests (using the t-stat 
or P-value) may indicate that β is not zero. Furthermore, if β = 0, then R2 should be 
zero. In fact, R2 will often be quite large.

To put it another way: if Y and X have unit roots then all the usual regression results 
might be misleading and incorrect. This is the so-called spurious regression problem. We do 
not have the statistical tools to prove that this problem occurs,6 but it is important to 
stress the practical implication. With the one exception of cointegration (discussed later 
in this chapter), you should never run a regression of Y on X if the variables have unit roots.

Time Series Regression when Y and X Have Unit 
Roots: Cointegration

The one time where you do not have to worry about the spurious regression problem 
occurs when Y and X are cointegrated. This case not only surmounts the spurious 

Exercise 11.2

Data set COMPUTE1.XLS contains variables of the same form as COMPUTER.
XLS, however for a company in a different industry.

(a)	 Repeat the analysis of Exercise 11.1 using the data in COMPUTE1.XLS. That 
is, verify that Y and X are stationary and then test to find a suitable ADL(p,q) 
specification.

(b)	 Calculate the long run multiplier for the model estimated in part (a).



REGRESSION WITH T IME SERIES VARIABLES   /  175

regression problem, but also provides some nice economic intuition. Cointegration has 
received a great deal of attention recently in the economics literature so it is worthwhile 
to discuss the topic in detail here.

Some intuition for cointegration can be obtained by considering the errors in the 
above regression model: et = Yt − α − βXt. Written in this way, it is clear that the errors 
are just a linear combination of Y and X. However, X and Y both exhibit nonstationary 
unit root behavior such that you would expect the error to also exhibit nonstationary 
behavior. (After all, if you add two things with a certain property together the result 
generally tends to have that property). The error does indeed usually have a unit root. 
Statistically, it is this unit root in the error term that causes the spurious regression 
problem. However, it is possible that the unit roots in Y and X “cancel each other out” 
and that the resulting error is stationary. In this special case, called cointegration, the 
spurious regression problem vanishes and it is valid to run a regression of Y on X. To 
summarize: if Y and X have unit roots but some linear combination of them is station-
ary, then we can say that Y and X are cointegrated.7

The intuition behind cointegration is clearest for the case where α = 0 and β = 1. 
Keep this in mind when you read the following statements. Remember also that vari-
ables with unit roots tend to exhibit trend behavior (e.g. they can increase steadily over 
time and therefore can become very large).

•	 If X and Y have unit roots then they have stochastic trends. However, if they are 
cointegrated, the error does not have such a trend. In this case, the error will not get 
too large and Y and X will not diverge from one another; Y and X, in other words, 
will trend together. This fact motivates other jargon used to refer to cointegrated 
time series. You may hear them referred as either having common trends or co-trending.

•	 If we are talking about an economic model involving an equilibrium concept, e is 
the equilibrium error. If Y and X are cointegrated then the equilibrium error stays 
small. However, if Y and X are not cointegrated then the equilibrium error will have 
a trend and departures from equilibrium become increasingly large over time. If such 
departures from equilibrium occur, then many would hesitate to say that the equi-
librium is a meaningful one.

•	 If Y and X are cointegrated then there is an equilibrium relationship between them. 
If they are not, then no equilibrium relationship exists. (This is essentially just a 
restatement of the previous point).

•	 In the real world, it is unlikely that an economic system will ever be in precise equi-
librium since shocks and unexpected changes to it will always occur. However, 
departures from equilibrium should not be too large and there should always be a 
tendency to return to equilibrium after a shock occurs. Hence, if an economic model 
which implies an equilibrium relationship exists between Y and X is correct, then 
we should observe Y and X as being cointegrated.

•	 If Y and X are cointegrated then their trends will cancel each other out.
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To summarize: if cointegration is present, then not only do we avoid the spurious 
regression problem, but we also have important economic information (i.e. that an 
equilibrium relationship exists or that two series are trending together).

Example 11.2a:  Cointegration between the prices of two goods

Economic theory suggests that similar goods should be close substitutes for each 
other and therefore their prices should be cointegrated. As an example, ORANGE.
XLS contains time series data for 181 months on the prices of regular oranges and 
organic oranges in a certain market. These are two closely related products, but 
many consumers are willing to pay somewhat more for organic oranges. We might 
expect the prices of these two goods to be cointegrated, since the difference in 
price between the two cannot increase too much.

That is, many people are willing to pay slightly more for organic products, but 
if the premium gets too large they will switch to regular oranges. For instance, 
many consumers may be willing to pay an extra 20 pence per pound to receive 
the supposed health benefits, but not 40 pence per pound. Thus, if the price of 
organic products rises too much relative to regular products, many people will 
stop buying organic products and their price will fall. On the other hand, if the 
price of organic oranges falls to roughly the same price as regular oranges, few 
would probably eat regular oranges. In this case, the price of regular oranges  
would drop.

In short, though the prices of these two products will fluctuate due to  
the vagaries of supply and demand, market forces will always keep the price dif-
ference between the two goods roughly constant. This is the intuition behind 
cointegration.

Figure 11.1 plots these two series and provides strong visual evidence that the 
prices of these two types of orange are indeed cointegrated. That is, even though 
the prices of organic oranges are higher than regular ones, the general trend behav-
ior in the two variables looks quite similar.

There are many other examples of cointegration, especially in macroeconomics. Short-
term and long-term interest rates, for example, may not move precisely together in the 
short run but it is unlikely that they will deviate too much in the long run. If long-
term interest rates are significantly higher than short-term rates, then traders will buy 
long term and sell short term, forcing the former down and the latter up. This example 
implies cointegration. Two prominent economic theories that imply the presence of 
cointegration between macroeconomic variables are the theory of purchasing power 
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parity and the permanent income hypothesis. Even theories of money demand have been 
used to justify cointegration findings. All in all, cointegration is an important concept 
for macroeconomists.

Estimation and Testing with Cointegrated Variables

As mentioned above, if Y and X are cointegrated, then the spurious regression problem 
does not apply; consequently, we can run an OLS regression of Y on X and obtain valid 
results. Furthermore, the coefficient from this regression is the long run multiplier. 
Thus, insofar as interest centers on the long run multiplier, then estimation with cointe-
grated variables is very easy.

Before using results from this cointegrating regression, it is important to verify that Y 
and X are in fact cointegrated. Remember that if they are not cointegrated, then the 
spurious regression problem holds and the results you obtain can be completely mean-
ingless. An examination of time series plots such as Figure 11.1, can be quite informa-
tive, but remember that a visual examination of a graph should not be considered a 
substitute for a statistical test.

In this chapter we will discuss the Engle–Granger test for cointegration. A more 
sophisticated cointegration test, called the Johansen test, is described in Chapter 12. 

Figure 11.1  Prices of regular and organic oranges.
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Both of these tests can be done using any relevant statistical software package at the 
click of a button. However, to gain some insight into what the statistical software 
package is doing, it is worthwhile going through the steps of the Engle–Granger test.

The Engle–Granger test is based on the regression of Y on X. Remember that, if 
cointegration occurs, then the errors from this regression will be stationary. Conversely, 
if cointegration does not occur, then the errors will have a unit root. Given the close 
relationship between the errors and the residuals,8 it is reasonable to examine the prop-
erties of the residuals in order to investigate the presence of cointegration. In Chapter 
10 we discussed testing for a unit root in a time series variable. Here, we test for a unit 
root in the residuals using the same techniques. In particular, the test for cointegration 
involves the following steps:

1.	 Run the regression of Y on X and save the residuals.
2.	 Carry out a unit root test on the residuals (without including a deterministic trend).
3.	 If the unit root hypothesis is rejected then conclude that Y and X are cointegrated. 

However, if the unit root is accepted then conclude cointegration does not occur.

It is worthwhile to stress that the Engle–Granger test is based on a unit root test, so 
that the problems described at the end of Chapter 10 will arise. In other words, although 
the cointegration test is based on the t-statistic from a regression (in this case, one 
involving the residuals from a preliminary regression), you cannot use the P-value 
printed out if you use an OLS command in a statistical software package. The correct 
critical values are published in many places (and are slightly different from the critical 
values for the Dickey–Fuller test). If you use the cointegration command of your sta-
tistical software package, it will produce the correct critical values.

Note that, when testing for a unit root in the residuals, we typically do not include 
a deterministic trend. If such a trend were included it could mean the errors could  
be growing steadily over time. This would violate the idea of cointegration (e.g. the 
idea that the system always returns to equilibrium and, hence, that errors never grow 
too big).

Note also that in the Dickey–Fuller test, we test the hypothesis that ρ = 0 (i.e. the 
null hypothesis is that a unit root is present). In the cointegration test, we use the 
Dickey–Fuller methodology but cointegration is found if we reject the unit root hypoth-
esis for the residuals. In other words, the null hypothesis in the Engle–Granger test is 
“no cointegration” and we conclude “cointegration is present” only if we reject this 
hypothesis.

It is also worth stressing that, since the Engle–Granger test is based on the Dickey–
Fuller test, it suffers from the difficulties noted at the end of Chapter 10. That is, the 
Engle–Granger test has low power and can be misleading if structural breaks occur in 
the data.
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Example 11.2b:  Cointegration between the prices of two goods

Let us suppose that the two price series for oranges both have unit roots. If we 
run a regression of the price of organic oranges (Y) on the price of regular oranges 
(X) using the data in ORANGE.XLS we obtain the following fitted regression 
model:

ˆ . . .Y Xt t= +20 686 996

The strategy above suggests that we should next carry out a unit root test on 
the residuals, ut, from this regression. The first step in doing this is to correctly 
select the lag length using the sequential strategy outlined in Chapter 10. Suppose 
we have done so and conclude that an AR(1) specification for the residuals is 
appropriate. The Dickey–Fuller strategy suggests we should regress Δut on ut−1. 
We obtain the results shown in Table 11.2.

The critical value for the Engle–Granger test is −3.33 if the number of observa-
tions is large. If we compare the t-stat for the coefficient on ut−1, which is −14.5, 
to this critical value we can see that the former is more negative than the latter. 
Hence, we reject the unit root hypothesis and conclude that the residuals do not 
have a unit root. In other words, we conclude that the two price series are indeed 
cointegrated.

Since we have found cointegration we do not need to worry about the spurious 
regression problem. Hence, we can proceed to an interpretation of our coefficients 
without worrying that the OLS estimates are meaningless. The fact that ˆ .α = 20 69 
in the original regression of Y on X reflects the premium of roughly 20 pence 
per pound that consumers are willing to pay for organic over regular oranges. 
Furthermore, the long run multiplier is 0.996. This indicates that, in the long 
run, an increase in the price of regular oranges by one pence would cause an 
increase in the price of organic oranges of 0.996 pence.

Table 11.2  AR(1) model using the errors from the cointegrating regression.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 0.024 0.292 0.083 0.934 −0.552 0.600
ut−1 −1.085 0.075 −14.500 5.8E-32 −1.233 −0.938
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Exercise 11.3

Use the data in ORANGE.XLS to complete Example 11.2. In particular:

(a)	 Carry out a Dickey–Fuller test to verify that both orange price series have 
unit roots.

(b)	 Carry out a sequential test to verify that the Dickey–Fuller test on the residuals 
was done correctly. That is, is an AR(1) model for the residuals appropriate?

Exercise 11.4

The data set in LONGGDP.XLS contains annual data on real GDP per capita for 
four of the largest English-speaking countries (USA, UK, Canada and Australia) 
for the years 1870–1993.9 Investigate whether there are common movements or 
trends between GDP in these different countries. In particular, you should go 
through the following steps to answer this question:

(a)	 Plot all the data in one time series graph and discuss your results (e.g. Does 
GDP seem to be trending in all countries? Do there appear to be common 
trend patterns across countries?).

(b)	 Carry out unit root tests on the time series. Discuss your findings.
(c)	 For the time series which have unit roots carry out cointegration tests. Begin 

by carrying out cointegration tests between different combinations of two 
countries (e.g. first compare USA and UK, then USA and Canada, etc.). Does 
GDP seem to be cointegrated between any pair of countries?

(d)	 In this chapter on cointegration, we have focused on the case considered in 
part (c), namely, where there are only two variables. Using Y = USA and the 
other countries as explanatory variables, test for cointegration among all the 
time series. Discuss your results.

Exercise 11.5

Use the data on personal income (Y) and personal consumption (X) in 
INCOME.XLS.

(a)	 Use the Dickey–Fuller test to verify that Y and X have unit roots.
(b)	 Run a regression of Y on X and save the errors.
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Time Series Regression when Y and X Are 
Cointegrated: The Error Correction Model

In empirical applications, it is often vital to establish that Y and X are cointegrated. 
As emphasized above, cointegration can be related to the idea of Y and X trending 
together or bearing an equilibrium relationship to each other. A second important task 
is to estimate the long run multiplier or the long run influence of X on Y. Both cointe-
gration testing and estimation of the long run multiplier can be done using the regres-
sion of Y on X. Accordingly, in many empirical projects you may never need to move 
beyond this simple regression. However, in some cases, you may be interested in under-
standing short run behavior in a manner that is not possible using only the regression 
of Y on X. In such cases, we can estimate an error correction model (ECM).

An important theorem, known as the Granger Representation Theorem, says that if 
Y and X are cointegrated, then the relationship between them can be expressed as an 
ECM. In this section, we assume Y and X are cointegrated. Error correction models 
have a long tradition in time series econometrics, and the Granger Representation 
Theorem highlights their popularity. In order to understand the properties of ECMs let 
us begin with the following simple version:

∆ ∆Y e Xt t t t= + + +−ϕ λ ω ε1 0 ,

where et−1 is the error obtained from the regression model involving Y and X. That is, 
et−1 = Yt−1 − α − βXt−1 and εt is the error in the ECM model. Note that, if we know et−1, 
then the ECM is just a regression model (although we introduce some new Greek letters 
to make sure that the coefficients and error in this model do not get confused with those 
in other regression models). That is, ΔYt is the dependent variable and et−1 and ΔXt are 
explanatory variables. Furthermore, we assume that λ < 0.11

To aid in interpreting the ECM, consider the implications of ΔYt being its dependent 
variable. As emphasized throughout this book, the regression model attempts to use 
explanatory variables to explain the dependent variable. With this in mind, note that 
the ECM says that ΔY depends on ΔX – an intuitively sensible point (i.e. changes in 

(c)	 Carry out a unit root test on the residuals using an AR(1) model.
(d)	 Carry out a unit root test on the residuals using an AR(2) model.
(e)	 Carry out a unit root test on the residuals using an AR(3) model.
(f)	 What can you conclude about the presence of cointegration between Y 

and X?10
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X cause Y to change). In addition, ΔYt depends on et−1. This latter aspect is unique to 
the ECM and gives it its name.

Remember that e can be thought of as an equilibrium error. If it is non-zero, then 
the model is out of equilibrium. Consider the case where ΔXt = 0 and et−1 is positive. 
The latter implies that Yt−1 is too high to be in equilibrium (i.e. Yt−1 is above its equi-
librium level of α + βXt−1). Since λ < 0 the term λet−1 will be negative and so ΔYt will 
be negative. In other words, if Yt−1 is above its equilibrium level, then it will start 
falling in the next period and the equilibrium error will be “corrected” in the model; 
hence the term “error correction model”.12 In the case where et−1 < 0 the opposite will 
hold (i.e. Yt−1 is below its equilibrium level, hence λet−1 > 0 which causes ΔYt to be 
positive, triggering Y to rise in period t).

In sum, the ECM has both long run and short run properties built into it. The former 
properties are embedded in the et−1 term (remember β is still the long run multiplier 
and the errors are from the regression involving Y and X). The short run behavior is 
partially captured by the equilibrium error term, which says that, if Y is out of equi-
librium, it will be pulled towards equilibrium in the next period. Further aspects of 
short run behavior are captured by the inclusion of ΔXt as an explanatory variable. This 
term implies that, if X changes, the equilibrium value of Y will also change and Y will 
change accordingly. All in all, the ECM has some very sensible properties that are closely 
related to economic equilibrium concepts.

The ECM also has some nice statistical properties which mean that we do not have 
to worry about the spurious regression problem. Y and X both have unit roots; hence 
ΔY and ΔX are stationary. Furthermore, since Y and X are cointegrated, the equilibrium 
error is stationary. Hence, the dependent variable and all explanatory variables in the 
ECM are stationary. This property means that we can use OLS estimation and carry out 
testing using t-statistics and P-values in the standard way described in Chapter 5.

The only new statistical issue in the ECM arises due to the inclusion of et−1 as an 
explanatory variable. The errors in a model are not directly observed. This raises the 
issue of how they can be used as an explanatory variable in a regression. Statistical 
software packages can do this automatically for you. However, a simple thing to do is 
merely to replace the unknown errors by the residuals from the regression of Y on X 
(i.e. replace et−1 by ut−1). That is, a simple technique based on two OLS regressions pro-
ceeds as follows:

1.	 Run a regression of Y on X and save the residuals.
2.	 Run a regression of ΔY on ΔX and the residuals from Step 1 lagged one period.

It should be emphasized that before carrying out this two-step estimation procedure 
for the ECM, you must verify that Y and X have unit roots and are cointegrated using 
the Dickey–Fuller and Engle–Granger tests.

So far we have discussed the simplest error correction model. In practice, just as the 
ADL(p,q) model has lags of the dependent and explanatory variables, the ECM may also 
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have lags.13 It may also have a deterministic trend. Incorporating these features into the 
ECM yields:

∆ ∆ ∆ ∆ ∆Y t e Y Y X Xt t t p t p t q t q t= + + + + + + + + +− − − −ϕ δ λ γ γ ω ω ε1 1 1 0… … .

