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Introduction
Welcome	to	Statistics	For	Big	Data	For	Dummies!	Every	day,	what	has	come	to	be
known	as	big	data	is	making	its	influence	felt	in	our	lives.	Some	of	the	most	useful
innovations	of	the	past	20	years	have	been	made	possible	by	the	advent	of	massive
data-gathering	capabilities	combined	with	rapidly	improving	computer	technology.

For	example,	of	course,	we	have	become	accustomed	to	finding	almost	any	information
we	need	through	the	Internet.	You	can	locate	nearly	anything	under	the	sun
immediately	by	using	a	search	engine	such	as	Google	or	DuckDuckGo.	Finding
information	this	way	has	become	so	commonplace	that	Google	has	slowly	become	a
verb,	as	in	“I	don’t	know	where	to	find	that	restaurant	—	I’ll	just	Google	it.”	Just	think
how	much	more	efficient	our	lives	have	become	as	a	result	of	search	engines.	But	how
does	Google	work?	Google	couldn’t	exist	without	the	ability	to	process	massive
quantities	of	information	at	an	extremely	rapid	speed,	and	its	software	has	to	be
extremely	efficient.

Another	area	that	has	changed	our	lives	forever	is	e-commerce,	of	which	the	classic
example	is	Amazon.com.	People	can	buy	virtually	every	product	they	use	in	their	daily
lives	online	(and	have	it	delivered	promptly,	too).	Often	online	prices	are	lower	than	in
traditional	“brick-and-mortar”	stores,	and	the	range	of	choices	is	wider.	Online
shopping	also	lets	people	find	the	best	available	items	at	the	lowest	possible	prices.

Another	huge	advantage	to	online	shopping	is	the	ability	of	the	sellers	to	provide
reviews	of	products	and	recommendations	for	future	purchases.	Reviews	from	other
shoppers	can	give	extremely	important	information	that	isn’t	available	from	a	simple
product	description	provided	by	manufacturers.	And	recommendations	for	future
purchases	are	a	great	way	for	consumers	to	find	new	products	that	they	might	not
otherwise	have	known	about.	Recommendations	are	enabled	by	one	application	of	big
data	—	the	use	of	highly	sophisticated	programs	that	analyze	shopping	data	and
identify	items	that	tend	to	be	purchased	by	the	same	consumers.

Although	online	shopping	is	now	second	nature	for	many	consumers,	the	reality	is	that
e-commerce	has	only	come	into	its	own	in	the	last	15–20	years,	largely	thanks	to	the
rise	of	big	data.	A	website	such	as	Amazon.com	must	process	quantities	of	information
that	would	have	been	unthinkably	gigantic	just	a	few	years	ago,	and	that	processing
must	be	done	quickly	and	efficiently.	Thanks	to	rapidly	improving	technology,	many
traditional	retailers	now	also	offer	the	option	of	making	purchases	online;	failure	to	do
so	would	put	a	retailer	at	a	huge	competitive	disadvantage.

In	addition	to	search	engines	and	e-commerce,	big	data	is	making	a	major	impact	in	a
surprising	number	of	other	areas	that	affect	our	daily	lives:

Social	media
Online	auction	sites



Insurance
Healthcare
Energy
Political	polling
Weather	forecasting
Education
Travel
Finance



About	This	Book
This	book	is	intended	as	an	overview	of	the	field	of	big	data,	with	a	focus	on	the
statistical	methods	used.	It	also	provides	a	look	at	several	key	applications	of	big	data.
Big	data	is	a	broad	topic;	it	includes	quantitative	subjects	such	as	math,	statistics,
computer	science,	and	data	science.	Big	data	also	covers	many	applications,	such	as
weather	forecasting,	financial	modeling,	political	polling	methods,	and	so	forth.

Our	intentions	for	this	book	specifically	include	the	following:

Provide	an	overview	of	the	field	of	big	data.
Introduce	many	useful	applications	of	big	data.
Show	how	data	may	be	organized	and	checked	for	bad	or	missing	information.
Show	how	to	handle	outliers	in	a	dataset.
Explain	how	to	identify	assumptions	that	are	made	when	analyzing	data.
Provide	a	detailed	explanation	of	how	data	may	be	analyzed	with	graphical
techniques.
Cover	several	key	univariate	(involving	only	one	variable)	statistical	techniques	for
analyzing	data.
Explain	widely	used	multivariate	(involving	more	than	one	variable)	statistical
techniques.
Provide	an	overview	of	modeling	techniques	such	as	regression	analysis.
Explain	the	techniques	that	are	commonly	used	to	analyze	time	series	data.
Cover	techniques	used	to	forecast	the	future	values	of	a	dataset.
Provide	a	brief	overview	of	software	packages	and	how	they	can	be	used	to	analyze
statistical	data.

Because	this	is	a	For	Dummies	book,	the	chapters	are	written	so	you	can	pick	and
choose	whichever	topics	that	interest	you	the	most	and	dive	right	in.	There’s	no	need	to
read	the	chapters	in	sequential	order,	although	you	certainly	could.	We	do	suggest,
though,	that	you	make	sure	you’re	comfortable	with	the	ideas	developed	in	Chapters	4
and	5	before	proceeding	to	the	later	chapters	in	the	book.	Each	chapter	also	contains
several	tips,	reminders,	and	other	tidbits,	and	in	several	cases	there	are	links	to	websites
you	can	use	to	further	pursue	the	subject.	There’s	also	an	online	Cheat	Sheet	that
includes	a	summary	of	key	equations	for	ease	of	reference.

As	mentioned,	this	is	a	big	topic	and	a	fairly	new	field.	Space	constraints	make
possible	only	an	introduction	to	the	statistical	concepts	that	underlie	big	data.	But	we
hope	it	is	enough	to	get	you	started	in	the	right	direction.



Foolish	Assumptions
We	make	some	assumptions	about	you,	the	reader.	Hopefully,	one	of	the	following
descriptions	fits	you:

You’ve	heard	about	big	data	and	would	like	to	learn	more	about	it.
You’d	like	to	use	big	data	in	an	application	but	don’t	have	sufficient	background	in
statistical	modeling.
You	don’t	know	how	to	implement	statistical	models	in	a	software	package.

Possibly	all	of	these	are	true.	This	book	should	give	you	a	good	starting	point	for
advancing	your	interest	in	this	field.	Clearly,	you	are	already	motivated.

This	book	does	not	assume	any	particularly	advanced	knowledge	of	mathematics	and
statistics.	The	ideas	are	developed	from	fairly	mundane	mathematical	operations.	But	it
may,	in	many	places,	require	you	to	take	a	deep	breath	and	not	get	intimidated	by	the
formulas.



Icons	Used	in	This	Book
Throughout	the	book,	we	include	several	icons	designed	to	point	out	specific	kinds	of
information.	Keep	an	eye	out	for	them:

	A	Tip	points	out	especially	helpful	or	practical	information	about	a	topic.	It
may	be	hard-won	advice	on	the	best	way	to	do	something	or	a	useful	insight	that
may	not	have	been	obvious	at	first	glance.

	A	Warning	is	used	when	information	must	be	treated	carefully.	These	icons
point	out	potential	problems	or	trouble	you	may	encounter.	They	also	highlight
mistaken	assumptions	that	could	lead	to	difficulties.

	Technical	Stuff	points	out	stuff	that	may	be	interesting	if	you’re	really	curious
about	something,	but	which	is	not	essential.	You	can	safely	skip	these	if	you’re	in
a	hurry	or	just	looking	for	the	basics.

	Remember	is	used	to	indicate	stuff	that	may	have	been	previously	encountered
in	the	book	or	that	you	will	do	well	to	stash	somewhere	in	your	memory	for	future
benefit.



Beyond	the	Book
Besides	the	pages	or	pixels	you’re	presently	perusing,	this	book	comes	with	even	more
goodies	online.	You	can	check	out	the	Cheat	Sheet	at
www.dummies.com/cheatsheet/statisticsforbigdata.

We’ve	also	written	some	additional	material	that	wouldn’t	quite	fit	in	the	book.	If	this
book	were	a	DVD,	these	would	be	on	the	Bonus	Content	disc.	This	handful	of	extra
articles	on	various	mini-topics	related	to	big	data	is	available	at
www.dummies.com/extras/statisticsforbigdata.

http://www.dummies.com/cheatsheet/statisticsforbigdata
http://www.dummies.com/extras/statisticsforbigdata


Where	to	Go	From	Here
You	can	approach	this	book	from	several	different	angles.	You	can,	of	course,	start	with
Chapter	1	and	read	straight	through	to	the	end.	But	you	may	not	have	time	for	that,	or
maybe	you	are	already	familiar	with	some	of	the	basics.	We	suggest	checking	out	the
table	of	contents	to	see	a	map	of	what’s	covered	in	the	book	and	then	flipping	to	any
particular	chapter	that	catches	your	eye.	Or	if	you’ve	got	a	specific	big	data	issue	or
topic	you’re	burning	to	know	more	about,	try	looking	it	up	in	the	index.

Once	you’re	done	with	the	book,	you	can	further	your	big	data	adventure	(where	else?)
on	the	Internet.	Instructional	videos	are	available	on	websites	such	as	YouTube.	Online
courses,	many	of	them	free,	are	also	becoming	available.	Some	are	produced	by	private
companies	such	as	Coursera;	others	are	offered	by	major	universities	such	as	Yale	and
M.I.T.	Of	course,	many	new	books	are	being	written	in	the	field	of	big	data	due	to	its
increasing	importance.

If	you’re	even	more	ambitious,	you	will	find	specialized	courses	at	the	college
undergraduate	and	graduate	levels	in	subject	areas	such	as	statistics,	computer	science,
information	technology,	and	so	forth.	In	order	to	satisfy	the	expected	future	demand	for
big	data	specialists,	several	schools	are	now	offering	a	concentration	or	a	full	degree	in
Data	Science.

The	resources	are	there;	you	should	be	able	to	take	yourself	as	far	as	you	want	to	go	in
the	field	of	big	data.	Good	luck!



Part	I



Introducing	Big	Data	Statistics

	Visit	www.dummies.com	for	Great	Dummies	content	online.

http://www.dummies.com




In	this	part	…
	Introducing	big	data	and	stuff	it’s	used	for

	Exploring	the	three	Vs	of	big	data

	Checking	out	the	hot	big	data	applications

	Discovering	probabilities	and	other	basic	statistical	idea



Chapter	1



What	Is	Big	Data	and	What	Do	You	Do
with	It?

In	This	Chapter
	Understanding	what	big	data	is	all	about

	Seeing	how	data	may	be	analyzed	using	Exploratory	Data	Analysis	(EDA)

	Gaining	insight	into	some	of	the	key	statistical	techniques	used	to	analyze	big	data

Big	data	refers	to	sets	of	data	that	are	far	too	massive	to	be	handled	with	traditional
hardware.	Big	data	is	also	problematic	for	software	such	as	database	systems,	statistical
packages,	and	so	forth.	In	recent	years,	data-gathering	capabilities	have	experienced
explosive	growth,	so	that	storing	and	analyzing	the	resulting	data	has	become
progressively	more	challenging.

Many	fields	have	been	affected	by	the	increasing	availability	of	data,	including	finance,
marketing,	and	e-commerce.	Big	data	has	also	revolutionized	more	traditional	fields
such	as	law	and	medicine.	Of	course,	big	data	is	gathered	on	a	massive	scale	by	search
engines	such	as	Google	and	social	media	sites	such	as	Facebook.	These	developments
have	led	to	the	evolution	of	an	entirely	new	profession:	the	data	scientist,	someone
who	can	combine	the	fields	of	statistics,	math,	computer	science,	and	engineering	with
knowledge	of	a	specific	application.

This	chapter	introduces	several	key	concepts	that	are	discussed	throughout	the	book.
These	include	the	characteristics	of	big	data,	applications	of	big	data,	key	statistical
tools	for	analyzing	big	data,	and	forecasting	techniques.



Characteristics	of	Big	Data
The	three	factors	that	distinguish	big	data	from	other	types	of	data	are	volume,	velocity,
and	variety.

Clearly,	with	big	data,	the	volume	is	massive.	In	fact,	new	terminology	must	be	used	to
describe	the	size	of	these	datasets.	For	example,	one	petabyte	of	data	consists	of	

	bytes	of	data.	That’s	1,000	trillion	bytes!

	A	byte	is	a	single	unit	of	storage	in	a	computer’s	memory.	A	byte	is	used	to
represent	a	single	number,	character,	or	symbol.	A	byte	consists	of	eight	bits,	each
consisting	of	either	a	0	or	a	1.

Velocity	refers	to	the	speed	at	which	data	is	gathered.	Big	datasets	consist	of	data	that’s
continuously	gathered	at	very	high	speeds.	For	example,	it	has	been	estimated	that
Twitter	users	generate	more	than	a	quarter	of	a	million	tweets	every	minute.	This
requires	a	massive	amount	of	storage	space	as	well	as	real-time	processing	of	the	data.

Variety	refers	to	the	fact	that	the	contents	of	a	big	dataset	may	consist	of	a	number	of
different	formats,	including	spreadsheets,	videos,	music	clips,	email	messages,	and	so
on.	Storing	a	huge	quantity	of	these	incompatible	types	is	one	of	the	major	challenges
of	big	data.

Chapter	2	covers	these	characteristics	in	more	detail.



Exploratory	Data	Analysis	(EDA)
Before	you	apply	statistical	techniques	to	a	dataset,	it’s	important	to	examine	the	data
to	understand	its	basic	properties.	You	can	use	a	series	of	techniques	that	are
collectively	known	as	Exploratory	Data	Analysis	(EDA)	to	analyze	a	dataset.	EDA
helps	ensure	that	you	choose	the	correct	statistical	techniques	to	analyze	and	forecast
the	data.	The	two	basic	types	of	EDA	techniques	are	graphical	techniques	and
quantitative	techniques.

Graphical	EDA	techniques
Graphical	EDA	techniques	show	the	key	properties	of	a	dataset	in	a	convenient	format.
It’s	often	easier	to	understand	the	properties	of	a	variable	and	the	relationships	between
variables	by	looking	at	graphs	rather	than	looking	at	the	raw	data.	You	can	use	several
graphical	techniques,	depending	on	the	type	of	data	being	analyzed.	Chapters	11	and	12
explain	how	to	create	and	use	the	following:

Box	plots
Histograms
Normal	probability	plots
Scatter	plots

Quantitative	EDA	techniques
Quantitative	EDA	techniques	provide	a	more	rigorous	method	of	determining	the	key
properties	of	a	dataset.	Two	of	the	most	important	of	these	techniques	are

Interval	estimation	(discussed	in	Chapter	11).
Hypothesis	testing	(introduced	in	Chapter	5).

Interval	estimates	are	used	to	create	a	range	of	values	within	which	a	variable	is	likely
to	fall.	Hypothesis	testing	is	used	to	test	various	propositions	about	a	dataset,	such	as

The	mean	value	of	the	dataset.
The	standard	deviation	of	the	dataset.
The	probability	distribution	the	dataset	follows.

Hypothesis	testing	is	a	core	technique	in	statistics	and	is	used	throughout	the	chapters
in	Part	III	of	this	book.



Statistical	Analysis	of	Big	Data
Gathering	and	storing	massive	quantities	of	data	is	a	major	challenge,	but	ultimately
the	biggest	and	most	important	challenge	of	big	data	is	putting	it	to	good	use.

For	example,	a	massive	quantity	of	data	can	be	helpful	to	a	company’s	marketing
research	department	only	if	it	can	identify	the	key	drivers	of	the	demand	for	the
company’s	products.	Political	polling	firms	have	access	to	massive	amounts	of
demographic	data	about	voters;	this	information	must	be	analyzed	intensively	to	find
the	key	factors	that	can	lead	to	a	successful	political	campaign.	A	hedge	fund	can
develop	trading	strategies	from	massive	quantities	of	financial	data	by	finding	obscure
patterns	in	the	data	that	can	be	turned	into	profitable	strategies.

Many	statistical	techniques	can	be	used	to	analyze	data	to	find	useful	patterns:

Probability	distributions	are	introduced	in	Chapter	4	and	explored	at	greater	length
in	Chapter	13.
Regression	analysis	is	the	main	topic	of	Chapter	15.
Time	series	analysis	is	the	primary	focus	of	Chapter	16.
Forecasting	techniques	are	discussed	in	Chapter	17.

Probability	distributions
You	use	a	probability	distribution	to	compute	the	probabilities	associated	with	the
elements	of	a	dataset.	The	following	distributions	are	described	and	applied	in	this
book:

Binomial	distribution:	You	would	use	the	binomial	distribution	to	analyze
variables	that	can	assume	only	one	of	two	values.	For	example,	you	could
determine	the	probability	that	a	given	percentage	of	members	at	a	sports	club	are
left-handed.	See	Chapter	4	for	details.
Poisson	distribution:	You	would	use	the	Poisson	distribution	to	describe	the
likelihood	of	a	given	number	of	events	occurring	over	an	interval	of	time.	For
example,	it	could	be	used	to	describe	the	probability	of	a	specified	number	of	hits
on	a	website	over	the	coming	hour.	See	Chapter	13	for	details.

Normal	distribution:	The	normal	distribution	is	the	most	widely	used	probability
distribution	in	most	disciplines,	including	economics,	finance,	marketing,	biology,
psychology,	and	many	others.	One	of	the	characteristic	features	of	the	normal
distribution	is	symmetry	—	the	probability	of	a	variable	being	a	given	distance
below	the	mean	of	the	distribution	equals	the	probability	of	it	being	the	same
distance	above	the	mean.	For	example,	if	the	mean	height	of	all	men	in	the	United
States	is	70	inches,	and	heights	are	normally	distributed,	a	randomly	chosen	man	is
equally	likely	to	be	between	68	and	70	inches	tall	as	he	is	to	be	between	70	and	72
inches	tall.	See	Chapter	4	and	the	chapters	in	Parts	III	and	IV	for	details.



The	normal	distribution	works	well	with	many	applications.	For	example,	it’s	often
used	in	the	field	of	finance	to	describe	the	returns	to	financial	assets.	Due	to	its	ease
of	interpretation	and	implementation,	the	normal	distribution	is	sometimes	used
even	when	the	assumption	of	normality	is	only	approximately	correct.

The	Student’s	t-distribution:	The	Student’s	t-distribution	is	similar	to	the	normal
distribution,	but	with	the	Student’s	t-distribution,	extremely	small	or	extremely
large	values	are	much	more	likely	to	occur.	This	distribution	is	often	used	in
situations	where	a	variable	exhibits	too	much	variation	to	be	consistent	with	the
normal	distribution.	This	is	true	when	the	properties	of	small	samples	are	being
analyzed.	With	small	samples,	the	variation	among	samples	is	likely	to	be	quite
considerable,	so	the	normal	distribution	shouldn’t	be	used	to	describe	their
properties.	See	Chapter	13	for	details.

Note:	The	Student’s	t-distribution	was	developed	by	W.S.	Gosset	while	employed
at	the	Guinness	brewing	company.	He	was	attempting	to	describe	the	properties	of
small	sample	means.

The	chi-square	distribution:	The	chi-square	distribution	is	appropriate	for	several
types	of	applications.	For	example,	you	can	use	it	to	determine	whether	a
population	follows	a	particular	probability	distribution.	You	can	also	use	it	to	test
whether	the	variance	of	a	population	equals	a	specified	value,	and	to	test	for	the
independence	of	two	datasets.	See	Chapter	13	for	details.
The	F-distribution:	The	F-distribution	is	derived	from	the	chi-square	distribution.
You	use	it	to	test	whether	the	variances	of	two	populations	equal	each	other.	The	F-
distribution	is	also	useful	in	applications	such	as	regression	analysis	(covered	next).
See	Chapter	14	for	details.

Regression	analysis
Regression	analysis	is	used	to	estimate	the	strength	and	direction	of	the	relationship
between	variables	that	are	linearly	related	to	each	other.	Chapter	15	discusses	this	topic
at	length.

	Two	variables	X	and	Y	are	said	to	be	linearly	related	if	the	relationship	between
them	can	be	written	in	the	form

where

m	is	the	slope,	or	the	change	in	Y	due	to	a	given	change	in	X
b	is	the	intercept,	or	the	value	of	Y	when	X	=	0

As	an	example	of	regression	analysis,	suppose	a	corporation	wants	to	determine



whether	its	advertising	expenditures	are	actually	increasing	profits,	and	if	so,	by	how
much.	The	corporation	gathers	data	on	advertising	and	profits	for	the	past	20	years	and
uses	this	data	to	estimate	the	following	equation:

where

Y	represents	the	annual	profits	of	the	corporation	(in	millions	of	dollars).
X	represents	the	annual	advertising	expenditures	of	the	corporation	(in	millions	of
dollars).

In	this	equation,	the	slope	equals	0.25,	and	the	intercept	equals	50.	Because	the	slope	of
the	regression	line	is	0.25,	this	indicates	that	on	average,	for	every	$1	million	increase
in	advertising	expenditures,	profits	rise	by	$.25	million,	or	$250,000.	Because	the
intercept	is	50,	this	indicates	that	with	no	advertising,	profits	would	still	be	$50	million.

This	equation,	therefore,	can	be	used	to	forecast	future	profits	based	on	planned
advertising	expenditures.	For	example,	if	the	corporation	plans	on	spending	$10
million	on	advertising	next	year,	its	expected	profits	will	be	as	follows:

Hence,	with	an	advertising	budget	of	$10	million	next	year,	profits	are	expected	to	be
$52.5	million.

Time	series	analysis
A	time	series	is	a	set	of	observations	of	a	single	variable	collected	over	time.	This	topic
is	talked	about	at	length	in	Chapter	16.	The	following	are	examples	of	time	series:

The	daily	price	of	Apple	stock	over	the	past	ten	years.
The	value	of	the	Dow	Jones	Industrial	Average	at	the	end	of	each	year	for	the	past
20	years.
The	daily	price	of	gold	over	the	past	six	months.

With	time	series	analysis,	you	can	use	the	statistical	properties	of	a	time	series	to
predict	the	future	values	of	a	variable.	There	are	many	types	of	models	that	may	be
developed	to	explain	and	predict	the	behavior	of	a	time	series.

One	place	where	time	series	analysis	is	used	frequently	is	on	Wall	Street.	Some
analysts	attempt	to	forecast	the	future	value	of	an	asset	price,	such	as	a	stock,	based
entirely	on	the	history	of	that	stock’s	price.	This	is	known	as	technical	analysis.
Technical	analysts	do	not	attempt	to	use	other	variables	to	forecast	a	stock’s	price	—
the	only	information	they	use	is	the	stock’s	own	history.



	Technical	analysis	can	work	only	if	there	are	inefficiencies	in	the	market.
Otherwise,	all	information	about	a	stock’s	history	should	already	be	reflected	in	its
price,	making	technical	trading	strategies	unprofitable.

Forecasting	techniques
Many	different	techniques	have	been	designed	to	forecast	the	future	value	of	a	variable.
Two	of	these	are	time	series	regression	models	(Chapter	16)	and	simulation	models
(Chapter	17).

Time	series	regression	models
A	time	series	regression	model	is	used	to	estimate	the	trend	followed	by	a	variable	over
time,	using	regression	techniques.	A	trend	line	shows	the	direction	in	which	a	variable
is	moving	as	time	elapses.

As	an	example,	Figure	1-1	shows	a	time	series	that	represents	the	annual	output	of	a
gold	mine	(measured	in	thousands	of	ounces	per	year)	since	the	mine	opened	ten	years
ago.
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Figure	1-1:	A	time	series	showing	gold	output	per	year	for	the	past	ten	years.

The	equation	of	the	trend	line	is	estimated	to	be

where

X	is	the	year.
Y	is	the	annual	production	of	gold	(measured	in	thousands	of	ounces).

This	trend	line	is	estimated	using	regression	analysis.	The	trend	line	shows	that	on



average,	the	output	of	the	mine	grows	by	0.9212	thousand	(921.2	ounces)	each	year.

You	could	use	this	trend	line	to	predict	the	output	next	year	(the	11th	year	of	operation)
by	substituting	11	for	X,	as	follows:

Based	on	the	trend	line	equation,	the	mine	would	be	expected	to	produce	11,466.5
ounces	of	gold	next	year.

Simulation	models
You	can	use	simulation	models	to	forecast	a	time	series.	Simulation	models	are
extremely	flexible	but	can	be	extremely	time-consuming	to	implement.	Their	accuracy
also	depends	on	assumptions	being	made	about	the	time	series	data’s	statistical
properties.

Two	standard	approaches	to	forecasting	financial	time	series	with	simulation	models
are	historical	simulation	and	Monte	Carlo	simulation.

Historical	simulation

Historical	simulation	is	a	technique	used	to	generate	a	probability	distribution	for	a
variable	as	it	evolves	over	time,	based	on	its	past	values.	If	the	properties	of	the
variable	being	simulated	remain	stable	over	time,	this	technique	can	be	highly	accurate.
One	drawback	to	this	approach	is	that	in	order	to	get	an	accurate	prediction,	you	need
to	have	a	lot	of	data.	It	also	depends	on	the	assumption	that	a	variable’s	past	behavior
will	continue	into	the	future.

As	an	example,	Figure	1-2	shows	a	histogram	that	represents	the	returns	to	a	stock	over
the	past	100	days.
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Figure	1-2:	A	histogram	of	stock	returns.

This	histogram	shows	the	probability	distribution	of	returns	on	the	stock	based	on	the
past	100	trading	days.	The	graph	shows	that	the	most	frequent	return	over	the	past	100
days	was	a	loss	of	2	percent,	the	second	most	frequent	was	a	loss	of	3	percent,	and	so
on.	You	can	use	the	information	contained	within	this	graph	to	create	a	probability
distribution	for	the	most	likely	return	on	this	stock	over	the	coming	trading	day.

Monte	Carlo	simulation

Monte	Carlo	simulation	is	a	technique	in	which	random	numbers	are	substituted	into	a
statistical	model	in	order	to	forecast	the	future	values	of	a	variable.	This	methodology
is	used	in	many	different	disciplines,	including	finance,	economics,	and	the	hard
sciences,	such	as	physics.	Monte	Carlo	simulation	can	work	very	well	but	can	also	be
extremely	time-consuming	to	implement.	Also,	its	accuracy	depends	on	the	statistical
model	being	used	to	describe	the	behavior	of	the	time	series.

As	you	can	see,	we’ve	got	a	lot	to	cover	in	this	book.	But	don’t	worry,	we	take	it	step
by	step.	In	Part	I,	we	look	at	what	big	data	is.	We	also	build	a	statistical	toolkit	that	we
carry	with	us	throughout	the	rest	of	the	book.	Part	II	focuses	on	the	(extremely
important)	process	of	preparing	data	for	the	application	of	the	techniques	just
described.	Then	we	get	to	the	good	stuff	in	Parts	III	and	IV.	Though	the	equations	can
appear	a	little	intimidating	at	times,	we	have	labored	to	include	examples	in	every
chapter	that	make	the	ideas	a	little	more	accessible.	So,	take	a	deep	breath	and	get
ready	to	begin	your	exploration	of	big	data!



Chapter	2



Characteristics	of	Big	Data:	The	Three	Vs
In	This	Chapter

	Understanding	the	characteristics	of	big	data	and	how	it	can	be	classified

	Checking	out	the	features	of	the	latest	methods	for	storing	and	analyzing	big	data

The	phrase	big	data	refers	to	datasets	(collections	of	data)	that	are	too	massive	for
traditional	database	management	systems	(DBMS)	to	handle	properly.	The	rise	of	big
data	has	occurred	for	several	reasons,	such	as	the	massive	increase	in	e-commerce,	the
explosion	of	social	media	usage,	the	advent	of	video	and	music	websites,	and	so	forth.

Big	data	requires	more	sophisticated	approaches	than	those	used	in	the	past	to	handle
surges	of	information.	This	chapter	explores	the	characteristics	of	big	data	and
introduces	the	newer	approaches	that	have	been	developed	to	handle	it.



Characteristics	of	Big	Data
The	three	main	characteristics	that	define	big	data	are	generally	considered	to	be
volume,	velocity,	and	variety.	These	are	the	three	Vs.	Volume	is	easy	to	understand.
There’s	a	lot	of	data.	Velocity	suggests	that	the	data	comes	in	faster	than	ever	and	must
be	stored	faster	than	ever.	Variety	refers	to	the	wide	variety	of	data	structures	that	may
need	to	be	stored.	The	mixture	of	incompatible	data	formats	provides	another	challenge
that	couldn’t	be	easily	managed	by	DBMS.

Volume
Volume	refers,	as	you	might	expect,	to	the	quantity	of	data	being	generated.	A
proliferation	of	new	sources	generates	massive	amounts	of	data	on	a	continuous	basis.
The	sources	include,	but	are	certainly	not	limited	to,	the	following:

Internet	forums
YouTube
Facebook
Twitter
Cellphones	(videos,	photos,	texts)
Internet	search	engines
Political	polling

The	volume	of	data	being	created	is	accelerating	rapidly,	requiring	new	terminology	to
describe	these	massive	quantities.	This	terminology	includes	names	that	describe
progressively	larger	amounts	of	storage.	These	names	can	sound	quite	strange	in	a
world	where	people	are	familiar	with	only	megabytes	(MB)	and	gigabytes	(GB),	and
maybe	terabytes	(TB).	Some	examples	are	the	petabyte	(PB),	the	zettabyte	(ZB),	and
the	yottabyte	(YB).

You	are	likely	familiar	with	the	megabyte:	one	thousand	kilobytes,	or	one	million	bytes
of	storage.	A	gigabyte	refers	to	one	billion	bytes	of	storage.	Until	recently,	the	storage
capacity	of	hard	drives	and	other	storage	devices	was	in	the	range	of	hundreds	of
gigabytes,	but	in	2015	1TB,	2TB,	and	4TB	internal	and	external	hard	drives	are	now
common.

The	next	step	up	is	the	terabyte,	which	refers	to	one	trillion	bytes.	One	trillion	is	a
large	number,	expressed	as	a	one	followed	by	twelve	zeros:

1,000,000,000,000

You	can	write	this	number	using	scientific	notation	as	 .



	With	scientific	notation,	a	number	is	expressed	as	a	constant	multiplied	by	a
power	of	ten.	For	example,	3,122	would	be	expressed	as	 ,	because	103
equals	1,000.	The	constant	always	has	one	digit	before	the	decimal	point,	and	the
remaining	digits	come	after	the	decimal	point.

For	larger	units	of	storage,	the	notation	goes	like	this:

	bytes	=	one	petabyte
	bytes	=	one	exabyte
	bytes	=	one	zettabyte
	bytes	=	one	yottabyte

Here’s	an	interesting	name	for	a	very	large	number:	 	is	called	a	googol.	The
name	of	the	search	engine	Google	is	derived	from	this	word.	Speaking	of	Google,	the
company	is	currently	processing	over	20	petabytes	of	information	each	day,	which	is
more	than	the	estimated	amount	of	information	currently	stored	at	the	Library	of
Congress.

Velocity
As	the	amount	of	available	data	has	surged	in	recent	years,	the	speed	with	which	it
becomes	available	has	also	accelerated	dramatically.	Rapidly	received	data	can	be
classified	as	the	following:

Streaming	data
Complex	event	processing

Streaming	data	is	data	transferred	to	an	application	at	an	extremely	high	speed.	The
classic	example	would	be	the	movies	you	download	and	watch	from	sources	such	as
Netflix	and	Amazon.	In	these	cases,	the	data	is	being	downloaded	while	the	movie	is
playing.	If	your	Internet	connection	isn’t	very	fast,	you’ve	probably	noticed	annoying
interruptions	or	glitches	as	the	data	downloads.	In	those	cases,	you	need	more	velocity.

Streaming	is	useful	when	you	need	to	make	decisions	in	real	time.	For	example,	traders
must	make	split-second	decisions	as	new	market	information	becomes	available.	An
entire	branch	of	finance	known	as	market	microstructure	analyzes	how	prices	are
generated	based	on	real-time	trading	activity.	High-frequency	trading	(HFT)	uses
computer	algorithms	to	generate	trades	based	on	incoming	market	data.	The	data
arrives	at	a	high	speed,	and	the	assets	are	held	for	only	fractions	of	a	second	before
being	resold.

Complex	event	processing	(CEP)	refers	to	the	use	of	data	to	predict	the	occurrence	of
events	based	on	a	specific	set	of	factors.	With	this	type	of	processing,	data	is	examined
for	patterns	that	couldn’t	be	found	with	more	traditional	approaches,	so	that	better



decisions	may	be	made	in	real	time.	An	example	is	your	GPS	device’s	ability	to	reroute
you	based	on	traffic	and	accident	data.

Variety
In	addition	to	traditional	data	types	(numeric	and	character	fields	in	a	file),	data	can
assume	a	large	number	of	different	forms.	Here	are	just	a	few:

Spreadsheets
Word-processing	documents
Videos
Photos
Music
Emails
Text	messages

With	such	a	variety	of	formats,	storing	and	analyzing	these	kinds	of	data	are	extremely
challenging.	The	formats	are	incompatible	with	each	other,	so	combining	them	into	one
large	database	is	problematic.

	This	is	one	of	the	major	challenges	of	big	data:	finding	ways	to	extract	useful
information	from	multiple	types	of	disparate	files.



Traditional	Database	Management	Systems
(DBMS)

A	traditional	DBMS	stores	data	and	enables	it	to	be	easily	retrieved.	There	are	several
types	of	database	management	systems,	which	can	be	classified	according	to	the	way
data	is	organized	and	cross-referenced.	This	section	focuses	on	three	of	the	most
important	types:	relational	model,	hierarchical	model,	and	network	model	databases.

Relational	model	databases
With	a	relational	database,	the	data	is	organized	into	a	series	of	tables.	Data	is	accessed
by	the	row	and	column	in	which	it’s	located.	This	model	is	very	flexible	and	is	easy	to
expand	to	include	new	information.	You	simply	add	more	records	to	the	bottom	of	an
existing	table,	and	you	can	create	new	categories	by	simply	adding	new	rows	or
columns.

Table	2-1	shows	a	simple	example	of	a	table	in	a	relational	database.

Table	2-1	Employee	Data	Organized	as	a	Relational	Database

Name Title Years	with	Company Annual	Salary

Smith,	John Senior	Accountant 8 $144,000

Jones,	Mary VP,	Research	and	Development 24 $250,000

Williams,	Tony CFO 13 $210,000

… … … …

The	data	in	Table	2-1	is	organized	as	a	series	of	records	in	a	table.	Each	record
contains	information	about	one	employee.	Each	record	contains	four	fields:	Name,
Title,	Years	with	Company,	and	Annual	Salary.