This expression is still in the form of a regression model and can be estimated using 
the two-step procedure described above. The adjustment to equilibrium intuition also 
holds for this model. The decisions on whether to include a deterministic trend and on 
which precise values for p and q are appropriate can be made using t-statistics and 
P-values in the same manner as for the ADL model. In fact, the ECM is closely related 
to the ADL model in that it is a restricted version of it.

Example 11.2c:  Cointegration between the prices of two goods

In Example 11.2b, we found that the price of organic oranges (Y) and the price 
of regular oranges (X) were cointegrated. This suggests that we can estimate an 
error correction model. To do so, we begin by running a regression of Y on X and 
saving the residuals (see Example 11.2b). The residuals, ut, can then be included 
in the following regression (in lagged form):

∆ ∆Y u Xt t t t= + + +−ϕ λ ω ε1 0 .

Table 11.3 gives results from the OLS estimation of this model.
The statistical information can be interpreted in the standard way. We can say 

that (with the exception of the intercept) all the coefficients are strongly statisti-
cally significant (since their P-values are much less than 0.05).

We noted before that ˆ .β = 0 996 and this is the estimate of the long run mul-
tiplier. The point estimates in the table of λ and ω0 summarize the short run 
properties. To aid in interpretation note that all variables in the model are meas-
ured in pence. The coefficient on ut−1 of −1.085 measures how much Y responds 
to equilibrium errors. Since this coefficient is negative, positive errors tend to 

Table 11.3  Simple error correction model.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept −0.023 0.342 −0.068 0.946 −0.700 0.654
ut−1 −1.085 0.075 −14.458 8.69E-32 −1.233 −0.937
ΔXt 1.044 0.182 5.737 4.11E-08 0.685 1.403
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Time Series Regression when Y and X Have Unit 
Roots but Are Not Cointegrated

You may encounter instances where unit root tests indicate that your time series have 
unit roots, but the Engle–Granger test indicates that the series are not cointegrated. 

Exercise 11.6

Use the data in ORANGE.XLS to check Example 11.2c. In particular, does the 
ECM have enough lags of both ΔX and ΔY?

Exercise 11.7

Use the data on consumption (Y) and personal income (X) from INCOME.XLS. 
Assume (perhaps incorrectly) that Y and X are cointegrated.

(a)	 Estimate an error correction model. Begin with a model containing a deter-
ministic trend and p = q = 4 and then carry out statistical tests to find an 
appropriate ECM.

(b)	 Discuss your results. Pay particular attention to your estimate of λ and discuss 
what it tells you about the speed of adjustment to equilibrium.

cause ΔY to be negative and hence Y to fall. In particular, an equilibrium error 
of 1 pence tends to cause Y to fall by 1.085 pence in the next period, ceteris paribus. 
This is a very quick adjustment to an equilibrium error. The coefficient on 
ΔXt = 1.044. Imagine, in other words, what would happen if X were to remain 
unchanged for some time (ΔX = 0), but then suddenly were to change by 1 pence. 
The ECM implies that Y would instantly change by 1.044 pence. In other words, 
the price of organic oranges responds very quickly to price changes in regular 
oranges. Perhaps since oranges are perishable, grocers almost immediately react 
to price changes in regular oranges in order to make sure that their organic oranges 
do not remain unsold.
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That is, the series may not be trending together and may not have an equilibrium 
relationship. In these cases, you should not run a regression of Y on X due to the spuri-
ous regression problem. The presence of such characteristics suggests that you should 
rethink your basic model and include other explanatory variables. Instead of working 
with Y and X themselves, for example, you could difference them. (Remember that if 
Y and X have one unit root, then ΔY and ΔX should be stationary).

In this case, you could work with the changes in your time series and estimate the 
ADL model using the techniques described at the beginning of this chapter. In other 
words, you may wish to estimate the original ADL model, but with changes in the 
variables:

∆ ∆ ∆ ∆ ∆Y t Y Y X X et t p t p t q t q t= + + + + + + + +− − −α δ φ φ β β1 1 0… … .

For most time series variables, this specification should not suffer from multicol-
linearity problems. Alternatively, you may wish to estimate the second variant of the 
ADL model based on the differenced data. But if you are working with the differences 
of your time series and then use the variant of the ADL that involves differencing the 
data you end up with second differenced data:

∆ ∆ ∆ ∆
∆ ∆ ∆

2
1 1

2
1 1

2
1

1
2

Y t Y Y Y

X X

t t t p t p

t t q

= + + + + +
+ + + +

− − − − +α δ ρ γ γ
θ ω ω

…

… 22
1X et q t− + + ,

where Δ2Yt = ΔYt − ΔYt−1. OLS estimation and testing can be done in either of these 
models in a straightforward way. Whatever route is chosen, it is important to emphasize 
that the interpretation of regression results will likewise change

More specifically, let us suppose Y = exchange rates and X = interest rates. If Y and 
X are cointegrated, or if both are stationary, we can obtain an estimate of the long run 
effect of a small change in interest rates on exchange rates. If Y and X are neither sta-
tionary nor cointegrated and we estimate either of the two preceding equations, we can 
obtain an estimate of the long run effect of a small change in the change of interest 
rates on the change in exchange rates. This may or may not be a sensible thing to 
measure depending on the particular empirical exercise.

Note that, in the example at the beginning of this chapter on the effect of computer 
purchases on sales, the variables were already in percentage changes. If we had begun 
with Y = sales and X = computer purchases we would have found they had unit roots 
but were not cointegrated. Hence, we would have run into the spurious regression 
problem. This was why we worked with percentage changes.
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Exercise 11.8

The data set in WP.XLS contains annual data from 1857–1987 on wages (X) and 
the consumer price index in the UK (Y).14 It is commonly thought that wage 
pressures are a prime cause of inflation. You wish to investigate this claim by 
carrying out a time series analysis on the data.

(a)	 Construct a time series plot of wages and prices. Do they both seem to be 
trending? Do they seem to be trending together?

(b)	 Carry out unit root tests on X and Y. You should find evidence that they both 
have unit roots.

(c)	 Carry out a cointegration test on X and Y. You should find evidence that they 
are not cointegrated.

(d)	 Difference the data to obtain ΔX and ΔY. Repeat parts (a) and (b) with these 
new variables. You should find that they do not have unit roots.

(e)	 Specify and estimate an ADL(p,q) model using the new variables, ΔX and ΔY. 
Discuss your results. Note that the change in the log of a price level is infla-
tion. That is, ΔX and ΔY can be interpreted as wage and price inflation, 
respectively.

Chapter Summary

1.	 If all variables are stationary, then an ADL(p,q) model can be estimated using 
OLS. Statistical techniques are all standard.

2.	 A variant on the ADL model is often used to avoid potential multicollinearity 
problems and provide a straightforward estimate of the long run multiplier.

3.	 If all variables are nonstationary, great care must be taken in the analysis due 
to the spurious regression problem

4.	 If all variables are nonstationary but the regression error is stationary, then 
cointegration occurs.

5.	 If cointegration is present, the spurious regression problem does not occur.
6.	 Cointegration is an attractive concept for economists since it implies that an 

equilibrium relationship exists.
7.	 Cointegration can be tested using the Engle–Granger test. This test is a 

Dickey–Fuller test on the residuals from the cointegrating regression.
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Endnotes

  1.  Formally, we should call this the “ADL(p,q) with deterministic trend model”. However, we 
omit the latter phrase for the sake of simplicity. In practice, you will find that the deter-
ministic trend is often insignificant and is omitted from the model. Note also that some 
textbooks abbreviate “autoregressive distributed lag” as ARDL instead of ADL.

  2.  The coefficients involving the lags of the dependent variable, ρ, γ1, . . ., γp−1 are exactly the 
same functions of φ1, .  .  ., φp as in Chapter 10. The q + 1 coefficients θ, ω1, .  .  ., ωq are 
similar functions of β0, β1, . . ., βq.

  3.  Deriving the long run multiplier from an ADL model is not difficult and you should try it 
as an exercise. Here are some hints: Assume that the model has been in equilibrium for a 
long time, and that equilibrium values of X and Y are given by X* and Y*, respectively. 
Now assume X is increased permanently to X* + 1 and figure out what happens to Y.

  4.  “Stable” is a statistical term that we will not formally define in this book. It can, however, 
be interpreted in a common sense way: If a model is stable, it implies that the time series 
variables will not be exploding or stochastically trending over time. In essence, it is a very 
similar concept to stationarity.

  5.  It is worth emphasizing that 1.042 is an estimate of the long run multiplier. A confidence 
interval could be calculated, but this would involve derivations beyond the scope of this 
course.

  6.  You may think that the spurious regression problem occurs as a result of an omitted variable 
bias when lags are left out of an ADL model. But there is more to it than this. Even when 
no lags belong in the model, the spurious regression problem arises.

  7.  To motivate the word “cointegration”, note that if X and Y have unit roots, then it is 
common jargon to say that they are integrated. Adding the word “co” to emphasize that 
the unit roots are similar or common in X and Y yields “cointegration”.

  8.  Remember that the errors are deviations from the true regression line while residuals  
are deviations from the estimated regression line (see Chapter 4). Our notation for OLS 
residuals is ut.

  9.  Note that each of these time series is an index (with 1913 = 100). If you look at the data, 
you will see, for example, that the value of the data for the UK is 64.85 in 1870. The fact 

8.	 If the variables are cointegrated then an error correction model can be used. 
This model captures short run behavior in a way that the cointegrating regres-
sion cannot.

9.	 If the variables have unit roots but are not cointegrated, you should not work 
with them directly. Rather you should difference them and estimate an ADL 
model using the differenced variables. The interpretation of these models can 
be awkward.
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that the variables are indices means that we cannot interpret the value of each observation 
as saying, for instance, that GDP per capita in the UK was £64.85 in 1870. We can, 
however, interpret changes in the series as GDP growth rates. More importantly for cointe-
gration analysis, the trend in the index for each country accurately reflects trend behavior 
in GDP per capita.

10.  If you have done this question correctly, you will find that cointegration does seem to be 
present for some lag lengths, but not for others. This is a common occurrence in practical 
applications, so do not be dismayed by it. Economic theory and time series plots of the data 
definitely indicate that cointegration should occur between Y and X. But the Engle–Granger 
test does not consistently indicate cointegration. One possible explanation is that the Engle–
Granger and Dickey-Fuller tests are known to have low power.

11.  We will not formally prove why this condition must hold except to say that it is a stability 
condition of the sort discussed in the context of the ADL(p,q) model .

12.  This intuition motivates the stability condition λ < 0, which ensures that equilibrium errors 
are corrected. If λ is positive then equilibrium errors will be magnified.

13.  Note that we do not include more lags of et−1 as explanatory variables due to an implication 
of the Granger Representation Theorem, which we will not discuss here.

14.  These data are logged.



Applications of Time Series 
Methods in Macroeconomics  
and Finance

CHAPTER 12

Chapters 9–11 developed several different regression models for time series variables. 
For many cases, knowledge of these models and the relevant techniques (e.g. cointegra-
tion tests) is enough to allow you to write a report and gain a good basic understanding 
of the properties of the data. However, in some cases, a knowledge of slightly more 
sophisticated methods is necessary. Fortunately, many such cases can be shown to  
be simple extensions of the methods learned in earlier chapters. In this chapter we 
discuss two important such extensions. First we discuss financial volatility. Next,  
we discuss methods which involve more than one equation. To motivate why multiple 
equation methods are important, we begin by discussing Granger causality before dis-
cussing the most popular class of multiple-equation models: vector autoregressive (VAR)1 
models. VARs can be used to investigate Granger causality, but are also useful for many 
other things in economics. Furthermore, an extension of a VAR related to the concepts 
of cointegration and error correction are discussed in this chapter. This is called the 
vector error correction model (VECM) and it allows us to introduce another popular test for 
cointegration called the Johansen test.
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Financial Volatility

We begin our discussion of volatility informally, staying with familiar regression 
methods. We then discuss a very popular method for estimating financial volatility 
called autoregressive conditional heteroskedasticity (ARCH). The ARCH model shares a great 
deal of intuition with the regression model (including the AR model), but is not exactly 
the same as a regression model. Accordingly, methods such as ordinary least squares 
(OLS) cannot be used with ARCH. However, most statistical software packages can 
estimate ARCH models. So the fact that the theory underlying the estimation of ARCH 
models is difficult need not preclude your using them in practice. This chapter also 
discusses some extensions of ARCH models.

To provide some intuition, recall our discussion of the random walk model in Chapter 
10. We defined the model as:

Y Y et t t= +−1 .

or

∆Y et t= .

We then noted that there were good reasons for believing that such a model might 
be appropriate for measuring economic phenomena such as stock prices or exchange rate.

The simple random walk model is a little unreasonable as a description of stock price 
behavior since stocks do appreciate or depreciate in value over time. A slightly more 
realistic model is:

∆Y et t= +α .

This model can be interpreted as implying that stock prices, on average, increase by 
α per period, but are otherwise unpredictable. This is the random walk with drift model, 
which adds an intercept to the random walk model, thus allowing stock prices to “drift” 
upwards over time (if α > 0). Equivalently, it says that stock returns are on average α 
but are otherwise unpredictable.

In the rest of this section, we assume that the random walk model for an asset  
price is the correct one. That is, we assume that either the asset price follows a pure 
random walk or that it follows a random walk with drift, and that we have taken devia-
tions from the mean. To avoid confusion, we let Δyt indicate the series with deviations 

from means taken (i.e. ∆ ∆ ∆y Y Yt t= − , where ∆
∆

Y
Y
T

t= ∑ ). Remember that 
taking deviations from the mean implies that there is no intercept in the model (see 
Appendix 4.1). Thus, even if the asset price is drifting upwards over time we can ignore 
the drift term and simply write, Δyt = et.
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We have not yet formally defined what we mean by “volatility”. The ARCH model 
(discussed below) provides a formal definition for volatility but, before getting to it, it 
is useful to discuss volatility more intuitively. A first way to think about volatility is 
to note that it is possible to simply use ∆yt2 as an estimate of volatility at time t. To 
motivate this choice, note that high volatility is associated with big changes, in either 
a positive or a negative direction. Since any number squared becomes positive, large 
rises or large falls in the price of an asset will imply ∆yt2 is positive and large. In contrast, 
in stable times the asset price will not be changing much and ∆yt2 will be small. Hence, 
our measure of volatility will be small in stable times and large in chaotic times.

An alternative motivation for our measure of volatility can be obtained by recalling 
some material from Chapter 2. There we stressed that variance is a measure of the vola-
tility of a variable. In general, it is common practice to equate the two and use variance 
as a measure of volatility. But using the variance as a measure of volatility presents 
problems in the present context. A key point here is that we want to allow the volatility 
of an asset to change over time. The volatility at time t might be different from 
that at time t −  1 or t +  1, etc. In Chapter 2, we used all observations to provide 
one estimate of the variance. Here we can use only the observation at time t to provide 
an estimate of the variance at time t. (In other words, it makes no sense to use data at 
time t + 1 to estimate the variance at time t since the variance might be different in 
the two periods.)

If you note that we can only use one observation to estimate the variance; note that 
we have assumed the data is in deviations from mean form and, hence, has mean zero; 
and use the formula for the variance from Chapter 2, then you obtain ∆yt2 as an estimate 
of the variance.2

You can calculate this measure of volatility of an asset price quite easily in any 
spreadsheet or statistical computer package simply by differencing the stock price data, 
taking deviations from means and then squaring it. Once this is done, you will have a 
new time series variable – volatility – which you can then analyze using the tools intro-
duced earlier.

Autoregressive models are commonly used to model “clustering in volatility”, which 
is often present in financial time series data. Consider, for instance, an AR(1) model 
that uses volatility as the time series variable of interest:

∆ ∆y y et t t
2

1
2= + +−α φ .

This model has volatility in a period depending on volatility in a previous period. 
If, for instance, ϕ > 0 then if volatility was unusually high last period (e.g. ∆yt−12  was 
very large), it will also tend to be unusually high this period. Alternatively, if volatility 
was unusually low last period (e.g. ∆yt−12  was near zero) then this period’s volatility will 
also tend to be low. In other words, if the volatility is low it will tend to stay low, if it 
is high it will tend to stay high. Of course, the presence of the error, et, means that there 
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Example 12.1a:  Volatility in stock prices

The file STOCK.XLS contains data on the stock price of a company (Y) collected 
each week for four years (i.e. T = 208). The data has been logged. Figure 12.1 
provides a time series plot of this data.

You can see that the price of this stock has tended to increase over time, 
although there are several periods when it also fell. The price of the stock was 
£24.53 per share in the first month, increasing to £30.14 in the 208th month.3

Figure 12.2 plots ΔY, the percentage change in Y. Since 100 × [ln(Yt) − ln(Yt−1)] 
is the percentage change in the stock price, we multiply the first difference of the 
data used to create Figure 12.1 by 100.

An examination of this figure indicates that the change in stock price in any 
given week was usually positive, but that there were some weeks when the price 
fell. In the middle of the period of study (i.e. roughly weeks 90–110), there were 
many large changes (both in a positive and a negative direction). For instance, in 
weeks 94 and 96 the stock price increased by over 1.5%. This is a huge increase 
in one week. If increases of this magnitude were to keep on occurring for a year, 
the price of the stock would more than double (i.e. a weekly return of 1.5% 
becomes an annualized return of over 100%). However, in weeks 92, 93 and 95, 
stock prices fell by almost as much. All in all, the stock price in this middle period 
was much more volatile than in others.

can be exceptions to this pattern. But, in general, this model implies that we will tend 
to observe intervals or clusters in time where volatility is low and intervals where it is 
high. In empirical studies of asset prices, such a pattern is very common. As an example, 
recall that in Chapter 2 we plotted the £/$ exchange rate (see Figure 2.1). If you look 
back at this figure, you can see long spells when the exchange rate changed very little 
(e.g. 1949–1967 and 1993–1996) and other, longer spells (e.g. 1985–1992) where it 
was more volatile.

The discussion above refers to the AR(1) model, but it can be extended to the AR(p) 
model. All of the intuition given in Chapter 10 is relevant here. The only difference is 
that the interpretation relates to the volatility of the series rather than to the series 
itself. Furthermore, all of the statistical techniques we described in Chapter 10 are 
relevant here. Provided the series is stationary (e.g. |ϕ| < 1 in the AR(1) case), then OLS 
estimates and P-values can be interpreted in the standard way. Testing for a unit  
root can be conducted using a Dickey–Fuller test. In short, there is nothing statistically 
new here.
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Figure 12.1  Log of stock price.
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Figure 12.2  Percentage change in stock price.
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Figure 12.3  Volatility of stock price.
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In order to investigate the volatility properties of stock price in more depth we 
take deviations from the mean for the observations of the differenced data used to 
create Figure 12.2 and then square them. That is, we:

1.	 calculate the average change in stock price, 0.099%;
2.	 subtract this number from every stock price change;
3.	 square the result.

Figure 12.3 plots the resulting series which is our measure of volatility. Note 
that volatility is the square of the stock price and hence cannot be negative. The 
pattern most evident in Figure 12.3 is the large increase in volatility in weeks 
90–97 and, to a lesser extent, in weeks 4–8 and 101–107. This provides visual 
evidence that the volatility of this stock does indeed seem to vary over time.

More formal evidence on the pattern of volatility can be found by building an 
AR(p) model using the techniques of Chapter 10 and volatility as the variable of 
interest. The sequential testing procedure suggested in that chapter yields the 
AR(1) model in Table 12.1.

Table 12.1  AR(1) Model using volatility as the variable of interest.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept 0.024 0.015 1.624 0.106 −0.005 0.053
∆yt−12 0.737 0.047 15.552 1.74E-36 0.643 0.830
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It can be seen that last week’s volatility has strong explanatory power for  
this week’s volatility, since its coefficient is strongly statistically significant. 
Furthermore, R2 = 0.54, indicating that 54% of the variation in volatility can be 
explained by last period’s volatility. Consequently, it does seem as if volatility 
clusters are present. If volatility is high one period, it will also tend to be high 
the next period.

This information might be of great interest to an investor wishing to purchase 
the stock. Suppose an investor has just observed that Δyt−1 = 0 and therefore that 
∆yt− =1

2 0. In other words, the stock price changed by its average amount in period 
t −  1. The investor is interested in predicting volatility in period t in order to 
judge the likely risk involved in purchasing the stock. Since the error is unpredict-
able, the investor ignores it (i.e. it is just as likely to be positive as negative). The 
fitted AR(1) model is:

∆ ∆ˆ . . .y yt t
2

1
20 024 0 737= + −

Since ∆yt− =1
2 0, the investor predicts volatility in period t to be 0.024. However, 

had he observed ∆yt− =1
2 1, he would have predicted volatility in period t to be 

0.761 (i.e. 0.024 +  0.737). This kind of information can be incorporated into 
financial models of investor behavior.

Exercise 12.1

NYSE.XLS contains data on the percentage change in stock prices (ΔY) each 
month from 1952 through 1995 on the New York Stock Exchange (NYSE). For 
those interested in precise details, the data are value-weighted stock returns exclu-
sive of dividends deflated using the consumer price index. Note that this data is 
already in differenced form but deviations from the mean have not been taken, 
i.e. it is ΔY not Y or Δy.

(a)	 Make a time series plot of this data and comment on any patterns you observe.
(b)	 Using the techniques discussed in Chapter 10, comment on the univariate 

time series properties of ΔY. What does its autocorrelation function look like? 
If you build an AR(p) model using this data what is p? Is ΔY stationary? Are 
stock returns on the NYSE predictable (i.e. can past stock returns help you 
to predict current values)?

(c)	 Assume that the original series, Y, follows a random walk such that an AR(0) 
model for ΔY is appropriate (possibly with an intercept). Calculate the volatil-
ity of this variable as described in this chapter.
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Autoregressive Conditional Heteroskedasticity 
(ARCH)

The class of ARCH models (including extensions) is probably the most popular one for 
working with financial volatility. It is most compactly explained by working with the 
familiar regression model:

Y X X X et t t k kt t= + + + + +α β β β1 1 2 2 … .

Note that this general model contains many of the other models we have been 
working with. For instance, if Xjt = Yt−j (i.e. the explanatory variables are lags of the 
dependent variable) then this is an AR model. Another interesting case we will focus 
on below occurs if there are no explanatory variables at all (i.e. α = β1 =, . . ., = βk = 0) 
in which case the ARCH model we will describe shortly simply relates to the dependent 
variable itself. If we set this dependent variable to be the demeaned stock returns (i.e. 
∆ ∆ ∆y Y Yt t= − ), then we will be working with a model of financial volatility analogous 
to that used in the first half of this chapter.

The ARCH model relates to the variance (or volatility) of the error, et. You may wish 
to review the material in Appendix 2.3 if you have forgotten the properties of variances. 
To simplify the notation (and adopt a very common notation in economics), we will let:

σ t te
2 = ( )var .

In other words, σ t
2 will be our notation for volatility which is defined as the variance 

of the error. It is this which is crucial in many financial applications (e.g. in pricing 
financial derivatives). Note that we are allowing volatility to vary over time – which is 
quite important in light of our previous discussion of clustering of volatility.

The ARCH model with p lags (denoted by ARCH(p)) assumes that today’s volatility 
is an average of past errors squared:

σ γ γ γt t p t pe e2
0 1 1

2 2= + + +− −… ,

(d)	 Plot the volatility of this series. Does it appear that volatility clustering is 
present?

(e)	 Construct an AR(p) model for the volatility series and discuss its properties. 
Can past values of volatility on the stock market help you to predict current 
volatility?
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where γ1, . . ., γp are coefficients that can be estimated in many statistical software pack-
ages. In the case where we have no explanatory variables and the dependent variable is 
Δyt, we have

σ γ γ γt t p t py y2
0 1 1

2 2= + + +− −∆ ∆… ,

and the ARCH volatility depends on recent values of ∆yt2 – the metric for volatility we 
were using in the first part of this chapter. This model is closely related to the autore-
gressive model (which accounts for the “AR” part of the name ARCH) and ARCH 
models have similar properties to AR models – except that these properties relate to 
the volatility of the series.

Example 12.1b:  Volatility in stock prices

With ARCH models we do not need to worry about subtracting the mean from 
the stock returns as we did in the first part of the chapter (by simply including 
an intercept in the regression model, we are allowing for a random walk with 
drift). Accordingly, we use the logged stock price data from STOCK.XLS and 
simply take the first difference to create the variable ΔYt. If we estimate an 
ARCH(1) model with ΔYt as the dependent variable and an intercept in the 
regression equation, our computer software package produces a table similar to 
Table 12.2.

The upper part of Table 12.2 refers to the coefficients in the regression equation. 
In this case, we have only included an intercept (labeled α in the regression equa-
tion). The lower part of the table refers to the ARCH equation. Since we are 
working with an ARCH(1) model, the equation includes an intercept (labeled γ0 
in the ARCH equation) and one lag of the errors squares (labeled γ1 in the ARCH 
equation and “Lag 1” in Table 12.2). The numbers in Table 12.2 can be read in 
the same manner as in the tables we have reported in earlier regression chapters. 

Table 12.2  ARCH(1) model using stock returns data.

Coefficient P-value Lower 95% Upper 95%

ΔYt

Intercept 0.105 0.000 0.081 0.129
ARCH
Lag 1 0.660 0.000 0.302 1.018
Intercept 0.024 0.000 0.016 0.032
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For many purposes (e.g. pricing financial derivatives), an estimate of σ t
2 is required 

for every time period. We will not discuss how software packages produce this, but note 
only that it is provided by them.

That is, the numbers in the column labeled “Coefficient” are estimates of the coef-
ficients (although, in this case, they are not OLS estimates, but rather more 
sophisticated estimates designed for ARCH models). The numbers in the column 
labeled “P-value” are P-values for testing the hypothesis that the corresponding 
coefficient equals zero. In this case, since the P-values are all less than 0.05, we 
can conclude that all the variables (in the regression equation and the ARCH 
equation) are statistically significant at the 5% level. The final two columns are 
lower and upper bounds for a 95% confidence interval.

The estimate of γ1 (i.e. the coefficient on the lagged errors squared in the ARCH 
equation) is 0.660, indicating that volatility this month depends strongly on the 
errors squared last month. This shows that there is persistence in volatility of a 
similar degree to that found using the simpler methods in the first part of this 
chapter. Remember that we previously found that the AR(1) coefficient in a regres-
sion involving ∆yt2 was estimated to be 0.737.

Lag length selection in ARCH models can be done in the same manner as with 
any time series model. That is, you can simply look at P-values for whether coef-
ficients equal zero (and, if they do seem to be zero, then variables can be dropped). 
For instance, if we estimate an ARCH(2) model using the stock return data, we 
obtain the results in Table 12.3.

The coefficient estimates in Table 12.3 are very similar to those for the ARCH(1) 
model. However, the coefficient on “Lag 2” (i.e. γ2) is not significant, since its 
P-value is greater than 0.05. Thus, we have evidence that an ARCH(1) model is 
adequate and the second lag added by the ARCH(2) model does not add significant 
explanatory power to the model.

Table 12.3  ARCH(2) model using stock returns data.

Coefficient P-value Lower 95% Upper 95%

ΔYt

Intercept 0.109 0.000 0.087 0.131
ARCH
Lag 1 0.717 0.000 0.328 1.107
Lag 2 −0.043 0.487 −0.165 0.079
Intercept 0.025 0.000 0.016 0.033
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There are many extensions of the ARCH model that are used by financial analysts. 
For instance, the computer package Stata lists seven different variants of the ARCH 
model with acronyms such as GARCH, SAARCH, TARCH, AARCH, NARCH and 
NARCHK. Another popular alternative model, which is not in the ARCH class, is 
called stochastic volatility. If you are doing a great deal of work on financial volatility, 
you should do further study to learn more about these models. Here we only introduce 
the most popular of these extensions: generalized ARCH, or GARCH. This takes the 
ARCH model and adds on lags of the volatility measure itself (instead of just adding 
lags of squared errors). Thus, a GARCH model with (p,q) lags is denoted by GARCH(p,q) 
and has a volatility equation of:

σ γ γ γ λ σ λ σt t p t p t q t qe e2
0 1 1

2 2
1 1

2 2= + + + + + +− − − −… … .

The properties of the GARCH model are similar to the ARCH model. For instance, 
the coefficients can be interpreted in a similar fashion to AR coefficients and related to 
the degree of persistence in volatility. However, it can be shown that the GARCH model 
is much more flexible, much more capable of matching a wide variety of patterns of 
financial volatility.

Example 12.1c:  Volatility in stock prices

If we estimate a GARCH(1,1) model with our stock return data, we obtain the 
results in Table 12.4. The numbers in this table can be interpreted in the same 
manner as for the ARCH tables. Here, however, we have an extra row labeled 
“GARCH Lag 1” which contains results for λ1 (i.e. the lagged volatility). It can 
be seen that this coefficient is insignificant, since its P-value is greater than 0.05. 
Thus, for this data set, the extension to a GARCH(1,1) model does not seem 
necessary. The ARCH(1) model does perfectly well.

Table 12.4  GARCH(1,1) model using stock returns data.

Coefficient P-value Lower 95% Upper 95%

ΔYt

Intercept 0.109 0.000 0.087 0.131
ARCH
Lag 1 0.714 0.000 0.327 1.101
GARCH Lag 1 −0.063 0.457 −0.231 0.104
Intercept 0.026 0.000 0.015 0.038
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Granger Causality

In this book, we have referred to causality quite a bit; however, mostly through warn-
ings about interpreting correlation and regression results as reflecting causality. For 
instance, in Chapter 3 we discussed an example where alcohol drinking and lung cancer 
rates were correlated with one another, even though alcohol drinking does not cause 
lung cancer. Here correlation did not imply causality. In fact, it was cigarette smoking 
that caused lung cancer, but a correlation between cigarette smoking and alcohol drink-
ing produced an apparent relationship between alcohol and lung cancer.

In our discussion of regression, we were on a little firmer ground, since we attempted 
to use economic reasoning and common sense in labeling one variable the dependent 
variable and the others the explanatory variables. In many cases, because the latter 
“explained” the former it was reasonable to talk about X “causing” Y. For instance, in 
our house price example in Chapters 4–7, the price of the house was said to be “caused” 
by the characteristics of the house (e.g. the number of bedrooms and the number of 
bathrooms). However, in our discussion of omitted variable bias in Chapter 6, it became 
clear that multiple regressions could provide a misleading interpretation of the degree 
of causality present if important explanatory variables were omitted. Furthermore, there 
are many regressions in which it is not obvious which variable causes which. For 
instance, in Exercise 11.8, you ran a regression of wage inflation (Y) on price inflation 
(X). It is possible that price inflation causes wage inflation (i.e. X causes Y), since 
workers will demand higher wage settlements if prices are rising rapidly. However, one 
could also argue that Y causes X, since wage increases will eat into company profits 
unless they raise prices. So wage inflation could cause price inflation. In other words, 

Exercise 12.2

NYSE.XLS contains data on the percentage change in stock prices (ΔY) each 
month from 1952 through 1995 on the New York Stock Exchange (NYSE).

(a)	 Estimate ARCH(p) models for various values of p. Is there volatility clustering 
in this data (i.e. does an ARCH model beat a simpler model where there is 
constant volatility which means γ1 =,  .  .  ., = γp = 0) ? Which value of p is 
preferable?

(b)	 For your preferred choice of p, make a time series plot of volatility (i.e. plot 
a graph of σ t

2).
(c)	 Repeat parts (a) and (b) using a GARCH(p,q) model. Does your graph of 

volatility look the same with ARCH and GARCH models?
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the causality could run in either direction – or both. Hence, when using the word 
“cause” with regression or correlation results, a great deal of caution has to be taken 
and common sense has to be used.

However, with time series data we can make slightly stronger statements about cau-
sality simply by exploiting the fact that time does not run backward. That is, if event 
A happens before event B, then it is possible that A is causing B. However, it is not 
possible that B is causing A. In other words, events in the past can cause events to 
happen today. Future events cannot cause today’s events.

These intuitive ideas can be investigated through regression models incorporating 
the notion of Granger causality. The basic idea is that a variable X Granger-causes Y if 
past values of X can help explain Y. Of course, if Granger causality holds this does not 
guarantee that X causes Y. This is why we say “Granger causality” rather than just 
“causality”. Nevertheless, if past values of X have explanatory power for current values 
of Y, it at least suggests that X might be causing Y.

Granger causality is only relevant with time series variables. To illustrate the basic 
concepts we will consider Granger causality between two variables (X and Y) which are 
both stationary. A non-stationary case, where X and Y have unit roots but are cointe-
grated, will also be mentioned below.

Granger causality in a simple ADL model

Since we have assumed that X and Y are stationary, the discussion of Chapter 11 sug-
gests an ADL model is appropriate. Suppose that the following simple ADL model 
holds:

Y Y X et t t t= + + +− −α φ β1 1 1 1 .

This model implies that last period’s value of X has explanatory power for the current 
value of Y. The coefficient β1 is a measure of the influence of Xt−1 on Yt. If β1 = 0, then 
past values of X have no effect on Y and there is no way that X could Granger-cause 
Y. In other words, if β1 = 0 then X does not Granger-cause Y. An alternative way of 
expressing this concept is to say that “if β1 = 0 then past values of X have no explana-
tory power for Y beyond that provided by past values for Y”. Since we know how to 
estimate the ADL and carry out hypothesis tests, it is simple to test for Granger causal-
ity. That is, OLS estimation of the above regression can be conducted using any standard 
spreadsheet or econometric computer package, and the P-value for the coefficient on 
Xt−1 examined for significance. If β1 is statistically significant (e.g. P-value < 0.05) then 
we conclude that X Granger-causes Y. Note that the null hypothesis being tested here 
is H0: β1 = 0 which is a hypothesis that Granger causality does not occur. So we should 
formally refer to the test of β1 = 0 as a test of Granger non-causality, but we will adopt 
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the more common informal terminology and just refer to this procedure as a Granger 
causality test.

Granger causality in an ADL model with p and q lags

Of course, the above ADL model is quite restrictive in that it incorporates only one lag 
of X and Y. In general, we would want to select lag lengths using the methods described 
in Chapter 11 to work with an ADL(p,q) model of the form:4

Y t Y Y X X et t p t p t q t q t= + + + + + + + +− − − −α δ φ φ β β1 1 1 1… … .

Here X Granger-causes Y if any or all of β1, .  .  ., βq are statistically significant. In 
other words, if X at any time in the past has explanatory power for the current value 
of Y, then we say that X Granger-causes Y. Since we are assuming X and Y do not 
contain unit roots, OLS regression analysis can be used to estimate this model. The 
P-values of the individual coefficients can be used to determine whether Granger causal-
ity is present. If you were using the 5% level of significance, then if any of the P-values 
for the coefficients β1, .  .  ., βq were less than 0.05, you would conclude that Granger 
causality is present. If none of the P-values is less than 0.05 then you would conclude 
that Granger causality is not present.