Using	this	setup,	you	can	find	information	about	employees	very	quickly	and	easily.
For	example,	if	the	human	resources	department	wants	to	determine	which	employees
have	been	with	the	company	for	at	least	ten	years,	a	new	table	—	with	information
drawn	from	this	table	—	could	be	generated	to	list	the	employees.	Table	2-2	shows	the
new	table.

Table	2-2	Employees	Who	Have	Been	with	the	Company	at	Least	Ten
Years

Name Years	with	Company

Jones,	Mary 24

Williams,	Tony 13

… …



The	relational	database	user	accesses	the	information	with	a	special	type	of	software
known	as	a	query	language.	One	of	the	most	widely	used	query	languages	is	SQL
(Structured	Query	Language).

	The	“structure”	of	Structured	Query	Language	is	quite	simple	and	is	basically
the	same	for	all	relational	database	systems.	Syntax	differs	slightly	from	system	to
system.	But	in	all	cases,	queries	follow	the	same	format	(though	not	all	elements
need	always	be	present).

Select	(list	of	data	fields	you	want	to	see)

From	(list	of	tables	containing	the	data)
Where	(list	of	filtering	and	other	conditions	you	want	to	use)
Group	by	(instructions	for	summarizing	the	data)
Having	(list	of	conditions	on	the	summarized	data)
Order	by	(sorting	instructions).

So	for	example,	the	report	shown	in	Table	2-2	could	have	been	generated	by	the
following	query:

Select	Name,	Years	with	Company

From	Employee	Data
Where	Years	with	Company	>10.

Currently,	the	relational	model	is	the	most	commonly	used	type	of	DBMS.	Some
examples	of	relational	database	software	include	the	following:

SQL	Server
Microsoft	Access
DB2
MySQL
Oracle

Hierarchical	model	databases
A	hierarchical	database	is	organized	as	a	tree.	Records	are	connected	through	links.
This	type	of	database	has	a	top-down	structure,	with	all	searches	for	data	starting	at	the
top	of	the	structure	and	continuing	through	the	entire	structure	until	the	desired
information	is	found.

For	example,	Figure	2-1	shows	a	diagram	of	a	hierarchical	database.	The	database
contains	student	records	at	a	university.	The	students	are	organized	according	to



whether	they	attend	the	School	of	Business	or	the	School	of	Arts	and	Sciences.	Within
each	school,	the	students	are	further	classified	as	undergraduates	or	graduate	students.

©	John	Wiley	&	Sons,	Inc.

Figure	2-1:	A	diagram	of	a	hierarchical	database.

You	can	think	of	each	box	in	the	diagram	as	a	node,	and	each	arrow	as	a	branch.	The
University	node	is	the	parent	of	the	School	of	Business	and	School	of	Arts	and
Sciences	nodes.	The	School	of	Business	node	is	a	child	of	the	University	node,	as	is	the
School	of	Arts	node.

One	of	the	drawbacks	of	this	model	is	that	accessing	a	record	requires	searching
through	the	entire	structure	until	the	record	is	found	—	and	that’s	extremely	time-
consuming.	For	example,	finding	the	record	of	a	specific	graduate	business	student
requires	starting	with	the	University	node,	followed	by	the	School	of	Business	node,
and	then	the	Graduate	node.

Another	drawback	to	this	model	is	that	each	parent	node	may	have	many	child	nodes,
but	each	child	node	may	only	have	one	parent	node.	For	many	types	of	data,	this
doesn’t	accurately	describe	the	relationship	among	the	records.

Hierarchical	models	are	not	nearly	as	prevalent	as	relational	systems.	They	are	useful
when	the	data	you	are	managing	actually	is	a	hierarchy.	Perhaps	the	most	familiar	such
instances	are	file	managers,	such	as	the	Finder	on	the	Mac	and	Windows	Explorer	in
Windows.

Network	model	databases
The	network	model	is	a	more	flexible	version	of	the	hierarchical	model.	It’s	also
organized	as	a	tree	with	branches	and	nodes.	However,	one	important	difference
between	the	two	models	is	that	the	network	model	allows	for	each	child	node	to	have
more	than	one	parent	node.	Because	of	this,	much	more	complex	relationships	may	be
represented.

Again,	these	network	models	are	not	as	widespread	as	the	relational	model.	One	place
where	they	have	been	used	extensively	is	in	geographic	information	systems.	The	fact
that	road	intersections	have	multiple	branches	makes	the	network	model	convenient.



Alternatives	to	traditional	database	systems
The	rise	of	big	data	has	outstripped	the	capacity	of	traditional	database	management
systems.	Two	approaches	to	addressing	this	have	become	commonplace	in	the	Internet
age:	distributed	storage	and	parallel	processing.	The	basic	idea	behind	them	both	is
sharing	the	load.

Distributed	storage
Distributed	storage	is	exactly	what	it	sounds	like.	Rather	than	gather	all	the	data	into	a
central	location,	the	data	is	spread	out	over	multiple	storage	devices.	This	allows
quicker	access	because	you	don’t	need	to	cull	through	a	huge	file	to	find	the
information	you’re	looking	for.

Distributed	storage	also	allows	for	more	frequent	backups.	Because	systems	are	writing
data	to	a	lot	of	small	files,	real-time	backups	become	reasonable.

Distributed	storage	is	the	backbone	of	so-called	cloud	computing.	Many	find	it
reassuring	that	all	the	books,	music,	and	games	they	have	ever	purchased	from	the	Web
are	backed	up	in	the	cloud.	Even	if	you	drop	your	iPad	in	the	lake,	for	example,	you
could	have	everything	restored	and	available	on	a	new	device	with	very	little	effort.

Parallel	processing
Distributed	storage	allows	another	type	of	sharing	to	be	done.	Because	the	data	is
stored	on	different	machines,	it	can	be	analyzed	using	different	processors.	This	is
known	as	parallel	processing.	It	is	particularly	useful	for	mathematical	and	statistical
applications	involving	very	complex	modeling	techniques.

Even	with	the	very	powerful	computers	available	today,	big	data	analysis	would	still	be
impossible	without	parallel	processing.	The	human	genome	project	is	wholly
dependent	on	having	a	server	farm	to	sort	out	the	seemingly	infinite	number	of
possibilities.

Parallel	processing	can	be	very	widely	distributed.	To	illustrate,	there	is	a	climate
prediction	project	that	has	been	managed	through	Oxford	University	for	a	little	over	a
decade.	The	website	Climateprediction.net	manages	a	distributed	computing	array	that
is	borrowing	resources	from	almost	30,000	machines.	There	are	similar	arrays
searching	for	large	prime	numbers	that	number	in	the	thousands.



Chapter	3



Using	Big	Data:	The	Hot	Applications
In	This	Chapter

	Understanding	the	impact	that	big	data	is	making	in	several	diverse	fields

	Checking	out	new	products	and	services	stemming	from	big	data

	Considering	the	challenges	facing	users	of	big	data

Thanks	to	the	continuing	surge	of	computing	power	and	storage	capacity,	it	has	become
possible	to	gather,	process,	and	analyze	quantities	of	data	that	would	have	been
unimaginable	just	a	decade	ago.	This	has	given	rise	to	the	entirely	new	field	of	big
data.	Big	data	bridges	several	disciplines,	including	statistics,	mathematics,	and
computer	science.	It	addresses	the	unique	challenges	associated	with	processing
enormous	volumes	of	information.	Big	data	is	already	making	major	inroads	into	a
wide	variety	of	highly	diversified	fields,	ranging	from	online	shopping	to	healthcare
services.

This	chapter	introduces	several	of	the	most	exciting	areas	in	which	big	data	is	having	a
major	impact.	In	many	cases,	the	acceleration	of	computer	technology	is	increasing
efficiency,	lowering	costs,	making	new	services	available,	and	improving	the	quality	of
life.	Some	of	these	areas	include	the	following:

Weather	forecasting
Healthcare
Insurance
Finance
Electric	utilities
Higher	education
Retail	services	and	online	shopping
Search	engines
Social	media

Of	these	fields,	online	shopping	and	search	engines	couldn’t	exist	at	all	without	big
data.	Weather	forecasting	has	benefited	tremendously	from	the	massive	increase	in
data-processing	speeds	and	data-gathering	capabilities	that	has	occurred	in	recent
years.	Other	fields,	such	as	retail	services,	finance,	banking,	insurance,	education,	and
so	forth,	certainly	predated	the	rise	of	big	data,	but	have	rapidly	adopted	it	in	order	to

Gain	a	competitive	edge.
Produce	new	types	of	products	and	services.



Improve	the	quality	of	existing	products	and	services.
Lower	production	costs.

The	rise	of	big	data	has	also	led	to	an	increase	in	the	demand	for	quantitative	and
programming	skills	—	and	is	likely	to	generate	a	large	number	of	high-paying	jobs	in
the	near	future.



Big	Data	and	Weather	Forecasting
Weather	forecasting	has	always	been	extremely	challenging,	given	the	number	of
variables	involved	and	the	complex	interactions	between	those	variables.	Dramatic
increases	in	the	ability	to	gather	and	process	data	have	greatly	enhanced	the	ability	of
weather	forecasters	to	pinpoint	the	timing	and	severity	of	hurricanes,	floods,
snowstorms,	and	other	weather	events.

One	example	of	an	application	of	big	data	to	weather	forecasting	is	IBM’s	Deep
Thunder.	Unlike	many	weather	forecasting	systems,	which	give	general	information
about	a	broad	geographical	region,	Deep	Thunder	provides	forecasts	for	extremely
specific	locations,	such	as	a	single	airport,	so	that	local	authorities	can	get	critically
important	information	in	real	time.	Here	are	some	examples	of	the	information	that
Deep	Thunder	can	provide:

Estimates	of	areas	where	flooding	is	likely	to	be	most	severe
The	strength	and	direction	of	tropical	storms
The	most	likely	amount	of	snow	or	rain	that	will	fall	in	a	specific	area
The	most	likely	locations	of	downed	power	lines
Estimates	of	areas	where	wind	speeds	are	likely	to	be	greatest
The	locations	where	bridges	and	roads	most	likely	to	be	damaged	by	storms
The	likelihood	of	flights	being	cancelled	at	specific	airports

This	information	is	essential	for	emergency	planning.	Using	big	data,	local	authorities
can	better	anticipate	problems	caused	by	weather	before	they	occur.	For	example,
planners	can	make	preparations	to	evacuate	low-lying	areas	that	are	likely	to	be
flooded.	It’s	also	possible	to	make	plans	to	upgrade	existing	facilities.	(For	example,
power	lines	that	are	prone	to	being	disabled	by	heavy	winds	can	be	upgraded.)

One	important	customer	of	Deep	Thunder	is	the	city	of	Rio	de	Janeiro,	Brazil,	which
will	be	using	the	system	in	planning	for	the	2016	Olympics.	Using	the	technology,	the
city	will	make	use	of	improved	forecasts	for	storms,	floods,	and	other	natural	disasters
in	order	to	ensure	that	the	Olympics	won’t	be	disrupted	by	such	events.

IBM	is	also	providing	massive	computing	power	to	the	Korean	Meteorological
Administration	(KMA)	to	fully	embrace	big	data	technology.	The	KMA	gathers	over
1.5	terabytes	of	meteorological	data	each	day,	which	requires	a	staggering	amount	of
storage	and	processing	power	to	analyze.	By	using	big	data,	the	KMA	will	be	able	to
improve	its	forecasts	regarding	the	strength	and	location	of	tropical	storms	and	other
weather	systems.

	A	terabyte	is	equal	to	one	trillion	bytes.	That’s	1,000,000,000,000	bytes	of
information.	You’d	write	one	trillion	bytes	in	scientific	notation	as	 .	To	put



that	in	perspective,	you	would	need	around	1,500	CDs	to	store	a	single	terabyte.
Including	their	plastic	cases,	that	would	stack	up	as	a	40-foot	tall	tower	of	CDs.

Another	example	of	using	big	data	in	weather	forecasting	took	place	during	Hurricane
Sandy	in	2012	—	the	“storm	of	the	century.”	The	National	Hurricane	Center	was	able
to	use	big	data	technology	to	predict	the	hurricane’s	landfall	to	within	30	miles	a	full
five	days	in	advance.	That	is	a	dramatic	increase	in	accuracy	from	what	was	possible
even	20	years	ago.	As	a	result,	FEMA	and	other	disaster	management	organizations
were	far	better	prepared	to	deal	with	the	mess	than	they	might	have	been	had	it
occurred	in	the	1990s	or	earlier.

One	of	the	interesting	consequences	of	gathering	and	processing	more	weather	data	is
the	appearance	of	corporations	that	sell	customized	insurance	to	protect	against
weather	damage.	One	example	is	the	Climate	Corporation,	which	was	formed	in	2006
by	two	former	employees	of	Google.	The	Climate	Corporation	sells	weather-
forecasting	services	and	specialized	insurance	to	farmers	seeking	to	hedge	the	risk	of
crop	damage.	The	company	uses	big	data	to	pinpoint	the	types	of	risks	that	are	relevant
to	a	specific	area,	based	on	massive	amounts	of	data	on	moisture,	soil	type,	past	crop
yields,	and	so	on.

Farming	is	an	exceptionally	risky	business,	because	the	variable	of	weather	is	far	less
predictable	than	the	variables	that	affect	most	other	businesses,	such	as	interest	rates,
the	state	of	the	economy,	and	so	forth.	Although	farm	insurance	is	available	from	the
federal	government,	in	many	cases	it	isn’t	sufficient	to	meet	the	more	specialized	types
of	risks	that	plague	individual	famers.	The	Climate	Corporation	fills	gaps	in	federal
insurance	—	gaps	that	would	be	impossible	to	offer	without	an	improved
understanding	of	the	risk	factors	facing	individual	farmers.	In	the	future,	as	more	data
becomes	available,	even	more	specialized	insurance	products	(such	as	insurance	for
specific	crops)	may	become	available.



Big	Data	and	Healthcare	Services
Healthcare	is	one	area	where	big	data	has	the	potential	to	make	dramatic	improvements
in	the	quality	of	life.	The	increasing	availability	of	massive	amounts	of	data	and	rapidly
increasing	computer	power	could	enable	researchers	to	make	breakthroughs,	such	as
the	following:

Predicting	outbreaks	of	diseases
Gaining	a	better	understanding	of	the	effectiveness	and	side	effects	of	drugs
Developing	customized	treatments	based	on	patient	histories
Reducing	the	cost	of	developing	new	treatments

One	of	the	biggest	challenges	facing	the	use	of	big	data	in	healthcare	is	that	much	of
the	data	is	stored	in	independent	“silos.”	A	data	silo	is	a	collection	of	data	that	isn’t
used	on	a	regular	basis	and	so	isn’t	accessible	outside	of	the	silo.	Healthcare	data
comes	from	multiple	sources:

Public	health	records
Government	databases
Insurance	companies
Pharmaceutical	companies
Patient	health	histories
Personal	tracking	devices

Much	of	the	data	is	scattered	and	not	readily	accessible.	Also,	the	data	may	be	stored	in
many	different	formats	—	some	of	it	still	on	paper!	As	a	result,	much	information	that
could	be	potentially	useful	in	some	applications	may	be	difficult	and	time-consuming
to	acquire.

Once	this	data	has	been	combined	properly,	the	potential	exists	to	dramatically	improve
the	analytical	techniques	used	to	diagnose	patients.	For	example,	it	may	eventually
become	possible	to	provide	genetic	sequencing	for	each	individual	patient;	at	the
moment,	this	would	be	a	prohibitively	expensive	and	lengthy	process	in	most	cases.

Here	are	some	other	potential	benefits	of	using	big	data	in	healthcare:

Increased	ability	of	patients	to	monitor	their	own	treatments
Improved	ability	of	doctors	to	choose	the	best	treatments	for	patients
More	efficient	matching	of	patients	with	the	appropriate	healthcare	professionals

Another	potential	benefit	comes	in	the	area	of	controlling	costs.	As	the	availability	of
healthcare	data	increases,	the	potential	for	reducing	costs	through	better	preventative
treatment,	increased	efficiency	of	the	drug	development	cycle,	improved	monitoring	of



patients,	and	other	methods	appears	to	be	quite	substantial.	The	consulting	firm
McKinsey	&	Company	estimated	in	2011	that	the	potential	savings	could	be	$300
billion	per	year	—	a	number	that	could	grow	over	time.



Big	Data	and	Insurance
The	insurance	industry	couldn’t	survive	without	the	ability	to	gather	and	process
substantial	quantities	of	data.	In	order	to	determine	the	appropriate	premiums	for	their
policies,	insurance	companies	must	be	able	to	analyze	the	risks	that	policyholders	face
and	be	able	to	determine	the	likelihood	of	these	risks	actually	materializing.

Due	to	substantial	increases	in	the	availability	of	data	and	the	speed	and	storage
capacity	of	computers,	new	opportunities	have	arisen	for	the	insurance	industry	to
increase	profits	through	the	improved	modeling	of	risks,	the	use	of	more	efficient
pricing	practices,	and	the	ability	to	offer	more	specialized	products.	Additionally,	big
data	may	be	used	for	security	purposes,	such	as	detecting	and	preventing	insurance
fraud.

A	good	example	of	the	use	of	big	data	in	the	insurance	industry	is	the	growing	use	of
telematics	devices	in	the	auto	insurance	industry.

	A	telematics	device	transmits	computer	data	wirelessly.	It	may	be	used	for
many	purposes,	such	as	increasing	the	quality	of	a	product	or	ensuring	the	safety
of	a	process.	A	Global	Positioning	System	(GPS)	is	an	example	of	a	telematics
device.

An	auto	insurance	company	may	install	a	telematics	device	in	a	vehicle,	with	the
resulting	data	transmitted	to	the	insurance	company	in	real	time.	The	data	may	include
the	following	details:

Speed
Number	of	miles	driven
Braking	patterns
Time	of	day	when	driving	takes	place

These	data	can	help	an	insurance	company	determine	the	likelihood	of	a	given	driver
becoming	involved	in	an	accident.	The	company	can	use	this	information	to	set	the
premium	paid	by	the	individual	driver.

The	benefit	to	the	driver	is	that	he	or	she	may	be	eligible	for	lower	premiums	if	the	data
show	a	pattern	of	safe	driving.	Another	benefit	is	that	the	driver	will	have	a	better
understanding	of	his	or	her	own	driving	habits,	and	will	gain	knowledge	about	how	to
drive	more	safely.

One	of	the	drawbacks	of	using	telematics	devices	is	the	need	to	process	and	store
significant	amounts	of	data.	Another	potential	issue	is	that	insurance	companies	may
receive	telematics	data	from	multiple	providers,	raising	the	possibility	of	data-
compatibility	issues.



Another	huge	challenge	for	insurance	companies	is	identifying	and	quantifying	the
most	important	risk	factors	from	the	massive	amounts	of	data	being	gathered.	For
example,	the	insurance	company	must	decide	how	much	each	mile	driven	contributes
to	the	likelihood	of	an	accident.	This	requires	a	great	deal	of	sophisticated	statistical
modeling.

Despite	these	potential	problems,	the	use	of	telematics	devices	in	the	auto	insurance
industry	is	expected	to	grow	rapidly	in	the	next	few	years	as	the	ability	to	process	the
required	data	continues	to	improve	and	public	acceptance	of	the	idea	grows.

Telematics	is	currently	being	used	far	more	widely	in	commercial	auto	insurance	than
for	personal	auto	owners.	Fleets	of	trucks	and	taxis	are	good	examples.	But	it	is
beginning	to	move	into	the	personal	auto	space	on	a	voluntary	basis.	Everybody	thinks
they	are	a	good	driver	and	wants	to	get	a	discount	for	being	one.

But	this	does	raise	a	larger	point	about	big	data	and	privacy.	With	all	this	data	floating
around,	where	is	the	line	drawn	about	what	companies	and	governments	can	legally
know	about	you?	There	is	no	simple	answer	to	that	question	and	in	fact	it	is	a	constant
topic	of	debate	in	Congress.	Beyond	your	driving	habits,	everything	from	location
tracking	on	your	mobile	device	to	which	websites	you	surf	is	potentially	out	there	to	be
had.	And	given	people’s	apparent	willingness	to	sacrifice	privacy	for	convenience,	it’s
worth	keeping	an	eye	on	what	companies	are	doing	with	your	personal	data.

The	increased	use	of	telematics	devices	may	also	provide	additional	benefits	to	society,
as	the	data	should	make	it	possible	for	local	authorities	to	improve	the	safety	of	roads
and	bridges	by	analyzing	the	factors	that	are	most	likely	to	contribute	to	accidents.



Big	Data	and	Finance
One	area	of	the	finance	industry	that	has	been	dramatically	affected	by	big	data	is	the
trading	activities	of	banks	and	other	financial	institutions.	An	example	is	high-
frequency	trading	(HFT),	a	relatively	new	mode	of	trading	that	depends	on	the	ability
to	execute	massive	volumes	of	trades	in	extremely	short	time	intervals.	HFT	traders
make	money	by	executing	a	huge	number	of	trades,	each	of	which	earns	a	miniscule
profit.	Unlike	traditional	traders,	HFT	traders	don’t	attempt	to	hold	positions	for	any
great	length	of	time	and	don’t	base	their	trades	on	fundamental	factors	such	as	interest
rates,	exchange	rates,	commodity	prices,	and	so	forth.	The	success	of	HFT	trades
depends	critically	on	the	speed	of	execution,	as	they	are	based	on	rapid	fluctuations	in
market	prices.

As	more	and	more	resources	have	been	dedicated	to	HFT	trading	in	the	last	couple	of
years,	leading	to	an	“arms	race”	in	progressively	faster	hardware	and	software,	the
profitability	of	high-frequency	trading	has	declined.	As	the	speed	of	transactions	has
increased,	the	ability	to	make	money	based	on	speed	alone	has	diminished.	Further
increases	in	speed	are	now	bringing	steadily	diminishing	returns	—	the	profit	per
transaction	has	plunged.	As	a	result,	successful	trading	now	depends	less	and	less	on
hardware	and	more	on	software	in	the	form	of	sophisticated	trading	algorithms.

An	algorithm	is	a	set	of	instructions	used	to	carry	out	a	procedure,	kind	of	like	a	recipe.
Algorithms	are	heavily	used	by	computer	scientists	to	instruct	computers	on	how	to
perform	various	tasks,	such	as	carrying	out	mathematical	operations.

The	use	of	advanced	algorithms	for	trading	strategies	carries	several	potential
advantages,	such	as	the	ability	to	test	ideas	on	historical	data	before	risking	any	money.
With	HFT	trading,	there’s	no	time	to	test	any	potential	trading	strategies,	because	they
must	be	implemented	immediately.

Another	advantage	to	using	trading	algorithms	is	that	they	can	be	based	on
fundamental	variables,	such	as	interest	rates	and	exchange	rates,	instead	of	simply
searching	through	trades	to	look	for	temporary	price	changes.	As	a	result,	algorithms
can	be	developed	to	find	ever	more	complex	relationships	among	securities	prices	and
use	this	information	to	earn	trading	profits.	Big	data	enhances	algorithmic	trading	by
providing	the	ability	to	search	through	enormous	volumes	of	data	looking	for	patterns
that	might	not	be	detectable	with	smaller	amounts	of	data	or	slower	processing	speeds.

With	shrinking	profits	from	HFT,	algorithmic	trading	appears	to	have	a	bright	future,	as
the	increasing	availability	of	data	and	computer	speed	enable	more	and	more
sophisticated	algorithms	to	be	developed.



Big	Data	and	Electric	Utilities
One	area	where	big	data	has	made	an	impact	on	electric	utilities	is	the	development	of
smart	meters.	Smart	meters	provide	a	more	accurate	measure	of	energy	usage	by	giving
far	more	frequent	readings	than	traditional	meters.	A	smart	meter	may	give	several
readings	a	day,	not	just	once	a	month	or	once	a	quarter.

The	information	gathered	by	these	meters	help	customers	conserve	electricity	(by
providing	them	with	a	more	accurate	picture	of	their	consumption	patterns).	It	can	also
enable	them	to	better	plan	their	electricity	usage	to	avoid	peak	hours	and	save	money.

Smart	meters	also	provide	utilities	with	several	advantages:

More	accurate	forecasts	of	future	energy	demand
Improvement	in	the	scheduling	of	maintenance
Increase	in	ability	to	detect	fraud
Reduction	in	power	outages
Better	compliance	with	regulatory	requirements

With	smart	meters,	utilities	can	determine	not	only	how	much	electricity	is	being	used,
but	at	what	times	of	day	it’s	being	used.	This	information	is	critical	in	forecasting	the
demand	for	electricity	at	peak	hours.	Because	electricity	can’t	be	stored,	capacity	must
match	use	at	peak	hours	—	the	rest	of	the	time,	much	of	this	capacity	remains	idle.	As
a	result,	the	more	accurately	utilities	can	measure	peak	demand,	the	more	efficiently
they	can	plan	for	capacity	needs.

The	biggest	challenge	to	the	utilities	that	use	smart	meters	is	that	the	amount	of	data
being	generated	is	dramatically	greater	than	the	amount	generated	by	traditional
meters.	This	fact	requires	a	massive	upgrade	in	the	hardware	and	software	capabilities
of	many	utilities.	Another	problem	is	that	the	data	being	gathered	may	come	from
many	different	sources,	leading	to	potential	compatibility	problems.

In	the	long	run,	the	investments	being	made	by	utilities	in	big	data	capabilities	may	end
up	saving	money	by	using	existing	resources	more	efficiently,	thereby	reducing	the
need	to	build	new	capacity.



Big	Data	and	Higher	Education
Big	data	is	making	dramatic	changes	in	the	field	of	education.	One	area	that	has	shown
particular	promise	is	computerized	learning	programs,	which	provide	instant	feedback
to	educators.	The	data	gathered	from	these	programs	can	provide	key	information	to
identify	key	challenges:

Students	who	need	extra	help
Students	who	are	ready	for	more	advanced	material
Topics	that	students	are	finding	especially	difficult
Different	learning	styles

This	information	enables	educators	to	identify	problem	areas	and	come	up	with
alternative	methods	for	presenting	material.	Computerized	testing	can	also	be	used	to
better	understand	the	different	techniques	used	by	students	to	learn	the	same	material.
For	example,	some	students	do	better	with	visual	examples,	but	others	do	better	with
more	numerically	oriented	examples.	Educators	can	use	data	to	customize	training	to
the	needs	of	individual	students.

Additional	advantages	of	using	big	data	in	education	include	the	following:

Improved	ability	to	develop	curricula	that	address	student	needs
Development	of	customized	instruction	for	each	student
Improvement	of	tools	used	to	assess	student	performance

Several	issues	can	arise	with	the	use	of	big	data	in	education.	To	use	the	data	that’s
gathered,	large	investments	may	be	required	to	upgrade	hardware	and	software
capabilities.	Another	potential	issue	is	privacy	concerns	as	student	data	becomes
available	to	educators	—	clearly,	safeguards	need	to	be	put	into	place	to	ensure	that	this
data	remains	confidential.



Big	Data	and	Retailers
Retailers	collect	and	maintain	sales	records	for	large	number	of	customers.	The
challenge	has	always	been	to	put	this	data	to	good	use.	Ideally,	a	retailer	would	like	to
understand	the	demographic	characteristics	of	its	customers	and	what	types	of	goods
and	services	they	are	interested	in	buying.	The	continued	improvement	in	computing
capacity	has	made	it	possible	to	sift	through	huge	volumes	of	data	in	order	to	find
patterns	that	can	be	used	to	forecast	demand	for	different	products,	based	on	customer
characteristics.

Another	issue	that	big	data	can	help	with	is	pricing	strategies,	specifically
understanding	how	sensitive	different	customers	are	to	prices.	Choosing	the	right	price
for	a	product	has	sometimes	been	based	on	guesswork.	By	contrast,	big	data	can
increase	the	retailer’s	ability	to	use	customer	habits	to	identify	the	profit-maximizing
price	for	their	goods.	Another	benefit	to	using	big	data	is	that	retail	stores	can	better
plan	the	placement	of	merchandise	throughout	the	store,	based	on	customer	shopping
habits.

Big	data	can	also	help	retailers	with	inventory	management.	Many	retailers	sell	a	wide
variety	of	different	products,	and	keeping	track	of	this	information	is	a	huge	challenge.
With	big	data,	retailers	can	have	instantly	updated	information	about	the	size	and
location	of	their	inventories.

One	of	the	most	important	uses	of	big	data	for	a	retailer	is	the	ability	to	target
individual	consumers	with	promotions	based	on	his	or	her	preferences.	Such	targeting
not	only	increases	the	efficiency	of	advertising,	it	gives	customers	a	more	personal
relationship	with	the	retailer,	thereby	encouraging	repeat	business.	In	addition,
knowledge	of	customer	preferences	enables	the	retailer	to	provide	recommendations
for	future	purchases,	which	further	increases	repeat	business.

Nordstrom
As	an	example,	Nordstrom	has	heavily	embraced	the	use	of	big	data.	It	was	one	of	the
first	retail	stores	to	offer	customers	the	option	of	shopping	online.	The	company	has
developed	a	smartphone	app	that	lets	customers	shop	directly	from	their	iPads,
iPhones,	and	other	mobile	devices.	Nordstrom	also	shows	customers	which	of	its	stores
carries	specific	merchandise;	for	merchandise	that	must	be	ordered	from	other	stores,
Nordstrom	can	provide	a	highly	accurate	estimate	of	delivery	time.

Nordstrom	uses	its	big	data	capabilities	to	target	customers	with	personalized	ads	based
on	their	shopping	experiences.	This	information	can	come	from	Nordstrom’s	store
sales,	its	website,	and	from	social	media	sites	such	as	Facebook	and	Twitter.

Nordstrom	conducts	research	into	improving	the	customer	shopping	experience
through	its	Innovation	Labs	division.	It	created	this	division	in	2011	in	order	to	ensure
that	the	company	remains	on	the	cutting	edge	of	big	data	technology.



Walmart
Walmart	is	another	major	retailer	that	has	embraced	big	data.	Based	on	sales	volume,
Walmart	is	the	largest	retailer	in	the	United	States.	It’s	also	the	largest	private	employer
in	the	country.

In	the	past	few	years,	Walmart	has	made	a	major	push	into	e-commerce,	enabling	it	to
compete	directly	with	Amazon.com	and	other	online	retailers.	In	2011,	Walmart
acquired	a	company	called	Kosmix	to	take	advantage	of	that	company’s	proprietary
search	engine	capabilities	(Kosmix	was	renamed	Walmart	Labs).	Since	then,	Walmart
Labs	has	developed	several	new	products	based	on	big	data	technology.	One	of	these	is
called	Social	Genome,	which	enables	Walmart	to	target	individual	customers	with
discounts	based	on	preferences	the	customers	have	expressed	through	various	sites	on
the	Internet.	Another	product	developed	by	Walmart	Labs	is	Shoppycat,	an	app	that
provides	gift	recommendations	based	on	information	found	on	Facebook.

Although	e-commerce	still	accounts	for	a	relatively	small	percentage	of	Walmart’s
annual	revenues,	the	investments	the	company	has	made	in	big	data	technology	show
that	it	expects	online	sales	to	become	a	progressively	more	important	source	of
revenues	in	the	future.

Amazon.com
The	best	example	of	using	big	data	in	retail	is	Amazon.com,	which	couldn’t	even	exist
without	big	data	technology.	Amazon	started	out	selling	books	and	has	expanded	into
just	about	every	area	of	retail	imaginable,	including	furniture,	appliances,	clothes,	and
electronics.	As	a	result,	Amazon	raked	in	$89	billion	in	revenues	in	2014,	making	it
one	of	the	top	ten	retailers	in	the	U.S.,	and	the	largest	online	retailer.

Like	online	retailers,	Amazon	uses	big	data	for	several	applications:

Managing	its	massive	inventories
Accurately	keeping	track	of	orders
Making	recommendations	for	future	purchases

Amazon	provides	its	recommendations	through	a	process	known	as	item-to-item
collaborative	filtering.	This	filtering	is	based	on	algorithms	designed	to	identify	the
key	details	that	can	lead	a	customer	to	purchase	a	product,	such	as	past	purchases,
items	viewed,	purchases	made	by	customers	with	similar	characteristics,	and	so	forth.
Amazon	also	provides	recommendations	by	email,	chosen	based	on	the	highest
potential	sales.

Amazon	has	been	able	to	put	its	investment	in	big	data	capabilities	to	good	use	in
another	way:	It	now	earns	revenues	by	allowing	businesses	to	use	its	infrastructure	for
a	fee.	This	is	done	through	products	such	as	Amazon	Elastic	MapReduce	(EMR)	and
Amazon	Web	Services	(AWS).



Amazon	EMR	enables	businesses	to	analyze	enormous	quantities	of	data	by	using
Amazon’s	computer	hardware.	This	hardware	is	accessible	through	the	Amazon	Cloud
Drive,	where	businesses	can	pay	to	store	their	data.	For	many	businesses,	using	these
facilities	is	cheaper	than	building	the	computer	infrastructure	that	would	be	required	to
handle	the	demands	of	big	data.	AWS	provides	a	large	variety	of	computer	services
through	Amazon	Cloud	Drive,	including	storage	facilities,	database	management
systems,	networking,	and	so	on.

One	interesting	extension	of	Amazon’s	use	of	big	data	is	its	plan	to	ship	merchandise	to
customers	before	they	order	it!	The	company	received	a	patent	in	2014	for	its
“anticipatory	shipping”	methodology.	In	order	for	this	plan	to	succeed,	Amazon.com
must	be	able	to	anticipate	customer	demand	with	an	incredibly	high	degree	of	accuracy
to	avoid	the	risk	of	returned	merchandise.



Big	Data	and	Search	Engines
Big	data	has	made	possible	the	development	of	highly	capable	online	search	engines.	A
search	engine	finding	web	pages	based	on	search	terms	requires	sophisticated
algorithms	and	the	ability	to	process	a	staggering	number	of	requests.	Here	are	four	of
the	most	widely	used	search	engines:

Google
Microsoft	Bing
Yahoo!
Ask

The	use	of	Google	dwarfs	its	competitors.	As	of	February	2015,	Google	is	estimated	to
receive	1.1	billion	unique	visitors	each	month.	Bing	is	a	distant	second	with	350
million;	Yahoo!	gets	300	million,	and	Ask,	245	million.	Although	Google	isn’t	the
oldest	search	engine,	it	has	become	by	far	the	most	popular.	The	amount	of	data	that
Google	handles	each	day	is	estimated	to	be	about	20	petabytes	( 	bytes).	All	this
traffic	is	profitable	for	Google	—	the	bulk	of	its	revenues	come	from	advertising.