The strategy outlined above is a useful one that can be carried out quite simply with 
a statistical software package. You are likely to obtain reliable evidence about whether 
X Granger-causes Y by following it. Note, however, that there is formally a more 
correct – also more complicated – way of carrying out this test. Recall that the null 
hypothesis tested is formally one of Granger non-causality. That is, X does not Granger-
cause Y if past values of X have no explanatory power for the current value of Y. 
Appropriately, then, we want to test the hypothesis H0: β1 = β2 =, . . ., = βq = 0 and 
conclude that X Granger-causes Y only if the hypothesis is rejected. Note that this test 
is slightly different from the one proposed in the previous paragraph. That is, a joint 
test of β1 = β2 =, . . ., = βq = 0 is not exactly the same as q individual tests of βi = 0 
for i = 1, .  .  ., q. We have not discussed how to carry out tests to determine whether 
several coefficients are jointly equal to zero. For readers interested in such joint tests, 
Appendix 12.1 offers some practical advice.

However, if you choose to follow the simpler strategy outlined above, then you should 
note the following: If you find any or all of the coefficients β1, . . ., βq to be significant 
using t-statistics or the P-values of individual coefficients, you may safely conclude 
that X Granger-causes Y. If none of these coefficients is significant, it is probably 
the case that X does not Granger-cause Y. However, you are more likely to be wrong 
if you conclude the latter than if you had used the correct joint test of Granger 
non-causality.
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Causality in both directions

In many cases, it is not obvious which way causality should run. For instance, does  
past wage inflation cause price inflation or does the reverse hold? In such cases, when 
causality may be in either direction, it is important that you check for it. If Y and X 

Example 12.2a:  Does wage inflation Granger-cause price inflation?

Annual data from 1855–1987 on UK prices and wages is contained in the file 
WP.XLS, introduced in Exercise 11.8. If you have done that exercise, you will 
recall that the log of both wages and prices appear to have unit roots, but are not 
cointegrated. However, the differences of these series are stationary and can be 
nicely interpreted as inflation rates (i.e. wage and price inflation).

We will use this data set to investigate whether past wage inflation causes price 
inflation. There is good reason to think that this may indeed be the case. After 
all, if wages are increasing, companies have an incentive to increase prices to stop 
their profit margins from falling. Table 12.5 contains results from OLS estimation 
of the regression of price inflation (ΔP) on four lags of itself, four lags of wage 
inflation (ΔW) and a deterministic trend.

An examination of the P-values in Table 12.5 indicates that only the determin-
istic trend and last period’s price inflation have explanatory power for present 
inflation. All of the coefficients on the lags of wage inflation are insignificant. 
Contrary to our expectations, then, wage inflation does not seem to Granger-cause 
price inflation.5

Table 12.5  ADL model using price inflation as the dependent variable.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept −0.751 0.710 −1.058 0.292 −2.156 0.654
ΔPt−1 0.822 0.170 4.850 3.81E-6 0.486 1.158
ΔPt−2 −0.041 0.186 −0.222 0.825 −0.409 0.326
ΔPt−3 0.142 0.186 0.762 0.448 −0.227 0.511
ΔPt−4 −0.181 0.175 −1.035 0.303 −0.526 0.165
ΔWt−1 −0.016 0.143 −0.114 0.909 −0.299 0.267
ΔWt−2 −0.118 0.143 −0.823 0.412 −0.402 0.166
ΔWt−3 −0.042 0.143 −0.292 0.771 −0.324 0.241
ΔWt−4 0.038 0.142 0.266 0.791 −0.244 0.319
Time 0.030 0.011 2.669 0.009 0.0077 0.052



204  /  ANALYSIS  OF  ECONOMIC DATA

are the two variables under study, in addition to running a regression of Y on lags of 
itself and lags of X (as above), you should also run a regression of X on lags of itself 
and lags of Y.

Note that it is possible to find that Y Granger-causes X and that X Granger-causes 
Y. In the case of complicated economic models, such bi-directional causality is quite 
common and even reasonable. Think, for instance, of the relationship between interest 
rates and exchange rates. It is not unreasonable from a macroeconomic perspective to 
say that interest rate policy may affect future exchange rates. However, it is also equally 
reasonable to think that exchange rates may also affect future interest rate policy (e.g. 
if the exchange rate is perceived to be too high now the central bank may be led to 
decrease interest rates in the future).

Example 12.2b:  Does price inflation Granger-cause wage inflation?

In Example 12.2a, we used data set WP.XLS to investigate whether wage inflation 
Granger-causes price inflation. We found that it did not. However, it is possible 
that causality runs in the opposite direction; that is, that price inflation may actu-
ally cause wage inflation. After all, workers and unions often look at past inflation 
and adjust their wage demands accordingly.

Table 12.6 contains results from OLS estimation of the regression of wage infla-
tion (ΔW) on four lags of itself, four lags of price inflation (ΔP) and a deterministic 
trend.

Here we do find evidence that price inflation Granger-causes wage inflation. In 
particular, the coefficient on ΔPt−1 is highly significant, indicating that last year’s 
price inflation rate has strong explanatory power for wage inflation.

Table 12.6  ADL model using wage inflation as the dependent variable.

Coefficient Standard error t-stat P-value Lower 95% Upper 95%

Intercept −0.609 0.835 −0.730 0.467 −2.262 1.044
ΔWt−1 0.053 0.168 0.312 0.755 −0.280 0.386
ΔWt−2 −0.040 0.169 −0.235 0.814 −0.374 0.294
ΔWt−3 −0.058 0.168 −0.348 0.728 −0.391 0.274
ΔWt−4 0.036 0.167 0.215 0.830 −0.295 0.367
ΔPt−1 0.854 0.200 4.280 3.83E-5 0.459 1.249
ΔPt−2 −0.217 0.218 −0.993 0.323 −0.649 0.215
ΔPt−3 0.234 0.219 1.067 0.288 −0.200 0.668
ΔPt−4 −0.272 0.205 −1.323 0.188 −0.678 0.135
Time 0.046 0.013 3.514 0.001 0.020 0.072
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This brief discussion of Granger causality has focused on two variables, X and Y. 
However, there is no reason why these basic techniques cannot be extended to the case 
of many variables. For instance, if we had three variables, X, Y and Z, and were inter-
ested in investigating whether X or Z Granger-cause Y, we would simply regress Y on 
lags of Y, lags of X and lags of Z. If say, the lags of Z were found to be significant and 
the lags of X were not, then we could say that Z Granger-causes Y, but X does not.

Granger causality with cointegrated variables

Testing for Granger causality among cointegrated variables is very similar to the method 
outlined above. It is common to work with a variant of the error correction model (ECM) 
introduced in Chapter 11:

∆ ∆ ∆ ∆ ∆Y t e Y Y X Xt t t p t p t q t q t= + + + + + + + + +− − − − −ϕ δ λ γ γ ω ω ε1 1 1 1 1… … .

As noted in Chapter 11, this is essentially an ADL model except for the presence of 
the term λet−1. Remember that et−1 = Yt−1 − α − βXt−1, an estimate of which can be 

Exercise 12.3

In Examples 12.2a and b, using the data set WP.XLS, we set p = q = 4 (i.e. four 
lags of both wage and price inflation). Using price inflation as the dependent 
variable and the sequential testing procedure outlined in Chapter 11 select optimal 
values for p and q. Discuss whether wage inflation causes price inflation using the 
ADL(p,q) model you have selected. Repeat the analysis using wage inflation as the 
dependent variable.

Exercise 12.4

The data set in file LONGGDP.XLS contains annual data on real GDP per capita 
for four of the world’s largest English-speaking countries (USA, UK, Canada and 
Australia) for the years 1870–1993.

(a)	 Take differences to obtain time series of the growth in GDP per capita for 
each of the four countries.

(b)	 Investigate where GDP growth in any country Granger-causes GDP growth 
in any other country. For instance, does GDP growth in the US Granger-cause 
GDP growth in the UK? Does it in Canada?
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obtained by running a regression of Y on X and saving the residuals. Intuitively, X 
Granger-causes Y if past values of X have explanatory power for current values of Y. 
Applying this intuition to the ECM, we can see that past values of X appear in the 
terms ΔXt−1,  .  .  . , ΔXt−q and et−1. This implies that X does not Granger-cause Y if 
ω1 =, . . ., = ωq = λ = 0. Chapter 11 discussed how ECMs can be estimated using sta-
tistical software packages or by a two-step method involving two OLS regressions. 
Either procedure will produce t-statistics and P-values which can be used to test for 
Granger causality in the same way as the stationary case. Also, the F-tests described in 
Appendix 12.1 can be used to carry out a formal test of H0: ω1 =, . . ., = ωq = λ = 0.

In the previous paragraph we described how to test whether X Granger-causes Y. 
Testing whether Y Granger-causes X is achieved by reversing the roles that X and Y 
play in the ECM. One interesting consequence of the Granger Representation Theorem 
is worth noting here: If X and Y are cointegrated then some form of Granger causality 
must occur. That is, either X must Granger-cause Y or Y must Granger-cause X 
(or both).

Exercise 12.5

Use the data on consumption (Y) and personal income (X) from INCOME.XLS. 
Assume (perhaps incorrectly in light of Exercise 11.5) that Y and X are 
cointegrated.

Test whether Y Granger-causes X. Test whether X Granger-causes Y.

Vector Autoregressions

Our discussion of Granger causality naturally leads us to the topic of vector autoregres-
sions (VARs). Before discussing their popularity and estimation, we will first define 
what a VAR is. Initially, we assume that all variables are stationary. If the original vari-
ables have unit roots, then we assume that differences have been taken such that the 
model includes the changes in the original variables (which do not have unit roots). The 
end of this section considers the extension of this case to cointegration.

When we investigated Granger causality between X and Y, we began with a restricted 
version of an ADL(p,q) model with Y as the dependent variable. We used it to investigate 
if X Granger-caused Y. We then went on to consider causality in the other direction, 
which involved switching the roles of X and Y in the ADL model; in particular, X 
became the dependent variable. We can write the two equations as follows:

Y t Y Y X X et t p t p t q t q t= + + + + + + + +− − − −α δ φ φ β β1 1 11 1 1 11 1 1 1… … ,
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and

X t Y Y X X et t p t p t q t q t= + + + + + + + +− − − −α δ φ φ β β2 2 21 1 2 21 1 2 2… … .

The first of these equations can be used to test whether X Granger-causes Y; the 
second, whether Y Granger-causes X. Note that now the coefficients have subscripts 
indicating which equation they are in. For instance, α1 is the intercept in the first equa-
tion and α2 the intercept in the second. Furthermore, the errors now have subscripts to 
denote the fact that they will be different in the two equations.

A vector autoregression is the extension of the autoregressive (AR) model to the case 
in which there is more than one variable under study. Remember that the AR model 
introduced in Chapter 10 involved one dependent variable, Yt, which depended only 
on lags of itself (and possibly a deterministic trend). A VAR has more than one depend-
ent variable (e.g. Y and X) and, thus, has more than one equation (e.g. one where Yt is 
the dependent variable and one where Xt is). Each equation uses as its explanatory vari-
ables lags of all the variables under study (and possibly a deterministic trend).

The two equations above constitute a VAR with two variables. For instance, you can 
see that in the first equation Y depends on p lags of itself and on q lags of X. The lag 
lengths, p and q, can be selected using the sequential testing methods introduced in 
Chapter 10. However, especially if the VAR has more than two variables, many different 
lag lengths need to be selected (i.e. one for each variable in each equation). In light of 
this, it is common to set p = q and use the same lag length for every variable in every 
equation. The resulting model is known as a VAR(p) model. The following VAR(p) 
model has three variables, Y, X and Z:

Y t Y Y X X Zt t p t p t p t p t= + + + + + + + + + +− − − − −α δ φ φ β β δ δ1 1 11 1 1 11 1 1 11 1 1… … … pp t p tZ e− + 1 ,

X t Y Y X X Zt t p t p t p t p t= + + + + + + + + + +− − − − −α δ φ φ β β δ δ2 2 21 1 2 21 1 2 21 1 2… … … pp t p tZ e− + 2 ,

Z t Y Y X X Zt t p t p t p t p t= + + + + + + + + + +− − − − −α δ φ φ β β δ δ3 3 31 1 3 31 1 3 31 1 3… … … pp t p tZ e− + 3 .

Note that, in addition to an intercept and deterministic trend, each equation contains 
p lags of all variables in the study. VAR(p) models with more than three variables can 
be obtained in an analogous manner.

Since we assume that all the variables in the VAR(p) model are stationary, estimation 
and testing can be carried out in the standard way. That is, you can obtain estimates of 
coefficients in each equation using OLS. P-values or t-statistics then allow you to ascer-
tain whether individual coefficients are significant. You can also use the material covered 
in Appendix 12.1 to carry out more complicated F-tests.

VARs are, then, easy use. However, you may be wondering why we would want to 
work with such models. One reason has to be Granger causality testing. That is, VARs 
provide a framework for testing for Granger causality between each set of variables. 
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However, there are deeper reasons for why we would want to use them that we should 
also mention.

Throughout this book, we have stressed the need for care when interpreting correla-
tion or regression results as reflecting causality or influence. Economic theory or common 
sense can be a big help to you in many cases. In Chapters 4 and 6 we worked through 
many examples about which we could comfortably say that the regressions reflected 
causality. For instance, X (population density) caused Y (deforestation) or X (lot size) 
influenced Y (house price). In both cases, it is not plausible for us to say that Y influ-
enced or caused X.

However, there are many instances when neither economic theory nor common sense 
can provide you with a regression model that can be interpreted as reflecting causality. 
For instance, does Y (wage inflation) cause X (price inflation)? Or does the opposite 
happen? Economic theory and common sense tells us that either can happen and that 
Granger causality tests can shed light on these questions. The field of macroeconomics, 
in particular, is filled with such examples. Do interest rates cause exchange rates to 
change or vice versa? Both? Does GDP growth cause interest rates to change? The 
opposite? Both? The answers are unclear and it is hard to know how to interpret coef-
ficients in a regression of Yt on Xt.

We have so far ignored the issues of cointegration and the long run multiplier. 
However, even if cointegration is present we have to be careful when interpreting regres-
sion results as reflecting causality. For instance, in Chapter 11 we found the prices of Y 
(organic oranges) and X (regular oranges) to be cointegrated and the long run multiplier 
effect of X on Y to be 0.996. These results probably indicate that X influences Y (i.e. 
if the price of regular oranges went up by 1 pence, the price of organic oranges would 
probably rise by 0.995 pence in the long run). However, it is unlikely that the price of 
organic oranges would influence regular oranges since the former make up such a small 
part of the market. Hence, X influences Y, but Y does not influence X. If we had 
reversed things and the price of regular oranges was our dependent variable and the 
price of organic oranges the explanatory variable, we would still have found cointegra-
tion and calculated a long run multiplier. But we would be wrong in using it as a 
measure of the influence of organic orange prices on regular prices.

The issues raised in the previous paragraphs either do not arise at all or arise to a far 
lesser extent in VAR models. That is, all of the variables we are using to explain the 
current value of the dependent variable occurred in the past (e.g. in the first equation 
the explanatory variables are all dated t − 1 or earlier, whereas the dependent variable 
is Yt). It is possible that the past might influence the present, but it is not possible for 
the present to influence the past. Hence, in the VAR model, the explanatory variables 
might influence the dependent variable, but there is no possibility that the dependent 
variable influences the explanatory variable. Problems of interpretation that arise with 
the regression of Yt on Xt do not arise in the VAR case.6
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One of the controversial things about VARs is that they are atheoretical. That is, they 
do not draw heavily on economic theory. Theory is limited to selecting the variables in 
the VAR. Consider, for instance, the relationship between interest rates, price levels, 
the money supply and real GDP. Macroeconomic theorists have created many sophisti-
cated models of this relationship. The IS-LM model extended for inflation is perhaps 
the best known, but many others do exist. Whereas the macroeconomic theorist would 
like this theory to influence empirical work, the VAR practitioner does not draw on it 
at all. A VAR model states: “Interest rates, price level, money supply and real GDP are 
related. We model this relationship as implying only that each variable depends on lags 
of itself and all other variables.” There is no real link between the empirical VAR and a 
theoretical macroeconomic model (e.g. IS-LM).

The VAR user would defend the VAR by noting its excellent forecasting performance. 
We will discuss this trait in greater detail below, but you should merely note now that 
this constitutes a strong reason for using them. In many cases, VARs have been shown 
to have better forecasting ability than sophisticated macroeconomic models.

Example 12.3:  A VAR(1) model with RMPY variables

Economists often use such important macroeconomic variables as: R = the interest 
rate, M = the money supply, P = the price level and Y = real GDP. Due to the 
symbols used, models using these variables are sometimes informally referred to 
as RMPY models. The file RMPY.XLS contains quarterly data on the following 
variables for the USA from 1947Q1 through 1992Q4:

•	 R is the three-month Treasury bill rate;
•	 M is the money supply (M2) measured in billions of dollars;
•	 P is the price level measured by the GDP deflator (a price index with 

1987 = 1.00);
•	 Y is real GDP measured in billions of 1987 dollars.

Before carrying out an analysis using time series data, you must conduct unit 
root tests. Remember that, if unit roots are present but cointegration does not 
occur, then the spurious regression problem exists. In this case, you should work 
with differenced data. Alternatively, if unit roots exist and cointegration does 
occur, then you will have important economic information that the series are 
trending together.

In the present case, tests indicate that we cannot reject the hypothesis that unit 
roots exist in all variables and that cointegration does not occur. In order to avoid 
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the spurious regression problem, we work with differenced data. In particular, we 
take logs of each series, then take differences of these logged series, then multiply 
them by 100. This implies that we are working with percentage changes in each 
variable (e.g. a value of 1 implies a 1% change). Thus:

•	 ΔR is the percentage change in the interest rate;
•	 ΔM is the percentage change in the money supply;
•	 ΔP is the percentage change in the price level (i.e. inflation);
•	 ΔY is the percentage change in GDP (i.e. GDP growth).

Table 12.7 presents results from OLS estimation of a VAR(1). Note that this 
table is in a slightly different format from previous ones. Since there are four vari-
ables in our VAR (i.e. ΔR, ΔM, ΔP and ΔY), there are four equations to estimate. 
We have put results for all equations in one table. Each equation regresses a 
dependent variable on one lag of all the variables in the VAR. To save space, we 
have included only the OLS estimate and P-value of each coefficient.

If we examine the significant coefficients (i.e. those with P-value less than 0.05), 
some interesting patterns emerge. First, in every equation, the lag of the depend-
ent variable is significant. That is, in the equation with ΔRt as the dependent vari-
able, ΔRt−1 provides significant explanatory power. In the equation with ΔMt as 
the dependent variable, ΔMt−1 provides significant explanatory power, and so on.

Secondly, the results for the four equations demonstrate some interesting pat-
terns of Granger causality. In the equation with ΔR as the dependent variable, we 
can see that both GDP growth and money growth Granger-cause interest rate 
changes. In other words, past values of GDP and money growth have explanatory 
power for current interest rate changes. In the case of the relationship between 
ΔR and ΔM (the interest rate and money supply), the equation with ΔM as the 

Table 12.7  The RMPY VAR(1) model using ΔR, ΔM, ΔP and ΔY as dependent variables.

Dependent  
variable ΔR

Dependent  
variable ΔM

Dependent  
variable ΔP

Dependent  
variable ΔY

Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value

Intercept −3.631 0.162 0.335 0.001 0.161 0.138 0.495 0.005

ΔRt−1 0.222 0.003 −0.013 2.0E-5 0.010 0.002 3.8E-4 0.940

ΔMt−1 3.391 0.007 0.749 1.E-33 0.121 0.021 0.283 9.3E-4

ΔPt−1 1.779 0.228 0.061 0.303 0.519 1.E-14 −0.117 0.242

ΔYt−1 3.224 0.004 −0.032 0.480 −0.039 0.407 0.309 7.0E-5

Time −0.056 0.011 3.4E-4 0.695 0.002 0.048 −0.003 0.035
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Lag length selection in VARs

The results in Example 12.3 are based on a VAR(1) model. That is, we set p = 1 and 
used one lag of each variable to explain the dependent variable. In general, of course, 
we might want to set p to values other than one. The literature on lag length selection 
in VARs is voluminous and most of the criteria suggested are too complicated to be 
easily calculated using a spreadsheet. However, more sophisticated computer software 
packages do automatically calculate many criteria for lag length. For instance, Stata 
calculates several information criteria with names such as Akaike’s information criterion 
(AIC), the Schwarz–Bayes information criterion (SBIC) and the Hannan–Quinn infor-
mation criterion (HQIC). A full explanation of these would require concepts beyond 
those covered in this book. However, for use in practice, all you need to know is that 
these can be calculated for VARs for every lag length up to pmax (the maximum possible 
lag length that is reasonable). You then select the lag length which yields the smallest 
value for your information criterion.7 In addition, the t-stats and P-values we have used 
throughout this book provide useful information on lag length. This is illustrated in 
Example 12.4a.

dependent variable shows that the causality flows in both directions since interest 
rate changes also Granger-cause money growth. However, interest rate changes do 
not Granger-cause GDP growth. The Granger causality results with respect to 
inflation are particularly interesting since it can be seen that inflation does not 
Granger-cause any other variable, but that both ΔR and ΔM Granger-cause 
inflation.

A macroeconomist could use these results to address theoretical questions of 
interest (e.g. Is inflation purely a monetary phenomenon? Are monetarist views 
of the economy supported? Are Keynesian views of the economy supported? Is the 
real economy affected by inflation?), but it is beyond the scope of this book to 
discuss them in detail.

Exercise 12.6

Use the data on R, M, P and Y in RMPY.XLS.

(a)	 Test for unit roots in each of the variables.
(b)	 Test for cointegration among the variables.
(c)	 Using the data on ΔR, ΔM, ΔP and ΔY in RMPY.XLS, test for a unit root 

in each of the variables.
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Exercise 12.7

Using the results in Table 12.8, discuss Granger causality among all the variables 
in the model.

Example 12.4a:  A VAR(2) model with RMPY variables

In Example 12.3, we used data on ΔR, ΔM, ΔP and ΔY to estimate a VAR(1) 
model. Table 12.8 repeats the analysis using a VAR(2) model. Several of the coef-
ficients on variables two periods ago are significant. For instance, ΔRt−2 is signifi-
cant in the equation with ΔRt as the dependent variable. This indicates that the 
VAR(1) used in Example 12.3 was not appropriate.

To give you an idea of the costs of using an incorrect model, take a careful look 
at the equation with ΔY as the dependent variable. Recall that in the VAR(1) 
model, we concluded that inflation did not Granger-cause GDP growth. However, 
the VAR(2) model indicates that inflation does Granger-cause GDP growth. Since 
the relationship between GDP growth and the inflation rate is the source of much 
controversy in modern macroeconomics, the cost of incorrectly using a VAR(1) 
model is quite large.

Table 12.8  The RMPY VAR(2) model using ΔR, ΔM, ΔP and ΔY as dependent variables.

Dependent  
variable ΔR

Dependent  
variable ΔM

Dependent  
variable ΔP

Dependent  
variable ΔY

Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value

Intercept −4.000 0.103 0.261 0.017 0.113 0.311 0.513 0.006

ΔRt−1 0.315 1.9E-5 −0.017 3.6E-7 0.009 0.004 0.002 0.670

ΔMt−1 2.824 0.106 0.655 8.E-15 0.086 0.280 0.310 0.019

ΔPt−1 3.049 0.061 −0.020 0.785 0.366 1.6E-6 0.074 0.545

ΔYt−1 3.696 4.6E-4 −0.051 0.270 −0.010 0.835 0.270 0.001

ΔRt−2 −0.346 4.5E-6 0.003 0.298 −0.001 0.795 −0.010 0.085

ΔMt−2 −2.201 0.213 0.157 0.045 0.025 0.755 −0.094 0.480

ΔPt−2 1.164 0.457 0.095 0.170 0.282 1.0E-4 −0.233 0.049

ΔYt−2 1.085 0.303 0.036 0.445 −0.046 0.334 0.153 0.054

Time −0.045 0.029 −2.E-4 0.798 0.001 0.209 −0.003 0.104
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Forecasting with VARs

We have said very little in the book so far about forecasting, despite the fact that this 
is an important activity of economists. However, the field of forecasting is enormous. 
Given the huge volume of research and issues to consider, it is impossible to do justice 
to the field in a book like this. However, many statistical software packages have fore-
casting facilities that are simple to use. Once you have estimated a model (e.g. a VAR 
or an AR), you can forecast simply by clicking on an appropriate option. In other words, 
many statistical software packages can allow you to undertake basic forecasting without 
a deep knowledge of the topic.

Hence, we will offer a brief introduction to some of the practical issues and intuitive 
ideas relating to forecasting. All our discussion will relate to forecasting with VARs but 
it is worth noting that the ideas also relate to forecasting with univariate time series 
models. After all, an AR model is just a VAR with only one equation.

Forecasting is usually done using time series variables. The idea is that you use your 
observed data to predict what you expect to happen in the future. In more technical 
terms, you use data for periods t = 1, . . ., T to forecast periods T + 1, T + 2, and so on.

To provide some intuition for how forecasting is done, consider a VAR(1) model 
involving two variables, Y and X:

Y t Y X et t t t= + + + +− −α δ φ β1 1 11 1 11 1 1 ,

Exercise 12.8

Use the variables ΔR, ΔM, ΔP and ΔY in RMPY.XLS.

(a)	 Beginning with pmax = 5, select an appropriate lag length for a VAR.
(b)	 Using your result from part (a), discuss Granger causality among the variables 

ΔR, ΔM, ΔP and ΔY.

Exercise 12.9

The data set in LONGGDP.XLS, as you will recall, contains annual data on real 
GDP per capita for four of the largest English-speaking countries (USA, UK, 
Canada and Australia) for the years 1870–1993. Take differences to obtain time 
series of the growth in GDP per capita for each of the four countries. Construct 
a VAR using this data.
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and

X t Y X et t t t= + + + +− −α δ φ β2 2 21 1 21 1 2 .

You cannot observe YT+1 but you want to make a guess of what it is likely to be. 
Using the first equation of the VAR and setting t = T + 1, we obtain an expression 
for YT+1:

Y T Y X eT T T T+ += + + + + +1 1 1 11 11 1 11α δ φ β( ) .

This equation cannot be used directly to obtain YT+1 since we don’t know what e1T+1 
is: we don’t know what unpredictable shock or surprise will hit the economy next period. 
Furthermore, we do not know what the coefficients are. However, if we ignore the error 
term (which cannot be forecast) and replace the coefficients by OLS estimates, we obtain 
a forecast which we denote by ŶT+1:

ˆ ˆ ˆ ( ) ˆ ˆ .Y T Y XT T T+ = + + + +1 1 1 11 111α δ φ β

Note that everything in the formula for ŶT+1 can be taken from either the original 
data or the output from a regression. You can just plug all the individual numbers (i.e. 
the OLS estimates of the coefficients and YT, XT and T + 1) into a formula to calculate 
ŶT+1. A similar strategy can be used to obtain X̂T+1. You can see how, in practice, cal-
culating these forecasts in this way can be awkward and time consuming. But your 
statistical software package will be able to do it for you.

The previous paragraph described how to forecast one period into the future. We can 
use the same strategy for two periods, provided that we make one extension. In the 
one-period case, we used XT and YT to create ŶT+1 and X̂T+1. In the two period case, 
ŶT+2 and X̂T+2 depend on YT+1 and XT+1. But since our data only runs until period T, 
we do not know what YT+1 and XT+1 are. Consequently, we replace YT+1 and XT+1 by 
ŶT+1 and X̂T+1. That is, we use the relevant equation from the VAR, ignore the error, 
replace the coefficients by their OLS estimates and replace past values of the variables 
that we do not observe by their forecasts. In a formula:

ˆ ˆ ˆ ( ) ˆ ˆ ˆ ˆ .Y T Y XT T T+ + += + + + +2 1 1 11 1 11 12α δ φ β

The above equation can be calculated in a spreadsheet, although somewhat awk-
wardly. X̂T+2 can be calculated in a similar manner using the formula:

ˆ ˆ ˆ ( ) ˆ ˆ ˆ ˆ .X T Y XT T T+ + += + + + +2 2 2 21 1 21 12α δ φ β

We can use the general strategy of ignoring the error, replacing coefficients by OLS 
estimates and replacing lagged values of variables that are unobserved by forecasts, to 
obtain forecasts for any number of periods in the future for any VAR(p).
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The previous discussion has demonstrated how to calculate point estimates of fore-
casts. Of course, in reality, what actually happens is rarely identical to your forecast. In 
Chapter 5, we discussed a similar issue. There we pointed out that OLS provides esti-
mates only of coefficients, and that these will not be precisely correct. For this reason, 
in addition to OLS estimates, we also recommended that you present confidence inter-
vals. These reflect the level of uncertainty about the coefficient estimate. When forecast-
ing, confidence intervals can be calculated and can be quite informative. It is increasingly 
common for government agencies to present confidence intervals for their forecasts. For 
instance, a central banker might make a statement of the form: “My forecast of inflation 
next year is 1.8%. I am 95% confident that it will be between 1.45% and 2.15%”. 
Many statistical software packages automatically provide such confidence intervals.

Example 12.4b:  A VAR(2) model with RMPY variables

In this example, we consider forecasting using the data on ΔR, ΔM, ΔP and ΔY 
from RMPY.XLS. As in Example 12.4a, we use a VAR(2) model. We have data 
on these variables from 1947Q2 through 1992Q4. A common practice is to with-
hold some data with which to compare forecasts. Here we use data from 1947Q2 
through 1991Q4 to estimate the VAR(2). We forecast from 1992Q1 through 
1992Q4, and then compare our forecasts for the year 1992 to what actually hap-
pened in 1992. Doing this will give us some idea of the forecast performance of 
our model.

Table 12.9 contains the forecasts and actual observations for 1992 for inflation 
and GDP growth. To aid in interpretation, note that all figures are percentage 
changes over the quarter. For example, the forecast for inflation for 1992Q2 of 
0.731, translates into a 2.96% annual inflation rate. The table indicates that the 
VAR(2) did reasonably well at forecasting inflation, except for 1992Q3, when 
actual inflation was unusually low. The forecasting performance for GDP growth 
is not quite as good, with our VAR consistently predicting slower growth than 
actually occurred.

Table 12.9  Forecasts of inflation and GDP growth for 1992 using a RMPY VAR(2) model.

ΔP forecast ΔP actual ΔY forecast ΔY actual

1992Q1 0.626 0.929 −0.019 0.865
1992Q2 0.731 0.689 0.220 0.698
1992Q3 0.862 0.289 0.275 0.838
1992Q4 0.940 0.813 0.271 1.393



216  /  ANALYSIS  OF  ECONOMIC DATA

Exercise 12.10

Use the variables ΔR, ΔM, ΔP and ΔY in RMPY.XLS.

(a)	 In Example 12.4b, we used a VAR(2) model. Using a VAR(p) model for 
various values of p (e.g. p = 1, 3 and 4) construct forecasts for the year 1992. 
Do any of the VARs you worked with produce better forecasts than in Table 
12.9?

(b)	 In Example 12.4b, data from 1947Q2 through 1991Q4 was used to estimate 
the VAR, which was then used to forecast from 1992Q1 through 1992Q4. 
Rework the example using data from 1947Q2 through 1990Q4 to forecast 
1991Q1 through 1992Q4 (i.e. forecast for two years instead of one).

(c)	 Try forecasting for longer and longer periods. For instance, in part (b) you 
forecast for two years. Now try to forecast three years, four years, five years 
and so on. Discuss your results. Do your results suggest that VARs are better 
at forecasting a short period ahead than a long period?

Exercise 12.11

Using the data in Exercise 12.9 and the VAR constructed therein, carry out a 
forecasting exercise for GDP growth for the four included countries. Experiment 
with various forecast horizons. Does the VAR forecast well?

Vector autoregressions with cointegrated variables

In the preceding discussion of VARs, we assumed that all variables are stationary. If 
some of the original variables have unit roots and are not cointegrated, then the ones 
with unit roots should be differenced and the resulting stationary variables should be 
used in the VAR. This covers every case except the one where the variables have unit 
roots and are cointegrated.

Recall that in this case, in the discussion of Granger causality we recommended that 
you work with an ECM. The same strategy can be employed here. In particular, instead 
of working with a vector autoregression (VAR), you should work with a vector error cor-
rection model (VECM). Like the VAR, the VECM has one equation for each variable in 
the model. In the case of two variables, Y and X, the VECM is:
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∆ ∆ ∆ ∆ ∆Y t e Y Y X Xt t t p t p t q t q= + + + + + + + + +− − − − −ϕ δ λ γ γ ω ω1 1 1 1 11 1 1 11 1 1… … εε1t

and

∆ ∆ ∆ ∆ ∆X t e Y Y X Xt t t p t p t q t q= + + + + + + + + +− − − − −ϕ δ λ γ γ ω ω2 2 2 1 21 1 2 21 1 2… … εε2t.

As before, et−1 = Yt−1 − α − βXt−1. Note that the VECM is the same as a VAR with 
differenced variables, except for the term et−1. An estimate of this error correction 
variable can be obtained by running an OLS regression of Y on X and saving the residu-
als. We can then use OLS to estimate ECMs, and P-values and confidence intervals can 
be obtained. Lag length selection and forecasting can be done in a similar fashion to 
the way it is done with the VAR, with the slight added complication that forecasts  
of the error correction term, et, must be calculated. However, this is simple using 
OLS estimates of α and β and replacing the error, et, by the residual ut. Alternatively, 
statistical software packages will do estimation, testing and forecasting in VECMs 
automatically.

Of course, as with any of the models in this chapter, you should always do unit root 
tests to see if your variables are stationary or not. If your variables have unit roots, then 
it is additionally worthwhile to test for cointegration. In Chapter 11, we introduced a 
test for cointegration based on checking whether there is a unit root in the residuals 
from the cointegrating regression. However, there is a more popular cointegration test 
called the Johansen test. To explain this test would require a discussion of concepts beyond 
the scope of this book. However, if you have a software package which does the Johansen 
test, then you can use it in practice. Accordingly, we offer a brief intuitive description 
of this test.

The first thing to note is that it is possible for more than one cointegrating relation-
ship to exist if you are working with several time series variables (all of which you have 
tested and found to have unit roots). To be precise, if you are working with M variables, 
then it is possible to have up to M − 1 cointegrating relationships (and, thus, up to 
M − 1 cointegrating residuals included in the VECM). For instance, in Example 12.5, 
we investigate cointegration among three variables: consumption, assets and income. 
As we shall see, there is probably just one cointegrating relationship between these 
variables. That is, c, a and y all have unit roots, but ct − α − β1at − β2yt is stationary. 
However, in theory it would have been possible for there to be two cointegrating rela-
tionships (e.g. if ct − yt and at − yt were both stationary). Thus, it is often of interest to 
test not simply for whether cointegration is present but for the number of cointegrating 
relationships.

The Johansen test can be used to test for the number of cointegrating relationships 
using VECMs. For reasons we will not explain, the “number of cointegrating relation-
ships” is referred to as the “cointegrating rank”. The details of the Johansen test  
statistic are quite complicated. However, like any hypothesis test, you can compare  
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the test statistic to a critical value and, if the test statistic is greater than the critical 
value, you reject the hypothesis being tested. Fortunately, many software packages  
(e.g. Stata) will calculate all these numbers for you. We will see how this works in 
Example 12.5.