Google	also	provides	computer	services	to	organizations	that	don’t	have	their	own
capabilities	for	processing	big	data.	Google	recently	introduced	Google	Cloud
Dataflow,	which	allows	organizations	to	store,	analyze,	and	process	huge	quantities	of
data.



Big	Data	and	Social	Media
Social	media	wouldn’t	be	possible	without	big	data.	Social	media	websites	let	people
share	photos,	videos,	personal	data,	commentary,	and	so	forth.	Some	of	the	best
examples	of	social	media	websites	include	these:

Facebook
Twitter
LinkedIn
Instagram

Facebook	was	created	in	2004	by	Harvard	students.	It	has	since	grown	into	the	largest
social	media	site	in	the	world.	As	of	2014,	Facebook	has	an	estimated	900	million
unique	visitors	each	month,	followed	by	Twitter	with	310	million	and	LinkedIn	with
225	million.	Instagram	has	an	estimated	100	million	unique	visitors	per	month.

Facebook	allows	users	to	stay	informed	about	their	friends,	family	members,
acquaintances,	and	so	on.	Users	can	post	photos,	personal	information,	and	news	items,
and	use	Facebook	to	locate	friends.	Twitter	enables	short	messages	called	tweets	to	be
posted.	LinkedIn	is	a	networking	site	intended	to	enable	working	professionals	to	stay
in	contact	with	each	other,	whereas	the	Instagram	website	lets	users	post	photos	for
other	users	to	see.

It’s	estimated	that	Facebook	processes	more	than	500	terabytes	of	data	every	day,
requiring	an	extensive	investment	in	big	data	technology.	Like	Google,	Facebook	earns
the	bulk	of	its	revenues	from	advertising,	much	of	it	from	the	largest	corporations	in
the	United	States.

Regardless	of	what	industry	you’re	in,	the	techniques	discussed	in	the	remainder	of	this
book	will	be	helpful	in	your	attempts	to	make	smarter	decisions.	Hopefully,	the
examples	given	here	have	whetted	your	appetite	for	big	data	applications.	And	we	hope
you’ll	be	able	to	sustain	that	appetite	through	the	technical	details	that	you’ll	come
across.	The	chapters	that	follow	start	getting	into	the	nuts	and	bolts	of	analyzing	data.



Chapter	4



Understanding	Probabilities
In	This	Chapter

	Understanding	the	basic	structure	of	probability	spaces

	Understanding	discrete	and	continuous	probability	distributions

	Getting	familiar	with	the	binomial	and	normal	distributions

	Learning	the	fundamental	concepts	of	multivariate	probability	distributions

This	chapter	introduces	some	of	the	most	important	concepts	related	to	the	notion	of
probability.	Probabilities	underlie	everything	in	the	field	of	statistics.	Having	a	clear
sense	of	the	basic	ideas	in	probability	theory	will	help	you	more	easily	digest	the	more
advanced	statistical	ideas	presented	in	this	book.



The	Core	Structure:	Probability	Spaces
Beneath	every	statistical	application,	there	lies	a	group	of	possible	outcomes.	A	coin
may	come	up	heads	or	tails.	A	stock	may	go	up	or	down.	A	baby	may	be	born	with
blue,	green,	or	brown	eyes.	These	are	generally	referred	to	as	experiments.	In	any
situation	where	probability	and	statistics	are	applied,	it	is	important	to	understand	the
entire	set	of	possible	outcomes.	This	set	of	possible	outcomes	is	known	as	the	event
space.	It	is	generally	denoted	by	a	capital	E.

An	event	is	a	subset	of	the	event	space.	An	event	can	consist	of	more	than	one
particular	outcome.	For	example,	the	event	that	a	stock	advances	by	more	than	$10	on
a	given	day	consists	of	many	specific	outcomes.	It	could	advance	by	$10.01,	or	$10.02,
and	so	on.	If	any	one	of	these	outcomes	occurs,	we	say	the	event	occurs.

The	second	important	thing	to	understand	is	the	likelihood	of	various	events	occurring.
For	a	fair	coin	flip,	both	heads	and	tails	are	equally	likely	and	each	is	assigned	a
probability	of	1/2.	This	assignment	of	probabilities	to	events	is	known	as	a	probability
measure.	A	probability	measure	is	frequently	represented	by	the	letter	P	(not
surprisingly).	So,	in	the	case	of	the	coin	flip	example,	we	would	write	 	to
represent	the	fact	that	the	probability	of	obtaining	heads	is	50%.

	We’re	being	a	little	bit	loose	with	the	notion	of	an	event	space	here.
Technically,	the	set	of	all	possible	outcomes	is	called	the	sample	space.	The	event
space	is	actually	derived	from	the	sample	space	by	assigning	probabilities	to
various	subsets	of	the	sample	space.	Believe	it	or	not,	it	is	in	general	not	possible
to	assign	every	subset	of	your	event	space	a	probability.	So,	the	event	space
consists	of	a	collection	of	measurable	subsets	of	the	sample	space.	However,
those	subsets	that	are	not	measurable	are	weird-looking	beasts.	We	don’t
encounter	them	in	the	applications	discussed	in	this	book.	From	here	on	out,	we’ll
treat	the	event	space	as	the	fundamental	structure.

There	are	four	basic	properties	that	all	probability	measures	share.	They	are	all	simple
and	quite	intuitive:

All	probabilities	are	between	0	and	1.

The	probability	of	the	entire	event	space	is	1	or	 .

The	probability	of	nothing	happening	is	0	or	 .	The	symbol	∅	is	generally
used	to	represent	the	empty	set.
If	two	events	don’t	overlap,	then	the	probability	of	one	or	the	other	happening	is	the
sum	of	their	individual	probabilities.	Symbolically,	if	 ,	then	it	is	always
the	case	that	 .	(The	∩	means	intersection.)



	From	these	simple	rules,	we	can	derive	a	great	many	useful	results.
Interestingly,	and	somewhat	surprisingly	perhaps,	it	is	the	ability	to	add
probabilities	for	non-overlapping	sets	that	prevents	us	from	being	able	to	assign
probabilities	to	all	subsets	of	the	event	space.	It	is	possible,	in	some	cases,	to
create	a	series	of	non-overlapping	subsets	that	have	a	problematic	property.	One
the	one	hand,	they	should	add	up	to	a	probability	of	1	because	together	they
comprise	the	whole	event	space.	But	on	the	other	hand,	each	one	individually	has
probability	0.	Strange	but	true.

Much	of	probability	(and	statistics)	involves	understanding	the	probability	measure	as
just	described,	generally	by	looking	at	the	probabilities	associated	with	all	the
individual	outcomes	in	the	event	space.	This	is	known	as	the	probability	distribution.

There	are	two	fundamentally	different	situations	that	you	will	encounter,	depending	on
the	structure	of	the	event	space.	The	next	two	sections	discuss	them	and	provide	a
couple	of	standard	examples.



Discrete	Probability	Distributions
Many	probability	distributions	have	the	property	that	each	individual	outcome	in	the
event	space	has	a	positive	(non-zero)	probability.	In	this	situation,	the	distribution	is
said	to	be	discrete.	It	is	possible	to	list	all	the	outcomes	with	their	associated
probabilities.

This	characterization	may	strike	you	as	odd	at	first.	Don’t	all	outcomes	have
probabilities?	The	answer	is	no.	There	are	many	cases	where	this	is	not	the	case.	There
are	distributions	for	which	not	a	single	individual	outcome	has	a	positive	probability.	In
fact,	the	majority	of	statistical	applications	described	in	this	book	do	not	deal	with
discrete	distributions.	We	explore	that	situation	later	in	this	chapter	after	introducing
you	to	the	discrete	case.

A	standard	set	of	examples	in	probability	involves	flipping	a	coin	one	or	more	times.	In
the	case	of	a	single	coin	flip,	the	event	space	consists	of	only	two	individual	outcomes.
If	the	coin	is	fair,	both	heads	and	tails	have	a	probability	of	1/2.	This	completely
describes	the	probability	distribution	of	a	single	coin	flip.

We	said	that	with	a	discrete	probability	distribution	it	is	possible	to	“list”	the	outcomes
and	their	probabilities.	But	we’re	using	the	term	loosely.	Many	discrete	probability
distributions	have	infinite	event	spaces.	In	these	cases,	list	means	to	establish	an	easily
understandable	pattern	that	the	probabilities	follow.

One	simple	example	of	an	infinite	yet	discrete	probability	is	based	on	the	experiment	of
flipping	a	coin	until	heads	appears.	In	this	case,	the	probability	of	heads	on	the	first	flip
is	1/2.	The	probability	of	heads	for	the	first	time	on	the	second	flip	is	1/4.	On	the	third
flip,	it’s	1/8	and	so	on.	The	probabilities	get	increasingly	small.	But	they	never	quite	go
all	the	way	to	0.	As	astronomically	unlikely	as	it	is,	it	is	theoretically	possible	to	toss
tails	a	billion	times	in	a	row.	(This	sort	of	possibility	was	a	theme	in	the	cult	classic
movie	Rosencrantz	and	Gildenstern	Are	Dead.)

This	list	of	probabilities	associated	with	each	outcome	is	known	as	a	probability	mass
function.	There	is	another,	related	function	known	as	the	cumulative	mass	function,	or
cumulative	distribution	function.	This	function	simply	adds	up	the	probabilities	as	you
proceed	across	the	event	space	from	lowest	to	highest.

In	the	case	of	our	first	heads	experiment,	the	value	of	the	cumulative	mass	function	at	1
is	1/2.	But	for	2,	the	cumulative	probabilities	are	 .	At	3,	we	get	

.	And	so	on.

The	sections	that	follow	take	a	look	at	some	basic	computational	tools	that	are	very
helpful	in	calculating	probabilities.	Then	we	apply	these	tools	to	a	commonly	used
classic	discrete	distribution	called	the	binomial	distribution.

Counting	outcomes
Not	all	discrete	distributions	are	as	simple	as	the	first	heads	experiment	described	in	the



preceding	section.	The	probability	of	coming	up	with	exactly	five	heads	in	ten	coin
flips	is	not	quite	so	transparent.	Luckily,	there	are	a	couple	of	mathematical	techniques
that	are	useful	for	answering	questions	like	this.

Factorial:	Counting	how	many	ways	you	can	arrange	things
The	exclamation	point	(!)	is	used	to	represent	the	mathematical	operator	factorial.	You
pronounce	n!	as	“n	factorial.”	So,	what	is	n	factorial?	It’s	the	product	of	all	positive
integers	less	than	or	equal	to	n.	For	example,	consider	the	following:

	It	might	seem	a	little	strange	that	0!	turns	out	to	be	1.	This	is	just	a	convention
that	mathematicians	adopted	to	make	the	formulas	work	smoothly.	It	keeps	them
from	having	to	put	caveats	in	place	when	they	write	proofs.	And	it	simplifies	a	lot
of	formulas.

You	use	the	factorial	operator	to	determine	the	number	of	ways	that	you	can	arrange	a
group	of	objects.	For	example,	suppose	you	have	a	three-car	garage,	in	which	you	are
currently	storing	a	Mercedes	(M),	Honda	(H),	and	Infinity	(I).	In	how	many	ways	can
you	park	these	cars?	The	possibilities	are	as	follows:

Each	of	these	is	an	arrangement	of	the	three	cars;	the	list	shows	that	there	are	six
possible	arrangements	of	three	cars.	You	have	three	choices	for	the	first	car.	This	leaves
two	choices	for	the	second.	And	then	you	only	have	one	option	for	the	third.	This	can
be	computed	as	 .

Combinations:	Counting	how	many	choices	you	have
In	the	preceding	example	regarding	arrangements,	the	order	in	which	the	objects	are
placed	matters.	But	suppose	that,	instead	of	arranging	your	cars	in	the	garage,	you’ve
decided	you	want	to	downsize	to	one	car.	That	means	you	need	to	pick	two	cars	to	sell.
In	this	case,	the	order	in	which	you	pick	them	doesn’t	matter	at	all.

You	use	the	formula

to	determine	the	number	of	combinations	that	can	be	created	when	choosing	x	objects



from	a	set	of	n	objects.	With	a	combination,	the	order	in	which	objects	are	chosen	is
irrelevant.

One	way	to	think	of	this	formula	is	to	think	in	terms	of	arrangements.	You	have	n!
ways	of	arranging	all	the	objects	of	interest.	But	order	doesn’t	matter.	So	you	could
rearrange	the	x	objects	you	chose	in	x!	different	ways,	and	it	wouldn’t	change	the
selection.	In	other	words,	that	selection	is	repeated	x!	times	in	the	n!	arrangements.	The
same	goes	for	the	 	objects	you	didn’t	choose.	By	dividing	the	total	number	of
arrangements	by	x!	and	 	you	essentially	remove	the	duplicate	arrangements.
This	leaves	you	with	the	number	of	ways,	or	combinations,	of	choosing	x	objects	from
a	set	of	n	objects.

For	example,	you	could	use	this	formula	to	determine	the	number	of	ways	that	you	can
choose	two	electives	from	a	set	of	six	during	the	upcoming	semester.	The	order	in
which	the	electives	are	chosen	doesn’t	matter.	Each	possible	selection	is	considered	to
be	a	combination	of	two	electives	chosen	from	six.	You	compute	the	number	of	choices
as	follows:

When	only	two	things	can	happen:	The	binomial
distribution
The	binomial	distribution	is	used	in	the	following	situations:

A	random	process	is	taking	place,	consisting	of	a	series	of	“trials.”
On	each	trial,	one	of	two	events	could	happen.	These	events	are	labeled	“success”
and	“failure.”
The	probability	of	a	success	on	each	trial	is	a	fixed	constant.

Under	these	conditions,	you	can	use	the	binomial	distribution	to	compute	the
probability	that	a	specified	number	of	successes	occur.

Earlier	we	mentioned	the	difficulty	of	calculating	the	probability	of	getting	exactly	five
heads	in	ten	coin	flips.	This	is	precisely	the	sort	of	question	that	the	binomial
distribution	is	designed	to	answer.

	It’s	sometimes	a	little	confusing,	to	us	at	least,	to	think	of	“the”	binomial
distribution,	because	the	probabilities	depend	on	both	the	number	of	successes	and
the	number	of	trials.	We	prefer	to	think	of	it	as	a	set	of	distributions,	one	for	each
n.	So	we	think	of	the	binomial	distribution	related	to	10	trials	as	distinct	from	the
binomial	distribution	related	to	100	trials.	It’s	a	minor	point,	but	it	helps	keep	our
heads	from	spinning.	A	similar	point	could	be	made	for	the	dependence	on	p,	the



probability	of	success.

Computing	binomial	probabilities
Let’s	compute	binomial	probabilities	using	a	binomial	formula.	For	example,	you	can
determine	the	probability	that	five	heads	will	turn	up	when	a	coin	is	flipped	ten	times.
The	binomial	probability	formula	is	this:

In	this	formula:

X	=	A	binomial	random	variable	whose	value	is	determined	by	the	number	of
successes	that	occur	during	a	series	of	trials
x	=	Number	of	successes	that	occur	during	a	series	of	trials
n	=	Number	of	trials	that	take	place
p	=	The	probability	of	success	on	a	single	trial
(1	–	p)	=	The	probability	of	failure	on	a	single	trial
!	=	The	factorial	operator

	Don’t	confuse	the	variables	X	and	x	in	this	formula.	The	capital	X	is	a	binomial
random	variable,	whereas	the	lowercase	x	is	a	specific	value	that	refers	to	the
number	of	successes	whose	probability	you’re	calculating.

Binomial	formula:	Computing	the	probabilities
Combinations	are	useful	for	computing	binomial	probabilities.	You	can	find	the
probability	of	x	successes	occurring	during	n	trials	with	the	binomial	formula:

For	example,	say	80	percent	of	all	new	cars	have	automatic	transmissions,	and	the	rest
have	manual	transmissions.	If	a	sample	of	five	new	cars	is	randomly	chosen,	what	is
the	probability	that	four	of	them	have	automatic	transmission?

The	first	step	is	to	define	automatic	transmission	as	a	success.	Then	in	the	binomial
formula,	 	since	five	cars	are	chosen	(that	is,	there	are	five	trials	of	this
experiment).	 	since	this	is	the	probability	of	automatic	transmission	(which	is
defined	as	“success”),	and	 	since	we	are	looking	to	compute	the	probability	of
four	successes.	Substituting	these	values	into	the	binomial	formula	gives	the	following
probability:



	In	order	to	implement	the	binomial	distribution	in	Excel,	you	can	use	the
BINOM.DIST	function	for	Excel	2010	or	later;	for	Excel	2007	or	earlier,	the
function	is	called	BINOMDIST.

The	values	that	you	need	to	provide	to	the	BINOM.DIST	function	are	labeled
number_s	(the	number	of	successes),	trials,	probability_s	(the	probability	of	a	success
on	a	single	trial),	and	cumulative.	This	variable	takes	on	a	value	of	1	for	a	“less	than	or
equal	to”	probability,	also	known	as	a	cumulative	probability.	For	computing	a	single
probability,	you	set	cumulative	equal	to	zero.	Based	on	the	example,	 	is
computed	as	BINOM.DIST(4,	5,	0.8,	0).

Moments	of	the	binomial	distribution
Moments	are	summary	measures	of	a	probability	distribution.	The	expected	value
represents	the	mean	or	average	value	of	a	distribution.	You	obtain	this	by	taking	each
possible	value	of	the	distribution,	weighting	it	by	its	probability,	and	then	summing	the
results.	The	variance	and	standard	deviation	represent	the	“dispersion”	among	the
different	possible	values	of	a	probability	distribution.	The	formulas	for	computing	the
moments	of	the	binomial	distribution	are	given	in	the	next	two	subsections.

Binomial	distribution:	Calculating	the	mean

The	expected	value	of	a	probability	distribution	is	its	average	value.	You	get	it	by
weighting	each	possible	value	by	its	probability	of	occurring.	For	the	binomial
distribution,	the	calculation	of	the	expected	value	can	be	simplified	to	the	following:

For	example,	suppose	that	70	percent	of	all	adults	over	21	have	at	least	a	college
education.	Define	“college	graduate	or	better”	as	success.	In	a	randomly	chosen	sample
of	12	people,	what	is	the	expected	number	of	college	graduates?	This	is	computed	as
follows:

Binomial	distribution:	Computing	variance	and	standard	deviation

The	variance	of	a	distribution	is	the	average	squared	distance	between	each	possible
outcome	and	the	expected	value.	For	the	binomial	distribution,	you	compute	the
variance	with	the	following	simplified	formula:

The	standard	deviation	of	a	distribution	equals	the	square	root	of	the	variance.	For	the



binomial	distribution,	you	compute	the	standard	deviation	as	follows:

For	the	education	example,

The	variance	is:	 .
The	standard	deviation	is	the	square	root	of	2.52,	which	is	approximately	1.587.

Graphing	the	binomial	distribution
You	can	illustrate	discrete	distributions,	such	as	the	binomial	distribution,	with	a
histogram.	A	histogram	is	a	graph	that	consists	of	a	series	of	vertical	bars.	Each	bar
represents	a	single	value	or	a	range	of	values	for	a	random	variable.	The	heights	of	the
bars	may	be	interpreted	as	either	frequencies	or	probabilities.

For	example,	the	binomial	distribution	for	the	education	example	is	uniquely
characterized	by	the	number	of	trials	 	and	the	probability	of	success	 .
Figure	4-1	shows	a	histogram	that	illustrates	this	distribution.
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Figure	4-1:	Binomial	distribution:	12	trials	with	 .



Continuous	Probability	Distributions
A	continuous	probability	distribution	is	one	for	which	you	cannot	assign	probabilities
to	individual	outcomes.	The	possible	outcomes	are	distributed	over	some	section	of	the
real	line.	In	the	case	of	the	normal	distribution	discussed	in	this	section,	they	are
distributed	across	the	entire	real	line.

In	this	case,	it	is	only	possible	to	associate	(nonzero)	probabilities	with	intervals.	In	the
case	of	continuous	distributions,	instead	of	probability	mass	functions	for	each
outcome,	we	use	a	probability	density	function	that	reflects	the	varying	probabilities	of
different	intervals.	Essentially,	the	probability	that	an	outcome	occurs	in	some	interval
is	the	area	under	the	density	function	in	that	interval.

Perhaps	the	simplest	example	is	the	uniform	distribution.	This	is	what	basic	random
number	generators	use.	They	generate	a	random	number	between	0	and	1	with	all
outcomes	equally	likely.	In	this	case,	the	density	function	is	constant	on	the	interval
from	0	to	1	and	takes	the	value	1.

In	this	case,	it	is	extremely	easy	to	calculate	probabilities	associated	with	intervals.
Probabilities	are	simply	the	length	of	the	interval	—	the	probability	that	a	given
random	number	falls	between	0	and	1/2	is	1/2.

With	continuous	distributions,	we	also	talk	about	cumulative	distribution	functions,
which	are	analogous	to	the	discrete	case.	They	represent	the	probability	that	an
outcome	is	less	than	a	given	value.	This	in	fact	is	why	they	are	useful	in	dealing	with
continuous	distributions.	Because	all	individual	outcomes	have	probability	0,	the
values	of	the	distribution	function	do	not	represent	actual	probabilities.	The	cumulative
distribution	function	does,	however,	reflect	an	actual	probability.	In	fact,	you	can	use	it
to	calculate	the	probability	of	any	interval	simply	by	subtracting	the	left	endpoint	from
the	right.	We	do	a	lot	of	that	in	later	chapters.

	Continuous	probability	distributions	are	useful	for	situations	where
measurements	are	involved.	Heights,	weights,	return	on	investment,	interest	rates,
and	many	other	quantities	of	interest	take	values	in	some	interval	of	the	real	line.
Some	of	the	most	widely	used	continuous	distributions	in	business	applications
are	the	normal,	Student’s	t,	lognormal,	chi-square,	and	F-distributions.	Most	of
these	are	addressed	in	detail	in	later	chapters.	The	next	section	focuses	on	the
normal	distributions.

The	normal	distribution
The	normal	distribution	is	a	continuous	distribution	that’s	widely	used	in	business
applications	—	and	many	other	disciplines,	such	as	psychology,	sociology,	biology,	and
so	forth.	The	normal	distribution	is	uniquely	characterized	by	two	values,	known	as
parameters:



The	expected	value	(mean),	represented	by	μ	(the	Greek	letter	mu)
The	standard	deviation,	represented	by	σ	(the	Greek	letter	sigma)

	The	normal	distribution	with	a	mean	(μ)	equal	to	0	and	standard	deviation	(σ)
equal	to	1	plays	a	special	role	in	statistical	analysis.	It’s	often	known	as	the
standard	normal	distribution.

	The	expected	value	or	mean	of	a	probability	distribution	is	known	as	the	first
central	moment	of	the	distribution.	The	variance	is	known	as	the	second	central
moment.	The	standard	deviation	isn’t	a	separate	moment;	it’s	simply	the	square
root	of	the	variance.	Moments	are	useful	for	understanding	the	properties	of	a
probability	distribution.

One	of	the	most	important	properties	of	the	normal	distribution	is	that	it’s	symmetrical
about	its	mean.	This	indicates	that	the	area	under	the	curve	to	the	left	of	the	mean	is	a
mirror	image	of	the	area	under	the	curve	to	the	right	of	the	mean.	The	symmetry	of	the
distribution	greatly	simplifies	the	process	of	computing	normal	probabilities.	You	can
see	this	in	Figure	4-2,	a	diagram	of	the	standard	normal	distribution,	which	is	the
special	case	in	which	the	mean	equals	0	and	the	standard	deviation	equals	1.	The	graph
of	this	distribution	is	often	referred	to	as	a	bell-shaped	curve	or	just	bell	curve.
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Figure	4-2:	The	standard	normal	distribution.

	By	convention,	the	letter	Z	is	used	to	represent	the	standard	normal
distribution,	whereas	the	letter	 	is	used	to	represent	any	other	normal
distribution	with	mean	μ	and	standard	deviation	σ.



	Probabilities	for	the	normal	distribution	correspond	to	areas	under	the	bell-
shaped	curve.	The	entire	area	under	the	curve	equals	1.	Due	to	the	symmetry	of
the	bell-shaped	curve,	the	area	below	the	mean	equals	0.5,	as	does	the	area	above
the	mean.

Computing	probabilities	for	the	standard	normal	distribution
You	can	compute	normal	probabilities	using	a	table,	a	specialized	calculator,	or	one	of
Excel’s	built-in	statistical	functions.	Normal	tables	are	usually	set	up	to	show	the
probability	that	a	normal	random	variable	is	less	than	or	equal	to	a	specified	value.	In
other	words,	the	table	shows	cumulative	probabilities.

Table	4-1	shows	a	section	of	a	table	of	standard	normal	probabilities.

Table	4-1	Standard	Normal	Table

Z 0.00 0.01 0.02 0.03

0.9 0.8159 0.8186 0.8212 0.8238

1.0 0.8413 0.8438 0.8461 0.8485

1.1 0.8643 0.8665 0.8686 0.8708

1.2 0.8849 0.8869 0.8888 0.8907

As	an	example,	the	probability	that	a	standard	normal	random	variable	(Z)	is	less	than
or	equal	to	1.12	is	found	at	the	intersection	of	1.1	in	the	first	column	and	the	column
headed	0.02;	this	equals	0.8686.

Other	probabilities	can	be	determined	through	the	use	of	algebra	and	the	properties	of
the	standard	normal	distribution.	For	example,	the	probability	that	Z	is	greater	than	or
equal	to	1.12	equals	 .	This	is	because	Z	must	be	less	than	or	equal	to
1.12	or	greater	than	or	equal	to	1.12.	Therefore:

For	computing	probabilities	with	negative	values,	you	can	use	a	separate	table.	Table	4-
2	shows	a	section	of	the	standard	normal	table	for	negative	values.

Table	4-2	Standard	Normal	Table	—	Negative	Values

Z 0.00 0.01 0.02 0.03

–1.3 0.0968 0.0951 0.0934 0.0918

–1.2 0.1151 0.1131 0.1112 0.1093

–1.1 0.1357 0.1335 0.1314 0.1292



–1.0 0.1587 0.1562 0.1539 0.1515

For	example,	the	probability	that	Z	is	less	than	or	equal	to	–1.02	is	found	at	the
intersection	of	–1.0	in	the	first	column	and	the	column	headed	0.02;	this	equals	0.1539.

	You	can	compute	standard	normal	probabilities	with	the	Excel	function
NORMSDIST.	For	example,	to	find	the	probability	that	Z	is	less	than	or	equal	to
1.50,	the	appropriate	Excel	command	would	be	NORMSDIST(1.50),	which
equals	0.9332.

Computing	non-standard	normal	probabilities
Many	variables	may	follow	the	normal	distribution	but	not	follow	the	standard	normal
distribution.	In	these	cases,	you	use	a	simple	transformation	to	find	the	appropriate
probability.

For	example,	suppose	that	X	is	a	normal	random	variable	with	a	mean	of	5	and	a
standard	deviation	of	10.	In	order	to	compute	the	probability	that	X	is	less	than	or	equal
to	15,	you	may	convert	X	to	the	standard	normal	form	using	the	following	equation:

The	key	terms	in	this	expression	are	as	follows:

Z	=	A	standard	normal	random	variable
X	=	A	normal	random	variable	with	mean	μ	and	standard	deviation	σ

In	this	case,

Z	is	now	a	standard	normal	random	variable.	In	this	case,	its	value	is	1	standard
deviation	above	the	mean.	You	can	compute	this	probability	from	a	standard	normal
table.	Based	on	Table	4-1,	the	probability	is	0.8413.

	You	can	compute	normal	probabilities	other	than	standard	normal	probabilities
in	Excel	2010	or	later	with	the	function	NORM.DIST.	In	Excel	2007	or	earlier,	the
function	is	NORMDIST.

NORMDIST	requires	four	values:

x	(the	value	you	are	looking	for)
mean	(the	mean	of	the	normal	distribution	you	are	using)



standard_dev	(the	standard	deviation	of	the	normal	distribution	you	are	using)
cumulative

The	last	value,	cumulative,	can	only	assume	a	value	of	0	or	1.	It	is	simply	indicating
whether	you	want	to	use	the	distribution	function	or	the	cumulative	distribution
function.	Remember,	the	cumulative	distribution	function	gives	the	probability	of
getting	a	value	less	than	or	equal	to	a	given	value.	If	you	want	a	“less	than	or	equal	to”
probability	(that	is,	a	cumulative	probability),	set	this	equal	to	1.	A	value	of	0	simply
gives	you	the	height	of	the	normal	curve	at	a	given	point.	In	the	previous	example,	

	would	be	computed	as	NORM.DIST(15,	5,	10,	1).



Introducing	Multivariate	Probability
Distributions

Measures	of	association	such	as	the	covariance	and	correlation	are	based	on	a
probability	distribution	that	shows	the	probabilities	of	two	different	variables.	This	type
of	probability	distribution	is	known	as	a	joint	probability	distribution.

As	an	example	of	a	joint	probability	distribution,	Table	4-3	shows	how	many	children
are	in	each	household	in	a	small	town,	with	X	representing	the	number	of	boys	in	a
household,	and	Y	standing	for	the	number	of	girls.

Table	4-3	Distribution	of	Children	by	Household

Y	=	0 Y	=	1 Y	=	2 Y	=	3 Sum

X	=	0 0.2000 0.1500 0.1000 0.0125 0.4625

X	=	1 0.1500 0.2000 0.0375 0.0000 0.3875

X	=	2 0.1000 0.0375 0.0000 0.0000 0.1375

X	=	3 0.0125 0.0000 0.0000 0.0000 0.0125

Sum 0.4625 0.3875 0.1375 0.0125 1.0000

Joint	probabilities
The	probability	that	two	variables	assume	a	specified	value	is	known	as	a	joint
probability.	In	general,	a	joint	probability	can	be	expressed	like	this:

In	this	equation,	the	variable	X	equals	a	specified	constant	x,	and	Y	equals	a	specified
constant	y.	In	Table	4-3,	the	probability	of	a	specified	combination	of	boys	and	girls	is
a	joint	probability.	The	joint	probability	is	at	the	intersection	of	the	appropriate	row	and
column.	For	example,	the	probability	that	a	household	has	one	boy	and	one	girl	is
expressed	as	follows:

This	shows	that	the	probability	that	a	household	has	one	boy	 	and	one	girl	
	is	0.2000,	or	20	percent.

Similarly,	the	probability	that	a	household	has	two	boys	and	no	girls	is	expressed	as
follows:



This	shows	that	the	probability	that	a	household	has	two	boys	 	and	no	girls	
	is	0.1000,	or	10	percent.

Unconditional	probabilities
An	unconditional	probability	(also	known	as	a	marginal	probability)	is	the	probability
that	a	variable	equals	a	specified	value.	The	following	are	examples	of	unconditional
probabilities:

Using	the	household	example	from	the	last	section,	you	can	compute	the	probability
that	a	household	contains	one	boy,	regardless	of	the	number	of	girls,	as	follows:

This	equals	 ,	or	0.3875.

Similarly,	you	can	compute	the	probability	that	a	household	contains	no	girls,
regardless	of	the	number	of	boys,	as	follows:

This	equals	 ,	or	0.4625.

These	probabilities	can	be	easily	determined	from	the	joint	probability	table	shown	in
Table	4-3.	Notice	the	following:

An	unconditional	probability	for	X	equals	the	sum	of	a	specified	row.
An	unconditional	probability	for	Y	equals	the	sum	of	a	specified	column.

For	example,	the	probability	that	a	household	contains	one	boy,	regardless	of	the
number	of	girls,	equals	0.3875,	which	is	the	sum	of	the	row	labeled	 .	The
probability	that	a	household	contains	no	girls,	regardless	of	the	number	of	boys,	equals
0.4625,	which	is	the	sum	of	the	column	labeled	 .

Conditional	probabilities
A	conditional	probability	for	a	variable	depends	on	knowledge	of	the	value	of	a	second
variable.	You	express	the	conditional	probability	that	X	equals	a	specific	value	x	given
that	Y	equals	a	specific	value	y	like	this:



Going	back	to	the	joint	probability	table	shown	in	Table	4-3,	you	are	essentially
pretending	that	the	entire	event	space	consists	of	a	single	column.	To	compute	a
conditional	probability	for	X,	use	the	following	formula:

The	numerator	of	this	expression	is	the	joint	probability	that	 	and	 	The
denominator	is	the	unconditional	probability	that	 .

Similarly,	to	compute	a	conditional	probability	for	Y,	use	the	following	formula:

The	numerator	of	this	expression	is	the	joint	probability	that	 	and	 	The
denominator	is	the	unconditional	probability	that	

Based	on	the	household	data	in	the	previous	example,	you	can	calculate	several
conditional	probabilities.	For	example,	you	compute	the	probability	that	a	household
has	no	boys	given	that	it	has	two	girls	as	follows:

This	shows	that	among	all	households	with	two	girls,	in	72.73	percent	of	these
households	there	are	no	boys.

As	another	example,	you	compute	the	probability	that	a	household	has	one	girl	given
that	it	has	one	boy	as	follows:

This	shows	that	among	all	households	with	one	boy,	in	51.61	percent	of	these
households,	there	is	one	girl.

Whew!	This	has	been	an	admittedly	technical	chapter,	but	it’s	quite	an	important	one.
The	ideas	discussed	here	are	used	repeatedly	in	the	rest	of	the	book.	But	we’re	not
quite	done	yet	with	the	foundational	stuff.	The	next	chapter	looks	at	some	of	the	key
ideas	related	to	statistical	methods.	Then	we	can	start	into	the	applications.



Chapter	5



Basic	Statistical	Ideas
In	This	Chapter

	Understanding	the	basic	types	of	measurement

	Learning	the	fundamental	statistical	measures	of	central	tendency

	Understanding	hypothesis	testing

This	chapter	introduces	some	of	the	most	important	statistical	concepts	you	need	to	get
started	with	big	data.	It	also	introduces	several	summary	measures	that	represent	the
key	properties	of	a	dataset.

A	dataset	may	consist	of	the	elements	of	a	population	of	interest,	or	it	may	take	the
form	of	a	sample.	A	sample	is	a	subset	of	a	population;	it’s	chosen	in	such	a	way	that	it
accurately	represents	the	underlying	population.	For	most	empirical	applications,
sample	data	is	used	instead	of	population	data	due	to	the	time	and	cost	required	to
analyze	an	entire	population.

	When	taking	random	samples,	it	is	critical	that	the	samples	be	really	random.
And	that	involves	using	a	random	number	generator.	It	also	involves	making	sure
that	each	observation	in	your	dataset	is	equally	likely	to	be	selected.	Just	taking
the	first	10	percent	of	the	observations	or	selecting	every	tenth	observation	until
your	sample	is	as	big	as	you	want	is	almost	always	going	to	produce	a	sample	that
does	not	reflect	the	whole	population.



Some	Preliminaries	Regarding	Data
Not	all	data	is	created	equal	from	the	point	of	view	of	statistical	procedures.	For	the
purposes	of	this	book,	there	are	four	types	of	data	to	be	aware	of.	By	data	types,	we
don’t	mean	the	way	the	data	is	formatted	or	stored	(though	that	is	important	and	is
discussed	in	later	chapters).	Here	we	are	referring	to	the	statistical	properties	of	the
data.	These	properties	affect	what	sorts	of	statistical	operations	can	be	meaningfully
applied	to	the	data.

Nominal	data
The	simplest	and	least	powerful,	from	a	statistical	point	of	view,	is	called	nominal	data.
Nominal	data	does	nothing	more	than	categorize	or	differentiate	observations.
Examples	include	account	numbers,	product	codes,	airline	flight	numbers,	and
anything	else	that	simply	serves	as	an	identifier.

Even	though	nominal	data	is	numeric	in	many	cases,	the	numbers	are	not
measurements.	There	is	no	statistical	or	practical	insight	to	be	gained	from
investigation	of	the	average	flight	number	to	arrive	on	a	given	day.	The	numbers
themselves	are	arbitrary.

Ordinal	data
The	second	type	of	data	that	you	may	encounter	is	what’s	called	ordinal	data.	This	is
data	that	falls	short	of	being	a	full-blown	measurement	in	the	sense	of	bank	balances	or
interest	rates.	But	it	does	put	observations	into	a	meaningful	order.	A	simple	example
of	this	is	the	finishing	order	in	the	Kentucky	Derby.	After	the	race,	each	horse’s	name
(a	nominal	variable)	can	be	attached	to	its	finishing	position.

	The	critical	shortcoming	of	ordinal	data	is	that	there	is	not	a	consistent
difference	between	the	various	positions.	The	winner	may	beat	second	place	by	a
nose.	But	the	third	place	horse	might	be	three	lengths	behind.	This	means	that	if
you	average	the	horses’	placement	over	several	races,	you	don’t	get	a	result	that
accurately	compares	the	performance	of	the	horses.

One	of	our	pet	peeves	in	this	vein	comes	from	websites	and	other	survey-based
customer	satisfaction	measures	that	are	based	on	“a	scale	of	1	to	10”	type	evaluation.
We’re	quite	convinced	that	in	almost	all	cases,	there	has	been	no	attempt	to	verify	that
the	differences	between	successive	ratings	reflect	equal	increments	of	“satisfaction.”
For	this	reason,	an	average	customer	satisfaction	rating	of	8.5	is	not	statistically
meaningful.	Yet	these	sorts	of	numbers	get	reported	all	the	time.



Summary	Statistical	Measures
A	summary	measure	is	a	numerical	value	that	represents	an	important	property	of	a
sample	or	a	population.	For	example,	the	average	age	of	the	residents	of	a	city	is	a
summary	measure.	The	ages	of	all	the	residents	are	the	population	of	interest.	A
randomly	chosen	selection	of	these	ages	is	a	sample.	The	average	age	of	the	sample	of
residents	is	an	estimate	of	the	average	age	of	the	entire	population.

	It	is	critical	that	the	sample	is	selected	randomly.	The	process	that	you	use	to
sample	needs	to	give	every	element	of	the	population	an	equal	chance	of	being
selected.	Otherwise,	your	sample	may	give	misleading	results.	Also,	the	sample
must	be	large	enough	to	have	a	good	chance	of	being	representative	of	the
population.	A	sample	of	one	isn’t	likely	to	tell	you	much.	More	on	sample	size
later	in	the	book.

There	are	three	types	of	summary	measures.	Each	describes	a	different	aspect	of	a
dataset	(whether	a	sample	or	population).	Summary	measures	are	classified	as	follows:

Measures	of	central	tendency
Measures	of	dispersion
Measures	of	association

Measures	of	central	tendency
Measures	of	central	tendency	show	the	middle	or	center	of	a	sample	or	population.	For
example,	the	average	value	of	a	dataset	is	a	measure	of	central	tendency.	There	are
three	widely	used	measures	of	central	tendency,	and	each	has	advantages	and
disadvantages:

Mode
Median
Mean

These	three	measures	provide	an	instructive	example	of	why	understanding	whether
your	data	is	nominal,	ordinal,	or	interval	is	important.	We	address	them	in	increasing
order	of	complexity.

Mode
The	mode	of	a	dataset	is	simply	the	most	commonly	observed	value.	There	is	no
formula	for	computing	the	mode,	and	the	procedure	is	the	same	for	both	samples	and
populations.	First	sort	the	observations	from	the	lowest	to	the	highest.	Then	compute
the	frequency	of	each	observation.



For	example,	suppose	a	sample	consists	of	the	following	values:

0,	3,	8,	2,	2,	6,	5

The	sorted	values	are	as	follows:

0,	2,	2,	3,	5,	6,	8

Because	2	appears	twice	in	this	sample,	and	no	other	value	appears	more	than	once,	2
is	the	mode.

One	interesting	feature	of	the	mode	is	that	unlike	the	mean	or	the	median,	there	can	be
two	or	more	modes,	or	no	mode	at	all.	For	example,	here’s	a	sample	with	two	modes:

1,	1,	3,	5,	7,	8,	8,	9

In	this	case,	the	modes	are	both	1	and	8,	since	these	values	appear	twice	in	the	sample,
whereas	none	of	the	others	is	repeated	more	than	once.

An	example	of	a	sample	with	no	mode:

0,	2,	4,	6,	8,	10

None	of	the	values	is	repeated,	so	there	is	no	mode.

	The	mode	can	be	useful	for	non-numeric	data,	when	computing	a	mean	or	a
median	would	be	impossible.	The	mode	is	essentially	the	only	statistical	measure
that	can	be	correctly	applied	to	nominal	data.

Median
The	median	of	a	dataset	is	its	midpoint.	In	other	words,	half	of	the	observations	are
below	the	median,	and	half	are	above	it.	There	is	no	one	formula	for	computing	the
median;	you	compute	it	in	two	steps.	The	first	step	is	to	sort	the	observations	from	the
lowest	to	the	highest	value.	The	next	step	is	to	identify	the	“central”	observation	in	the
dataset.

For	example,	suppose	a	sample	consists	of	the	following	values:

1,	4,	2,	7,	5

Here	are	the	sorted	values:

1,	2,	4,	5,	7

The	central	value	is	the	third	value,	or	4.	Half	of	the	observations	are	below	4	and	half



are	above.	Therefore,	4	is	the	median	of	this	sample.

For	an	even	number	of	observations,	the	procedure	changes	slightly.	For	example,
suppose	that	a	sample	consists	of	the	following	values:

1,	4,	2,	7,	5,	6

Here	are	the	sorted	values:

1,	2,	4,	5,	6,	7

The	third	smallest	and	fourth	smallest	values	are	considered	to	be	the	two	central
values;	in	this	case,	they	are	4	and	5.	Take	the	midpoint	between	4	and	5,	which	is	4.5.
This	is	the	median	of	the	sample.	Half	of	the	observations	in	the	sample	(1,	2,	4)	are
below	4.5,	and	half	of	the	observations	(5,	6,	7)	are	above	4.5.

There	is	no	difference	in	computing	the	median	of	a	population.	You	compute	both	a
sample	and	a	population	in	exactly	the	same	way.

	The	median	can	be	a	more	meaningful	measure	than	the	mean	when	a	dataset
contains	extremely	large	or	small	values,	which	are	known	as	outliers.	Outliers	are
the	topic	of	Chapter	10.

Calculating	the	median	requires	you	to	be	able	to	sort	your	data	from	lowest	to	highest.
Obviously,	then,	your	data	needs	to	be	ordered.	As	explained	at	the	beginning	of	this
chapter,	ordering	is	exactly	the	property	that	characterizes	ordinal	data.	So	the	median
is	a	meaningful	measure	for	ordinal	data.

Mean
In	statistics,	the	word	mean	is	a	synonym	for	average.	You	compute	a	mean	by	adding
up	all	the	elements	in	a	dataset	and	then	dividing	by	the	number	of	elements.	The
equations	in	this	section	show	how	to	compute	the	mean	of	a	sample	and	the	mean	of	a
population.

Suppose	a	researcher	chooses	a	sample	of	prices	of	a	gallon	of	gas	in	a	major	city.	The
sample	consists	of	the	following	eight	prices:

$3.98,	$4.19,	$3.79,	$3.99,	$3.78,	$3.69,	$3.97,	$4.13

He	or	she	computes	the	mean	price	of	this	sample	as	follows:

This	equation	shows	that	the	sum	of	the	prices	is	$31.52.	When	divided	by	the	sample



size	of	8,	this	gives	a	mean	of	$3.94	per	gallon.

If	the	eight	gas	stations	that	were	randomly	chosen	reflect	the	underlying	population	of
gas	prices,	then	the	sample	mean	of	$3.94	per	gallon	will	provide	a	good	estimate	of
the	mean	price	for	the	entire	population.

	In	general,	the	mean	of	a	sample	is	computed	as	follows:

This	formula	uses	the	following	terms:

	(pronounced	“X	bar”)	is	the	mean	of	the	sample.
Σ	(the	upper	case	Greek	letter	sigma)	is	used	to	indicate	that	a	sum	is	being
computed.
n	is	the	number	of	elements	in	the	sample.
i	is	an	index	used	to	assign	a	number	to	each	sample	element,	ranging	from	1	to	n.
Xi	is	a	single	element	in	the	sample.

The	mean	of	a	population	is	computed	as	follows:

The	new	term	in	this	formula	is	μ,	which	is	the	Greek	letter	mu.	It	represents	the	mean
of	a	population.	Also	note	here	the	convention	of	using	a	capital	N	to	represent	the
population	size.	This	helps	to	avoid	confusion	with	the	sample	size.

It’s	common	practice	in	statistics	to	use	the	Greek	alphabet	to	represent	summary
measures	of	populations,	and	the	English	alphabet	to	represent	summary	measures	of
samples.

	Calculation	of	the	mean	(and	in	fact	all	the	other	measures	discussed	in	this
chapter)	requires	that	your	data	meet	the	requirements	of	interval	data.	Remember,
interval	data	represents	measurements	that	can	be	compared.	Averages	aren’t
meaningful	if	your	observations	can’t	be	compared	at	face	value.

	See	Chapter	4	for	info	on	the	normal	distribution.	This	distribution	has	some
very	nice	properties	from	a	mathematical	standpoint.	One	of	the	things	that	makes



it	“normal”	is	that	the	three	measures	described	in	this	section	coincide.	In	other
words,	if	a	distribution	is	normal,	then	the	mean,	median,	and	mode	are	all	equal.

Measures	of	dispersion
Measures	of	dispersion	show	how	spread	out	the	elements	of	a	sample	or	population
are	—	in	other	words,	how	close	the	elements	are	to	each	other.	For	example,	the
elements	of	the	sample

0,	1,	1,	2,	2,	3,	4,	5

are	very	close	to	each	other,	which	means	that	the	spread	between	them	is	very	small.
On	the	other	hand,	the	elements	of	the	sample

–200,	–50,	0,	50,	100,	150,	200

are	far	apart	from	each	other.	Therefore,	the	spread	between	them	is	significantly
larger.

In	many	applications,	it’s	important	to	compare	the	spread	for	different	samples	or
populations.	For	example,	the	spread	between	the	returns	to	a	portfolio	of	stocks	is
considered	to	be	a	measure	of	risk.	In	order	to	compare	the	risk	of	different	stock
portfolios,	a	measure	of	dispersion	is	needed.

Here	are	three	of	the	most	important	measures	of	dispersion:

Range
Variance
Standard	deviation

Range
The	range	of	a	dataset	is	simply	the	difference	between	its	largest	and	smallest
elements.	This	holds	for	both	samples	and	populations.	For	example,	if	a	sample
consists	of	the	elements

1,	2,	2,	7,	9,	10

then	the	range	is	 ,	or	9.

A	drawback	to	this	measure	is	that	range	only	considers	the	values	of	the	smallest	and
largest	elements,	without	considering	the	spread	between	the	individual	elements.	That
makes	range	hypersensitive	to	outliers.	For	many	applications,	the	variance	and
standard	deviation	are	more	useful	measures	of	dispersion.

Variance
The	variance	equals	the	average	squared	difference	between	the	elements	of	a	dataset



and	the	mean	value	of	the	dataset.	The	more	spread	out	the	elements	of	the	dataset,	the
larger	the	variance	is.

For	example,	suppose	a	sample	of	the	number	of	residents	per	household	in	a	small	city
is	taken,	and	the	results	are	as	follows:

2,	1,	3,	4,	2,	6

The	first	step	is	to	compute	the	sample	mean:

Then	substitute	the	result	(3)	into	the	sample	variance	formula	as	follows:

For	each	element,	you	compute	the	squared	difference	between	the	element	and	the
sample	mean.	You	divide	the	sum	of	these	squared	differences	by	one	less	than	the
sample	size	( )	to	get	a	sample	variance	of	3.2.

The	following	equations	show	how	to	compute	the	variance	of	a	sample	and	a
population.

You	compute	the	variance	of	a	sample	like	this:

The	key	terms	in	this	formula	are	as	follows:

s	2	=	The	sample	variance
Xi	=	A	single	element	in	the	sample

	=	The	sample	mean	(“X	bar”)
n	=	The	number	of	elements	in	the	sample

You	compute	the	variance	of	a	population	as	follows:

The	key	terms	in	this	formula	go	like	this:

σ	2	=	The	population	variance



Xi	=	A	single	element	in	the	sample

μ	=	The	population	mean
N	=	The	number	of	elements	in	the	population

	You	might	notice	that	unlike	the	sample	and	population	mean	formulas,	there	is
a	small	algebraic	difference	between	the	calculations	of	the	sample	variance	and
the	population	variance.	This	is	due	to	the	fact	that	once	the	sample	mean	is
known,	you	can	calculate	the	value	of	the	nth	observation	based	on	the	sample
mean	and	the	other	 	observation.	The	mathematical	consequence	of	this	is	that
if	you	divide	by	n	instead	of	 ,	you	will	underestimate	the	population	variance.

	σ	is	the	lowercase	Greek	letter	sigma.	The	uppercase	sigma	is	Σ.

One	of	the	drawbacks	to	the	variance	measure	is	that	it’s	measured	in	squared	units.	In
this	example,	the	variance	is	actually	measured	in	units	of	squared	residents!	Since	this
is	extremely	awkward	to	analyze,	an	alternative	measure	known	as	the	standard
deviation	is	more	commonly	used	to	measure	dispersion.

Standard	deviation
The	standard	deviation	is	simply	the	square	root	of	the	variance.	This	ensures	that	the
deviation	of	a	dataset	is	measured	in	the	same	units	as	the	dataset,	instead	of	squared
units.	Using	the	example	of	the	number	of	residents	per	household,	here’s	the	sample
standard	deviation:

The	standard	deviation	is	1.79,	which	indicates	how	much	the	number	of	residents	per
household	can	vary	from	one	household	to	the	next.



Overview	of	Hypothesis	Testing
Many	tests	of	the	assumptions	about	a	dataset	take	the	form	of	hypothesis	tests.
Hypothesis	testing	is	a	six-step	procedure	designed	to	determine	if	an	assumed
statement	is	true	or	false.

Here	are	the	six	steps	required	to	test	a	hypothesis:

Null	hypothesis
Alternative	hypothesis
Level	of	significance
Test	statistic
Critical	value(s)
Decision

This	section	discusses	all	of	these	in	turn.

The	null	hypothesis
The	null	hypothesis	is	a	statement	that’s	assumed	to	be	true	unless	there	is	strong
evidence	against	it.	In	that	case,	the	null	hypothesis	is	rejected.

You	can	test	many	different	types	of	null	hypotheses.	For	example,	the	null	hypothesis
may	be	a	statement	about	any	of	the	following:

The	mean	value	of	a	population
The	variance	of	a	population
The	mean	difference	between	two	different	populations
The	probability	distribution	followed	by	a	population

For	example,	if	the	null	hypothesis	is	that	the	population	mean	equals	a	specified	value,
it	would	be	written	as	follows:

The	key	terms	in	this	expression	are:

H	0	=	The	null	hypothesis

μ	=	The	population	mean
μ	0	=	The	hypothesized	value	of	the	population	mean

The	alternative	hypothesis



The	alternative	hypothesis	is	a	statement	that	is	accepted	if	the	null	hypothesis	is
rejected.	Depending	on	the	type	of	null	hypothesis	being	tested,	the	alternative
hypothesis	can	typically	be	implemented	in	one	of	three	forms:

Right-tailed	test
Left-tailed	test
Two-tailed	test

For	example,	say	the	null	hypothesis	is	that	the	population	mean	equals	a	specific
value.	Table	5-1	shows	the	corresponding	alternative	hypotheses	that	may	be	used.

Table	5-1	Alternative	Hypotheses

Alternative	Hypothesis

Right-tailed	test

Left-tailed	test

Two-tailed	test

The	table	shows	that	with	a	right-tailed	test,	the	alternative	hypothesis	is	that	the	mean
is	greater	than	the	specified	value.	With	a	left-tailed	test,	the	alternative	hypothesis	is
that	the	mean	is	less	than	the	specified	value.	With	a	two-tailed	test,	the	alternative
hypothesis	is	that	the	mean	is	unequal	to	(either	less	than	or	greater	than)	the	specified
value.

The	level	of	significance
The	level	of	significance	of	a	hypothesis	test	refers	to	the	probability	of	rejecting	the
null	hypothesis	when	it	is	actually	true.	In	statistical	jargon,	this	is	known	as	a	Type	I
error.	A	Type	II	error	occurs	when	you	fail	to	reject	the	null	hypothesis	when	it’s
actually	false.

The	smaller	the	level	of	significance,	the	less	likely	there	is	to	be	a	Type	I	error,	but	the
more	likely	there	is	to	be	a	Type	II	error.	The	level	of	significance	is	selected	based	on
the	relative	importance	of	avoiding	a	Type	I	error	compared	with	a	Type	II	error.	In
many	applications	in	finance	and	economics,	the	level	of	significance	is	chosen	to	be
0.05	(5	percent).

The	test	statistic
A	test	statistic	is	a	numerical	measure	that	is	computed	from	sample	data	to	determine
whether	or	not	the	null	hypothesis	should	be	rejected.	The	form	of	the	test	statistic
depends	on	the	type	of	null	hypothesis	that	is	being	tested.	For	example,	if	a	hypothesis



about	the	mean	of	a	population	is	being	tested,	and	a	small	sample	of	data	(fewer	than
30	observations)	is	drawn	from	the	population,	then	the	appropriate	test	statistic	is	as
follows:

In	this	formula,

t	indicates	that	this	test	statistic	follows	the	Student’s	t-distribution.
	is	the	sample	mean.

μ0	is	the	hypothesized	value	of	the	population	mean.

s	is	the	sample	standard	deviation.
n	is	the	sample	size.

If	the	sample	size	is	large	(30	or	more	observations),	and	the	population	standard
deviation	is	unknown,	the	test	statistic	becomes	as	follows:

Z	indicates	that	this	test	statistic	follows	the	standard	normal	distribution.

The	critical	value	(s)
In	order	to	determine	whether	a	hypothesis	should	be	rejected,	the	test	statistic	is
compared	with	one	or	two	critical	values.	The	critical	values	depend	on	the	type	of
hypothesis	being	tested	as	well	as	the	alternative	hypothesis	being	used.

For	example,	when	testing	a	hypothesis	about	the	mean	about	the	population	with	a
small	sample,	the	critical	values	are	determined	as	follows:

Two-tailed	test:	Critical	value	=	

Right-tailed	test:	Critical	value	=	

Left-tailed	test:	Critical	value	=	

In	these	formulas,	α	is	the	level	of	significance;	n	represents	the	sample	size.	These
critical	values	are	drawn	from	the	Student’s	t-distribution	with	 	degrees	of	freedom
(df).	The	number	of	degrees	of	freedom	used	with	the	t-distribution	depends	on	the
particular	application.	For	testing	hypotheses	about	the	population	mean,	the
appropriate	number	of	degrees	of	freedom	is	one	less	than	the	sample	size	(that	is,	
).

The	critical	value	or	values	represent	tail	areas	under	the	student’s	t-distribution.	For	a



two-tailed	test,	the	value	of	the	level	of	significance	(α)	is	split	in	half;	the	area	in	the
right	tail	equals	α/2	and	the	area	in	left	tail	equals	α/2,	for	a	total	of	α.

When	testing	a	hypothesis	about	the	mean	about	the	population	with	a	large	sample,
the	critical	values	are	determined	as	follows:

Two-tailed	test:	Critical	value	=	
Right-tailed	test:	Critical	value	=	
Left-tailed	test:	Critical	value	=	

These	critical	values	are	drawn	from	the	standard	normal	distribution	which	we
introduce	in	Chapter	4.

To	reject	or	not	to	reject,	that	is	the	question
You	can	make	the	decision	whether	or	not	to	reject	the	null	hypothesis	in	one	of	two
ways:

Compare	the	test	statistic	with	the	critical	value(s).
Compare	the	probability	value	(p-value)	to	the	level	of	significance.

Comparing	the	test	statistic	with	the	critical	value(s)
You	can	determine	whether	the	null	hypothesis	should	be	rejected	as	follows:

Right-tailed	test:	If	the	test	statistic	is	greater	than	the	critical	value,	reject	the	null
hypothesis	 	in	favor	of	the	alternative	hypothesis	 ;	otherwise,	do
not	reject	the	null	hypothesis.
Left-tailed	test:	If	the	test	statistic	is	less	than	the	critical	value,	reject	the	null
hypothesis	 	in	favor	of	the	alternative	hypothesis	 ;	otherwise,
you	do	not	reject	the	null	hypothesis.
Two-tailed	test:	If	the	test	statistic	is	less	than	the	negative	critical	value,	reject	the
null	hypothesis	 	in	favor	of	the	alternative	hypothesis	 .	If	the
test	statistic	is	greater	than	the	positive	critical	value,	reject	the	null	hypothesis	

	in	favor	of	the	alternative	hypothesis	 .	Otherwise,	you	do	not
reject	the	null	hypothesis.

Comparing	the	p-value	to	the	level	of	significance
As	an	alternative	to	comparing	the	test	statistic	with	critical	values,	you	can	compare
the	p-value	with	the	level	of	significance.	The	p-value	represents	the	likelihood	that	the
test	statistic	has	a	specified	value	when	the	null	hypothesis	is	true.	A	very	small	p-value
indicates	that	the	null	hypothesis	is	unlikely	to	be	true.

The	decision	rule	when	using	the	p-value	is	as	follows:



If	the	p-value	is	below	the	level	of	significance,	reject	the	null	hypothesis;
otherwise,	do	not	reject	the	null	hypothesis.

	If	you	reject	the	null	hypothesis	when	using	a	two-tailed	test,	the	sign	of	the
test	statistic	determines	which	alternative	hypothesis	to	accept.	If	the	test	statistic
is	negative,	the	left-tailed	alternative	hypothesis	is	accepted;	if	the	test	statistic	is
positive,	the	right-tailed	alternative	hypothesis	is	accepted.

Measures	of	association
Measures	of	association	refers	to	the	relationship	between	the	elements	of	two	datasets.
As	an	example,	it	may	be	useful	to	determine	whether	there’s	a	strong	association
between	speed	limits	and	highway	accidents	in	different	states.	This	type	of	analysis
requires	using	a	numerical	measure	that	describes	how	closely	two	variables	follow
each	other.

Two	of	the	most	important	measures	of	dispersion	are	covariance	and	correlation.

Covariance
Covariance	measures	the	degree	to	which	the	elements	in	two	datasets	tend	to	follow
each	other.	For	example,	suppose	one	dataset	consists	of	the	annual	sales	of	a
corporation,	and	the	other	dataset	consists	of	the	same	corporation’s	annual	profits.
There	is	a	strong	tendency	for	profits	to	rise	during	years	when	sales	are	strong,	and
fall	when	sales	are	weak.	As	a	result,	the	covariance	between	sales	and	profits	tends	to
be	very	high.	On	the	other	hand,	the	covariance	between	profits	and	labor	costs	would
tend	to	be	very	low	or	even	negative,	since	rising	labor	costs	reduce	profits.

For	example,	suppose	you	choose	a	sample	of	annual	returns	to	Stock	X	and	Stock	Y
for	the	last	six	years.	Table	5-2	shows	these	returns.

Table	5-2	Returns	to	Stocks	X	and	Y	for	2009–2014

Year Stock	X Stock	Y

2009 0.05 –0.02

2010 0.03 0.01

2011 0.02 0.05

2012 0.09 0.04

2013 -0.02 0.07

2014 0.01 0.06

A	investor	wants	to	analyze	how	closely	the	returns	to	Stocks	X	and	Y	follow	each
other.	In	other	words,	the	investor	wants	to	know	whether	both	stocks	tend	to	do	well
during	the	same	years	and	do	poorly	during	the	same	years.	The	covariance	can



determine	this.

If	the	covariance	between	the	stocks	is	positive,	then	there’s	a	tendency	for	the	two
stocks	to	do	well	at	the	same	time	and	to	do	poorly	at	the	same	time.	If	the	covariance
is	negative,	then	the	two	stocks	tend	to	do	well	during	different	years	and	do	poorly
during	different	years.	If	the	covariance	is	zero	(or	very	close	to	it),	then	there	is	no
connection	between	the	returns	to	the	two	stocks.

The	first	step	in	computing	the	covariance	is	to	calculate	the	sample	mean	for	both
Stock	X	and	Stock	Y:

These	equations	show	that	the	average	return	to	Stock	X	is	0.03	(or	3	percent),	and	the
average	return	to	Stock	Y	is	0.035	(or	3.5	percent).

Substitute	these	results	into	the	sample	covariance	formula.	The	numerator	of	the
sample	covariance	formula	is	computed	as	follows:

Divide	the	result	by	one	less	than	the	common	sample	size	for	Stocks	X	and	Y	(6
years)	to	give	the	following	result:

Because	the	covariance	is	negative,	this	shows	that	Stocks	X	and	Y	tend	to	do	well	in
different	years	and	poorly	in	different	years.	For	example,	Stock	X	had	a	strong	return
of	0.05	(5	percent)	in	2009,	while	Stock	Y	had	a	loss	of	0.02	(2	percent)	during	the
same	year.	In	2013,	Stock	Y	had	a	return	of	0.07	(7	percent)	while	Stock	X	had	a	loss
of	0.02	(2	percent).

The	following	equations	show	how	to	compute	the	sample	covariance	in	general.

You	compute	the	covariance	between	two	samples	like	this:



The	key	terms	in	this	formula	are	as	follows:

sXY	is	the	sample	covariance	between	variables	X	and	Y	(the	two	subscripts	indicate
that	this	is	the	sample	covariance,	not	the	sample	standard	deviation).
	is	the	sample	mean	for	X	(“X	bar”).
	is	the	sample	mean	for	Y	(“Y	bar”).
n	is	the	number	of	elements	common	to	both	samples.
i	is	an	index	that	is	used	to	assign	a	number	to	each	sample	element,	ranging	from	1
to	n.
Xi	is	a	single	element	in	the	sample	for	X.

Yi	is	a	single	element	in	the	sample	for	Y.

	The	covariance	cannot	be	calculated	unless	the	sample	size	is	the	same	for	both
variables.	n	refers	to	this	size.

Correlation
The	correlation	measure	is	closely	related	to	covariance.	Correlation	is	often	preferred
as	a	measure	of	association	for	two	main	reasons:

Unlike	covariance,	correlation	can	only	assume	values	between	–1	and	1,	so	its
value	can	be	more	easily	interpreted.
Covariance	is	affected	by	the	units	in	which	it’s	measured,	whereas	correlation	has
no	units.

You	can	compute	the	correlation	between	Stocks	X	and	Y	in	the	preceding	example	by
dividing	the	sample	covariance	by	the	product	of	the	sample	standard	deviations	of
Stock	X	and	Stock	Y.

The	sample	variance	of	Stock	X	is	as	follows:

This	equation	shows	that	the	variance	of	the	returns	to	Stock	X	is	0.0014.	The	standard
deviation	is	the	square	root	of	the	variance:



The	standard	deviation	of	the	returns	to	Stock	X	is	0.03742,	or	3.742	percent.

The	sample	variance	and	standard	deviation	of	the	returns	to	Stock	Y	are	computed	as
follows:

This	equation	shows	that	the	variance	of	the	returns	to	Stock	Y	is	0.00115.	The
standard	deviation	is	the	square	root	of	the	variance:

The	standard	deviation	of	the	returns	to	Stock	Y	is	0.03391,	or	3.391	percent.

Substitute	these	results	into	the	sample	correlation	formula:

The	result	shows	a	strong	tendency	for	the	returns	to	Stock	X	and	Stock	Y	to	move	in
opposite	directions.	In	other	words,	during	years	in	which	Stock	X’s	returns	are	strong,
Stock	Y’s	returns	tend	to	be	weak,	and	vice	versa.

	Depending	on	the	situation,	you	will	see	correlation	numbers	across	the
spectrum	from	–1	to	1.	Numbers	very	close	to	either	–1	or	1	imply	that	there	is	a
near	linear	relationship	between	X	and	Y.	In	other	words,	one	is	a	multiple	of	the
other.	This	can	actually	be	a	problem	in	situations	where	you	are	trying	to	build	a
predictive	model	(read	more	about	this	in	Chapter	15).

Here	is	the	general	formula	for	computing	the	correlation	of	a	sample:

The	key	terms	in	this	formula	are	as	follows:

rXY	is	sample	correlation	between	X	and	Y.

sXY	is	sample	covariance	between	X	and	Y.

sX	is	sample	standard	deviation	of	X.

sY	is	sample	standard	deviation	of	Y.



Higher-Order	Measures
In	addition	to	the	measures	of	central	tendency,	dispersion,	and	association,	there	are
other	statistical	measures	that	can	be	extremely	useful.	Two	of	these	are	skewness	and
kurtosis.

These	measures	are	useful	in	several	disciplines,	including	portfolio	management	and
risk	management.	For	example,	skewness	can	be	used	by	portfolio	managers	to
determine	whether	an	asset	or	portfolio	of	assets	is

Equally	likely	to	earn	a	positive	or	negative	return.
More	likely	to	earn	a	positive	return	than	a	negative	return.
More	likely	to	earn	a	negative	return	than	a	positive	return.

Kurtosis	can	be	used	in	risk	management	to	determine	the	likelihood	of	extreme
outcomes	for	a	portfolio	(for	example,	large	losses	or	large	gains)	compared	with	an
assumed	distribution	such	as	the	normal.

Skewness
Skewness	measures	the	degree	of	asymmetry	of	a	probability	distribution.	With	a
symmetrical	distribution,	the	values	of	a	variable	are	evenly	distributed	above	and
below	the	mean.	Figure	5-1	shows	the	returns	to	a	sample	portfolio	over	the	past	20
years.	These	returns	are	symmetrical	about	the	mean	—	losses	are	equally	likely	as
gains	of	the	same	magnitude.
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Figure	5-1:	A	symmetrical	distribution	of	returns.

Figure	5-2	shows	the	returns	to	another	portfolio	over	the	same	time	horizon.	For	this
portfolio,	there	were	more	negative	returns	than	positive	returns	over	the	past	20	years.
As	a	result,	the	distribution	is	negatively	skewed	(or	skewed	to	the	left).
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Figure	5-2:	A	negatively	skewed	distribution	of	returns.

Figure	5-3	shows	the	returns	to	another	portfolio	over	the	same	time	horizon.	For	this
portfolio,	there	were	more	positive	returns	than	negative	returns	over	the	past	20	years.
As	a	result,	the	distribution	is	positively	skewed	(or	skewed	to	the	right).
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Figure	5-3:	A	positively	skewed	distribution	of	returns.

You	compute	the	skewness	measure	for	a	sample	as	follows:

The	key	terms	in	this	formula	are	as	follows:



Xi	=	A	single	element	in	the	sample

	=	The	sample	mean	(“X	bar”)
n	=	The	sample	size

	Unlike	mean,	variance,	and	standard	deviation,	there	is	no	universal	symbol	to
represent	skewness.

You	compute	the	skewness	measure	for	a	population	as	follows:

The	key	terms	in	this	formula	are	as	follows:

Xi	=	A	single	element	in	the	sample

μ	=	The	population	mean
n	=	The	sample	size

Kurtosis
Kurtosis	measures	the	likelihood	of	extreme	outcomes	in	a	distribution	relative	to	the
normal	distribution.	The	value	of	the	kurtosis	measure	for	the	normal	distribution	is	3.

For	a	probability	distribution	with	a	kurtosis	above	3,	extreme	outcomes	are	more
likely	to	occur	than	with	the	normal	distribution.	This	type	of	distribution	is	said	to	be	a
fat-tailed	distribution,	because	more	area	is	in	the	tails	of	the	distribution	and	less	area
is	near	the	mean	than	is	the	case	with	the	normal	distribution.

For	a	probability	distribution	with	a	kurtosis	below	3,	extreme	outcomes	are	less	likely
to	occur	than	with	the	normal	distribution.	This	type	of	distribution	is	said	to	be	a
skinny-tailed	distribution,	because	less	area	is	in	the	tails	of	the	distribution	and	more
area	is	near	the	mean	than	with	the	normal	distribution.

You	compute	kurtosis	for	a	sample	as	follows:

The	key	terms	in	this	formula	are	as	follows:



Xi	=	A	single	element	in	the	sample

	=	The	sample	mean	(“X	bar”)
n	=	The	population	size

	As	with	skewness,	there’s	no	universally	used	symbol	to	represent	kurtosis.