Before working through this example, note that when you do the Johansen test you 
have to specify the lag length and the deterministic trend term. The lag length can be 
selected using hypothesis testing procedures or information criteria as described above. 
With VECMs, it is possible simply to put an intercept or deterministic trend into the 
model (as we have done in the equations above – see the terms with coefficients φ and 
δ on them). However, it is also possible to put an intercept or deterministic trend actu-
ally into the cointegrating residual (e.g. if you say ct − α − β1at − β2yt is the cointegrating 
residual, you are putting an intercept into it). The Johansen test varies slightly depend-
ing on the exact configuration of deterministic terms you use, so you will be asked to 
specify these before doing the Johansen test.

Example 12.5:  Consumption, aggregate wealth and  
expected stock returns

In an influential paper, Lettau and Ludvigson (2001) present financial theory 
arguing that consumption, assets and income should be cointegrated and the 
cointegrating residual should be able to predict excess stock returns. They then 
present empirical evidence in favor of their theory. We will not repeat the theory 
(nor will we consider the forecasting aspect of their paper). However, we stress 
that their work uses the tools we have been developing in this chapter: testing for 
cointegration and estimation of a VECM.

We investigate the presence of cointegration here using US data from 1951Q4 
through 2003Q1 on consumption, c, (formally, the log of real per capita expendi-
tures on nondurables and services excluding shoes and clothing); a measure of 
assets, a, (formally, the log of a measure of real per capita household net worth 
including all financial and household wealth as well as consumer durables); and 
the log of after-tax labor income, y. This data is available in CAY.XLS.

Unit root tests indicate that all of these variables have unit roots. If we do the 
Johansen test using a lag length of one and restricting the deterministic term to 
allow for intercepts only (i.e. no deterministic trends such as those with coefficients 
δ in the previous equations are allowed for), we get the results in Table 12.10 (we 
used Stata, although other statistical software packages present results in a similar 
format).
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How should you interpret this table? Note first that the “trace statistic” is the 
name of the test statistic used in the Johansen test and “rank” indicates the number 
of cointegrating relationships with a rank of 0 indicating that cointegration is not 
present. With the Johansen test, the hypothesis being tested is always a certain 
cointegrating rank with the alternative hypothesis being that the cointegrating 
rank is greater than the hypothesis being tested.

If we compare the trace statistic to its critical value, we can see for Rank = 0 
that the test statistic is greater than the 5% critical value. This means we can 
reject the hypothesis that Rank = 0 at the 5% level of significance (in favor of the 
hypothesis that Rank ≥ 1). Thus, the Johansen test indicates that cointegration is 
present. However, if we look at the row with Rank = 1, we see that the test sta-
tistic is less than the critical value. Thus, we are finding evidence that Rank = 1 
and can accept the hypothesis that Rank = 1 (with this evidence, the information 
in the last row of the table is not relevant). As expected by Lettau and Ludvigson 
(2001), we find evidence that one cointegrating relationship exists in this data set.

Armed with the information that one cointegrating relationship seems to exist, 
you can then (following Lettau and Ludvigson) calculate the cointegrating residual 
and investigate whether it has predictive power for expected stock returns. 
Alternatively, you could use this information to specify a VECM with one cointe-
grating relationship (and, thus, one error correction term).

Table 12.10  Johansen test for cointegration using CAY data.

Rank Trace statistic 5% critical value

0 37.27 29.68
1 6.93 15.41
2 0.95 3.76

Exercise 12.12

For this question, use the data on regular and organic orange prices in ORANGE.
XLS.

(a)	 Starting with pmax = 4, select a lag length for the VECM and estimate each 
equation using OLS.

(b)	 Using the VECM from part (a), carry out a forecasting exercise. Experiment 
with various forecast horizons. Does the VAR forecast well?
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Exercise 12.13

Use the data on consumption (Y) and personal income (X) from INCOME.XLS.

(a)	 Assume (perhaps incorrectly in the light of Exercise 11.5) that Y and X are 
cointegrated. Repeat the steps in Exercise 12.11 to carry out a forecasting 
exercise.

(b)	 Now assume that Y and X have unit roots but are not cointegrated. Construct 
a VAR using differenced data (i.e. ΔY and ΔX) and carry out a forecasting 
exercise.

(c)	 Compare the results from parts (a) and (b). What effect does assuming cointe-
gration (possibly incorrectly) have on forecasting performance?

Chapter Summary

1.	 Many time series variables, particularly asset prices, seem to exhibit random 
walk behavior. For this reason, it is hard to predict how they will change in 
the future. However, such variables often do exhibit predictable patterns of 
volatility.

2.	 The square of the change in an asset price is a measure of its volatility.
3.	 Standard time series methods can be used to model the patterns of volatility 

in asset prices. The only difference is that volatility of the asset price is used 
as the variable of interest rather than the asset price itself.

4.	 ARCH models are a more formal way of measuring volatility. They contain 
two equations. One is a standard regression equation. The second is a volatil-
ity equation, where volatility is defined as being the (time-varying) variance 
of the regression error.

5.	 ARCH models share similarities with AR models, except that the “AR” part 
relates to the volatility equation.

6.	 There are many extensions of ARCH, of which GARCH is the most popular.
7.	 ARCH and GARCH models can be estimated using many common statisti-

cal software packages (but are hard to work with using a spreadsheet).
8.	 X Granger-causes Y if past values of X have explanatory power for Y.
9.	 If X and Y are stationary, standard statistical methods based on an ADL 

model can be used to test for Granger causality.
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Appendix 12.1: Hypothesis Tests Involving More than 
One Coefficient

In Chapters 5 and 6, we discussed the F-statistic, which was used for testing the hypoth-
esis R2 = 0 in the multiple regression model:

Y X X X ek k= + + + + +α β β β1 1 2 2 … .

We discussed how this was equivalent to testing H0: β1 =, . . ., = βk = 0 (i.e. whether 
all the regression coefficients are jointly equal to zero). We also discussed testing the 
significance of individual coefficients using t-statistics or P-values.

However, we have no tools for testing intermediate cases (e.g. in the case k = 4, we 
might be interested in testing H0: β1 = β2 = 0). Such cases arose in our discussion of 
Granger causality (e.g. we had a regression model with four lags of price inflation, four 
lags of wage inflation and a deterministic trend and we were interested in testing 
whether the coefficients on the four lags of wage inflation were all zero). The purpose 
of this appendix is to describe a procedure and a rough rule of thumb for carrying out 
these kinds of test.

The F-statistic described in Chapter 5 is more properly referred to as an F-statistic 
since it is only one of an enormous class of test statistics that take their critical values 
from statistical tables for the F-distribution. In this book, we have provided little 

10.	 If X and Y have unit roots and are cointegrated, statistical methods based 
on an ECM can be used to test for Granger causality.

11.	 Vector autoregressions (VARs) have one equation for each variable being 
studied. Each equation chooses one variable as the dependent variable. The 
explanatory variables are lags of all the variables under study.

12.	 VARs are useful for forecasting, testing for Granger causality and, more 
generally, understanding the relationships between several series.

13.	 If all the variables in the VAR are stationary, OLS can be used to estimate 
each equation and standard statistical methods can be employed (e.g. P-values 
and t-statistics can be used to test for the significance of variables).

14.	 If the variables under study have unit roots and are cointegrated, a variant 
on the VAR called the vector error correction model (VECM) should be used.

15.	 The Johansen test is a very popular test for cointegration. It is included in 
many software packages.
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statistical theory and do not describe how to use statistical tables. However, if you plan 
to do much work in Granger causality testing, you are well-advised to study a basic 
statistics or econometrics book to learn more about the statistical underpinnings of 
hypothesis testing.

To understand the basic F-testing procedure we introduce a distinction between 
unrestricted and restricted regression models. That is, most hypotheses you would want 
to test place restrictions on the model. Hence, we can distinguish between the regres-
sion with the restrictions imposed and the regression without. For instance, if the 
unrestricted regression model is:

Y X X X X e= + + + + +α β β β β1 1 2 2 3 3 4 4 ,

and you wish to test the hypothesis H0: β2 =  β4 =  0, then the restricted regression 
model is:

Y X X e= + + +α β β1 1 3 3 .

The general strategy of hypothesis testing is that a test statistic is first calculated and 
then compared to a critical value. If the test statistic is greater than the critical value 
(in an absolute value sense) then you reject the hypothesis; otherwise, you accept the 
hypothesis. In short, there are always two components to a hypothesis testing procedure: 
a test statistic and a critical value.

Here the test statistic is usually called the F-statistic and is given by:

f
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where RU2  and RR
2  are from the unrestricted and restricted regression models, respectively. 

J is the number of restrictions (e.g. J = 2 in our example since β2 = 0 and β4 = 0 are 
two restrictions). T is the number of observations and k is the number of explanatory 
variables in the unrestricted regression.

Note that the F-statistic can be obtained by running the unrestricted and restricted 
regressions (e.g. regress Y on X1, X2, X3 and X4 to get RU2 , then regress Y on X1 and 
X3 to get RR

2 ) and then calculating the above formula using a spreadsheet or calculator. 
Most statistical software packages will calculate the F-statistic for you automatically if 
you specify the hypothesis being tested.

Obtaining the critical value with which to compare the F-statistic is more compli-
cated. Formally, the critical value depends on T − k and J. Table 12.11 contains critical 
values which you may use as a rough rule of thumb if T − k is large. For instance, if 
you have a large number of observations, are testing J = 2 restrictions (i.e. β2 = 0 and 
β4 = 0) and you want to use the 5% level of significance, then you will use a critical 
value of 3.00 with which to compare the F-statistic.
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To aid in interpretation, note that the case J = 1 has not been included since testing 
only one restriction is something that the t-statistic already does. Note also that the 
critical values always get smaller as the number of restrictions increases. This fact can 
be used to approximate critical values for values of J that are not included in Table 
12.11.

For instance, the critical value for testing J  =  7 restrictions will lie somewhere 
between the critical values for the restrictions J = 5 and J = 10 given in Table 12.11. 
In many cases, knowing that the correct critical value lies between two numbers will 
be enough for you to decide whether to accept or reject the hypothesis. Consequently, 
even though Table 12.11 does not include every possible value for J, you may be able 
to use it if J differs from those above.

Formally, the critical values in Table 12.11 are correct if T − k is equal to infinity. 
The correct critical values for T − k > 100 are quite close to these. To give you an idea 
of how bad an error may be made if T − k < 100, examine Table 12.12, which gives 
the correct critical values if T − k = 40.

As you can see, these critical values are all somewhat larger than those given in Table 
12.11. You may want to use the values in Table 12.12 if your value for T − k is about 
40. However, we also report them here to give some idea of the error that may result 
if you use the large sample critical values. For instance, if J = 2, T − k = 40 and you 
obtain an F-statistic of 4, then using either table is fine: both state that the hypothesis 
should be rejected at the 5% level of significance. However, if the F-statistic were 3.1, 
you would incorrectly reject it using Table 12.11.

In summary, you can safely use the methods and tables given in this appendix in the 
following cases:

•	 If your sample size is large relative to the number of explanatory variables (e.g. 
T − k > 100), Table 12.11 is fine.

Table 12.11  Critical values for F-test if T − k is large.

Significance level J = 2 J = 3 J = 4 J = 5 J = 10 J = 20

5% 3.00 2.60 2.37 2.21 1.83 1.57
1% 4.61 3.78 3.32 3.02 2.32 1.88

Table 12.12  Critical values for F-test if T−k is 40.

Significance level J = 2 J = 3 J = 4 J = 5 J = 10 J = 20

5% 3.23 2.92 2.69 2.53 2.08 1.84
1% 5.18 4.31 3.83 3.51 2.80 2.37
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•	 If T − k is approximately 40, Table 12.12 is a safe choice.
•	 If T − k is neither large nor approximately 40, you are still safe using Table 12.11, 

provided your test statistic is not close to the critical value and provided T − k is not 
extremely small (e.g. T − k < 10).

Generally speaking, so long as you have either a large number of data points or your 
data does not fall into one of these “borderline” cases, you should not be led astray by 
using the methods outlined in this appendix.

Example 12.6:  Granger causality with price and wage inflation data

In the body of this chapter, we carried out Granger causality tests using price  
and wage inflation data. We found that wage inflation did not Granger-cause  
price inflation, but that price inflation did Granger-cause wage inflation. Here, 
we investigate whether these conclusions still hold by carrying out the correct 
F-tests for Granger causality.

Consider first whether wage inflation Granger-causes price inflation. In the body 
of the chapter, we used the following unrestricted model where Y = price inflation 
and X = wage inflation:

Y t Y Y X X et t t t t t= + + + + + + + +− − − −α δ φ φ β β1 1 4 4 1 1 4 4… … .

T = 128 (remember that differencing variables and including lagged variables 
in a regression decreases the number of observations, which is why T = 128 rather 
than T = 133) and k = 9 (i.e. p = q = 4 and we have the deterministic trend in 
the model). OLS estimation of this model yields RU2 0 616= . .

The hypothesis that Granger causality does not occur is H0: β1 =, . . ., = β4 = 0 
which involves four restrictions; hence J = 4. The restricted regression model is:

Y t Y Y et t t t= + + + + +− −α δ φ φ1 1 4 4… .

OLS estimation of this model yields RR
2 0 613= . .

Using these numbers we calculate that the F-statistic is 0.145. Since T − k = 119 
and is large, we can compare 0.145 to a critical value of 2.37. Since 0.145 < 2.37, 
we cannot reject the hypothesis at the 5% level of significance. Accordingly,  
we accept the hypothesis that wage inflation does not Granger-cause price 
inflation.
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Endnotes

1.  The notation “VAR” for vector autoregression is the standard one in empirical economics. 
However, financial economists use VAR to denote “value-at-risk” which is a different concept 
altogether.

2.  In deriving this result we have ignored the N − 1 term in the denominator in the formula 
introduced in Chapter 2. You should simply note that it is not important here. In some 
formulas for the variance, N − 1 is replaced by N. Here, N = 1 so we can just ignore it.

3.  This follows from the fact that ln(24.53) is 3.200 and ln(30.14) is 3.406.
4.  Note that the variable Xt has been omitted from this ADL(p,q) model The reason is because 

Granger causality tests seek to determine whether past – not current – values of X can explain 
Y. If we were to include Xt we would be allowing for contemporaneous causality and all the 
difficulties noted previously in this book about interpreting both correlations and regressions 
as reflecting causality would hold. You may also be wondering why we are using this ADL(p,q) 
model as opposed to the variant in which ΔYt is the dependent variable (see Chapter 11). 
The reason is that it is easier to interpret Granger causality in this basic ADL(p,q) model as 
implying coefficients are equal zero. We could have covered all the material in this section 
using our previous ADL(p,q) variant.

5.  This conclusion is based on an examination of the individual P-values for each coefficient. 
The joint test of β1 =, . . ., = β4 = 0 is detailed in Appendix 12.1 and supports the conclusion 
that wage inflation does not Granger-cause price inflation.

6.  A more formal way of expressing the ideas in this paragraph is that VARs do not suffer from 
problems of simultaneity. This is a topic which is briefly discussed in Chapter 13 in the 
section called “Problems that Call for the Use of Multiple Equation Models”.

To test whether price inflation Granger-causes wage inflation, we repeat the 
steps above except that wage inflation becomes the dependent variable and price 
inflation the explanatory variable. If we use OLS to estimate the restricted and 
unrestricted regressions, we obtain RU2 0 605= .  and RR

2 0 532= . . Note that the 
other elements in the formula for the F-statistic do not change. Plugging these 
numbers into the equation for the F-statistic yields f = 33.412, which is much 
larger than either the 1% or 5% critical values. In this case, we can safely reject 
the hypothesis that β1 =,  .  .  ., = β4 =  0 and conclude that price inflation does 
Granger-cause price inflation.

Note that the findings that wage inflation does not Granger-cause price inflation 
but that price inflation does Granger-cause wage inflation, are exactly the same as 
given in the body of the chapter.
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7.  This statement is true in Stata (and most financial econometrics textbooks and software pack-
ages). However, confusingly, some statisticians define information criteria as being the nega-
tive of that used by Stata. With this definition, you would select the lag length which yields 
the largest value for the information criterion. So please be careful when using information 
criteria and read the manual or help facilities of your computer software.

Reference

Lettau, M. and Ludvigson, S. (2001) “Consumption, aggregate wealth and expected stock 
returns”, Journal of Finance, 56(3):815–849.



Limitations and Extensions

CHAPTER 13

Regression and its related techniques are quite powerful in that they are suited to the 
practical solution of a wide variety of economic problems. Nevertheless, if they were 
perfectly suited to solving every problem, econometricians and statisticians who seek 
to develop new tests, models and estimators would find themselves out of a job!

This chapter briefly introduces some limitations of ordinary least squares (OLS) 
regression methods and appropriate extensions designed to deal with them. As will be 
seen, some cases do not imply so much that OLS is the wrong method as that better 
estimators exist and should be used. In other cases, the use of OLS is strictly erroneous 
and should be avoided.

It is quite important to distinguish between these two types of case – i.e., cases  
where the use of OLS represents the second best option and cases where its use is  
just plain wrong. Further study is required to identify and understand how to carry  
out empirical work in these different cases, especially those where OLS should never  
be used.

It is not the purpose of this chapter to develop methods for dealing with every 
problem case. A thorough treatment of all of these cases would fill several textbooks 
and is well beyond the introductory scope of this book. Rather, it seeks to introduce a 
few general cases and their terminology so that you will at a minimum be able to rec-
ognize problem cases when they arise and know where to look for further study.

The problems can be loosely grouped into the following three areas, each of which 
we discuss in turn below:



228  /  ANALYSIS  OF  ECONOMIC DATA

•	 problems that occur when the dependent variable has particular forms;
•	 problems that occur when the errors have particular forms;
•	 problems that call for the use of multiple equation models.

Problems that Occur when the Dependent Variable 
Has Particular Forms

Consider the simple regression model:

Y X e= + +α β .

You may or may not have noticed that, in previous chapters, we focused a great deal on 
cases where Y is a real number that can take on any value (e.g. the sales price of a house, 
the % change in forest or GDP per capita). However, you may already have or will in 
the future come across cases where the dependent variable has a more restricted form. 
This form has implications for estimation. In Chapter 8, we considered the case where 
Y is a dummy variable. However, there are several other kinds of restrictions which 
commonly occur in practice.

The cases listed here are probably the most common in this special category of empiri-
cal economic problems. Only in the case of a censored dependent variable will OLS 
necessarily be misleading. Nevertheless, it would be wise in all such cases for you to do 
some supplementary reading and consider using a computer software package rather 
than a spreadsheet.

Y is censored

These cases arise when values of Y below or above a particular cut-off are recorded as 
that cut-off point. For instance, it is common in income surveys to report every person’s 
income in a survey of household consumption, with the exception of the very richest 
group of people, which is usually recorded as being over some amount (e.g. £100 000). 
So an individual making £20 000 will be recorded as £20 000, but an individual making 
£200 000 will be recorded as £100 000. As a second example, suppose that your depend-
ent variable is the desired investment level of a firm but that all you can observe is actual 
investment by the firm. If actual investment cannot be negative, then all firms with a 
negative level of desired investment will be recorded as having zero investment.

If your dependent variable is censored then OLS estimation can be misleading. In 
statistical jargon, OLS will be biased.1 The degree of bias will increase with the propor-
tion of observations censored. If only a few of your data points are censored, the use of 
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OLS might be acceptable. But if the proportion of the observations that are censored is 
high, then OLS should definitely not be used. In these cases, it is standard practice to 
use the tobit estimator. In econometric textbooks, this case is usually addressed under 
the heading of limited dependent variable models.

Y is a non-negative integer

This case usually arises when the dependent variable is the number of times an event 
occurs. For instance, Y might measure the number of defects in a production process 
in a given week or the number of patents taken out by a firm in a given year. If the 
dependent variable has this form, then OLS estimation is probably adequate, but better 
approaches do exist. The phrase count data model is what you should look for in textbooks 
if you are interested in this area of the econometric literature.

Y measures a duration

This case is common in labor economics where the dependent variable is often the time 
spent in a certain state. For instance, a labor economist might be interested in explain-
ing why some unemployed individuals find work faster than others. In this case, the 
dependent variable is the duration of unemployment for each individual (i.e. the time 
spent before the individual finds a job). Another common example involves the analysis 
of industrial action where the duration of a strike is the dependent variable. In such 
cases, OLS estimation of a regression is not automatically wrong or misleading. However, 
other, better models have been developed and probably should be used. The phrase 
duration model is what you should look for in textbooks if you are interested in this area 
of the econometrics literature.

Problems that Occur when the Errors  
Have Particular Forms

We have not said too much about the error terms in this book, other than to note that 
they measure the distance between an observation and the regression line. There is a 
large literature discussing which estimator is the best when different statistical assump-
tions about the errors are made. Here we do not discuss the underlying statistical theory 
of these techniques in any detail. Instead, we introduce just enough intuition and jargon 
to explain why these problems occur and highlight what words you should look for in 
an econometrics textbook if you are to do future research in this area.
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We begin by noting that OLS is the most common estimator for the regression model. 
It is very robust (i.e. it works well) under many different statistical assumptions. 
Nevertheless, it is really only optimal if all the errors have, in a sense, the same proper-
ties.2 In other cases, you may get more reliable estimates by using a generalized least 
squares (GLS) estimator. By way of providing an intuitive understanding of the GLS 
estimator, we begin by considering a problem known as heteroskedasticity.

Suppose you are interested in estimating a cross-country growth regression where the 
dependent variable is the average GDP growth rate in each of N countries. The explana-
tory variables include the level of education, investment, savings rate and so on for each 
country. Suppose that you include many developed countries (e.g. USA, UK and 
Germany) as well as many less-developed countries (e.g. Sudan, Angola and Haiti). 
Developed countries tend to have large, well-financed government statistical organiza-
tions that collect data on GDP (among many other things) and, consequently, GDP 
tends to be measured with reasonable accuracy. In contrast, less-developed countries 
often lack well-financed, data-gathering agencies and have large informal or subsistence 
economies. As a result, official GDP data is often inaccurately measured. What are the 
implications of this data collection characteristic for OLS estimation?

First, it implies that the error, e, for the less-developed countries may tend to be 
larger than for the developed countries. This phenomenon is known as “heteroskedastic-
ity”.3 Secondly, we may wish to attach more weight to the evidence of the developed 
countries since their data is probably more accurate than is comparable data for the less 
developed countries. This is precisely what the GLS estimator does. In fact, the GLS 
estimator can be interpreted as the OLS estimator using reweighted data.

If you do more work in econometrics, you will learn precisely what we mean by 
“reweight”. It is sufficient for you merely to note at this stage that OLS is still a good 
estimator,4 but that GLS is better if heteroskedasticity is present. You can re-weight 
the data and use GLS in a spreadsheet, but with most data sets this will be awkward, 
and you will be better off using another computer package.

In addition to heteroskedasticity there are other data problems that have similar 
intuition and implications for the choice of methods in an analysis (i.e. OLS is suitable 
but GLS is better). The best known of these occurs when the errors are autocorrelated. 
The concept of autocorrelation was introduced in Chapter 10. The difference here is 
that et, rather than Yt, is correlated with lags of itself. If you have correctly specified lag 
length (i.e. p in the AR(p) or p and q in the ADL(p,q)), then autocorrelation of the errors 
is unlikely to be a problem. However, if it is, then GLS estimation will produce more 
reliable estimates than OLS estimation.

The above are all cases where OLS is probably adequate, but other estimators are 
better suited to the application. There is one prominent case where error problems  
mean that the use of OLS is misleading. This occurs if the error is correlated with the 
explanatory variables. You will not have much understanding about why this case may 
cause problems and when it may occur. However, some graphical intuition is given in 
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Figure 13.1, which illustrates a case where the errors are positively correlated with the 
explanatory variable. The true regression line is marked on the graph by a solid line 
labeled Y = α + βX. The positive correlation between X and the errors means that high 
values of X are associated with high (i.e. positive) errors and low values of X with low 
(i.e. negative) errors. The XY-plot is thus of the form given in Figure 13.1, with data 
points lying below the true regression line for low values of X and above it for high 
values of X. In other words, Figure 13.1 is drawn in such a way that the errors are all 
negative for low values of X and positive for all high values of X. OLS will fit a line 
through the data points, ending up as the dotted line shown in Figure 13.1. Given that 
this dotted line has a different slope and intercept than the true regression line, OLS is 
clearly inappropriate in this case.

The most common case where the explanatory variables and errors are correlated is 
in the simultaneous equations model. This topic will be dealt with in the next section. 
You should merely note at this stage that if the error is correlated with the explanatory 
variables, then you should not use OLS. Instead you should learn about and use instru-
mental variables estimators.

Any econometric software package will allow you to estimate models with restricted 
dependent variables or use GLS or instrumental variables estimators.

Problems that Call for the Use of Multiple  
Equation Models

Throughout this book, except for our discussion on VARs and VECMs, we have focused 
on the one-equation regression model. In practice, it is not uncommon to have several 

Figure 13.1  OLS when error is correlated with X.
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dependent variables and, thus, several regression models (sometimes called systems of 
equations). A few examples will serve to illustrate when such applications arise.

•	 Imagine that you have collected cross-sectional data on the production of a number 
of firms. In particular, you observe the amount of labor, capital, energy and materials 
inputs, as well as the price of each input. You are interested in explaining the input 
choices of firms. Here you have four different dependent variables (i.e. labor, capital, 
energy and materials) all of which depend on the prices of the inputs. You would 
have a separate regression equation for each dependent variable and, thus, four dif-
ferent equations.

•	 Imagine that you have collected time series data on consumption, broken down into 
its types (e.g. food, transport, housing, clothing, durable goods and so on). You are 
interested in how these various components of consumption depend on the state of 
the economy. In this case you will have many dependent variables (e.g. consumption 
of food, transport and housing) and will use macroeconomic variables such as GDP, 
interest rates, etc., as your explanatory variables. Each dependent variable will imply 
a different regression equation.

•	 In a finance application, you may be interested in explaining the stock returns of 
many different firms. In this case, you may have many different variables (i.e. the 
stock return for each firm) dependent on explanatory variables such as the interest 
rate and so on.

•	 The vector autoregressive (VAR) model discussed in Chapter 12 is a multiple equa-
tion model. In this model, Y depends on lags of itself and on lags of another variable, 
X. It also has a second equation, in which X is the dependent variable and depends 
on lags of Y and lags of itself.

•	 The IS–LM model will be well known to those who have taken macroeconomics. 
Note that it is based on two equations (IS and LM).

•	 The model of supply and demand is standard in economics. This model has two 
equations: the supply curve and the demand curve.

To anticipate the essential point of this section, only the last two of these examples 
will cause major problems for OLS estimation.

To understand the issues that arise in multiple equation systems, we must introduce 
a few concepts that you may be familiar with from previous economics training. A vari-
able is endogenous if it is determined within the model under study. It is exogenous if it 
is not.

These concepts are closely related to the causality issues raised in Chapter 4. Recall 
that we stressed that regression is most easily interpreted if the explanatory variable 
causes the dependent variable (and not the opposite). In other words, the regression 
model assumes Y is determined by what happens to X. We did not specify how X was 
generated. In this case, Y, the dependent variable, is endogenous and X, the explanatory 
variable, is assumed to be exogenous. Intuitively speaking, as long as your explanatory 
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variables are exogenous the use of OLS estimation is fine, even if you have many equa-
tions. However, if your explanatory variables are endogenous, then you should not carry 
out OLS estimation.

A few examples should further clarify these ideas.

•	 In Chapters 6 and 7 we regressed house prices on a variety of house characteristics. 
House prices, Y, depend on the characteristics of a house, X (e.g. houses with more 
bedrooms tend to have higher prices). However, the characteristics of a house do not 
depend on the price of a house (e.g. if the housing market collapsed and the price of 
a house dropped, it would not cause the house to have fewer bedrooms or bathrooms). 
X causes Y but Y does not cause X. X is exogenous and Y is endogenous.

•	 Firms choose the levels of their inputs based on the prices of the inputs (e.g. if wages 
are low relative to the price of buying new machinery, they would tend to hire workers 
rather than buy new machines). The prices determine or cause the input choice. But 
the input choice of a firm does not affect the price of the inputs. For instance, in 
competitive markets at least, if the firm hires some extra workers, that action will 
not cause wages to rise. So in a model designed to explain input choice, inputs will 
be endogenous (determined by the model) but input prices will be exogenous.

•	 If you solve an IS–LM model, you typically come up with answers for national income 
and for the interest rate. That is, national income and the interest rate are both 
determined (or solved) in the model. When econometricians seek to estimate IS–LM 
models they use these two variables (among others). Note that they are both endog-
enous (the model determines them).

•	 In a supply–demand model, equilibrium price and quantity occurs where the supply 
curve intersects the demand curve. Both the price and the quantity of the goods sup-
plied and demanded in a market are determined by the model. Hence both price and 
quantity are endogenous.

For the rest of this section, we let Y indicate an endogenous variable and X an exog-
enous variable. If we have more than one of these variables, we use the notation Y1, . . ., 
YM and X1, . . ., XK to indicate M endogenous and K exogenous variables. The following 
is a quick taxonomy of possible cases:

•	 The regression model Y = α + β1X1 +, . . ., + βKXK + e has been discussed in detail 
in this book. OLS estimation of this model can be carried out with ease.5

•	 If you have a system of equations of the following form:

Y X X e

Y X X e
K K

K K

1 1 11 1 1 1

2 2 21 1 2 2

= + + + +
= + + + +

α β β
α β β

…
…

...................................................................

....................................................................

,Y X X eM M M Mk K M= + + + +α β β1 1 …
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you can simply carry out OLS estimation one equation at a time. Note that this model 
assumes that all equations have exactly the same explanatory variables (e.g. the 
amount of each input depends on the prices of all the inputs). If the equations have 
different explanatory variables (e.g. the amount of each input depends only on its 
own price), then a better estimator than OLS is the seemingly unrelated regression 
equations (SURE) estimator. Note, though, that OLS is an adequate second best 
estimator.

•	 If you are working with the following model:

Y Y e1 2= + +α β ,

or, more generally,

Y Y Y X X e

Y Y Y
M M K K

M M

1 1 12 2 1 11 1 1 1

2 2 21 1 2 2

= + + + + + + +
= + + + +

α γ γ β β
α γ γ β

… …
… 11 1 2 2X X eK K+ + +… β

...........................................................................................................

..........................................................................................................

YM = αMM M M M M M MK K MY Y X X e+ + + + + + +− −γ γ β β1 1 1 1 1 1… …, .

then the use of OLS can yield misleading results and should be avoided.

To summarize, if your explanatory variables are exogenous then it is acceptable to 
use OLS (even in multiple equation models). If the explanatory variables are endogenous, 
however, OLS is not a suitable estimator (even in a single equation model).

The last model above is called the simultaneous equations model and it has received 
a great deal of attention in the econometrics literature. It is beyond the scope of  
this book to discuss this model in detail. Nevertheless, it is worthwhile to motivate 
briefly why the problem with OLS occurs through the consideration of a representative 
example.

Consider the simplest version of the standard supply and demand model in econom-
ics. The demand curve is given by:

Q PD
D D= +α β ,

which states that the quantity demanded of a good, QD, depends on its price, P. The 
supply curve tells how the quantity supplied by firms, QS, also depends on price:

Q PS
S S= +α β .
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The solid lines in Figure 13.2 plot the supply and demand curves. The point at which 
they intersect determines the equilibrium price and quantity, P* and Q*. In other words, 
price and quantity are determined in the model and are endogenous.

What would happen if we were to obtain price and quantity data (e.g. from a market 
for a certain product each week for several weeks) and run a regression of quantity on 
price? We would obtain OLS estimates of the intercept and slope, say, α̂  and β̂ . But 
what would α̂  and β̂  be estimates of? Already you may spot the problem in using OLS: 
we don’t know if α̂  and β̂ will be estimates of αD and βD (i.e. the demand curve) or of 
αS and βS (i.e. the supply curve).6 In practice, OLS will probably estimate neither the 
supply curve nor the demand curve.

Further intuition for the failure of OLS can be found by looking at Figure 13.2. P* 
and Q* are the equilibrium price and quantity. Suppose we observe the price and quan-
tity in a market for this good many times (e.g. every week for a year). In the real world, 
we are likely never to be precisely in equilibrium and small errors will occur. That is, 
the actual price and quantity observed each week will not be exactly P* and Q* every 
time. So the observed data points will probably be in a cloud around the equilibrium 
in the manner plotted in Figure 13.2. Imagine trying, as OLS does, to fit a straight line 
through those points. Intuitively, it is clear that the line that is fitted will not neces-
sarily bear any relationship to either the supply or the demand curve.

More formally, we can demonstrate that when either some or all explanatory variables 
are endogenous, the regression error will be correlated with explanatory variables and 
the use of OLS is erroneous (see the discussion on Figure 13.1). If you run into this case, 
you should do further study and learn about simultaneous equations models and instru-
mental variable estimation.

Figure 13.2  Observed data in a model of supply and demand.

P

P*

Q*

Demand

Supply
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Endnotes

1.  “Bias” is a statistical term that is not formally defined here. Informally speaking, if you use 
an unbiased estimator in many applications then your estimate may be high or low in any 
one application, but on average it will be correct. In contrast, biased estimators will, on 
average, be wrong and should be avoided.

2.  In statistical jargon, OLS is the best of all estimators (in a certain class) if the errors are 
independent of one another and are all drawn from the same distribution. If this distribution 
is normal, then an even stronger case can be made for the optimality of the OLS estimator.

3.  Formally, “heteroskedasticity” occurs if the standard deviation of the errors differs across 
observations.

4.  In statistical language, OLS and GLS are both unbiased estimators; however, GLS is more 
efficient than OLS.

5.  Of course, if the error or dependent variable problems discussed earlier in this chapter are 
present, then OLS may have to be modified along the lines of the previous discussion. This 
qualification holds for the following cases as well.

6.  To introduce more econometric jargon, this is an example of an identification problem.

Chapter Summary

In summary, although the OLS estimator is a powerful tool that can be used for 
a wide variety of data sets, it is not perfect for every situation. There are some 
cases when the use of OLS is not the best choice, but it may nevertheless be 
adequate. There are also cases when its use is completely misleading.

1.	 OLS is second best in the following cases:
•	 the dependent variable is a duration or a count (i.e. an integer);
•	 the errors are heteroskedastic or autocorrelated;
•	 the data has many dependent variables and thus many equations, but all 

the explanatory variables are exogenous.
2.	 OLS is misleading and should be avoided in the following cases:

•	 the dependent variable is censored;
•	 the errors are correlated with the explanatory variables;
•	 one or more of the explanatory variables is endogenous;
•	 the data has many dependent variables and thus many equations, but some 

of the explanatory variables are endogenous.



Appendix A Writing an  
Empirical Project

This appendix offers general guidelines on writing an empirical paper or project. This 
discussion is followed by several project topics which you may wish to work on in order 
to gain a deeper understanding of the techniques described in this book. The data is 
available on the website associated with this book (except for the final project topic 
which uses data from a different website).