The	kurtosis	measure	is	computed	for	a	population	as	follows:

The	key	terms	in	this	formula	are	as	follows:

Xi	=	A	single	element	in	the	sample

μ	=	The	population	mean
n	=	The	population	size

	Excess	kurtosis	is	a	measure	that’s	sometimes	used	instead	of	kurtosis.	Excess
kurtosis	is	defined	as	kurtosis	minus	3.	Excess	kurtosis	has	the	advantage	that
positive	excess	kurtosis	indicates	a	fat-tailed	distribution,	whereas	negative	excess
kurtosis	indicates	a	skinny-tailed	distribution.	The	normal	distribution	has	an
excess	kurtosis	of	0.

Figure	5-4	shows	a	fat-tailed	distribution	of	portfolio	returns.	The	distribution	has	more
extreme	returns	(positive	and	negative)	than	would	be	the	case	with	the	normal
distribution.
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Figure	5-4:	A	fat-tailed	distribution	of	returns.

Figure	5-5	shows	a	skinny-tailed	distribution	of	portfolio	returns.	The	distribution	has
fewer	extreme	returns	(positive	and	negative)	than	would	be	the	case	with	the	normal
distribution.
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Figure	5-5:	A	skinny-tailed	distribution	of	returns.

And	now	we	have	finally	come	to	the	end	of	our	whirlwind	tour	of	probability	and
statistics	concepts.	If	you	made	it	through	unscathed,	you	are	to	be	congratulated.

Now	it’s	time	to	get	down	to	the	business	at	hand,	and	learn	how	to	use	these	concepts.
In	the	next	part,	you	will	see	how	to	apply	these	ideas	to	the	process	of	data
preparation.	After	that,	you’ll	see	how	what	you’ve	learned	so	far	can	be	applied	in
understanding	your	big	data	and	predicting	significant	events.



Part	II



Preparing	and	Cleaning	Data

	Check	out	an	article	on	discrete	and	continuous	probability	distributions	at
www.dummies.com/extras/statisticsforbigdata.

http://www.dummies.com/extras/statisticsforbigdata




In	this	part	…
	Getting	your	data	ready	for	analysis

	Becoming	familiar	with	popular	computer	file	formats

	Understanding	how	to	test	for	normality

	Checking	out	techniques	for	dealing	with	missing	or	incomplete	data

	Knowing	what	to	do	about	outliers



Chapter	6



Dirty	Work:	Preparing	Your	Data	for
Analysis

In	This	Chapter
	Understanding	how	your	data	is	formatted

	Recognizing	common	data	problems

	Working	with	dates

	Dealing	with	messy	data

“	Garbage	in,	garbage	out”	(GIGO)	is	a	cliché	that	dates	back	to	the	early	days	of	data
processing.	It	succinctly	captures	the	idea	that	any	analysis	that	you	do	is	only	as	good
as	the	data	you	start	with.	In	the	context	of	statistical	analysis,	GIGO	is	particularly
relevant.	It	is	very	easy	to	get	caught	up	in	the	apparent	power	of	statistical	methods
and	software	packages.	They	can	seem	almost	magical	in	their	predictive	powers.	But
these	predictions	can	be	inaccurate	and	sometimes	wildly	misleading	if	the	data	they
are	analyzing	is	messy.

And	the	data	is	almost	always	messy	—	especially	when	it	is	big	data.	As	discussed	in
Chapter	2,	big	data	can	be	characterized	by	the	three	Vs:	volume,	velocity,	and	variety.
All	three	of	these	characteristics	open	data	up	to	problems.

The	high	volume	and	velocity	of	data	open	it	up	to	technical	problems	with	the	way	it
is	captured.	Database	systems	don’t	always	update	properly.	Websites	crash	and	need	to
be	reset.	Systems	of	all	sorts	need	to	be	taken	down	for	maintenance.

Also,	over	time,	the	data	may	change	in	significant	ways.	A	stock	splits	two	for	one,
and	suddenly	the	stock	price	is	cut	in	half.	A	new	product	is	introduced	at	a	retailer,
requiring	a	new	code	to	be	introduced.	Or	worse	yet,	a	code	may	be	recycled	from	a
discontinued	product.

The	wide	variety	of	data	is	also	potentially	problematic.	Most	large	analytic	databases
are	sourced	from	a	variety	of	different	systems.	These	systems	record	data	in	different
ways.	Date	formats	are	not	consistent	from	country	to	country.	A	customer’s	name
spelled	slightly	differently	in	two	different	systems	creates	the	potential	for	duplicate
records.

All	this	messiness	is	collectively	referred	to	as	dirty	data.	This	chapter	introduces	you
to	some	common	methods	for	dealing	with	dirty	data.	As	the	title	suggests,	cleaning	up
your	data	is	not	the	most	glamorous	job.	And	it	is	often	the	most	time-consuming	part
of	doing	statistical	analysis.	But	it	is	absolutely	critical	to	getting	meaningful	insight
from	your	analytic	efforts.



	Throughout	this	chapter	and	as	you	apply	the	methods	described	in	this	book,
keep	in	mind	that	there	is	not	a	“one-size-fits-all”	answer	to	how	to	deal	with	dirty
data.	Having	a	clear	focus	on	what	you	are	trying	to	do	is	important.	Your
analytical	goals	will	inform	your	decisions	about	what	to	do	with	regard	to	data
problems.



Passing	the	Eye	Test:	Does	Your	Data	Look
Correct?

Most	datasets	come	with	some	sort	of	metadata,	which	is	essentially	a	description	of
the	data	in	the	file.	Metadata	typically	includes	descriptions	of	the	formats,	some
indication	of	what	values	are	in	each	data	field,	and	what	these	values	mean.

	When	you	are	faced	with	a	new	dataset,	never	take	the	metadata	at	face	value.
The	very	nature	of	big	data	requires	that	the	systems	that	generate	it	are	kept	up
and	running	as	much	as	possible.	For	this	reason,	updating	the	metadata	for	these
systems	when	changes	are	implemented	is	not	always	a	top	priority.	You	need	to
confirm	that	the	data	really	is	as	the	metadata	claims.

Checking	your	sources
As	obvious	as	it	may	sound,	it	is	important	that	you	have	faith	in	where	your	data	is
coming	from.	This	is	particularly	important	when	you	are	purchasing	data.	Thousands
of	vendors	out	there	offer	every	imaginable	kind	of	data.	And	they	are	not	all	of	equal
credibility.

	Before	purchasing	data,	try	to	understand	exactly	where	and	how	the	vendor	is
collecting	it.	Mysteriousness	and	vagueness	are	red	flags.

	Don’t	take	vendors	at	their	word.	Don’t	rely	solely	on	customer	satisfaction
postings	on	the	website	or	client	references	provided	by	the	vendor.	If	possible,	try
to	track	down	someone	who	is	using	or	has	used	the	data.

If	your	data	is	coming	from	internal	systems,	it’s	still	important	to	evaluate	the	sources.
Different	systems	have	different	purposes	and	therefore	focus	on	different	data.	They
may	also	collect	data	at	different	times.

For	example,	it	is	not	uncommon	for	some	hotel	chains	to	book	reservations	in	a
separate	system	from	the	one	they	use	at	the	front	desk	when	the	guest	checks	in.	It	is
possible	that	the	guest	may	receive	a	discounted	offer	between	booking	and	check-in.
This	means	that	the	room	rate	in	the	reservation	system	may	not	match	the	rate	in	the
front	desk	system.	What’s	more,	the	reservation	might	get	cancelled	and	never	make	it
to	the	front	desk!

Now,	suppose	you’re	performing	an	analysis	of	hotel	revenues	by	city.	It’s	rather
important	that	you	know	that	your	room	rate	data	is	being	sourced	from	the	front	desk
system	rather	than	the	reservation	system.	But	what	if	you’re	trying	to	analyze	how



many	reservations	were	generated	by	your	company’s	Super	Bowl	commercial?	In	this
case,	you	want	to	see	data	from	the	reservation	system.

	The	hotel	example	illustrates	that	even	intrinsically	clean	data	can	be
problematic.	Even	if	data	is	accurate	and	exactly	what	it	purports	to	be,	timing	can
be	an	issue.	Data	changes	over	time.

Verifying	formats
As	mentioned	earlier	in	this	chapter,	one	of	the	things	that	your	metadata	will	provide
for	you	is	some	indication	of	how	the	data	is	formatted.	By	formatted,	we	mean	how
each	particular	data	element	looks.	Is	“Product	Code”	a	character	or	numeral?	Is	“Start
Date”	a	date	or	is	it	really	a	datetime	stamp?

As	explained	in	Chapter	5,	data	types	are	important	in	statistical	analysis	because	they
dictate	which	statistics	and	statistical	procedures	can	be	applied	to	which	data
elements.	If	you	try	to	take	the	average	value	of	a	character	field	like	“First	Name,”
you’re	going	to	get	an	error	message	every	time.

Typically,	this	type	of	metadata	is	pretty	accurate.	It	is	generally	stored	by	the	system
that	holds	the	data	and	can	be	generated	automatically.	Verifying	the	formats	is
generally	pretty	straightforward.	Such	verification	is	essentially	a	by-product	of	the
validation	of	data	ranges	discussed	in	the	following	section.	But	there	are	instances
where	it	can	be	a	bit	more	difficult.

We’ve	seen	one	such	scenario	more	times	than	we	care	to	recall.	It	happens	sometimes
that	when	a	system	is	first	designed,	the	development	team	tries	to	put	some	flexibility
into	the	data	structures	to	accommodate	future	enhancements.	Sometimes	they	just	add
a	bunch	of	empty	(and	wide)	alpha-numeric	data	columns	onto	the	end	of	each	record.
These	auxiliary	columns	are	initially	not	used	for	anything.

Analysts	will	always	err	on	the	side	of	asking	for	more	data	rather	than	less	—
frequently,	all	data	rather	than	some.	This	fact,	combined	with	the	need	to	get	the	data
quickly,	sometimes	results	in	a	data	dump.	This	dump	generally	includes	the	auxiliary
columns.	In	these	cases,	the	metadata	tells	you	something	like	“Fields	1–11”	are
formatted	as	“200	alphanumeric	characters.”

Such	information	is	practically	useless.	To	make	sense	of	a	data	field	like	this,	you
pretty	much	have	to	get	your	hands	dirty.	There’s	not	a	lot	you	can	do	except	page
through	a	few	dozen	records	and	try	to	make	an	informed	guess	about	what’s	actually
in	the	field.	In	most	cases,	these	fields	tend	to	be	empty.	But	not	always.	The	good
news	is	that	if	the	field	is	actually	being	used,	you	should	be	able	to	find	a	programmer
somewhere	who	knows	what	it’s	being	used	for.

Typecasting	your	data
One	of	the	most	critical	steps	in	performing	a	statistical	analysis	is	making	sure	that



your	data	is	what	it	purports	to	be.	Statistical	procedures	will	invariably	crash	if	you
don’t	provide	them	with	valid	information	about	data	formats.	But	these	procedures	are
largely	blind	to	problems	with	the	validity	of	the	data.

	Understanding	how	a	data	field	is	formatted	is	not	enough.	Before	turning	a
dataset	over	to	a	statistical	procedure,	you	need	to	understand	what	the	data
actually	is	in	each	of	the	fields	you	are	using.

As	discussed	in	Chapter	5,	most	data	falls	into	one	of	four	categories:	nominal,	ordinal,
interval,	and	ratio.	The	data	type	determines	what	sort	of	statistics	and	statistical
procedures	can	be	applied	to	particular	data	fields.	You	can’t	take	an	average	of	a	field
like	“Last	Name,”	for	example.

	Confusing	data	types	with	data	formats	is	easy	(and	far	too	common).	Knowing
whether	a	data	field	is	a	character,	integer,	or	continuous	does	not	tell	you	the	data
type.

As	mentioned	earlier,	character	fields	are	sometimes	used	as	placeholders	for	data	that
might	be	captured	in	future	releases	of	a	system.	There	is	nothing	to	prevent	such	a
field	from	being	used	to	capture	monetary	or	other	numeric	data.

The	most	common	data-type	mistake	involves	assuming	that	a	numeric	field,
particularly	an	integer-valued	field,	actually	contains	numeric	ordinal	data.	It	is
extremely	common	for	companies	to	use	numeric	codes	(nominal	data)	to	represent
products,	regions,	stores,	and	various	other	entities.

Airline	flight	codes	are	one	example.	Census	regions	are	another.	Even	credit	card	and
Social	Security	numbers	are	typically	stored	as	integers.	But	all	of	these	entities	are
merely	identifiers.	They	are	nominal	variables.	The	average	credit	card	number	in	a
bank’s	portfolio	is	a	meaningless	statistic.



Being	Careful	with	Dates
We	very	rarely	run	across	a	dataset	that	does	not	include	dates.	Purchase	dates,
birthdates,	update	dates,	quote	dates,	and	the	list	goes	on.	In	almost	every	context,
some	sort	of	date	is	required	to	get	a	full	picture	of	the	situation	you	are	trying	to
analyze.

Dealing	with	dates	can	be	a	bit	tricky,	partly	because	of	the	variety	of	ways	to	store
them.	But	also,	depending	on	what	you’re	trying	to	do,	you	may	only	need	part	of	the
date.	This	section	points	out	a	few	common	situations	to	look	out	for.

Dealing	with	datetime	formats
For	starters,	most	database	management	systems	have	an	extremely	precise	way	of
storing	dates	internally:	They	use	a	datetime.	This	is	exactly	what	it	sounds	like:	a
mashup	of	the	date	and	the	time.	For	example,	a	common	format	looks	like	this:

That	means	25	minutes	and	44	seconds	past	2	p.m.	on	November	24,	2014.

The	seemingly	excessive	detail	here	is	rarely	fully	utilized.	By	far	the	most	common
user	of	the	full	detail	is	the	database	management	system	itself.	It	is	a	common	practice
for	databases	to	put	a	datetime	stamp	on	every	record	to	indicate	when	the	record	was
created	and	when	it	was	last	updated.	The	New	York	Stock	Exchange	systems	actually
keep	track	of	trade	time	stamps	to	even	greater	precision.

For	most	analytic	applications,	however,	this	is	more	detail	than	you	want.

If	you	are	analyzing	a	stock’s	closing	price	over	time,	you	won’t	be	interested	in	more
than	just	the	day	or	maybe	the	month	associated	with	each	closing	price.	If	you	are
doing	a	demographic	analysis	of	age	distributions,	the	year	of	birth	may	be	all	that’s
relevant.

Birthdates	provide	a	good	example	of	something	that	you	may	encounter	with	datetime
data.	Even	though	data	may	be	stored	in	a	datetime	field,	it	may	be	the	case	that	only
part	of	the	field	is	really	being	used.	Birthdates	typically	have	the	time	portion
defaulted	to	00:00:00	for	every	record.

Luckily,	both	database	systems	and	analytic	software	have	built-in	functions	that	allow
you	to	extract	only	the	portion	of	the	datetime	that	is	relevant	to	you.	You	can	choose	to
extract	only	the	date	part,	only	the	month	and	year,	only	the	year,	and	so	forth.	And	in
fact,	this	is	often	done	for	you	before	you	ever	see	the	data.

Taking	geography	into	account
In	the	brave	new	world	of	the	global	economy,	you	will	likely	encounter	data	that	has
been	collected	from	many	different	locations.	Anyone	who	has	ever	tried	to	schedule
an	international	conference	call	is	well	aware	of	the	logistics	involved	in	dealing	with



multiple	time	zones.	More	and	more	common	nowadays	are	post-midnight	conference
calls	with	India.

One	typical	big	data	example	involves	supply	chain	management.	Supply	chain
management	is	the	ongoing	process	of	trying	to	manage	raw	materials,	inventories,
distribution,	and	any	other	relevant	aspect	of	a	company’s	business.	It’s	how	Walmart
keeps	shelves	stocked,	how	UPS	keeps	track	of	packages,	and	how	Amazon	manages
to	deliver	almost	anything	imaginable	almost	anywhere.

In	these	examples,	the	analysis	that	underlies	supply	chain	management	needs	to	take
into	account	that	data	is	coming	from	different	time	zones.	When	faced	with	situations
like	this,	datetime	data	must	be	dealt	with	carefully.

Suppose	a	package	is	shipped	from	California	at	10	a.m.	on	Wednesday	and	is
delivered	to	its	final	destination	in	New	York	on	Thursday	at	10	a.m.	If	you	are
interested	in	analyzing	delivery	times,	you	need	to	take	into	account	the	time	zone
change.	In	this	example,	the	delivery	time	is	actually	21	hours,	not	24.

	When	dealing	with	datetime	data	collected	from	different	time	zones,	you	can’t
simply	compare	different	data	points	based	on	the	raw	data.	You	need	to	first
make	sure	that	all	datetimes	are	represented	in	a	common	time	zone.	Which	time
zone	you	use	is	somewhat	arbitrary,	so	long	as	all	the	data	points	are	using	the
same	one.

	There	is	one	other	geographically	—	or,	to	be	more	accurate,	culturally	—
related	fact	that	you	need	to	be	aware	of.	Not	all	countries	represent	dates	in	the
same	way.	The	U.S.	is	actually	somewhat	unique	in	representing	dates	as
month/day/year.	Canada	and	most	of	Europe	prefer	to	use	the	convention
day/month/year.	You	may	also	run	across	variations	beginning	with	the	year.

How	your	software	thinks	about	dates
Dates	are	used	in	a	variety	of	ways	in	data	analysis.	Sometimes,	as	with	stock	price
analysis,	their	primary	function	is	to	put	the	observations	in	order	from	earliest	to
latest.	But	in	other	cases,	they	are	used	to	measure	time	intervals.

In	engineering,	particularly	in	quality	control	applications,	a	key	statistic	is	mean	time
to	failure.	This	is	simply	the	average	life	span	of	a	part	or	product.	For	long-lived
products,	like	car	parts	and	light	bulbs,	this	calculation	requires	the	comparison	of
dates.

On	the	face	of	it,	August	15,	2013	minus	January	1,	2010	doesn’t	make	much	sense
mathematically.	We	all	know	what	is	meant	by	this,	but	it	takes	some	thinking	to	get
the	answer.	For	this	reason,	many	statistical	packages,	when	confronted	with	dates,
immediately	convert	them	into	a	number	in	order	to	facilitate	comparisons.	They	do



this	by	picking	some	starting	point	and	calculating	the	number	of	days	between	that
starting	point	and	the	date	that	is	being	converted.

For	example,	one	large	statistical	software	maker,	SAS,	uses	the	date	January	1,	1960
as	its	starting	point.	This	date	has	the	value	0.	It	stores	every	date	as	the	number	of	days
it	is	away	from	this	starting	point.	Thus,	SAS	thinks	of	January	1,	1961	as	366
(remember,	1960	was	a	leap	year,	and	January	1	is	day	0,	not	day	1).	The	starting	point
is	arbitrary	and	different	software	makers	use	different	starting	points,	but	the	idea	is
the	same.

One	odd	consequence	of	this	convention	is	that	if	you	look	at	the	raw	data,	not	only	are
all	the	dates	integers,	but	they	don’t	even	have	to	be	positive	integers.	In	the	SAS
example,	January	1,	1959	would	be	represented	as	–365.

In	any	case,	this	way	of	handling	dates	facilitates	calculations.	By	converting	the	date
to	a	number	on	input,	the	system	avoids	having	to	jump	through	hoops	every	time	a
calculation	involving	that	date	is	performed.



Does	the	Data	Make	Sense?
It’s	important	to	verify	that	the	data	in	each	field	actually	makes	sense.	Once	you	have
determined	the	format	and	data	type	for	each	field,	you	need	to	dig	into	each	field	to
make	sure	it	doesn’t	contain	inconsistencies.	The	basic	idea	is	to	formulate	some	basic
properties	that	the	data	should	exhibit	and	verify	that	these	are	indeed	reflected	in	the
data.

The	best	way	to	do	this	is	to	graph	your	data.	Depending	on	whether	the	data	is	discrete
or	continuous,	you	will	use	slightly	different	techniques	to	do	this.	Chapter	12	is
dedicated	to	graphing	techniques.	This	section	focuses	on	what	you’re	looking	for.

Checking	discrete	data
One	common	situation	is	for	a	data	field	to	have	a	predetermined	list	of	values	that
populate	the	field.	This	can	happen	with	nominal	data.	Product	codes	and	flight
numbers	are	good	examples.	In	these	cases,	it	is	generally	possible	for	you	to	lay	your
hands	on	an	accurate	list	of	valid	codes.

	When	you	have	a	relatively	small	list	of	valid	codes,	a	simple	test	will	give	you
some	confidence	in	your	data.	Simply	generate	a	list	of	all	the	codes	that	appear	in
your	dataset	and	compare	it	to	the	list	of	valid	codes.

If	you	have	codes	in	your	dataset	that	do	not	appear	on	the	list	of	valid	codes,	this	is	a
problem.	Either	your	list	is	not	up	to	date	or	your	data	is	invalid.	You’ll	need	to	track
down	the	source	of	the	issue	before	you	can	use	this	field	in	your	analysis.

Conversely,	if	you	have	more	valid	codes	in	your	list	than	appear	in	your	dataset,	this
could	be	a	problem.	Frequently	this	happens	because	old	codes	have	been
decommissioned	but	not	deleted	from	the	valid	code	list.	They	were	valid	at	one	time.
But	it	could	also	mean	that	your	dataset	is	not	complete.	If	you’re	analyzing	product
usage	and	your	dataset	does	not	contain	any	codes	representing	your	most	popular
product,	you	have	a	problem.	In	that	case,	you	need	to	go	back	to	the	source	of	your
dataset	to	investigate.	The	validity	of	the	entire	dataset	is	now	in	question.

This	approach	works	well	for	some	ordinal	data	as	well.	You	can	use	it	to	verify	that
the	data	is	in	the	appropriate	range.	For	example,	many	survey	datasets	contain	answers
to	question	like	“On	a	scale	of	1	to	10,	rate	…	.”	These	data	fields	should	not	contain
11s.

For	ordinal	data	that	is	not	in	a	pre-defined	range,	you	should	still	get	a	list	of	the
values	that	appear	in	your	dataset.	For	example,	if	you’re	analyzing	personal
automobile	ownership,	your	data	may	not	have	a	predetermined	maximum	in	the
“Number	of	Cars	Owned”	field.	And	indeed,	there	are	some	car	junkies	out	there	who
might	have	10	or	20	cars.	But	if	you	see	200,	you	may	want	to	scratch	your	head	a	little
bit	over	what’s	going	on.	There	is	a	more	detailed	description	of	this	situation	in



Chapter	10,	which	discusses	outliers.

For	some	nominal	data,	this	approach	is	not	practical,	or	even	necessary.	In	cases
where	you	have	some	sort	of	account	number,	this	number	is	typically	not	relevant	to
your	analysis.	Instead,	it’s	being	used	simply	to	identify	each	record	uniquely.	In	that
case,	you	might	focus	on	verifying	that	the	numbers	have	the	correct	length.	Credit
card	numbers	all	have	16	digits,	for	example.

Account	numbers	and	other	identifier	type	fields	are	useful	in	validating	the	quality	of
your	dataset.	In	particular,	you	can	use	them	to	identify	problems	involving	duplicate
records.	Duplicates	are	problematic	for	statistical	analysis.	The	more	times	a	record
appears,	the	more	importance	it	is	given	in	the	outcome	of	the	analysis.	In	other	words,
the	duplicate	records	will	be	over-counted,	skewing	your	results.

Checking	continuous	data
Examples	involving	financial	data	occur	throughout	this	book.	These	examples	involve
stock	prices,	account	balances,	and	interest	rates.	The	statistical	techniques	in	this	book
always	treat	this	data	as	continuous.	When	dealing	with	continuous	data,	it	is	again
impractical	(not	to	mention	uninformative)	to	try	to	look	at	every	value	in	the	dataset.

When	evaluating	the	quality	of	continuous	data,	the	best	place	to	start	is	by	simply
looking	at	the	distribution	graphically.	See	Chapter	12	for	a	discussion	of	graphical
techniques.

Looking	at	the	width	of	the	distribution
You	can	uncover	a	couple	of	problems	by	simply	looking	at	the	largest	and	smallest
values	in	a	data	field.	That’s	a	quick	way	to	diagnose	an	outlier	problem.	If	you	find	the
range	to	be	unreasonably	large,	it’s	an	indication	that	your	dataset	might	contain
records	that	are	out	of	whack	with	the	rest	of	the	data.	This	can	cause	your	analysis	to
be	skewed	and	misleading.	Turn	to	Chapter	10	for	further	discussion	of	outliers.

But	what	does	unreasonably	large	(or	small)	mean?	This	is	where	your	task	becomes
part	art,	part	science.	The	interpretation	of	“unreasonable”	depends	on	the	context.	It
requires	some	practical	knowledge	of	the	situation	you	are	trying	to	analyze.

For	example,	if	you	are	analyzing	mortgage	interest	rates	for	the	5-year	period	from
2009	to	2014,	you	might	raise	your	eyebrows	if	you	are	seeing	15-percent	interest
rates.	On	the	other	hand,	if	you	are	looking	at	the	late	1970s,	this	wouldn’t	be	the	least
bit	unusual.	In	this	case,	recognizing	that	15	percent	is	not	a	mortgage	rate	you	would
expect	to	see	in	a	recent	dataset	depends	on	your	knowing	something	about	the	history
of	mortgage	rates.

But	common	sense	is	a	good	practical	guide.	You	wouldn’t	expect	to	see	negative
values	in	a	data	field	purporting	to	contain	a	stock	price.	A	negative	balance	in	a
savings	account	might	give	you	pause.	An	interest	rate	field	probably	wouldn’t	contain
negative	values,	but	a	rate	of	return	field	might.



	In	evaluating	the	quality	of	any	data	field,	it	is	not	sufficient	to	simply	run
statistical	tests.	It	is	important	have	a	clear	understanding	of	what	the	data	is
purported	to	represent.	The	data	is	supposed	to	represent	some	fact	about	the	real
world.	Your	job	is	to	verify	that	this	is	happening.

Looking	at	the	shape	of	the	distribution
Having	said	that,	there	are	some	purely	technical	reasons	to	be	aware	of	the	shape	of
the	distribution	of	your	data.	A	variety	of	statistical	modeling	techniques	are	discussed
in	the	chapters	in	Parts	III	and	IV	of	this	book.	Many	of	these	processes	are	fairly	picky
about	the	shape	of	data	distributions.

For	example,	some	modeling	techniques	operate	under	the	assumption	that	continuous
variables	are	normally	distributed.	In	other	words,	they	expect	all	the	distributions	to
follow	a	nice	bell-shaped	pattern.	This	means	distributions	that	are	skewed	to	the	right
or	left	can	adversely	affect	the	usefulness	of	the	model.

But	if	a	distribution	does	not	meet	the	assumptions	of	a	statistical	procedure,	all	is	not
necessarily	lost.	In	some	cases,	it	is	possible	to	perform	some	simple	transformations	of
the	data	to	give	the	distribution	an	acceptable	shape.

There	are	several	examples	of	such	data	transformation	later	in	this	book.	Chapters	13
through	16	in	particular	discuss	some	common	approaches	friendly	to	statistical
procedures.	Detailed	discussion	of	these	transformations	can	be	found	in	those
chapters.

	For	now,	just	know	that	the	shape	of	data	distributions	is	important.	Different
statistical	techniques	have	different	requirements.	Problematic	distributions	need
to	be	identified	and	corrected	up	front,	before	the	data	is	fed	to	a	statistical
modeling	procedure.



Frequently	Encountered	Data	Headaches
There	are	several	common	issues	that	seemingly	always	crop	up	in	large	databases.
This	chapter	has	already	touched	on	one	of	these	issues	—	outliers.	Indeed,	that	subject
has	a	chapter	of	its	own.	The	issues	discussed	in	this	section,	like	outliers,	are
somewhat	insidious	because	they	may	not	cause	a	fatal	error	when	you	run	a	modeling
procedure	on	your	data.	The	procedure	may	not	even	notice	them.	But	when	these
issues	are	present,	they	can	adversely	affect	the	quality	of	your	output.

Missing	values
One	of	the	most	frequent	and	messiest	data	problems	to	deal	with	is	missing	data.	Files
can	be	incomplete	because	records	were	dropped	or	a	storage	device	filled	up.	Or
certain	data	fields	might	contain	no	data	for	some	records.	The	first	of	these	problems
can	be	diagnosed	by	simply	verifying	record	counts	for	files.	The	second	problem	is
more	difficult	to	deal	with.

Chapter	9	is	dedicated	to	the	subject	of	missing	data,	so	you	only	get	a	brief
introduction	to	the	topic	here.	To	put	it	in	simple	terms,	when	you	find	a	field
containing	missing	values,	you	have	two	choices:

Ignore	it.
Stick	something	in	the	field.

Ignoring	the	problem
In	some	cases,	you	may	simply	find	a	single	field	with	a	large	number	of	missing
values.	If	so,	the	easiest	thing	to	do	is	just	ignore	the	field.	Don’t	include	it	in	your
analysis.

Another	way	to	ignore	the	problem	is	to	ignore	the	record.	Simply	delete	the	record
containing	the	missing	data.	This	may	make	sense	if	there	are	only	a	few	rogue	records.
But	if	there	are	multiple	data	fields	containing	significant	numbers	of	missing	values,
this	approach	may	shrink	your	record	count	to	an	unacceptable	level.

Another	thing	to	look	out	for	before	simply	deleting	records	is	any	sign	of	a	pattern.
For	example,	suppose	you	are	analyzing	a	dataset	related	to	credit	card	balances
nationwide.	You	may	well	find	a	whole	bunch	of	records	showing	$0.00	balances
(perhaps	around	half	the	records).	This	is	not	in	itself	an	indication	of	missing	data.
However,	if	all	the	records	from,	say,	California	are	showing	$0.00	balances,	that
indicates	a	potential	missing	values	problem.	And	it’s	not	one	that	would	be	usefully
solved	by	deleting	all	the	records	from	the	largest	state	in	the	country.	In	this	case,	it	is
probably	a	systems	issue	and	indicates	that	a	new	file	should	be	created.

In	general,	deleting	records	is	an	easy,	but	not	ideal,	solution	to	missing-value
problems.	If	the	problem	is	relatively	small	and	there	is	no	discernible	pattern	to	the
omissions,	then	it	may	be	okay	to	jettison	the	offending	records	and	move	on.	But



frequently	a	more	highbrow	approach	is	warranted.

Filling	in	the	missing	data
Filling	in	the	missing	data	amounts	to	making	an	educated	guess	about	what	would
have	been	in	that	field.	There	are	good	and	bad	ways	to	do	this.	One	simple	(but	bad)
approach	is	to	replace	the	missing	values	with	the	average	of	the	non-missing	ones.	In
non-numeric	fields,	you	might	be	tempted	to	populate	the	missing	records	with	the
most	common	value	in	the	other	records	(the	mode).

These	approaches	are,	unfortunately,	still	frequently	used	in	some	business
applications.	But	they	are	widely	regarded	by	statisticians	as	bad	ideas.	For	one	thing,
the	whole	point	of	doing	statistical	analysis	is	to	find	data	that	differentiates	one	result
from	another.	By	replacing	all	the	missing	records	with	the	same	value,	you	haven’t
differentiated	anything.

The	more	highbrow	approach	is	to	try	to	find	a	way	to	predict	in	a	meaningful	way
what	value	should	be	filled	in	on	each	record	that	is	missing	a	value.	This	involves
looking	at	the	complete	records	and	trying	to	find	clues	as	to	what	the	missing	value
might	be.

The	statistics	behind	this	approach	are	examined	in	Chapter	9,	so	the	discussion	here	is
restricted	to	an	illustrative	example.	Suppose	you	are	analyzing	a	demographic	file	to
predict	likely	purchasers	of	one	of	your	products.	In	that	file	you	have,	among	other
fields,	information	on	marital	status,	number	of	children,	and	number	of	automobiles.
For	some	reason,	the	number	of	autos	field	is	missing	in	one-third	of	the	records.

By	analyzing	the	other	two	fields	—	marital	status	and	number	of	children	—	you	may
discover	some	patterns.	Single	people	tend	to	have	one	car.	Married	people	with	no
children	tend	to	have	two	cars.	Married	people	with	more	than	one	child	might	be	more
likely	to	have	three	cars.	In	this	way,	you	can	guess	at	the	missing	values	in	a	way	that
actually	differentiates	the	records.	More	on	this	approach	to	come.

	There	is	a	general	term	in	statistics	and	data	processing	that	refers	to
questionable	data.	The	term	noisy	is	used	to	describe	data	that	is	unreliable,
corrupt,	or	otherwise	less	than	pristine.	Missing	data	is	but	one	example	of	this.	A
detailed	description	of	techniques	for	cleaning	up	noisy	data	in	general	is	beyond
the	scope	of	this	book.	In	fact,	this	is	an	active	area	of	research	in	statistical
theory.	The	fact	that	all	noise	is	not	as	easy	to	spot	as	missing	values	makes	it
troublesome	to	deal	with.

Duplicate	records
Data	is	stored	in	different	ways	in	different	systems.	In	particular,	what	makes	an
individual	record	unique	is	different	for	different	systems.	An	investment	account
summary	is	attached	to	an	account	number.	A	portfolio	summary	might	be	stored	at	an
individual	or	household	level.	And	the	trading	histories	of	all	those	accounts	are	stored



at	the	individual	transaction	level.

So	it’s	no	surprise	that	when	collecting	and	consolidating	data	from	various	sources,
it’s	possible	that	duplicates	pop	up.	For	this	reason,	it’s	important	to	be	clear	about
what	is	supposed	to	differentiate	unique	records	in	your	data	file.	For	example,	if	it’s	a
transaction	level	file,	then	account	numbers	and	household	IDs	will	be	duplicated.	As
long	as	you	understand	this	and	are	doing	a	transaction	level	analysis,	you	will	be	fine.

But	if	you	are	interested	in	using	this	data	to	analyze	the	number	of	accounts	held	by
each	household,	you	will	run	into	problems.	The	households	that	trade	more	frequently
will	have	more	records	than	those	that	don’t	trade	very	much.	You	need	to	have	a	file	at
the	account	level.

Removing	duplicate	records	is	not	particularly	difficult.	Most	statistical	packages	and
database	systems	have	built-in	commands	that	group	records	together.	(In	fact,	in	the
database	language	SQL,	this	command	is	called	Group	By.)



Other	Common	Data	Transformations
It	is	frequently	desirable	to	standardize	data	before	performing	advanced	statistical
procedures.	Standardizing	can	make	the	data	more	manageable.	It	can	also	improve	the
accuracy	of	models	as	well	as	make	them	a	little	easier	to	interpret.	This	section
discusses	some	common	ways	of	standardizing	data.

Percentiles
Anyone	who’s	ever	taken	a	standardized	test	like	the	SAT	is	familiar	with	seeing	the
scores	reported	as	a	percentile.	If	you’re	in	the	90th	percentile,	it	means	that	90	percent
of	the	scores	on	the	test	are	at	or	below	your	score.

There	is	nothing	particularly	special	about	percentiles.	You	can	do	the	same	sort	of
thing	for	any	number	of	quantiles.	Instead	of	using	100	percentiles,	you	can	split	the
data	up	into	any	number	of	buckets	you	wish.	Two	common	options	are	4	(quartiles)
and	10	(deciles).

When	you	are	confronted	with	data	that	is	widely	spread	out,	it	is	sometimes	helpful	to
convert	it	into	quantiles.	For	example,	income	data	in	the	U.S.	has	a	very	wide
distribution.	If	you	feed	that	raw	data	into	a	model,	much	of	the	important	variation	at
the	lower	end	of	the	income	scale	(say	below	$50,000)	gets	swallowed	up	by	the	huge
variation	that	happens	among	the	top	1	percent	(say	$500,000	up	to	$100,000,000	or
more).	$10,000	makes	a	lot	bigger	difference	to	someone	in	the	10th	percentile	than	to
someone	in	the	90th.	That	variation	at	the	lower	end	can	be	more	effectively	captured	if
the	incomes	are	reported	in	percentiles	instead	of	raw	dollars.

	This	sort	of	conversion	is	best	used	when	you	are	concerned	mainly	with
variation.	If	you’re	using	the	data	to	see	who	is	capable	of	affording	a	Ferrari,	then
this	sort	of	transformation	may	not	be	very	useful.

Standard	scores
Another	common	transformation	is	to	convert	data	to	standard	scores.	Essentially,	you
calculate	the	mean	and	standard	deviation	of	a	distribution.	The	standard	score	is
calculated	by	subtracting	the	mean	from	each	observation	and	dividing	by	the	standard
deviation.	In	most	cases,	the	vast	majority	of	standard	scores	will	lie	somewhere
between	–3	and	3.

In	the	context	of	predictive	models,	this	is	sometimes	a	beneficial	thing	to	do.	When
you	have	variables	in	your	data	that	are	on	wildly	different	scales,	it’s	a	way	of
standardizing	the	variation	so	that	it’s	given	equal	weight	for	each	variable.	For
example,	suppose	you	have	interest	rate	data	ranging	from	0	to	10	percent	combined
with	investment	account	data	with	balances	ranging	into	the	hundreds	of	millions.

In	this	case,	some	procedures	can	get	lost	in	the	larger	range	of	the	balance	data	and



downplay	the	importance	of	the	interest	data.	At	the	very	least,	the	resulting	model	can
end	up	with	some	very	large	and	unwieldy	parameters	that	can	be	difficult	to	interpret.
In	these	cases,	it	can	be	helpful	to	convert	your	input	variables	into	standard	scores.
This	puts	all	variables	on	an	equal	footing	with	respect	to	their	variation.	In	the
resulting	model,	it	will	then	be	much	easier	to	see	what	variables	are	really	contributing
to	the	predicted	outcomes.

Dummy	variables
Statistical	procedures,	for	the	most	part,	require	numeric	variables.	They	don’t	deal
well	(or	at	all)	with	“Vanilla,”	“Chocolate,”	and	“Strawberry.”	So	if	you’re	trying	to
analyze	what	ice-cream	flavors	are	associated	with	the	biggest	food	orders	at	your	ice-
cream	shop,	you	need	to	apply	a	common	trick.	Dummy	variables	are	numeric
variables	that	indicate	whether	a	certain	condition	is	true	or	false.	Typically	they	are
assigned	a	value	of	0	if	a	condition	is	false	and	a	1	if	that	condition	is	true.

For	the	ice-cream	example,	you	might	create	three	dummy	variables	called	“Vanilla,”
“Chocolate,”	and	“Strawberry.”	For	every	order,	if	the	order	contains	vanilla	ice-cream,
you	set	the	“Vanilla”	variable	to	1.	Otherwise	it	is	set	to	0.	Similarly,	the	other	two
variables	are	each	assigned	0s	and	1s.	In	this	way,	you’ve	converted	your	text	to	logical
(sometimes	called	Boolean,	after	a	famous	logician)	variables	that	can	be	handled	by
appropriate	statistical	procedures.

There	is	one	subtlety	lurking	here:	How	you	choose	your	dummy	variables	depends	on
the	nature	of	the	data.	In	particular,	how	many	dummy	variables	you	create	depends	on
whether	at	least	one	of	the	conditions	is	always	met.

The	ice-cream	example	was	leaving	open	the	possibility	that	an	order	could	contain	no
ice-cream	at	all.	Thus	all	three	variables	could	potentially	be	0.	However,	if	you	have	a
situation	where	at	least	one	of	the	conditions	needs	to	be	met,	you	actually	need	to
include	one	fewer	variable.	Take,	for	example,	data	that	contains	the	day	of	the	week
that	each	record	was	created.	If	you	create	six	dummy	variables	for	Sunday	through
Friday,	then	a	seventh	one	is	not	necessary.	Saturday	is	indicated	by	all	six	of	the
variables	being	0.

There	is	a	little	more	going	on	here	than	the	seventh	variable	being	unnecessary.
Including	it	actually	introduces	a	redundancy	in	the	data	that	can	be	problematic	for
predictive	models.

As	you	can	see,	there	is	a	lot	more	to	doing	statistical	analysis	than	just	feeding	a
dataset	to	a	statistical	procedure.	The	quality	and	usefulness	of	your	results	will	be
greatly	enhanced	if	you	take	the	time	and	effort	to	heed	the	wisdom	of	“Garbage	in,
garbage	out!”



Chapter	7



Figuring	the	Format:	Important
Computer	File	Formats

In	This	Chapter
	Understanding	different	computer	data	formats,	such	as	.csv,	.xlsx,	and	.html

	Getting	acquainted	with	data	processing	in	Excel

	Learning	the	basics	of	web	data	formats

There	are	practically	as	many	data	formats	as	there	are	systems	that	create	and	store
data.	When	doing	statistical	analysis	on	that	data,	you	very	frequently,	if	not	always,
will	be	using	PC-based	software.	Obviously,	then,	your	data	will	end	up	on	your	PC.	In
order	to	help	you	manage	this	data,	this	chapter	looks	at	some	key	features	of	several
important	formats	for	storing	and	analyzing	data	using	spreadsheets	and	database
programs.



Spreadsheet	Formats
You	can	save	spreadsheet	programs	such	as	Microsoft	Excel	with	several	different
formats,	including	the	following:

Comma-separated	variable	(.csv)
Tab-delimited	text	(.txt)
Space-delimited	(.prn)
Excel	Workbook	(.xlsx)
Excel	macro-enabled	workbook	(.xlsm)
Excel	Binary	Workbook	(.xlsb)
XML	(Extensible	Markup	Language)	(.xml)
HTML	(Hypertext	Markup	Language)	(.html)

Comma-separated	variables	(.csv)
A	commonly	used	structure	for	storing	data	is	the	record.	Each	record	consists	of	a
series	of	fields,	and	each	field	in	a	record	contains	a	single	value.	Each	field	is
separated,	not	very	surprisingly,	by	a	comma.	These	fields	become	the	variables	that
you	analyze	with	statistical	tools.	Table	7-1	shows	the	record	structure	of	a	company’s
employee	database.

Table	7-1	Structure	of	Records	in	an	Employee	Database

Last	Name First	Name Social	Security	Number Age Department

The	fields	in	this	record	are:	Last	Name,	First	Name,	Social	Security	Number,	Age,	and
Department.

With	the	comma-separated	variables	(CSV)	format,	records	consist	of	plain	text.	That
is,	the	text	doesn’t	contain	any	special	formatting	characters.	In	a	CSV	file,	a	record
from	the	customer	database	in	Table	7-1	would	appear	as	follows:

Smith,	John,	111-11-1111,	62,	Accounting

With	CSV,	each	record	is	separated	from	the	other	records	by	placing	a	“newline”
character	or	“end	of	line”	character	at	the	end	of	the	record.

	You	can	easily	identify	a	comma-separated	variables	file;	it	usually	has	a	file
extension	of	.csv.	For	example,	a	file	named	MyRecords.csv	contains	data	stored
in	the	comma-separated	variables	format.



CSV	uses	a	special	character	set	to	represent	data,	but	note	that	different	versions	of
CSV	use	different	character	sets.	ASCII	(short	for	American	Standard	Code	for
Information	Interchange)	and	Unicode	are	two	of	most	commonly	used	character	sets.

ASCII
ASCII	is	a	system	for	converting	computer	bits	into	a	character	or	a	number.	For
example,	ASCII	translates	1000001	into	capital	A	and	1100001	into	lowercase	a.

	A	bit	is	a	unit	of	computer	storage	that	can	only	assume	a	value	of	0	or	1.	A
collection	of	bits	is	known	as	a	byte	(commonly	8	bits).	A	single	byte	can
represent	a	letter,	number,	or	other	character.

ASCII	was	first	based	on	seven	bits,	so	it	could	only	represent	128	(27 )	different
characters	and	numbers.	After	being	developed	in	the	1960s,	ASCII	was	later	extended
to	eight	bits.	This	made	it	possible	to	represent	up	to	256	(28 )	different	characters	and
numbers.	ASCII	was	widely	used	on	the	Internet	until	the	late	2000s,	when	it	was
overtaken	by	Unicode.

Unicode
Unicode	is	a	more	comprehensive	system	than	ASCII.	It	was	created	in	the	late	1980s
and	has	superseded	the	use	of	ASCII.	Unicode	may	be	implemented	with	different
encoding	systems;	two	of	these	are	known	as	UTF-8	and	UTF-16.	(UTF	stands	for
Unicode	Transformation	Format.)

UTF-8	consists	of	the	ASCII	system	plus	a	large	number	of	additional	characters	and	is
now	widely	used	in	applications	and	for	web	pages	on	the	Internet.	Unlike	ASCII,	UTF
characters	often	consist	of	more	than	byte.	With	UTF-8,	each	ASCII	character	is
represented	with	a	single	byte,	but	the	additional	characters	are	represented	with
anywhere	from	two	to	four	bytes.	UTF-16	is	based	on	16-bit	bytes,	and	isn’t
compatible	with	ASCII.

	One	of	the	advantages	of	Unicode	compared	with	ASCII	is	that	ASCII	is
restricted	to	Western	European	languages,	whereas	Unicode	can	be	extended	to
languages	that	contain	different	types	of	symbols,	such	as	Greek,	Cyrillic,
Hebrew,	and	so	on.

One	of	the	reasons	for	the	popularity	of	the	CSV	format	is	that	it	is	compatible	with	a
large	number	of	applications.	It	can	also	be	easily	converted	into	other	formats,	such	as
a	Microsoft	Excel	spreadsheet.

Text
Text	is	a	file	format	that	contains	primarily	plain	text,	but	may	contain	other	characters
such	as	numbers	and	symbols	as	well.	Probably	most	desktop	applications	can	create



text	files.	Text	editors,	including	the	simple	Microsoft	Notepad,	create	nothing	but	text
files.

Within	a	text	file,	values	are	typically	delimited	(that	is,	separated)	by	either	a	tab
character	or	by	a	space.	The	appropriate	file	extensions	for	these	formats	are	as
follows:

Tab-delimited	files	(.txt)
Space-delimited	files	(.prn)

Text	files	don’t	store	any	formatting	information,	which	makes	them	compatible	with	a
wide	variety	of	applications.	They	can	be	imported	into	a	spreadsheet	program	such	as
Microsoft	Excel	and	also	converted	into	other	formats.	One	of	the	drawbacks	to	text
files	is	that	storage	is	inefficient;	in	other	words,	text	files	require	more	storage	space
than	many	other	formats.

Microsoft	Excel
Unlike	CSV-formatted	files,	Excel	files	store	data	in	binary	format.	A	binary	file	may
contain	text,	but	it	may	also	contain	other	types	of	information,	such	as	formatting,
sound,	pictures,	video,	and	more.

Microsoft	Excel	can	store	spreadsheets	in	many	different	formats.	Here	are	three	of	the
most	important	formats:

Excel	workbook	(.xlsx)
Excel	macro-enabled	workbook	(.xlsm)
Binary	workbook	(.xlsb)

Excel	workbook	(.xlsx)
.xlsx	is	the	standard	format	for	Excel	spreadsheets,	starting	with	Excel	2007.
Previously,	the	standard	format	was	.xls.	The	.xls	format	was	split	up	into	three	new
formats:	.xlsx,	.xslm,	and	.xlsb.

The	.xlsx	format	is	based	on	the	Extensible	Markup	Language	(XML),	and	is	intended
to	increase	the	compatibility	of	Excel	spreadsheets	with	other	applications.	One
advantage	of	the	.xlsx	format	is	that	it	requires	less	storage	space	than	the	older	.xls
format,	due	to	file	compression.	Another	huge	advantage	to	.xlsx	is	that	it’s	much
easier	to	recover	corrupted	files	than	with	.xls.

The	.xlsx	format	doesn’t	allow	user-defined	programs	known	as	macros.	You	must	save
spreadsheets	containing	macros	in	a	different	format	—	.xlsm	format	(Excel	macro-
enabled	workbook).	The	advantage	of	this	setup	is	that	the	user	can	open	an	.xlsx
spreadsheet	without	having	to	worry	about	whether	there’s	a	macro	attached	to	the	file.
This	is	an	important	security	measure,	because	viruses	can	be	spread	with	macros.

Another	advantage	of	the	.xlsx	format	is	that	Excel	spreadsheets	now	contain	more	data



than	in	the	past.	The	.xls	format	only	allowed	for	a	maximum	of	65,536	rows	and	256
columns;	in	case	those	weren’t	enough	for	you,	the	.xlsx	format	allows	for	1,048,576
rows	and	16,384	columns.	.xlsx	also	provides	superior	handling	of	tables,	making	it
easier	to	add	new	information	to	an	existing	table.	This	is	clearly	a	huge	advantage	for
big	data!

Excel	macro-enabled	workbooks	(.xlsm)
Microsoft	Excel	contains	a	programming	language	called	Visual	Basic	for	Applications
(VBA).	The	commands	in	VBA	closely	resemble	English.	You	can	use	VBA	as	a
traditional	programming	language	to	do	many	tasks,	such	as	creating	new	add-in
functions	for	Excel.	You	can	also	use	VBA	to	produce	macros,	which	are	small
programs	used	to	automate	routine	tasks	in	Excel.

Creating	new	Excel	functions

You	can	use	VBA	to	extend	the	capabilities	of	Excel	by	creating	new	functions.	Excel
then	executes	these	functions	as	if	they	were	part	of	the	original	package.

For	example,	suppose	you	find	yourself	frequently	computing	cube	roots	in	Excel.
There’s	no	built-in	cube	root	function,	so	you	must	enter	a	formula	each	time	you	want
to	do	this	calculation.	As	an	alternative,	you	could	create	a	VBA	function	called
“CubeRoot”	to	extend	Excel’s	capabilities	with	the	following	set	of	keystrokes:	=
(A1)^(1/3).

Suppose	you	need	to	know	the	cube	root	of	8,	which	is	stored	in	cell	A1	on	your
spreadsheet.	By	typing	the	command	=CubeRoot(A1)	in	another	cell,	you	cause	Excel
to	produce	the	correct	result	of	2.

Automating	tasks	with	macros

You	can	write	VBA	code	to	create	macros	by	enabling	the	Developer	tab	in	Excel.	In
Excel	2010	or	later,	click	File	>	Options.	In	the	Options	dialog	box,	choose	Customize
Ribbon.	In	the	Customize	Ribbon	dialog	box,	choose	Main	Tabs;	this	produces	a	list	of
tabs	such	as	Home,	Insert,	and	so	forth.	Most	likely,	all	of	them	are	selected	except	for
Developer.

Click	the	box	for	Developer	and	then	click	OK.	You’ll	notice	that	the	Developer	tab
now	appears	next	to	the	View	tab	in	the	menu	bar.	From	the	Developer	tab,	click	Visual
Basic	to	write	your	own	code	or	click	Macros	to	execute	a	macro.

You	can	also	use	the	Macro	Recorder	to	create	macros	that	automate	tasks.	From	the
Developer	tab,	click	the	Record	Macro	button.	This	produces	a	dialog	box	in	which
you	can	provide	the	macro’s	name,	an	optional	shortcut	key,	and	a	specification	of
where	the	macro	is	to	be	stored.	Once	the	recorder	starts,	it	stores	all	the	keystrokes
that	follow	until	you	turn	it	off.

You	can	use	the	macro	recorder	for	many	purposes:

Opening	files



Creating	new	documents
Updating	existing	documents
Saving	files
Formatting	cells

Whenever	you	create	VBA	code	or	macros	in	Excel,	you	must	save	the	spreadsheet	as
an	Excel	macro-enabled	workbook	(.xlsm)	in	order	to	save	the	code.

Spreadsheets	are	very	powerful	tools	that	can	be	customized	to	perform	almost	any
data-processing	task	(including	statistical	procedures).	For	more	on	what	you	can	do	in
Excel	spreadsheets,	check	out	Excel	VBA	Programming	For	Dummies	(Wiley,	2013)	by
John	Walkenbach.

	The	standard	Excel	workbook	format	(.xlsx)	doesn’t	support	VBA	code.	In
fact,	the	standard	workbook	removes	VBA	code	when	it’s	saved.

Binary	workbook	(.xlsb)
The	binary	workbook	format	(.xlsb)	is	very	similar	to	the	standard	Excel	workbook
format	(.xlsx).	The	binary	workbook	format	is	designed	to	speed	up	the	process	of
opening	and	saving	files.	This	format	is	particularly	advantageous	with	extremely	large
files.

Unlike	the	.xlsx	format,	.xlsb	format	does	support	macros.	The	main	drawback	to	using
.xlsb	is	that	it’s	typically	not	compatible	with	other	applications.

Web	formats
The	Web	is	by	definition	a	distributed	computing	system.	Data	is	spread	out,	quite
literally,	all	over	the	world.	It	is	processed	and	transferred	by	a	seemingly	infinite
number	of	machines.	For	this	reason,	web	data	is	standardized	in	a	way	that	is
independent	of	the	particular	machine	that’s	processing	it.	This	section	gives	a	brief
description	of	the	way	this	is	typically	done.

XML
Extensible	Markup	Language	(XML)	is	a	language	that	lets	users	define	the	meaning
of	elements	in	a	document,	spreadsheet,	or	other	type	of	application	file	through	the	use
of	tags.	You	define	tags	in	a	separate	file	known	as	a	schema.

As	an	example,	the	following	XML	code	represents	a	single	record	containing	the
statistics	of	a	baseball	player:

<row>
<Year>2014</Year>
<Homeruns>39</Homeruns>



<RBI>142</RBI>
<Average>0.344</Average>
</row>

Using	tags	makes	XML	a	very	flexible	and	powerful	language.	XML	is	also
independent	of	the	operating	system	being	used	(for	example,	it	works	in	Windows	and
Macintosh	OS	X).

You	can	save	Excel	.xml	files,	providing	you	define	a	schema.	These	.xml	files	can	be
opened	in	many	other	applications	that	support	XML.	By	converting	files	to	an	.xml
format,	you	allow	your	data	to	be	exported	to	other	applications	that	don’t	accept	Excel
files.

HTML
Hypertext	Markup	Language	(HTML)	is	a	language	used	to	create	web	pages	on	the
Internet.	The	HTML	language	consists	of	elements	identified	by	tags.	For	example,	to
start	a	new	paragraph,	you	use	the	<p>	tag	to	indicate	the	beginning.	At	the	end	of	the
paragraph,	you	use	the	</p>	tag	to	indicate	the	end.	You	can	save	Excel	files	as	HTML
files	that	you	can	publish	directly	to	the	Internet.

	You	can	view	the	HTML	code	used	to	create	a	web	page	by	right-clicking	the
menu	bar	in	your	browser	and	choosing	View	⇒	Source	(Internet	Explorer)	or
clicking	Tools	⇒	Web	Developer	⇒	Page	Source	(Mozilla	Firefox).



Database	Formats
A	database	management	system	is	software	that	is	specifically	designed	to	store	and
manage	data.	There	are	many	different	such	systems.	Two	of	the	most	accessible
(meaning	inexpensive)	are	Microsoft	Access	and	MySQL.	Each	database	type	has	its
own	unique	format.	For	example,	Microsoft	Access	uses	a	format	known	as	.accdb.

Microsoft	Access	(.accdb)
Microsoft	Access	is	a	relational	database.	A	relational	database	organizes	data	into
tables.

The	Microsoft	Access	format	.accdb	was	introduced	with	Access	2007.	It’s	an	upgrade
from	the	previous	format	(.mdb).	The	.accdb	format	offers	several	new	features.	One	of
these	features	is	the	ability	to	publish	a	database	directly	to	the	Internet.	Another	is	the
ability	to	store	more	than	one	value	in	a	record.

For	example,	suppose	you	create	a	database	to	keep	track	of	a	company’s	inventory.
One	of	the	fields	is	color;	for	an	item	that	has	more	than	one	color,	the	field	can	store
each	of	them.

Another	new	feature	is	the	attachment	data	type.	With	this	data	type,	it’s	possible	to
store	a	wide	variety	of	file	types	in	a	database	without	requiring	a	large	amount	of
storage.

MySQL	(.frm)
MySQL	is	an	open	source	relational	database	system.	Structured	Query	Language
(SQL)	is	a	programming	language	specifically	designed	for	accessing	information	from
a	database.	MySQL	uses	a	format	known	as	.frm.

Oracle	first	developed	MySQL	in	1995.	In	addition	to	open	source	MySQL,	you	can
buy	more	advanced	versions	from	Oracle	and	other	vendors.

In	addition	to	being	free,	one	of	the	great	advantages	of	MySQL	is	its	ability	to	take
advantage	of	cloud	computing,	where	processing	is	done	over	the	Internet.	Cloud
computing	has	several	advantages:

It	can	be	less	expensive	than	traditional	computing.
It	provides	virtually	unlimited	storage	capabilities.
Backing	up	and	recovering	files	are	easier	than	with	traditional	computing.
The	latest	software	is	always	available.
Data	can	be	accessed	from	any	computer	and	any	location.

One	of	the	potential	drawbacks	to	cloud	computing	is	that	data	may	be	more	vulnerable
to	hackers.



There	is	nothing	more	frustrating	than	getting	a	dataset	that	you’re	eager	to	analyze	and
not	being	able	to	open	it.	Or,	just	as	bad,	opening	it	and	seeing	unintelligible	gibberish.
In	this	chapter,	we	have	given	you	at	least	a	hint	of	some	of	the	things	that	could	be
going	on	in	such	cases.	We	have	by	no	means	covered	the	topic	of	data	processing	in
detail.	But	hopefully	we’ve	given	you	a	sense	of	where	to	begin	when	faced	with	a	data
formatting	challenge.



Chapter	8



Checking	Assumptions:	Testing	for
Normality

In	This	Chapter
	Putting	in	place	a	goodness	of	fit	test

	Implementing	a	Jarque-Bera	test

All	areas	of	statistical	analysis	make	assumptions	about	the	data	being	studied.	To
ensure	the	validity	of	any	statistical	tests	performed	on	a	dataset,	determining	whether
the	assumptions	made	are	actually	correct	is	essential.

One	of	the	most	common	assumptions	in	business	disciplines	such	as	economics,
finance,	marketing,	and	so	forth	is	that	a	variable	is	normally	distributed.	In	particular,
rates	of	return	to	financial	assets	are	often	assumed	to	be	normally	distributed.	If	this
assumption	is	incorrect,	the	results	of	any	statistical	tests	will	be	questionable.

Many	tests	are	specifically	designed	to	determine	whether	a	dataset	follows	the	normal
distribution.	This	chapter	examines	two	of	them	in	detail:	the	goodness	of	fit	test	and
the	Jarque-Bera	test.



Goodness	of	fit	test
You	use	a	goodness	of	fit	test	to	test	the	hypothesis	that	a	population	conforms	to	a
specified	probability	distribution.	For	example,	you	can	use	a	goodness	of	fit	test	to
determine	whether	a	population	is	normally	distributed.	The	goodness	of	fit	test	is
based	on	the	chi-square	distribution.

Chapter	5	introduces	the	notion	of	hypothesis	testing.	There	we	test	hypotheses	about	a
population	mean,	and	the	test	statistic	is	normally	distributed.

But	hypothesis	tests	can	be	implemented	in	a	variety	of	situations.	And	depending	on
the	situation,	different	test	statistics	are	appropriate.	In	the	case	of	the	goodness	of	fit
test,	the	test	statistic	follows	a	chi-square	(pronounced	“ki-square”)	distribution,
described	next.

The	chi-square	distribution
A	chi-square	random	variable	is	composed	of	a	sum	of	independent,	standard	normal
random	variables	that	have	been	squared.	This	is	shown	in	the	following	equation:

In	this	equation,	ν	standard	normal	random	variables	are	combined;	ν	is	the	Greek	letter
nu	and	is	often	used	in	statistics	to	represent	the	number	of	degrees	of	freedom	of	a
probability	distribution.

The	chi-square	distribution	has	several	key	properties:

It	is	positively	skewed.
Its	shape	depends	on	its	degrees	of	freedom	(df).	This	is	the	number	of	standard
normal	variables	that	appear	in	the	sum.
It	is	undefined	for	negative	values.	This	is	because	all	the	component	normal
variables	have	been	squared,	making	them	positive.

In	the	section	in	Chapter	5	on	hypothesis	testing,	we	distinguish	between	one-	and	two-
tailed	tests.	It	makes	sense	to	talk	about	a	two-tailed	test	in	the	context	of	the	normal
distribution.	The	normal	distribution	actually	has	two	tails.	It	goes	on	forever	in	both
the	positive	and	negative	directions.

But	the	chi-square	distribution	is	different.	Because	of	the	positive	skew	and	the	fact
that	the	variable	is	positive,	chi-square	distributions	only	have	a	positive	tail.	So	all	chi-
square	based	hypothesis	tests	are	implemented	as	one-tailed	tests.

In	what	follows,	we	show	you	how	to	use	the	chi-square	distribution	to	test	whether
you	can	reasonably	assume	that	a	variable	is	normally	distributed.

The	null	and	alternative	hypotheses



In	this	case,	the	null	and	alternative	hypotheses	would	be:

H0:	The	population	is	normally	distributed.

H1:	The	population	is	not	normally	distributed.

The	level	of	significance
The	level	of	significance	refers	to	probability	of	committing	a	Type	I	error,	and	is
usually	set	equal	to	0.05	in	financial	applications.	As	Chapter	5	mentions,	a	Type	I
error	consists	of	rejecting	the	null	hypothesis	when	it’s	actually	true.

Computing	the	test	statistic
In	order	to	test	the	hypothesis	that	a	population	follows	a	specified	distribution,	you
must	construct	a	table	that	shows	the	observed	distribution	of	the	sample	elements,
organized	into	categories,	and	the	expected	distribution	of	the	sample	elements.	The
table	shows	the	number	of	elements	that	would	fall	into	each	category	if	the	assumed
distribution	is	true.	The	closer	the	observed	values	are	to	the	expected	values,	the	more
likely	it	is	that	the	population	follows	the	assumed	distribution.

The	number	of	categories	corresponds	to	the	degrees	of	freedom	(df)	of	the	chi-square
distribution	you	will	use.	Choosing	the	ideal	number	of	categories	is	something	of	an
art.	In	essence,	you	want	to	choose	few	enough	so	that	the	categories	aren’t	too	small.
The	test	isn’t	meaningful	if	you	have	a	bunch	of	ranges	that	don’t	contain	any	data.

For	example,	suppose	an	investor	wants	to	determine	whether	the	returns	to	his	or	her
portfolio	are	normally	distributed	with	a	mean	of	5	percent	and	a	standard	deviation	of
10	percent.	The	portfolio	consists	of	100	stocks.	Table	8-1	shows	the	observed
frequencies	for	the	returns.

Table	8-1	Portfolio	Returns

Returns –15%	to	–5% –5%	to	+5% +5%	to	+15% +15%	to	+25%

Observed	frequency 22 29 37 12

The	null	and	alternative	hypotheses	are	as	follows:

H0:	The	population	is	normally	distributed	with	mean	=	5	percent	and	standard
deviation	=	10	percent.
H1:	The	population	is	not	normally	distributed	with	mean	=	5	percent	and	standard
deviation	=	10	percent.	This	amounts	to	saying	the	null	hypothesis	is	false.

We	choose	the	level	of	significance	to	be	5	percent.



	As	indicated	earlier,	a	goodness	of	fit	test	is	always	implemented	as	a	right-
tailed	test.

The	probability	of	a	stock’s	return	being	between	–15	percent	and	–5	percent	when	the
population	returns	are	normally	distributed	with	a	mean	of	5	percent	and	a	standard
deviation	of	10	percent	can	be	computed	as	follows.	First,	convert	these	probabilities
into	standard	normal	form.	You	do	this	with	the	following	equation:

The	key	terms	in	this	equation	are	as	follows:

Z	is	a	standard	normal	random	variable;	its	mean	is	0	and	its	standard	deviation	is
1.
X	is	a	normal	random	variable;	its	mean	is	.05	and	its	standard	deviation	is	.10.

The	probability	that	X	is	between	–15	percent	and	–5	percent	can	be	standardized	as
follows:

	and	 	can	be	found	with	a	statistical	calculator	or	standard
normal	tables.	Also,	you	can	find	them	with	the	Excel	function	normsdist.	For
example:

Therefore,

This	shows	that	if	the	returns	to	the	portfolio	are	normally	distributed	with	a	mean	of	5
percent	and	a	standard	deviation	of	10	percent,	then	13.59	percent	of	the	returns	should
be	between	–15	percent	and	–5	percent.

The	remaining	probabilities	are	computed	as	follows.	The	probability	that	X	is	between
–5	percent	and	+5	percent	is



This	shows	that	if	the	returns	to	the	portfolio	are	normally	distributed	with	a	mean	of	5
percent	and	a	standard	deviation	of	10	percent,	then	34.13	percent	of	the	returns	should
be	between	–5	percent	and	0	percent.

The	probability	that	X	is	between	+5	percent	and	+15	percent	is

This	shows	that	if	the	returns	to	the	portfolio	are	normally	distributed	with	a	mean	of	5
percent	and	a	standard	deviation	of	10	percent,	then	34.13	percent	of	the	returns	should
be	between	+5	percent	and	+15	percent.

The	probability	that	X	is	between	+15	percent	and	+25	percent	is	calculated	like	this:

This	shows	that	if	the	returns	to	the	portfolio	are	normally	distributed	with	a	mean	of	5
percent	and	a	standard	deviation	of	10	percent,	then	13.59	percent	of	the	returns	should
be	between	+15	percent	and	+25	percent.

Based	on	these	probabilities,	the	expected	frequencies	of	the	portfolio	returns	within
each	category	equal	the	probability	that	a	return	falls	into	the	category	times	the	size	of
the	portfolio.	Expected	frequency	for	returns	between	–15	percent	and	–5	percent	is
therefore

Because	the	probability	that	a	return	is	between	–15	percent	and	–5	percent,	in	a
portfolio	of	100	stocks	the	return	should	be	in	this	range	13.59	times.

The	rest	are	computed	in	a	similar	manner:



Table	8-2	shows	the	observed	frequencies	and	the	expected	frequencies	for	the
portfolio.

Table	8-2	Observed	and	Expected	Frequency	of	Portfolio	Returns

Returns –15%	to	–5% –5%	to	+5% +5%	to	+15% +15%	to	+25%

Observed	frequency 22 29 37 12

Expected	frequency 13.59 34.13 34.13 13.59

	Even	though	it’s	impossible	for	a	fractional	number	of	returns	to	fit	within	each
of	these	categories,	the	expected	frequencies	are	not	rounded	with	a	goodness	of
fit	test.

Based	on	these	results,	the	test	statistic	for	the	goodness	of	fit	test	is	constructed	as
follows:

In	this	formula:

Oj	=	Observed	frequency	in	category	j

Ej	=	Expected	frequency	in	category	j

k	=	Number	of	categories

χ2	is	used	to	indicate	that	this	test	statistic	follows	the	chi-square	distribution.

	χ	is	the	Greek	letter	chi	(pronounced	“ki”).

The	formula	for	the	test	statistic	shows	that	the	closer	the	observed	and	expected
frequencies	are,	the	less	likely	the	null	hypothesis	is	to	be	rejected.

In	this	example,	the	test	statistic	is	computed	as	follows:



The	critical	value
The	critical	value	for	the	goodness	of	fit	test	is	taken	from	the	chi-square	distribution,
with	df	(degrees	of	freedom)	equal	to	 	This	is	expressed	as	follows:

In	this	expression,	α	represents	the	level	of	significance.

	There	is	only	a	single	critical	value,	because	a	goodness	of	fit	test	is	always
implemented	as	a	right-tailed	test.

For	this	critical	value,	the	df	is	computed	as	

k	represents	the	number	of	categories.
m	refers	to	the	number	of	values	that	must	be	estimated	from	the	sample	data.

In	this	case,	 	because	there	are	four	categories	of	returns.	m	represents	the	number
of	parameters	of	the	assumed	probability	distribution	that	must	be	estimated	from
sample	data.	For	the	normal	distribution,	there	are	two	parameters:	the	mean	(μ)	and	the
standard	deviation	(σ).	If	you	don’t	specify	the	values	of	these	parameters	in	the	null
hypothesis,	then	you	must	estimate	them	by	computing	the	sample	mean	and	the
sample	standard	deviation.

In	this	case,	the	mean	of	5	percent	and	standard	deviation	of	10	percent	are	both
specified	in	the	null	hypothesis.	Therefore,	the	sample	mean	and	sample	standard
deviation	don’t	have	to	be	computed.	Because	neither	parameter	must	be	estimated
from	sample	data,	 .	The	degrees	of	freedom	equals	the	following:

You	can	find	the	critical	value	in	a	chi-square	table.	Table	8-3	shows	a	portion	of	the
chi-square	table.

Table	8-3	The	Chi-Square	Distribution

df\Right-tail	Area 0.99 0.975 0.95 0.90 0.10 0.05 0.025

1 0.000 0.000 0.000 0.016 2.706 3.841 5.024

2 0.020 0.051 0.103 0.211 4.605 5.991 7.378

3 0.115 0.216 0.352 0.584 6.251 7.815 9.348

4 0.297 0.484 0.711 1.064 7.779 9.488 11.143

5 0.554 0.831 1.145 1.610 9.236 11.070 12.833

6 0.872 1.237 1.635 2.204 10.645 12.592 14.449



7 1.239 1.690 2.167 2.833 12.017 14.067 16.013

8 1.646 2.180 2.733 3.490 13.362 15.507 17.535

The	top	row	of	the	table	represents	areas	in	the	right	tail	of	the	chi-square	distribution.
The	first	column	represents	the	number	of	degrees	of	freedom	(df).