Description of a Typical Empirical Project

Economists are engaged in research in a wide variety of areas today. Undergraduate and 
graduate students, academic economists, policymakers working in the civil service and 
central banks, and professional economists working in private sector banks or industry 
may all need to write reports that involve analyzing economic data. Depending on the 
topic and intended audience, the form of these reports can vary widely, so that there is 
no one correct format for an empirical paper. With this in mind, we provide common 
elements of economic reports below as a guideline for future empirical work. Note, 
however, that, in the context of your own undergraduate projects or careers, it may not 
be necessary for you to include all of these elements in your report.

•	 Introduction:  Most reports begin with an introduction that briefly motivates and 
describes the issue being studied and summarizes the main empirical findings. The 
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introduction should be written in simple non-technical language, with statistical  
and economic jargon kept to a minimum. A reader who is not an expert in the field 
should be able to read and understand the general issues and findings of the report 
or paper.

•	 Literature Review:  This section should summarize related work that others have 
done. It should list and very briefly describe other papers and findings that relate to 
yours.

•	 Economic Theory:  If the report is academic in nature and involves a formal theo-
retical model, then it is often described in this section. For policy reports you may 
not need to include a formal mathematical model, but this section allows you to 
describe the economic or institutional issues of your work in more detail. This section 
can be more technical than the preceding ones and will typically include some  
mathematics and economic jargon. In short, you can address this section solely to an 
audience of experts in your field.

•	 Data:  In this section you should describe your data, including a detailed discussion 
of its sources.

•	 The Model to be Estimated:  In this section you should discuss how you use the 
data to investigate the economic theory. The exact form of this section might vary 
considerably, depending on the topic and on the intended audience. For instance, you 
may want to argue that a particular regression is of interest for the study, that a 
certain variable will be the dependent variable and that other variables will be the 
explanatory variables. Similarly, in a macroeconomic time series exercise, you may 
wish to argue that your economic theory implies that your variables should be cointe-
grated and that, for this reason, a test of cointegration will be carried out. In short, 
it is in this section that you should justify the techniques used in the next section.

•	 Empirical Results:  This section is typically the heart of any report. In it you should 
describe your empirical findings and discuss how they relate to the economic issues 
under investigation. It should contain both statistical and economic information. By 
“economic” information we refer, for example, to coefficient estimates or to a finding 
of cointegration between two variables, and what these findings may imply for eco-
nomic theory. In contrast, “statistical” information may include: results from hypoth-
esis tests that show which coefficients are significant; a justification for your choice 
of lag length; an explanation for deleting insignificant explanatory variables; a discus-
sion of model fit (e.g. the R2 or outliers); and so on. This information will largely be 
presented in tables and graphs. It is not uncommon for papers to begin with some 
simple graphs (e.g. a time series plot of the data) and then follow with a table of 
descriptive statistics (e.g. the mean, standard deviation, minimum and maximum of 
each variable, and a correlation matrix). Another table might include results from a 
more formal statistical analysis, such as OLS coefficient estimates, together with 
t-statistics (or P-values), R2 values and F-statistics for testing the significance of the 
regression as a whole.
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•	 Conclusion:  This section should briefly summarize the issues addressed in the paper, 
specifically, its most important empirical findings.

General Considerations

This section contains a discussion of a few of the issues that you should keep foremost 
in your mind while carrying out an empirical project. In particular, it discusses what 
constitutes good empirical science and how you should present your results.

The first thing worth stressing is that there are no right or wrong empirical results. 
Empirical results are what they are and you should not be disappointed if they do not 
show what you had hoped they would. In an ideal world, a researcher comes up with a 
new theory then carries out empirical work that supports this new theory in a statisti-
cally significant way. The real world very rarely approaches this ideal.

In the real world, explanatory variables that you expect to be statistically significant 
often aren’t significant. Variables you expect to be cointegrated often aren’t cointegrated. 
Coefficients you expect to be positive often turn out to be negative. These results are 
obtained all the time – even in the most sophisticated of studies. They should not 
discourage you! Instead, you should keep an open mind. A finding that a theory does 
not seem to work is just as scientifically valid as a finding that a theory does work.

Furthermore, empirical results are often unclear or confusing. For instance, one  
statistical test might indicate one thing while another the opposite. Likewise, an 
explanatory variable that is significant in one regression might be insignificant in 
another regression. There is nothing you can do about this, except to report your results 
honestly and try (if possible) to understand why such conflicts or confusions are 
occurring.

It would be rare for an economist to completely falsify results. Often, however, an 
economist may be tempted to do slightly dishonest things in order to show that results 
are indeed as economic reasoning anticipated. For instance, it is common for a researcher 
to run a large number of regressions with many different explanatory variables. On the 
whole, this is a very wise thing; a sign that the researcher is exploring the data in detail 
and from a number of angles. However, if the researcher presents only the regression 
that supports a particular theory and not the other regressions that discredit it, the 
researcher is intentionally misleading the reader. Always avoid this temptation to mis-
represent your results!

On the issue of how results should be presented, we cannot stress enough the impor-
tance of clarity and brevity. Whether it is a good thing or a bad thing, it is undoubtedly 
the case that university lecturers, civil servants, policymakers and employers are busy 
people who do not want to spend a lot of time reading long, poorly organized and 
verbose reports.
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One key skill that writers of good reports show is selectivity. For example, you may 
have many different coefficient results and test statistics from your various regression 
runs. An important part of any report is to decide what information is important and 
what is unimportant to your readership. Select only the most important information for 
inclusion in your report and – as always – report honestly and openly the results that 
you obtain.

Project Topics

The following are several project topics that you may wish to undertake.

Project 1: The equity underpricing puzzle

Background

Investors and financial economists are interested in understanding how the stock market 
values a firm’s equity (i.e. shares). In a fundamental sense, the value of a firm’s shares 
should reflect investors’ expectations of the firm’s future profitability. However, data on 
expected future profitability is non-existent. Instead, empirical financial studies must 
use measures such as current income, sales, assets and debt of the firm as explanatory 
variables.

In addition to the general question of how stock markets value firms, a second ques-
tion has also been receiving considerable attention from financial economists in recent 
years. By way of motivating this question, note that most of the shares traded on the 
stock market are old shares in existing firms. However, many old firms will issue some 
new shares in addition to those already trading – these are referred to as “seasoned equity 
offerings” (SEOs). Furthermore, some firms that have not traded shares on the stock 
market in the past may decide to issue such shares (e.g. a computer software firm owned 
by one individual may decide to “go public” and sell shares in order to raise money for 
future investment or expansion). Such shares are called “initial public offerings” (IPOs). 
Some researchers have argued on the basis of empirical evidence that IPOs are under-
valued relative to SEOs.

In this project, you empirically investigate these questions using the following  
data set.

Data

The data set in file EQUITY.XLS contains data on N = 309 firms who sold new shares 
in the year 1996 in the US. Some of these are SEOs and some are IPOs. Data on the 
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following variables is provided. All variables except SEO are measured in millions of 
US dollars.

•	 VALUE = total value of all shares (new and old) outstanding just after the firm issued 
the new shares. This is calculated as the price per share times the number of shares 
outstanding.

•	 DEBT = amount of long-term debt held by the firm.
•	 SALES = total sales of the firm.
•	 INCOME = net income of the firm.
•	 ASSETS = book value of the assets of the firm (i.e. what an accountant would judge 

the firm’s assets to be worth).
•	 SEO = a dummy variable that equals 1 if the new share issue is an SEO and 0 if it 

is an IPO.

Project 2: The determinants of economic growth

Background

In an influential paper, Barro (1991) used regression methods to investigate which 
factors could explain why some countries grew more than others. Since then there have 
been dozens of other papers which investigate this issue using other data sets, variables 
or statistical methods. The purpose of this project is to use regression methods and the 
data set described below to investigate the determinants of economic growth.

Data

The data set in file GROWTH.XLS contains data on N = 72 countries on the following 
variables. All of the variables are either averages over 1960–1992 or for some year in 
that period.

•	 GDP growth = average growth in GDP per capita.
•	 Primary school = proportion of population with at least primary school education.
•	 Life expectancy = life expectancy.
•	 GDP 1960 = level of per capita GDP in 1960 (in US dollars).
•	 Investment = investment in machinery and equipment.
•	 Higher education = proportion of population with higher education.
•	 War dummy = 1 if country has experienced a war in 1960–1992, 0 if not.

Note: The data set used in this project is part of a data set used by Fernandez, Ley and 
Steel (2001) with more sophisticated statistical methods. Their paper describes the data 
in more detail and also tells you where to get the complete data set.
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Project 3: Female labor force participation

Background

Economists are interested in the factors that determine a woman’s decision to enter the 
labor force. You are asked to estimate an appropriate qualitative choice model to inves-
tigate the determinants of female labor market participation. Interpret your results in 
the light of research questions such as “Does having children make women less likely 
to enter the labor force?”, “Are more educated or intelligent women likely to work?” 
and “Does the husband’s income affect a married woman’s decision to enter the labor 
force?”.

Data

This exercise provides you with a data set (in file WORKCHOICE.XLS) taken from a 
US survey of 655 young married white females on their participation in the labor force. 
The data set contains a dependent variable, workchoice, which is a dummy variable that 
equals one for women who are working and zero for women who are not working. It 
contains the following explanatory variables:

•	 ability = a measure of cognitive ability based on an IQ test (do not worry about units 
of measurement, but note that higher values of this measure indicate higher ability).

•	 num_kids = number of children.
•	 sp_income = income of spouse (measured in thousands of US dollars).
•	 years_ed = number of years of education.
•	 Urate = unemployment rate in the local community.

Project 4: Wage-setting behavior

Background

This project allows you to investigate wage-setting behavior using time series data. The 
general issue of interest in such analyses is how wages depend on macroeconomic factors 
such as the price level, GDP and variables reflecting employment and the labor force. 
An empirical analysis of such data must involve a discussion of issues such as unit roots 
and cointegration.

Data

The data set in file WAGE.XLS contains annual UK data from 1855 through 1987. 
The natural logarithm of all variables has been taken. Data on the following variables 
is provided.
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•	 W = the log of nominal wages.
•	 P = the log of consumer price index.
•	 GDP = the log of real GDP.
•	 E = the log of total employment.
•	 L = the log of total potential labor force.

Further background

In addition to the general issue of wage-setting behavior, economic interest often focuses 
on some functions of the variables provided here. If you remember the properties of the 
logarithm operator, such as ln(A/B) =  ln(A) −  ln(B) and ln(1+A) ≈ A, you can derive 
the following relationships:

•	 the log of real wages = W−P.
•	 the log of productivity per worker = GDP−E.
•	 the log of the unemployment rate ≈L−E.
•	 log of the share of wages in GDP = W−P−GDP+E.

Another issue you may be interested in investigating is whether the relationships 
above are cointegrating relationships.

Project 5: Consumption, wealth and income

Background

In an influential paper, Lettau and Ludvigson (2001) presented a financial theory arguing 
that consumption, assets and income should be cointegrated and the cointegrating 
residual should be able to predict excess stock returns. They then presented empirical 
evidence in favor of their theory. In a subsequent paper using the same data, Lettau and 
Ludvigson (2004) presented further empirical work involving cointegration testing and 
VECMs.

This project topic asks you to use the techniques associated with unit roots, cointe-
gration testing and VECMs. You are free to push the project in several directions. The 
following are a few examples of the types of issue and question you may wish to focus 
your project on:

•	 The conclusions of Lettau and Ludvigson are based on a finding that these variables 
are cointegrated. Investigate this in more detail using different lag lengths and dif-
ferent treatments of the deterministic terms. Confirm the original finding of Lettau 
and Ludvigson that all variables have unit roots.

•	 Estimate a VECM and interpret the results. Which explanatory variables are good 
for predicting which variables? Use VECM methods to address Granger causality 
issues.



244  /  ANALYSIS  OF  ECONOMIC DATA

Data

This project uses the data set in file CAY.XLS which contains US data from 1951Q4 
through 2003Q1 on the following variables:

•	 consumption, c;
•	 assets, a;
•	 income, y.

Such so-called CAY relationships have received a great deal of attention in the recent 
empirical finance literature.

Project 6: Financial volatility

This project uses data from work by Franses and van Dijk (2000), which has a related 
website containing a rich collection of data sets from several countries on stock prices 
and exchange rates. In particular, it provides stock price indices from Amsterdam (EOE), 
Frankfurt (DAX), Hong Kong (Hang Seng), London (FTSE100), New York, (S&P 500), 
Paris (CAC40), Singapore (Singapore All Shares) and Tokyo (Nikkei). The exchange 
rates are the Australian dollar, British pound, Canadian dollar, German Deutsch Mark, 
Dutch guilder, French franc, Japanese yen and the Swiss franc, all expressed as number 
of units of the foreign currency per US dollar. The sample period for the stock indices 
runs from January 6, 1986 until December 31, 1997; for the exchange rates the sample 
covers the period from January 2, 1980 until December 31, 1997.

Investigate financial volatility using this data with ARCH and GARCH models. Do 
stock returns appear to exhibit volatility? Do exchange rates?

There are many other things you can do using this data depending on your interests. 
As one example, an issue much studied by financial researchers is whether volatility in 
financial markets differs depending on the frequency with which a financial market is 
observed. For instance, stock markets might be more volatile when observed every day 
than when observed monthly. You could investigate this issue using this data set. Note 
that it is available at a daily frequency. When you work with weekly data, you can use 
data every Wednesday. For monthly frequency, use the last day of each month.
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Appendix B Data Directory

Data file Content Data type Chapter

ADVERT Sales and advertising 
expenditure

Cross-sectional, N = 84 
companies

Chapters 4 and 5

AFFAIR Choosing to have an affair Cross-sectional, N = 601 
individuals

Chapter 8

CAY Consumption, assets and 
income

Time series, T = 206 
quarters

Chapter 12 and 
Appendix A

COMMUTE Choosing public transport or 
car

Cross-sectional, N = 390 
individuals

Chapter 8

COMPUTE1 % change in computer 
purchases and employee 
productivity

Time series, T = 98 
months

Chapter 11

COMPUTER % change in computer 
purchases and employee 
productivity

Time series, T = 98 
months

Chapter 11

CORMAT Artificial variables labeled Y, 
X and Z

Cross-sectional, N = 20 Chapter 3

EDUC Education spending, GDP 
growth

Time series, 1910–1995, 
T = 86 years

Chapter 9

ELECTRIC Cost of electricity production, 
output produced and price 
of inputs

Cross-sectional, N = 123 
companies

Chapters 4, 5 and 6

EQUITY Firm share value, debt, sales, 
income, assets, SEO dummy

Cross-sectional, N = 309 
companies

Appendix A

EX34 Artificial variables labeled Y, 
X1, X2 and X3

Cross-sectional, N = 20 Chapter 3

EX46 Artificial variables labeled Y 
and X

Cross-sectional, N = 50 Chapter 4
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Data file Content Data type Chapter

EXRUK UK pound/US dollar exchange 
rate

Time series, January 
1947 through October 
1996, T = 598 months

Chapter 2

FIG105 Artificial variable labeled 
“b = 0 series”

Time series, T = 100 Chapter 10

FIG106 Artificial variable labeled 
“b = 0.8 series”

Time series, T = 100 Chapter 10

FIG107 Artificial variable labeled 
“b = 1 series”

Time series, T = 100 Chapter 10

FIG108 Artificial variable labeled 
“trend stat”

Time series, T = 100 Chapter 10

FIG51 Artificial variables labeled X 
and Y

Cross-sectional, N = 5 Chapter 5

FIG52 Artificial variables labeled X 
and Y

Cross-sectional, N = 100 Chapter 5

FIG53 Artificial variables labeled X 
and Y

Cross-sectional, N = 100 Chapter 5

FIG54 Artificial variables labeled X 
and Y

Cross-sectional, N = 100 Chapter 5

FOREST Forest loss, population density, 
pasture change, cropland 
change

Cross-sectional, N = 70 
countries

Chapters 2, 3, 4, 5 
and 6

GDPPC Real GDP per capita Cross-sectional, N = 90 
countries

Chapters 2 and 5

GROWTH GDP growth and explanatory 
variables

Cross-sectional, N = 72 
countries

Appendix A

HPRICE House prices and housing 
characteristics (e.g. lot size, 
no. of bedrooms)

Cross-sectional, N = 546 
houses

Chapters 3, 4, 5, 6 
and 7

INCOME Log of US personal income 
and consumption

Time series, 1954Q1 
through 1994Q4, 
T = 164 quarters

Chapters 2, 10, 11 
and 12

LONGGDP Real GDP per capita for 
Australia, US, UK, Canada

Time series, 1870–1993, 
T = 124 years

Chapters 11 and 12

NYSE Changes in stock price Time series, January 
1952 through 
December 1995, 
T = 528 months

Chapter 12

ORANGE Prices of regular oranges and 
organic oranges

Time series, T = 181 
months

Chapters 11 and 12

RMPY Monthly treasury bill rate, 
price level, money supply, 
GDP and logged changes of 
all variables

Time series, 1947Q1 
through 1992Q4, 
T = 184 quarters

Chapter 12

SAFETY Company accident losses, 
hours spent in safety 
training

Time series, T = 60 
months

Chapter 9
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Data file Content Data type Chapter

SMOKING Smoking, education and age Cross-sectional, 
N = 1196 individuals

Chapter 8

STOCK Logged stock price data Time series, T = 208 
weeks

Chapter 11

WAGE Log of UK nominal wages, 
consumer price index, real 
GDP, total employment and 
total potential labor force

Time series, 1855–1987, 
T = 133 years

Appendix A

WAGEDISC Employee occupation data (e.g. 
salary, education, experience, 
sex)

Cross-sectional, N = 100 
employees

Chapter 7

WORKCHOICE Female labor choice Cross-sectional, N = 655 Appendix A
WP Log of UK wages and 

consumer price index
Time series, 1857–1987, 
T = 131 years

Chapters 10 and 11

User note:
The website accompanying this book contains these data sets.
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