In	this	case,	the	right-tail	area	is	0.05,	with	3	df.	This	is	because	the	level	of
significance	is	0.05	(5	percent),	and	the	df	equals	 ,	or	3.

By	looking	in	the	row	corresponding	to	3	df	and	the	column	corresponding	to	a	right-
tail	area	of	0.05,	you	will	find	the	appropriate	critical	value	of	7.815.

The	decision
Because	this	is	a	right-tailed	test,	in	order	to	reject	the	null	hypothesis,	the	test	statistic
must	exceed	the	critical	value.	For	this	type	of	test,	rejecting	the	null	hypothesis	would
indicate	that	the	population	is	not	normally	distributed.

The	test	statistic	is	6.402,	whereas	the	critical	value	is	7.815.	Therefore,	the	null
hypothesis	is	not	rejected.	This	indicates	that	it	is	reasonable	to	assume	the	population
is	normally	distributed	with	the	specified	parameters:	mean	=	5	percent	and	standard
deviation	=	10	percent.

If	the	null	hypothesis	had	been	rejected,	it	could	have	been	for	one	of	several	reasons:

The	population	is	normal,	and	the	mean	is	5	percent,	but	the	standard	deviation
isn’t	10	percent.
The	population	is	normal,	and	the	standard	deviation	is	10	percent	but	the	mean
isn’t	5	percent.
The	population	is	normal,	but	the	mean	isn’t	5	percent	and	the	standard	deviation
isn’t	10	percent.
The	population	isn’t	normal.

There	is	a	lot	of	information	packed	into	the	null	hypothesis.	It’s	a	fairly	strong	claim
about	the	distribution.	But	as	you	can	see,	if	the	goodness	of	fit	test	leads	you	to	reject
it,	it	doesn’t	give	you	a	very	clear	sense	of	why.



Jarque-Bera	test
Another	test	that	you	can	use	to	determine	whether	a	population	is	normally	distributed
is	the	Jarque-Bera	test.	The	Jarque-Bera	test	is	based	on	a	comparison	of	the	skewness
and	kurtosis	of	a	population	to	those	of	the	normal	distribution.

Skewness
Skewness	measures	the	degree	of	asymmetry	of	a	probability	distribution.	(See	Chapter
5	for	a	fuller	discussion	of	skewness.)	For	the	normal	distribution,	skewness	equals
zero,	since	the	normal	distribution	is	symmetrical	about	its	mean.

	For	a	symmetrical	distribution,	the	area	above	the	mean	is	a	mirror	image	of
the	area	below	the	mean.

Kurtosis
Kurtosis	measures	the	likelihood	of	extreme	outcomes	in	a	distribution	relative	to	the
normal	distribution.	(See	Chapter	5	for	a	more	detailed	discussion	of	kurtosis.)	For	the
normal	distribution,	kurtosis	equals	3.	A	distribution	with	a	kurtosis	exceeding	3	is	said
to	be	a	fat-tailed	distribution,	and	a	distribution	whose	kurtosis	is	less	than	3	is	said	to
be	a	skinny-tailed	distribution.

Excess	kurtosis
A	related	measure	is	known	as	excess	kurtosis.	This	is	defined	as	follows:

Table	8-4	shows	how	distributions	can	be	classified	with	the	excess	kurtosis	measure.

Table	8-4	Excess	Kurtosis

Excess	kurtosis	>	0 Fat-tailed	distribution

Excess	kurtosis	=	0 Normal	distribution

Excess	kurtosis	<	0 Skinny-tailed	distribution

The	Jarque-Bera	test	uses	the	skewness	and	kurtosis	of	a	sample	to	create	a	test	statistic
that	can	be	used	to	determine	whether	your	data	is	approximately	normally	distributed.

The	null	and	alternative	hypotheses
In	the	case	of	the	Jarque-Bera	test,	the	null	and	alternative	hypotheses	would	be	the
following:



H0:	The	population	is	normally	distributed.

H1:	The	population	is	not	normally	distributed.

As	with	the	goodness	of	fit	test,	this	is	always	a	right-tailed	test.

Computing	the	test	statistic
For	the	Jarque-Bera	test,	the	test	statistic	is	a	function	of	the	skewness	and	kurtosis	of	a
sample	drawn	from	the	underlying	population.	The	test	statistic	is	computed	as	follows:

In	this	formula:

JB	=	Jarque-Bera	test	statistic
n	=	Sample	size
S	=	Sample	skewness
K	=	Sample	kurtosis

Because	K	represents	sample	kurtosis,	 	represents	sample	excess	kurtosis.

For	example,	suppose	a	sample	of	24	is	drawn	from	a	population	of	returns	to	a	stock
over	the	past	20	years.	The	sample	skewness	is	determined	to	be	–1,	and	the	sample
kurtosis	equals	4.	The	Jarque-Bera	test	statistic	is	as	follows:

The	critical	value
The	Jarque-Bera	test	statistic	follows	the	chi-square	distribution	with	2	degrees	of
freedom.	The	test	statistic	can	be	written	like	this:

In	this	example,	assume	that	the	level	of	significance	is	0.05.	Therefore,	you	find	the
critical	value	in	Table	8-3	to	be	the	following:

Because	this	is	a	right-tailed	test,	in	order	to	reject	the	null	hypothesis,	the	test	statistic
must	exceed	the	critical	value.	As	with	the	goodness	of	fit	test,	rejecting	the	null
hypothesis	would	indicate	that	the	population	is	not	normally	distributed.

The	test	statistic	is	5,	and	the	critical	value	is	5.991.	Therefore,	the	null	hypothesis	is



not	rejected.	This	indicates	that	the	population	may	be	reasonably	assumed	to	be
normally	distributed.

	It	should	be	noted	that	in	the	case	of	fairly	small	samples	(generally	anything
under	30	is	considered	small),	the	Jarque-Bera	test	should	be	avoided.	The	test
statistic	does	not	really	start	to	look	like	a	true	 	distribution	until	the	sample	size
gets	larger.

As	you	make	your	way	through	the	remainder	of	this	book,	you	will	come	across	a
variety	of	approaches	to	making	statistically	based	predictions.	Frequently,	we	point
out	that	these	approaches	are	partly	based	on	the	assumption	that	the	variables	you’re
using	are	approximately	normally	distributed.	This	chapter	has	given	you	some	tools	to
verify	(or	not)	the	assumption	of	normality.



Chapter	9



Dealing	with	Missing	or	Incomplete	Data
In	This	Chapter

	Seeing	the	different	ways	in	which	observations	can	be	missing	from	a	dataset

	Understanding	what	types	of	problems	can	be	caused	by	missing	data

	Learning	how	to	overcome	the	problems	caused	by	missing	data

Missing	data	is	a	major	problem	in	all	areas	of	statistical	analysis.	Incomplete
information	can	make	it	impossible	to	use	many	types	of	statistical	techniques;	for
example,	a	paired	t-test	cannot	be	run	unless	there	are	equal	numbers	of	observations
for	two	variables.

	You	use	a	paired	t-test	to	test	the	hypothesis	that	the	means	of	two	different
populations	are	equal	to	each	other.

Missing	observations	can	severely	distort	the	results	of	any	statistical	procedure,
calling	into	question	the	validity	of	the	results.	Fortunately,	many	new	techniques	have
been	developed	in	recent	years	to	manage	the	problem	of	missing	data.	The	use	of
these	techniques	has	accelerated,	partially	due	to	the	development	of	highly
sophisticated	statistical	software	packages.

This	chapter	introduces	several	potential	causes	for	missing	data	and	explains	several
techniques	for	handling	the	problem.	Solutions	range	from	the	very	simple,	such	as
averaging	techniques,	to	the	very	sophisticated,	including	simulation	techniques	and
maximum	likelihood	estimation.



Missing	Data:	What’s	the	Problem?
The	term	missing	data	refers	to	a	situation	where	some	observations	have	not	been
included	in	a	dataset.	For	example,	suppose	that	a	time	series	of	Apple	stock	prices	for
the	year	2014	doesn’t	show	a	price	for	Monday,	October	27,	2014.	This	would	be
considered	a	missing	value	since	the	stock	market	was	open	on	that	date	and	Apple
stock	was	traded	heavily	during	the	day.

There	are	several	potential	causes	of	missing	observations,	which	can	be	classified	as
nonresponse	and	missingness.

	Missingness	doesn’t	appear	in	most	dictionaries,	but	it	does	appear	on	the
Wiktionary	website	(http://en.wiktionary.org/wiki/missingness).	It’s	one	of
those	technical	words	that	will	sooner	or	later	be	absorbed	by	the	English
language.

Nonresponse
Nonresponse	refers	to	a	situation	where	an	observation	is	missing	from	a	dataset
because	the	information	was	intentionally	not	reported.	For	example,	if	data	is	obtained
from	a	survey,	nonresponse	could	be	caused	by	the	unwillingness	of	participants	to
provide	certain	types	of	information.	This	is	a	significant	problem	for	survey	data,
because	the	accuracy	of	the	results	depends	on	having	a	complete	set	of	valid
responses.

Nonresponse	can	lead	to	the	problem	of	non-response	bias.	This	is	a	situation	in	which
the	statistical	results	of	a	study	can	be	distorted	if	there	is	a	systematic	pattern	to	the
missing	observations.	For	example,	if	a	survey	is	conducted	to	determine	the	average
income	in	a	given	geographic	area,	and	many	of	the	high-income	households	do	not
bother	to	respond,	the	results	will	be	biased	downward	—	that	is,	the	estimated	average
income	will	be	lower	than	the	actual	average	income.

Missingness
Missingness	refers	to	cases	where	observations	have	been	left	out	of	a	dataset	for	one
of	several	possible	reasons;	this	could	be	due	to	random	chance,	technical	errors,
human	errors,	and	so	on.	For	example,	a	stock	price	could	be	missing	from	a	dataset
due	to	computer	error,	a	bad	data	feed	from	the	stock	exchange,	and	so	forth.

There	are	a	few	different	types	of	missingness:

Missing	completely	at	random	(MCAR)
Missing	at	random	(MAR)
Missing	not	at	random	(MNAR)

http://en.wiktionary.org/wiki/missingness


Missing	completely	at	random	(MCAR)
Data	is	said	to	be	missing	completely	at	random	(MCAR)	when	there’s	no	particular
pattern	to	the	missing	observations.	For	example,	if	a	small	number	of	Apple	stock
prices	are	missing	from	a	time	series	of	2014	prices,	and	there’s	no	pattern	to	the
missing	dates	or	prices,	then	the	data	is	considered	to	be	MCAR.	On	the	other	hand,	if
the	missing	data	always	occurs	on	a	Friday,	then	there’s	a	pattern	to	the	missing	data
that	must	be	investigated;	the	data	is	clearly	not	MCAR.

For	the	Apple	stock	example,	it’s	assumed	that	the	prices	are	a	function	of	time;	the
prices	are	considered	to	be	the	dependent	variable	(Y)	and	time	is	the	independent
variable	(X)	in	this	dataset.	Because	the	missingness	of	Y	is	not	related	to	the	values	of
X	or	Y,	this	is	a	case	of	data	that	is	MCAR.

With	data	that	is	missing	completely	at	random,	the	probability	of	being	missing	is	the
same	for	all	observations.	Of	the	three	types	of	missingness,	MCAR	is	the	simplest	to
correct	for.

Missing	at	random	(MAR)
When	data	are	missing	at	random,	there	is	no	relationship	between	the	missingness	of
Y	and	the	values	of	Y.	Using	the	example	of	the	Apple	stock	prices,	suppose	the
missing	values	are	more	likely	to	occur	early	in	the	week	than	later	in	the	week,	but	are
unrelated	to	the	stock	prices	themselves.	Because	the	missingness	is	related	to	time	(X)
but	not	to	price	(Y),	the	data	is	considered	to	be	MAR.

Missing	not	at	random	(MNAR)
When	there	is	a	pattern	to	the	missing	data,	it	is	said	to	be	missing	not	at	random.	In
other	words,	the	missingness	of	Y	is	a	function	of	the	value	of	Y	and/or	X.	For	example,
if	the	price	of	Apple	stock	is	missing	on	the	first	day	of	every	month,	or	the	missing
values	are	the	largest	prices	in	the	time	series,	or	some	combination	of	the	two,	the	data
is	considered	to	be	MNAR.

One	of	the	major	drawbacks	of	MNAR	data	is	that	in	order	to	run	traditional	statistical
techniques	with	the	data,	an	explicit	model	of	the	missingness	of	the	data	is	required	to
fill	in	the	gaps.	This	can	be	an	extremely	complex	process	and	can	introduce	new	errors
into	statistical	analysis.

	One	model	that	has	been	successfully	used	for	regression	analysis	with	missing
not	at	random	data	is	the	Heckman	sample	selection	model.	(For	his	contributions
to	econometrics,	James	Heckman	was	awarded	the	Nobel	Prize	in	Economics	in
2000.)



Techniques	for	Dealing	with	Missing	Data
You	can	use	several	methods	to	deal	with	missing	data.	In	some	cases,	you	remove
missing	data	from	a	dataset;	in	other	cases,	you	use	a	specialized	technique	to	provide
estimates	for	the	missing	values.	Another	technique	that	you	may	use	is	known	as
maximum	likelihood	estimation.	With	this	technique,	you	estimate	a	function	that
identifies	the	most	likely	properties	of	the	missing	data.

Deletion	techniques
Here	are	two	methods	that	involve	the	removal	of	incomplete	data:

Casewise	deletion
Pairwise	deletion

Casewise	deletion
With	casewise	deletion	(also	known	as	complete-case	analysis),	incomplete	data	is
deleted	from	the	dataset.	For	example,	suppose	a	multivariate	equation	is	estimated
with	regression	analysis.	The	dependent	variable	(Y)	is	annual	salary,	and	the
independent	variables	are	years	of	experience	(X1)	and	years	of	graduate	education
(X2).	The	data	is	gathered	by	randomly	selecting	employees	at	a	large	corporation	and
recording	their	salary,	experience,	and	graduate	education.	If	any	combination	of	salary,
years	of	experience,	and	years	of	graduate	education	is	missing	for	a	given	employee,
that	employee’s	information	is	deleted	from	the	dataset.	Any	statistical	analysis	that	is
performed	is	based	only	on	complete	data.

Table	9-1	shows	a	sample	of	results	for	this	corporation.

Table	9-1	Employee	Salaries,	Experience,	and	Education

Employee	Number Annual	Salary	(Y)	($	Thousands	per	Year) Years	of	Experience	(X1) Years	of	Graduate	Education	(X2)

1 100 12 3

2 95 8 ***

3 122 14 2

4 88 *** 3

5 *** 15 5

6 72 4 2

The	table	shows	that	one	variable	is	missing	for	employees	2,	4,	and	5.	Using	the
casewise	deletion	method,	you	delete	all	information	about	these	employees	from	the
dataset.

One	of	the	main	drawbacks	to	this	approach	is	that	it	can	significantly	reduce	the	size



of	the	sample	being	used,	which	can	be	problematic	if	the	sample	size	is	already	small.
One	of	the	advantages	of	this	approach	is	that	if	the	data	is	MCAR,	then	this	approach
doesn’t	introduce	any	bias	into	any	statistical	analysis	that	is	performed	on	the	data.

	Bias	results	when	the	expected	or	average	value	of	an	estimate	is	consistently
above	or	below	the	value	being	estimated.	For	example,	a	procedure	that’s
designed	to	estimate	the	mean	age	of	the	residents	of	a	state	that	persistently
overestimates	the	mean	age	is	said	to	be	upward	biased.	A	procedure	that
persistently	underestimates	the	mean	age	is	said	to	be	downward	biased.	A
procedure	that	is	correct	on	average	is	said	to	be	unbiased.

Pairwise	deletion
With	pairwise	deletion	(also	known	as	available-case	analysis),	all	existing	information
in	a	dataset	is	used	to	compute	correlations	that	are	required	to	estimate	the	coefficients
of	a	regression	equation.

For	example,	suppose	that	you	use	a	multiple	regression	equation	to	measure	the
relationship	between	a	major	league	baseball	team’s	wins	during	a	season	(Y)	and	runs
scored	(X1),	earned	runs	allowed	(X2)	and	saves	(X3).	A	sample	of	this	data	is	shown	in
Table	9-2.

Table	9-2	Baseball	Runs,	Earned	Runs,	and	Saves

Major	League	Team Wins	(Y) Runs	Scored	(X1) Earned	Runs	Allowed	(X2) Saves	(X3)

1 84 820 745 39

2 90 880 730 44

3 86 830 750 ***

4 68 710 *** 28

5 91 858 706 45

6 *** 755 890 40

7 100 905 685 51

8 95 872 722 48

The	value	of	Y	is	missing	for	team	6;	because	the	data	for	X1,	X2,	and	X3	is	present,	the
team’s	data	may	be	included	in	the	calculation	of	the	correlations	between	X1	and	X2,
X1	and	X3,	and	X2	and	X3.	Similarly,	the	value	of	X2	is	missing	for	team	4.	Since	the
data	for	Y,	X1,	and	X3	is	present,	the	team’s	data	may	be	used	to	compute	the
correlations	between	Y	and	X1,	Y	and	X3,	and	X1	and	X3.

In	addition	to	correlations,	all	available	data	is	used	to	compute	the	means,	variances,
and	standard	deviations	of	the	dependent	and	independent	variables.	With	this



information,	you	can	perform	many	different	statistical	techniques	on	the	data,
including	regression	analysis.

One	of	the	advantages	of	pairwise	deletion	is	that	it	uses	all	available	information,	so	it
doesn’t	reduce	the	sample	size.	The	main	drawback	is	that	the	correlations,	means,
variances,	and	standard	deviations	are	all	being	computed	from	samples	of	different
sizes,	so	that	their	values	may	not	be	consistent	with	each	other.

Due	to	the	large	number	of	potential	problems	with	pairwise	deletion,	it’s	sometimes
referred	to	by	statisticians	as	“unwise	deletion.”

In	general,	if	the	amount	of	missing	data	is	very	small	and	is	representative	of	the
overall	dataset,	deletion	techniques	can	work	very	well.	Otherwise,	you	should	use
another	technique,	such	as	imputation,	discussed	next.

Imputation	techniques
Statistical	methods	that	produce	estimates	for	missing	data	are	known	as	imputation
techniques.	In	these	cases,	missing	values	are	estimated	or	“imputed”	from	the	rest	of
the	dataset.	Imputation	techniques	can	be	divided	into	simple	imputation	techniques
and	multiple	imputation	techniques.

Simple	imputation	techniques
With	a	simple	imputation	technique,	a	missing	value	is	estimated	from	the	remaining
values	in	the	dataset.	There	are	several	different	types	of	simple	imputation	techniques,
including	the	following:

Mean	substitution
Regression	substitution
Hotdecking

Mean	substitution

With	mean	substitution,	you	can	estimate	a	missing	value	as	the	mean	of	the	non-
missing	values	of	the	variable.	For	example,	Table	9-3	shows	a	sample	of	six
observations	taken	on	variables	X	and	Y.

Table	9-3	Estimating	a	Value	with	Mean	Substitution

Observation Y X

1 10 8

2 14 9

3 12 7

4 10 6

5 8 5



6 *** 7

The	value	of	Y	is	missing	for	observation	number	6.	Rather	than	deleting	this
observation,	the	value	of	Y	is	estimated	as	the	mean	of	the	other	values	of	Y:

	Mean	substitution	is	not	generally	a	very	good	solution	to	missing	data,
particularly	when	there	are	a	lot	of	missing	values.	The	problem	with	taking
averages	is	that	it	eliminates	any	differentiation	between	the	observations	that
have	the	missing	values.	And	differentiation	among	observations	is	the	bread	and
butter	of	predictive	statistics.	The	techniques	described	in	this	section	are	much
friendlier	to	statistical	prediction.

In	some	circumstances,	you	can	replace	missing	values	with	other	observations	in	a
dataset.	For	example,	in	a	time	series	of	stock	prices,	suppose	that	there’s	no	price	for	a
stock	on	Tuesday,	January	14.	If	the	stock	didn’t	trade	during	the	day,	you	can	use	the
price	for	January	13	as	a	proxy	for	the	January	14	price.

Another	option	is	to	use	interpolation.	This	is	a	technique	in	which	a	single	observation
in	a	dataset	is	estimated	from	other	observations.	For	example,	if	the	price	of	a	stock	is
$100	on	January	13	and	$105	on	January	15,	you	can	interpolate	value	for	January	14
simply	by	averaging	the	prices	on	January	13	and	January	15:

Regression	substitution

With	regression	substitution,	you	can	estimate	a	missing	value	by	running	a	regression
on	the	remaining	data.	For	example,	based	on	Table	9-3,	a	regression	is	run	using	the
first	five	observations.	The	estimated	regression	equation	is

Since	X	=	7	for	the	sixth	observation,	the	predicted	value	of	Y	is

Therefore,	you	use	10.8	as	the	estimated	value	of	Y	for	the	sixth	observation	in	the
dataset.

Regression	substitution	is	a	useful	technique	for	data	that	is	either	MCAR	or	MAR.

Hotdecking

With	the	hotdecking	approach,	you	can	estimate	a	missing	value	by	comparing	the



values	of	the	remaining	variables	with	the	rest	of	the	dataset	and	finding	a	match.	For
example,	in	Table	9-3,	the	sixth	observation	is	missing	a	value	for	Y	and	has	a	value	of
7	for	X.	The	third	observation	also	has	a	value	of	7	for	X,	along	with	value	of	12	for	Y.
Using	the	hotdecking	approach,	the	estimated	value	of	Y	for	the	sixth	observation
would	therefore	be	12.

One	of	the	drawbacks	of	hotdecking	is	the	possibility	that	there	are	no	matches	in	the
data.	Another	potential	problem	arises	if	there	are	multiple	missing	values.	This
technique	is	also	based	on	the	assumption	that	the	data	is	either	MCAR	or	MAR.

Multiple	imputation
Multiple	imputation	is	a	technique	in	which	Monte	Carlo	simulation	is	used	to	generate
estimated	values	for	missing	data.	Multiple	imputation	is	implemented	as	a	series	of
iterations.	Within	each	iteration,	estimated	values	are	imputed	for	missing	data	using
simulation	techniques	and	then	statistical	analysis	is	performed	on	the	data.	The
process	is	then	repeated,	with	new	values	being	simulated	for	the	missing	data.	The
same	statistical	analysis	is	performed	again.	After	each	round,	the	estimates	of	the
missing	data	should	converge	to	the	correct	values.	After	a	series	of	iterations,	the
results	of	the	statistical	analysis	during	each	iteration	are	combined	to	provide	a	single
result.

One	of	the	drawbacks	to	multiple	imputation	is	that	the	simulation	technique	being
used	depends	on	the	assumed	statistical	properties	of	the	missing	data.	In	many	cases,
the	data	are	assumed	to	be	normally	distributed.	If	this	isn’t	accurate,	then	the
reliability	of	the	multiple	imputation	process	becomes	problematic.

Expectation-maximization	(EM)
Expectation-maximization	(EM)	is	an	alternative	to	deletion	and	imputation	techniques.
You	implement	EM	in	two	steps:

Estimation
Maximization

With	the	estimation	step,	you	estimate	several	summary	measures	(such	as	means,
variances,	covariances,	and	other	statistical	measures)	with	regression	analysis.	This	is
followed	by	the	maximization	step.	Maximum	likelihood	estimation	(MLE)	is	used	to
provide	estimated	values	for	the	missing	data.

Once	the	missing	data	has	been	estimated,	the	EM	process	returns	to	the	estimation
step.	Here,	you	refine	the	original	estimates	of	the	means,	variances,	covariances,	and
so	forth	by	re-estimating	them	with	regression	analysis,	including	the	estimated	values
for	the	missing	data.	This	is	followed	by	a	repeat	of	the	maximization	step.	At	this	step,
the	estimates	for	the	missing	data	are	updated	with	maximum	likelihood	estimation.
The	process	continues	until	the	results	have	reached	their	final	values.

One	drawback	to	the	expectation-maximization	technique	is	that	it	can	give	biased



results.	An	advantage	is	that	it	can	be	used	as	the	starting	point	for	more	advanced
techniques.



Chapter	10



Sending	Out	a	Posse:	Searching	for
Outliers

In	This	Chapter
	Learning	how	to	identify	outliers	with	formal	statistical	procedures

	Seeing	how	outliers	affect	statistical	tests

	Finding	out	how	to	avoid	the	problems	associated	with	outliers

An	outlier	is	a	member	of	a	dataset	that’s	significantly	larger	or	smaller	than	the	other
values	in	the	dataset.	Outliers	can	appear	in	all	walks	of	life.	For	example,	the
following	would	be	considered	outliers:

A	man	who	is	seven	feet	tall
A	woman	who	is	100	years	old
A	household	that	has	an	annual	income	of	$100	million	per	year
A	baseball	player	who	hits	.400	during	an	entire	season

In	statistical	analysis,	an	outlier	refers	to	a	value	that	is	substantially	different	from	the
other	values	within	a	sample	or	a	population.	For	example,	suppose	you	take	a	sample
of	housing	prices	in	a	small	town,	with	the	following	results	(in	hundreds	of	thousands
of	dollars):

240,	270,	290,	305,	332,	348,	371,	404,	2,250

In	this	case,	you	would	consider	the	home	that’s	worth	$2.25	million	to	be	an	outlier
because	it’s	so	much	more	expensive	than	the	other	homes	in	that	town.	In	fact,	it’s
more	than	five	times	as	costly	as	the	next	most	expensive	home.

Outliers	are	a	cause	for	concern	because	they	may	indicate	a	problem	with	the	data
being	used.	For	example,	an	outlier	could	result	from	an	error	in	gathering	the	data,
which	calls	into	question	the	accuracy	of	the	entire	dataset.	In	the	housing	prices
example,	the	2,250	figure	could	be	a	typo;	it	may	be	that	the	correct	figure	is	225,
which	is	much	more	in	line	with	the	remaining	prices.	The	presence	of	outliers	can	also
affect	the	choice	of	statistical	procedure	that	you	use	to	analyze	the	data.	Outliers	can
greatly	affect	the	accuracy	of	some	statistics,	so	it’s	important	to	choose	the	right
procedure.

In	the	case	of	our	house	price	example,	even	the	simple	calculation	of	the	mean	can	be
greatly	affected	by	an	outlier.	If	the	2	million-dollar	house	is	left	in	the	calculation,	the
mean	turns	out	to	be	just	over	$534,000.	This	is	actually	significantly	higher	than	eight
of	the	nine	observations.	So	it	really	isn’t	indicative	of	any	central	tendency.	If	the	large



observation	is	assumed	to	be	a	typo	and	replaced	with	$225,000,	the	mean	drops	all	the
way	to	$309,000.

A	statistical	procedure	that	isn’t	greatly	affected	by	outliers	is	said	to	be	robust.	As	the
previous	example	illustrates,	the	mean	is	not	a	robust	statistic.	There	are	two	other
measures	of	central	tendency	from	Chapter	5	that	are	robust:	The	mode	and	the	median
are	not	affected	by	outliers.

This	chapter	shows	several	formal	procedures	for	identifying	outliers	and	discusses
how	to	overcome	the	problems	that	may	arise	in	their	presence.



Testing	for	Outliers
Identifying	outliers	isn’t	a	cut-and-dried	matter.	There	can	be	disagreement	about	what
does	and	does	not	qualify	as	an	outlier.	For	example,	some	researchers	may	define	an
outlier	as	any	observation	that	is	three	or	more	standard	deviations	away	from	the	mean
(the	notion	of	standard	deviation	is	discussed	in	detail	in	Chapter	5),	whereas	others
may	use	a	definition	of	four	or	more	standard	deviations	away	from	the	mean.

To	properly	identify	outliers,	you	should	use	more	formal	techniques,	such	as	the
following:

Grubbs’	test
Chi-square	test
Dixon’s	Q	test

	Prior	to	using	these	formal	tests,	the	first	step	in	identifying	outliers	is	to
visually	inspect	the	data	with	a	graph	to	see	if	there	are	any	potential	candidates
for	outliers	in	the	data.

Graphical	tests	of	outliers
The	definition	of	an	outlier	depends	on	the	assumed	probability	distribution	of	a
population.	For	example,	as	discussed	at	length	in	Chapter	8,	you	assume	that	the
values	of	a	population	are	normally	distributed.	If	population	really	is	normally
distributed,	the	graph	of	a	dataset	should	have	the	same	signature	bell	shape	—	if	it
doesn’t,	that	could	be	a	sign	that	there	are	outliers	in	the	data.

You	may	use	three	graphical	techniques	to	identify	outliers:

Histograms
Box	plots
QQ-plots

Histograms
A	histogram	is	a	graph	used	to	visually	represent	a	probability	distribution	with	a	series
of	vertical	bars.	The	horizontal	axis	shows	values	or	ranges	of	values	for	the	variable
being	studied,	and	the	vertical	axis	shows	the	corresponding	frequencies	of	these
values.

As	an	example,	the	Standard	and	Poor’s	500	index	(S&P	500)	is	a	stock	market	index
that	represents	the	prices	of	the	500	largest	U.S.	stocks,	weighted	by	their	market
capitalization.	A	stock’s	market	capitalization	equals	the	price	per	share	times	the
number	of	shares	outstanding.



Figure	10-1	shows	a	histogram	of	the	daily	returns	for	the	Standard	and	Poor’s	500
stock	market	index	during	the	years	2009–2013.
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Figure	10-1:	A	histogram	of	the	daily	returns	to	the	S&P	500	from	2009–2013.

According	to	this	histogram,	most	of	the	returns	were	close	to	zero	during	this	period.
Returns	above	0.01	(1	percent)	or	below	–0.01	(–1	percent)	occurred	relatively
infrequently.	However,	for	the	returns	that	did	occur	outside	the	small	range	around	0,
the	occurrence	of	negative	returns	outweighed	the	occurrence	of	positive	returns,	as
seen	by	the	extreme	length	of	the	left	tail.

The	shape	of	the	histogram	shows	that	the	distribution	of	returns	to	the	Standard	and
Poor’s	500	during	this	period	is	unlikely	to	be	normal.	One	problem	is	that	the	normal
distribution	is	symmetrical	about	its	mean,	whereas	the	histogram	shows	that	the
distribution	of	returns	is	negatively	skewed	(that	is,	there’s	an	imbalance	between
negative	and	positive	returns,	with	more	negative	than	positive	returns).

Box	plots
A	box	plot	shows	the	distribution	of	a	dataset	in	a	box.	The	box	is	based	on	quartiles,
which	are	like	percentiles	except	that	there	are	only	four	of	them.	The	box	plot	is
structured	as	follows:

The	top	of	the	box	represents	the	third	quartile	(or	upper	quartile)	(Q3)	of	the	data.
This	is	equivalent	to	the	75th	percentile.
The	bottom	of	the	box	represents	the	first	quartile	(or	lower	quartile)	(Q1)	of	the
data.	This	is	equivalent	to	the	25th	percentile.
The	middle	of	the	box	(shown	with	a	line)	represents	the	second	quartile	(Q2)	of
the	data	(also	known	as	the	median).

	The	first	quartile	of	a	dataset	is	a	value	that	is	greater	than	25	percent	of	the
elements	of	the	dataset	and	less	than	the	remaining	75	percent.	The	second
quartile	(that	is,	the	median)	is	a	value	that	is	greater	than	50	percent	of	the



elements	and	less	than	the	remaining	50	percent.	The	third	quartile	is	a	value	that
is	greater	than	75	percent	of	the	elements	and	less	than	the	remaining	25	percent.

	The	interquartile	range	(IQR)	is	defined	as	the	difference	between	the	third
and	first	quartiles:

The	IQR	is	used	as	a	measure	of	dispersion,	or	how	spread	out	the	data	is	about	the
center.	It	can	also	be	used	to	identify	outliers.

For	a	box	plot,	there	are	lines	above	and	below	the	box.	The	top	line	represents	the
maximum	value	in	a	dataset,	excluding	outliers.	The	bottom	line	represents	the
minimum	value	in	a	dataset,	again	excluding	outliers.	The	individual	points	shown
above	and	below	these	lines	are	the	outliers	in	the	dataset.

When	you’re	using	a	box	plot,	an	outlier	is	defined	as	follows:

If	a	data	point	is	below	 ,	it	is	considered	to	be	an	outlier.

If	a	data	point	is	above	 ,	it	is	considered	to	be	an	outlier.

Figure	10-2	shows	a	box	plot	of	the	daily	returns	to	the	S&P	500	stock	market	index
during	the	years	2009–2013.
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Figure	10-2:	A	box	plot	of	the	daily	returns	to	the	S&P	500	from	2009–2013.

The	box	plot	shows	that	there	is	one	outlier	that	is	significantly	greater	than	the	rest	of
the	returns	in	the	dataset.	There	are	also	four	outliers	that	are	significantly	smaller	than
the	rest	of	the	returns	in	the	dataset.	The	existence	of	these	outliers	shows	that	the
dataset	may	not	be	normally	distributed.

QQ-plots
You	can	plot	sample	data	with	a	QQ-plot	(short	for	quantile-quantile	plot).	This	plot
compares	the	quantiles	of	the	sample	data	with	the	quantiles	of	a	specified	probability
distribution,	such	as	the	normal.

Quantiles	are	used	to	divide	a	dataset	into	equally	sized	groups	based	on	the	value	of	a



particular	numeric	variable.	There	are	several	types	of	quantiles,	including	the
following:

Percentiles	divide	a	dataset	into	100	equal	groups,	each	corresponding	to	a
percentage	of	the	total.	For	example,	if	a	group	of	1,000	students	takes	a
standardized	exam,	and	200	of	them	receive	a	score	below	300,	then	300	would	be
the	20th	percentile	of	this	dataset.	This	indicates	that	20	percent	of	students	scored
below	300,	whereas	the	remaining	80	percent	scored	higher	than	300.
Deciles	divide	a	dataset	into	ten	equal	groups,	each	representing	10	percent	of	the
total.	For	example,	the	4th	decile	corresponds	to	the	40th	percentile.
Quartiles	divide	a	dataset	into	four	equal	groups,	each	representing	25	percent	of
the	total.	For	example,	the	3rd	quartile	corresponds	to	the	75th	percentile.

Figure	10-3	shows	a	QQ-plot	of	the	daily	returns	to	the	S&P	500	stock	market	index
during	2009–2013,	compared	with	the	normal	distribution:
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Figure	10-3:	A	QQ-plot	of	the	daily	returns	to	the	S&P	500	from	2009–2013.

The	solid	line	on	the	graph	represents	the	quantiles	of	the	normal	distribution.	0
represents	the	mean;	therefore,	half	of	the	values	are	below	0,	and	half	are	above	it.
About	95	percent	of	the	values	are	below	2	(2	represents	two	standard	deviations	above
the	mean),	whereas	5	percent	of	the	values	are	below	–2	(–2	represents	two	standard
deviations	below	the	mean).	If	the	S&P	returns	were	normally	distributed,	their
quantiles	should	lie	on	the	line.

The	points	on	the	graph	are	the	actual	observations	in	the	S&P	500	dataset.	For	the
normal	quantiles	that	are	greater	than	2	(that	is,	two	standard	deviations	above	the
mean),	the	S&P	500	returns	are	above	the	line,	which	indicates	that	the	right	tail	is	too
“fat”	to	be	consistent	with	the	normal	distribution.	For	normal	quantiles	that	are	below
–1	(that	is,	one	standard	deviation	below	the	mean),	the	S&P	500	returns	are	below	the
line,	which	indicates	that	the	left	tail	is	also	too	fat	to	be	consistent	with	the	normal
distribution.

Overall,	the	distribution	of	returns	to	the	S&P	500	appears	to	be	a	fat-tailed



distribution,	meaning	that	extreme	outcomes	are	much	more	likely	than	would	be	the
case	with	the	normal	distribution.

Hypothesis	tests	for	outliers
In	additional	to	graphical	tests,	there	are	several	formal	statistical	tests	that	are
designed	to	detect	outliers.	Three	of	these	take	the	form	of	hypothesis	tests.

You	may	recall	from	Chapter	5	that	a	hypothesis	test	is	a	procedure	for	determining
whether	a	proposition	can	be	rejected	based	on	sample	data.	Hypothesis	tests	always
involve	comparing	a	test	statistic	from	the	data	to	an	appropriate	distribution	to
determine	whether	a	given	hypothesis	is	supported	by	the	data.	The	following	sections
give	a	variety	of	hypothesis	tests	related	to	the	detection	of	outliers.

Grubbs’	test
With	a	Grubbs’	test,	you	assume	that	the	dataset	being	tested	for	outliers	is	normally
distributed.	(Chapter	8	is	dedicated	to	the	subject	of	how	to	go	about	verifying	this
assumption.)	The	null	and	alternative	hypotheses	are	as	follows:

H0:	There	are	no	outliers.

H1:	There	is	at	least	one	outlier.

The	test	statistic	is	as	follows:

where

G	=	The	test	statistic	for	the	Grubbs’	test
Yi	=	A	single	element	in	the	dataset	being	tested
Y	=	The	sample	mean
s	=	The	sample	standard	deviation

The	test	statistic	produces	the	sample	element	that	is	furthest	from	the	sample	mean
(positive	or	negative)	expressed	as	standard	deviations.	For	example,	if	the	sample
mean	is	5,	the	largest	sample	element	is	11,	and	the	sample	standard	deviation	is	2,	then
the	test	statistic	would	be	 	standard	deviations	away	from	the	mean.

The	critical	value	is	as	follows:

Where



n	is	the	size	of	the	sample	drawn	from	the	population.
t	is	a	value	drawn	from	the	Student’s	t-distribution;	it	has	a	right	tail	area	equal	to
the	level	of	significance	(α)	and	 	degrees	of	freedom	(df).

The	test	can	be	conducted	to	determine	whether	there	is	an	outlier,	whether	the
maximum	value	is	an	outlier,	whether	the	minimum	value	is	an	outlier,	and	so	on.

For	example,	the	following	shows	the	results	of	applying	Grubbs’	test	to	the	S&P	500
returns	from	2009–2013.	The	test	is	conducted	to	find	a	single	outlier.	Grubbs’	test
results	for	one	outlier:

Data:	SPReturns
G	=	3.8509,	U	=	0.9404,	p-value	=	0.01177
Alternative	hypothesis:	Lowest	value	–0.0253283545257448	is	an	outlier

With	a	level	of	significance	equal	to	0.05,	and	a	p-value	of	0.01177,	the	p-value	is
below	the	level	of	significance.	Therefore,	the	null	hypothesis	of	no	outliers	is	rejected.
Furthermore,	the	test	indicates	that	the	minimum	value	in	the	dataset	is	an	outlier.

Chi-square	test
You	can	test	for	outliers	with	the	chi-square	distribution.	The	null	and	alternative
hypotheses	are	as	follows:

H0:	There	are	no	outliers.

H1:	There	is	at	least	one	outlier.

The	test	statistic	is	based	on	the	differences	between	the	actual	members	of	a	dataset
and	the	corresponding	members	of	an	assumed	probability	distribution,	such	as	the
normal.

For	example,	the	following	shows	the	results	of	applying	the	chi-square	test	to	the	S&P
500	returns	from	2009–2013:

Chi-square	test	for	outlier
Data:	SPReturns
X-squared	=	14.8292,	p-value	=	0.01177
Alternative	hypothesis:	Lowest	value	–0.0253283545257448	is	an	outlier

With	a	level	of	significance	equal	to	0.05,	and	a	p-value	of	0.01177,	the	p-value	is
below	the	level	of	significance.	Therefore,	the	null	hypothesis	of	no	outliers	is	rejected.
Furthermore,	the	test	indicates	that	the	minimum	value	in	the	dataset	is	an	outlier.

Dixon’s	Q	test
With	Dixon’s	Q	test,	you	assume	the	dataset	being	tested	for	outliers	is	normally



distributed.	The	null	and	alternative	hypotheses	are	as	follows:

H0:	There	are	no	outliers.

H1:	There	is	at	least	one	outlier.

The	test	statistic	is	as	follows:

Gap	refers	to	the	absolute	value	of	the	difference	between	an	outlier	and	the	next
closest	value	in	the	dataset.	Range	refers	to	the	difference	between	the	largest	value	in
the	dataset	and	the	smallest	value	in	the	dataset.

One	of	the	drawbacks	to	Dixon’s	Q	test	is	that	you	can	apply	it	only	to	a	sample
containing	between	3	and	30	observations.

The	following	shows	the	results	of	applying	Dixon’s	Q	test	to	the	S&P	500	returns
during	the	first	30	trading	days	of	2009:

Dixon	test	for	outliers
Data:	SPR
Q	=	0.4359,	p-value	=	0.03185
Alternative	hypothesis:	Lowest	value	–0.0116057775514049	is	an	outlier

With	a	level	of	significance	equal	to	0.05,	and	a	p-value	of	0.03185,	the	p-value	is
below	the	level	of	significance.	Therefore,	the	null	hypothesis	of	no	outliers	is	rejected.
Furthermore,	the	test	indicates	that	the	minimum	value	in	the	dataset	is	an	outlier.



Robust	Statistics
As	mentioned,	a	statistic	is	said	to	be	robust	if	it	isn’t	strongly	influenced	by	the
presence	of	outliers.	For	example,	the	mean	is	not	robust	because	it	can	be	strongly
affected	by	the	presence	of	outliers.	On	the	other	hand,	the	median	is	robust	—	it	isn’t
affected	by	outliers.

For	example,	suppose	the	following	data	represents	a	sample	of	household	incomes	in	a
small	town	(measured	in	thousands	of	dollars	per	year):

32,	47,	20,	25,	56

You	compute	the	sample	mean	as	the	sum	of	the	five	observations	divided	by	five:

The	sample	mean	is	$36,000	per	year.	Most	of	the	households	in	the	sample	are	very
close	to	this	value.

Suppose	instead	that	the	sample	consists	of	the	following	values:

32,	47,	20,	25,	376

Because	the	household	income	of	$376,000	is	substantially	greater	than	the	next	closest
household	income	of	$32,000,	the	household	income	of	$376,000	can	be	considered	to
be	an	outlier.

With	the	outlier,	the	sample	mean	is	now	as	follows:

This	measure	isn’t	representative	of	most	of	the	households	in	the	town.	Thus	the
usefulness	of	the	mean	is	compromised	in	the	presence	of	outliers.

You	compute	the	median	of	the	sample	by	sorting	the	data	from	lowest	to	highest	and
then	finding	the	value	which	divides	the	sample	in	half.	In	other	words,	half	of	the
observations	are	below	the	median,	and	half	are	above.

The	first	sample:

32,	47,	20,	25,	56

The	sorted	sample:

20,	25,	32,	47,	56

In	this	case,	the	median	is	32	because	half	of	the	remaining	observations	are	below	32



and	half	are	above	it.

The	second	sample:

32,	47,	20,	25,	376

The	sorted	sample:

20,	25,	32,	47,	376

Despite	the	presence	of	the	outlier	of	376,	the	median	is	still	32.	It	hasn’t	been	affected
by	the	outlier.	This	shows	that	unlike	the	mean,	the	median	is	robust	with	respect	to
outliers.

Other	examples	of	robust	statistics	include	the	median,	absolute	deviation,	and	the
interquartile	range.



Dealing	with	Outliers
Once	you	have	identified	outliers,	the	question	becomes	what	to	do	about	them.	There
is	no	one	answer	to	this	question.	And	your	strategy	for	dealing	with	outliers	depends
on	your	familiarity	with	whatever	field	you	are	working	in.

It	may	become	clear	to	you	that	an	outlier	is	simply	a	data	entry	or	other	type	of	error.
If	so,	you	can	try	to	correct	the	problem.	If	there	is	no	obvious	correction	to	be	made,
then	it’s	probably	best	to	just	delete	the	observation.

Your	outlier	may,	however,	reflect	legitimate	—	that	is,	correct	—	data.	In	that	case,
you	probably	shouldn’t	be	so	quick	to	toss	it	out.	A	better	strategy	is	to	perform	your
analysis	twice,	once	with	and	once	without	the	outlier	included.	Doing	that	allows	you
to	evaluate	how	much	the	outlier	is	affecting	your	results.	If	you’re	building	a
predictive	model,	it	enables	you	to	evaluate	the	effectiveness	of	the	two	models	side	by
side.

	In	any	case,	looking	for	outliers	should	be	standard	operating	procedure	when
you’re	beginning	your	analysis	of	a	dataset.	Like	the	other	data	preparation
procedures	discussed	in	Part	II	of	this	book,	recognizing	and	dealing	with	outliers
will	positively	affect	your	results.

And	now	we	have	(finally!)	come	to	the	end	of	the	preliminaries.	In	the	next	two	parts
of	this	book,	we	get	to	the	main	event	at	last.	We	begin	to	discuss	how	to	analyze	data
in	a	way	that	generates	insight	and	predictions	about	what	is	going	on	in	the	world.



Part	III



Exploratory	Data	Analysis	(EDA)

	Does	your	hypothesis	check	out?	See	the	free	online	article	on	hypothesis	testing
at	www.dummies.com/extras/statisticsforbigdata.

http://www.dummies.com/extras/statisticsforbigdata




In	this	part	…
	Exploring	Exploratory	Data	Analysis	(EDA)

	Getting	visual	with	graphical	techniques

	Understanding	univariate	and	multivariate	statistical	techniques

	Going	further	with	regression	analysis	and	time	series	analysis



Chapter	11



An	Overview	of	Exploratory	Data
Analysis	(EDA)

In	This	Chapter
	Seeing	how	the	focus	of	EDA	is	different	from	traditional	statistical	analysis

	Exploring	important	graphical	EDA	techniques

	Understanding	key	quantitative	EDA	techniques

Exploratory	data	analysis	(EDA)	is	an	approach	to	data	analysis	that	lets	you
determine	a	dataset’s	properties	so	you	can	use	the	appropriate	technique	or	techniques
for	analyzing	the	data.	This	helps	ensure	that	you	won’t	impose	assumptions	on	the
data	that	aren’t	warranted.	Unlike	more	traditional	approaches,	which	impose	a	specific
model	on	a	dataset	based	on	predetermined	assumptions,	with	EDA	the	structure	of	a
dataset	determines	which	techniques	should	be	used	to	analyze	the	data.

	The	field	of	EDA	was	introduced	in	1977	by	the	mathematician	John	Tukey.
Tukey	believed	that	it	was	important	to	let	a	dataset	determine	the	types	of
analysis	that	should	be	performed	on	it,	rather	than	look	for	confirmation	of
predetermined	assumptions.

EDA	is	designed	to	accomplish	several	important	objectives:

Understanding	the	properties	of	a	dataset
Determining	what	type	of	structure,	if	any,	is	present	in	a	dataset
Identifying	outliers
Determining	which	probability	distribution	the	data	follows

EDA	is	used	to	determine	several	key	properties	of	a	dataset.	These	include	summary
measures	such	as	these:

Mean
Median
Mode
Variance
Standard	deviation

These	measures	provide	a	great	deal	of	information	about	the	data	in	a	very	compact
form.	The	mean,	median,	and	mode	are	measures	of	central	tendency	and	describe	the



location	of	the	data.	The	variance	and	standard	deviation	are	measures	of	dispersion
and	describe	how	“spread	out”	the	data	is	relative	to	the	center.

EDA	can	also	be	used	to	determine	whether	there	is	any	structure	in	the	data	—	that	is,
to	determine	if	there	are	any	particular	patterns	in	the	data.	With	EDA,	it’s	relatively
easy	to	spot	potential	outliers,	which	are	values	that	are	far	removed	from	other	values
in	the	dataset.	EDA	can	also	help	determine	whether	a	dataset	follows	a	particular
probability	distribution,	such	as	the	binomial,	normal,	Student’s	t-distribution,	and	so
on.

Visualizing	your	data	is	often	enlightening.	Insights	can	be	gained	at	a	glance	from
various	graphs	of	data.	And	these	graphs	can	raise	questions	that	show	you	where	you
need	to	dig	more	deeply	into	your	data.

This	chapter	explores	two	basic	types	of	techniques	for	EDA:

Graphical	techniques
Quantitative	techniques



Graphical	EDA	Techniques
EDA	is	based	heavily	on	graphical	techniques.	(Graphical	techniques	are	discussed
extensively	in	Chapter	12.)	You	can	use	graphical	techniques	to	identify	the	most
important	properties	of	a	dataset.

Here	are	some	of	the	more	widely	used	graphical	techniques:

Box	plots
Histograms
Normal	probability	plots
Scatter	plots

Box	plots
You	use	box	plots	to	show	some	of	the	most	important	features	of	a	dataset,	such	as	the
following:

Minimum	value
Maximum	value
Quartiles

Quartiles	separate	a	dataset	into	four	equal	sections.	The	first	quartile	(Q1)	is	a	value
such	that	the	following	is	true:

25	percent	of	the	observations	in	a	dataset	are	less	than	the	first	quartile.
75	percent	of	the	observations	are	greater	than	the	first	quartile.

The	second	quartile	(Q2)	is	a	value	such	that

50	percent	of	the	observations	in	a	dataset	are	less	than	the	second	quartile.
50	percent	of	the	observations	are	greater	than	the	second	quartile.

	The	second	quartile	is	also	known	as	the	median.

The	third	quartile	(Q3)	is	a	value	such	that

75	percent	of	the	observations	in	a	dataset	are	less	than	the	third	quartile.
25	percent	of	the	observations	are	greater	than	the	third	quartile.

You	can	also	use	box	plots	to	identify	outliers.	These	are	values	that	are	substantially
different	from	the	rest	of	the	dataset.	Outliers	(the	topic	of	Chapter	10)	can	cause



problems	for	traditional	statistical	tests,	so	it’s	important	to	identify	them	before
performing	any	type	of	statistical	analysis.

Histograms
You	use	histograms	to	gain	insight	into	the	probability	distribution	that	a	dataset
follows.	With	a	histogram,	the	dataset	is	organized	into	a	series	of	individual	values	or
ranges	of	values,	each	represented	by	a	vertical	bar.	The	height	of	the	bar	shows	how
frequently	a	value	or	range	of	values	occurs.	With	a	histogram,	it’s	easy	to	see	how	the
data	is	distributed.

Scatter	plots
A	scatter	plot	is	a	series	of	points	that	show	how	two	variables	are	related	to	each	other.
A	random	scatter	of	points	indicates	that	the	two	variables	are	unrelated,	or	that	the
relationship	between	them	is	very	weak.	If	the	points	closely	resemble	a	straight	line,
this	indicates	that	the	relationship	between	the	two	variables	is	approximately	linear.

	Two	variables	are	linearly	related	if	they	can	be	described	with	the	equation	
.

X	is	the	independent	variable,	and	Y	is	the	dependent	variable.	m	is	the	slope,	which
represents	the	change	in	Y	due	to	a	given	change	in	X.	b	is	the	intercept,	which	shows
the	value	of	Y	when	X	equals	zero.

Figure	11-1	shows	a	scatter	plot	between	two	variables	in	which	the	relationship
appears	to	be	linear.
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Figure	11-1:	Scatter	plot	of	a	linear	relationship.

The	points	on	the	scatter	plot	in	Figure	11-1	very	nearly	form	a	straight	line.	It	bends	a
little	to	the	left	and	bends	a	little	to	the	right,	but	it’s	roughly	straight.	This	shows	that
the	relationship	is	linear,	with	a	positive	slope.

Figure	11-2	shows	a	scatter	plot	between	two	variables	in	which	Y	appears	to	be	rising
more	rapidly	than	X.
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Figure	11-2:	Scatter	plot	of	a	nonlinear	relationship.

See	the	curve	in	Figure	11-2?	This	relationship	is	clearly	not	linear.	It	is	in	fact	a
quadratic	relationship.	A	quadratic	relationship	takes	the	form	 .

Figure	11-3	shows	a	scatter	plot	in	which	there	doesn’t	appear	to	be	any	relationship
between	X	and	Y.
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Figure	11-3:	Scatter	plot	with	no	relationship	between	the	variables	X	and	Y.

The	variables	in	the	scatter	plot	shown	in	Figure	11-3	are	unrelated	or	independent;
you	can	see	this	by	the	lack	of	any	pattern	in	the	data.

In	addition	to	showing	the	relationship	between	two	variables,	a	scatter	plot	can	also
show	the	presence	of	outliers.	Figure	11-4	shows	a	dataset	with	one	observation	that	is
substantially	different	from	the	other	observations.
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Figure	11-4:	Scatter	plot	with	an	outlier.



The	outlier	point	in	Figure	11-4	needs	to	be	investigated	further	to	determine	whether
it’s	the	result	of	an	error	or	other	problems.	It’s	possible	that	the	outlier	will	need	to	be
removed	from	the	data.	(Outliers	are	discussed	in	detail	in	Chapter	10.)

Normal	probability	plots
Normal	probability	plots	are	used	to	see	how	closely	the	elements	of	a	dataset	follow
the	normal	distribution.	The	assumption	of	normality	is	common	in	many	disciplines.
For	example,	it’s	often	assumed	in	finance	and	economics	that	the	returns	to	stocks	are
normally	distributed.	The	assumption	of	normality	is	very	convenient,	and	many
statistical	tests	are	based	on	this	assumption.

Applying	statistical	tests	that	assume	normality	to	a	non-normal	dataset	would	give
extremely	questionable	results.	Therefore,	it’s	important	to	determine	whether	or	not
the	data	is	normally	distributed	before	conducting	any	of	these	statistical	tests.	Chapter
8	talks	about	some	methods	for	doing	this.



EDA	Techniques	for	Testing	Assumptions
There	are	several	EDA	techniques	you	can	use	to	test	assumptions	about	a	dataset.
These	include

Run	sequence	plot
Lag	plot
Histogram
Normal	probability	plot

Run	sequence	plot
Many	statistical	techniques	are	based	on	the	assumption	that	the	data	being	analyzed
has	the	following	properties:

Independent	variables
Variables	drawn	from	a	common	probability	distribution
Variables	with	common	parameters	(for	example,	mean	and	standard	deviation)

A	run	sequence	plot	tests	whether	the	data	conforms	to	these	assumptions.	For
example,	Figure	11-5	shows	a	run	sequence	plot	for	the	daily	returns	to	the	Standard
and	Poor’s	stock	market	index.
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Figure	11-5:	Run	sequence	plot	of	daily	returns	to	the	S&P	500.

Because	this	is	a	time	series	plot,	it’s	being	used	to	determine	whether	the	returns	to	the



S&P	500	are	independent	of	each	other,	whether	they	are	all	drawn	from	the	same
probability	distribution,	and	whether	the	parameters	(mean	and	variance)	remain
constant	over	time.

The	run	sequence	plot	is	designed	to	answer	these	questions:

Are	there	any	changes	in	the	mean	of	the	data?
Are	there	any	changes	in	the	variance	of	the	data?

In	addition,	you	use	the	run	sequence	plot	to	identify	any	outliers	in	the	data.

The	plot	of	the	returns	to	the	S&P	500	shows	that	the	mean	and	variance	of	the	data
remain	stable	over	time,	and	that	there	do	not	appear	to	be	any	outliers.

Lag	plot
A	lag	plot	determines	whether	the	elements	of	a	dataset	are	random	(independent	of
each	other).	In	other	words,	the	plot	shows	whether	or	not	there’s	a	pattern	in	the	data.
Patterns	in	the	data	are	inconsistent	with	randomness.

	A	lagged	value	is	one	that	has	occurred	in	the	past.	A	lag	of	1	refers	to	an
observation	that	has	taken	place	one	period	in	the	past.	A	lag	of	2	refers	to	an
observation	that	has	taken	place	two	periods	in	the	past,	and	so	forth.

A	lag	plot	shows	the	values	of	a	variable	on	the	vertical	axis,	and	the	lagged	values	of
the	same	variable	on	the	horizontal	axis.	For	example,	Figure	11-6	shows	a	lag	plot	for
the	daily	returns	to	the	Standard	and	Poor’s	stock	market	index.
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Figure	11-6:	Lag	plot	of	daily	returns	to	the	Standard	and	Poor’s	500	in	2013.

The	points	on	this	plot	are	randomly	scattered	with	no	particular	pattern.	This	is
consistent	with	the	assumption	of	randomness	in	the	data.

Histogram
You	can	use	a	histogram	to	identify	the	distribution	followed	by	a	dataset.	A	histogram
can	show	several	key	details	about	a	dataset,	including	the	following:

The	center	of	the	data
The	spread	(variability)	of	the	data
The	skewness	of	the	data	(if	any)
The	presence	of	outliers

For	example,	Figure	11-7	shows	a	histogram	for	the	daily	returns	to	the	Standard	and
Poor’s	stock	market	index.
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Figure	11-7:	Histogram	of	daily	returns	to	the	S&P	500.

The	graph	shows	that	the	Standard	and	Poor’s	returns	have	a	mean	of	approximately	0
—	the	heights	of	the	bars	are	greatest	near	0.	The	returns	appear	to	exhibit	negative
skewness	(that	is,	extreme	negative	returns	are	more	common	than	extreme	positive
returns)	and	have	a	greater	magnitude.	There	do	not	appear	to	be	any	outliers	in	the
data.

Normal	probability	plot
Use	a	normal	probability	plot	to	compare	a	dataset	to	the	normal	distribution.	The
vertical	axis	of	this	plot	shows	the	quantiles	of	the	dataset,	and	the	horizontal	axis
shows	the	quantiles	of	the	normal	distribution.	If	a	dataset	is	normally	distributed,	then
the	graph	should	appear	to	be	a	straight	line	with	a	slope	of	1.



	Quantiles	are	used	to	divide	a	dataset	into	equally	sized	groups.	A	widely	used
type	of	quantile	is	the	quartile,	which	(as	discussed	earlier)	divides	a	dataset	into
four	equal	groups,	each	consisting	of	25	percent	of	the	data.	Another	popular
choice	is	the	percentile,	which	divides	a	dataset	into	one	hundred	equal	groups,
each	consisting	of	1	percent	of	the	data.

Figure	11-8	shows	a	normal	probability	plot	for	the	daily	returns	to	the	Standard	and
Poor’s	stock	market	index.

©	John	Wiley	&	Sons,	Inc.

Figure	11-8:	Normal	probability	plot	of	daily	returns	to	the	S&P	500	in	2013.

The	plot	shows	that	the	returns	to	the	S&P	500	are	close	to	being	normal,	with
deviations	in	the	tails	of	the	distribution.



Quantitative	EDA	Techniques
Although	EDA	is	mainly	based	on	graphical	techniques,	it	also	consists	of	a	few
quantitative	techniques.	This	section	discusses	two	of	these:

Interval	estimation
Hypothesis	testing

Interval	estimation
Interval	estimation	is	a	technique	that’s	used	to	construct	a	range	of	values	within
which	a	variable	is	likely	to	fall.	One	important	example	of	this	is	the	confidence
interval.	A	confidence	interval	is	a	range	of	numbers	that	is	likely	to	contain	the	value
of	a	population	measure	such	as	the	mean.	A	confidence	interval	is	constructed	as
follows:

The	confidence	interval	consists	of	a	lower	limit	equal	to	the	point	estimate	minus	the
margin	of	error,	and	an	upper	limit	equal	to	the	point	estimate	plus	the	margin	of	error.

The	point	estimate	is	a	single	value	estimated	from	a	sample.	For	example,	the	sample
mean	is	a	point	estimate	of	the	population	mean.	Similarly,	the	sample	standard
deviation	is	a	point	estimate	of	the	population	standard	deviation.

The	margin	of	error	reflects	the	amount	of	uncertainty	associated	with	the	point
estimate.	In	other	words,	it	shows	how	much	the	point	estimate	can	change	from	one
sample	to	the	next.	The	margin	of	error	is	based	on	the	standard	deviation	and	the	size
of	the	sample	being	used.	The	result	of	these	calculations	is	a	range	of	values	that	is
likely	to	contain	the	true	value	of	the	population	measure.

For	example,	suppose	a	researcher	determines	that	with	95	percent	confidence,	the
interval	(−2.0	percent,	+8.0	percent)	contains	the	true	value	of	the	mean	return	to	the
S&P	500	next	year.	The	sample	mean	is	the	average	of	the	lower	and	upper	limit	of	this
interval	(that	is,	3.0	percent).	The	margin	of	error	is	therefore	5	percent.

Hypothesis	testing
A	statistical	hypothesis	is	a	statement	that’s	assumed	to	be	true	unless	there’s	strong
contradictory	evidence.	(Chapter	5	introduces	hypothesis	testing,	and	Chapters	8,	10,
and	14	talk	about	it	extensively.)	Hypothesis	testing	is	widely	used	in	many	disciplines
to	determine	whether	a	proposition	is	true	or	false.	For	example,	hypothesis	testing
could	be	used	to	determine	whether

The	mean	age	of	the	residents	of	a	state	is	43	years	old.
The	mean	return	to	the	stocks	in	a	portfolio	is	7.2	percent.



The	amount	of	annual	rainfall	in	a	city	follows	the	normal	distribution.

Hypothesis	testing	is	a	multi-step	process	consisting	of	the	following:

1.	 The	statement	of	the	null	hypothesis:	This	is	the	statement	that	is	assumed	to	be
true.

2.	 The	statement	of	the	alternative	hypothesis:	This	is	the	statement	that	will	be
accepted	if	the	null	hypothesis	is	rejected.

3.	 The	level	of	significance	at	which	the	hypothesis	test	will	be	conducted:	This
equals	the	likelihood	of	rejecting	the	null	hypothesis	when	it	is	false.

4.	 The	test	statistic:	This	is	a	numerical	measure	that	shows	whether	sample	data	is
consistent	with	the	null	hypothesis.

5.	 The	critical	value:	If	the	test	statistic	is	more	extreme	than	the	critical	value,	the
null	hypothesis	is	rejected.

6.	 The	decision:	Based	on	the	relationship	between	the	test	statistic	and	the	critical
value,	you	make	a	decision	as	to	whether	or	not	the	null	hypothesis	should	be
rejected.



Chapter	12



A	Plot	to	Get	Graphical:	Graphical
Techniques

In	This	Chapter
	Delving	into	several	graphical	techniques	you	can	use	to	analyze	data

	Comprehending	the	advantages	and	disadvantages	of	different	plotting	approaches

	Determining	how	to	choose	the	right	graphical	technique	for	any	situation

You	use	graphs	to	gain	insights	into	the	statistical	properties	of	a	dataset.	It’s	often	easy
to	see	patterns	or	relationships	in	a	dataset	that	would	be	easy	to	miss	with	numerical
techniques,	and	this	is	especially	true	for	large	datasets.

This	chapter	introduces	several	of	the	most	important	graphical	techniques	for
analyzing	datasets:

Stem-and-leaf	plots
Scatter	plots
Box	plots
Histograms
Quantile-quantile	(QQ)	plots
Autocorrelation	plots



Stem-and-Leaf	Plots
A	stem-and-leaf	plot	is	a	graphical	device	in	which	the	distribution	of	a	dataset	is
organized	by	the	numerical	value	of	the	observations	in	the	dataset.	The	diagram
consists	of	a	“stem,”	showing	the	different	categories	in	the	data,	and	a	“leaf,”	which
shows	the	values	of	the	individual	observations	in	the	dataset.

For	example,	the	following	is	a	stem-and-leaf	diagram	for	the	daily	prices	of	Microsoft
stock	from	January	1,	2013	to	December	31,	2013.	The	prices	range	from	$25.16	to
$38.14:

On	the	stem-and-leaf	plot,	each	line	represents	a	single	category;	for	this	dataset,	each
category	is	a	dollar	amount.	For	example,	the	category	32	consists	of	all	prices	between
$32.00	and	$32.99.	Each	price	for	Microsoft	stock	is	quoted	in	dollars	and	cents.	The
left	side	of	the	bar	shows	the	dollars	(the	stems);	the	right	side	of	the	bar	shows	the
cents	(the	leaves),	after	rounding	to	the	nearest	10	cents.	For	example,	a	price	of	$32.23
is	rounded	to	$32.20,	and	this	appears	as	a	2	on	the	right-hand	side	of	the	bar	for	the
category	32.	A	price	of	$33.48	is	rounded	to	$33.50;	this	appears	as	a	5	on	the	right-
hand	side	of	the	bar	for	the	category	33.

Using	this	technique,	it’s	easy	to	see	how	many	prices	fall	into	each	category.	For
example,	there	were	14	trading	days	in	the	dataset	in	which	the	price	of	Microsoft	stock
was	between	$25.00	and	$25.99.	There	were	three	trading	days	in	which	the	price	of
Microsoft	stock	was	between	$29.00	and	$29.99.	A	price	between	$33.00	and	$33.99
occurred	most	frequently,	and	a	price	between	$38.00	and	$38.99	was	the	most
infrequent	during	the	year.

One	of	the	advantages	of	a	stem-and-leaf	diagram	is	that	it’s	easy	to	identify	the	mode
of	a	dataset.	(Recall	that	the	mode	is	the	value	that	occurs	most	frequently	in	a	dataset.)



If	you	look	only	at	the	dollar	ranges,	then	it’s	easy	to	spot	which	range	contains	the
most	observations	—	the	one	with	the	longest	leaf.	In	this	case,	a	price	in	the	33	range
($33.00–$33.99)	would	be	considered	to	be	the	mode	because	it	contains	the	most
observations.

Another	advantage	of	this	diagram	is	that	outliers	are	easy	to	spot.	An	outlier	is	an
observation	in	a	dataset	that	is	significantly	larger	or	smaller	than	the	other
observations	in	the	dataset.	An	outlier	would	be	indicated	by	a	large	gap	between	either
the	first	or	last	stem	and	the	next	closest	one.	(Chapter	10	talks	more	about	outliers.)

One	drawback	to	stem-and-leaf	diagrams	is	that	they	become	difficult	to	interpret	for
large	datasets	because	the	size	of	the	leaf	becomes	unwieldy.



Scatter	Plots
Unlike	a	stem-and-leaf	plot,	a	scatter	plot	is	intended	to	show	the	relationship	between
two	variables.	It	may	be	difficult	to	see	whether	there’s	a	relationship	between	two
variables	just	by	looking	at	the	raw	data,	but	with	a	scatter	plot,	any	patterns	that	exist
in	the	data	become	much	easier	to	see.

A	scatter	plot	consists	of	a	series	of	points;	each	point	shows	a	single	value	for	two
different	variables.	For	example,	you	could	construct	a	scatter	plot	to	show	the
relationship	between	a	corporation’s	annual	revenues	and	its	annual	profits.	If	you’re
trying	to	predict	profits	based	on	revenue,	the	X-axis	would	be	used	to	show	annual
revenues,	and	the	Y-axis	would	be	used	to	show	annual	profits.	So,	revenues	are
considered	to	be	the	independent	variable,	and	profits	are	considered	to	be	the
dependent	variable	in	this	relationship.

	On	a	scatter	plot,	the	X-axis	(that	is,	the	horizontal	axis)	is	used	to	show	the
independent	variable,	and	the	Y-axis	(the	vertical	axis)	is	used	to	show	the
dependent	variable.

In	this	example,	each	point	on	the	scatter	plot	shows	the	revenues	and	sales	for	a
specified	year.	Table	12-1	shows	the	relationship	between	the	annual	revenues	and
annual	profits	of	a	corporation	during	the	years	2004–2014.

Table	12-1	Annual	Revenues	and	Profits	2004–2014

Year Revenues	($	millions) Profits	($	millions)

2004 225 42

2005 237 43

2006 245 48

2007 222 40

2008 265 60

2009 270 56

2010 254 53

2011 280 60

2012 290 62

2013 305 65

2014 312 71

Figure	12-1	shows	the	resulting	scatter	plot.
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Figure	12-1:	Scatter	plot	of	annual	revenues	and	profits	2004–2014.

Each	point	on	the	scatter	plot	in	Figure	12-1	represents	the	revenues	and	related	profits
of	the	corporation	for	a	single	year.	For	example,	the	point	in	the	upper	right-hand
corner	of	the	plot	represents	data	for	2014,	when	the	corporation’s	revenues	were	$312
million	and	the	profits	were	$71	million.

You	can	use	a	scatter	plot	to	determine	whether

The	two	variables	tend	to	move	in	the	same	direction.
The	two	variables	tend	to	move	in	opposite	directions.
The	two	variables	aren’t	related	to	each	other.

	If	two	variables	tend	to	move	in	the	same	direction,	they	are	said	to	be
positively	correlated;	if	they	tend	to	move	in	opposite	directions,	they	are	said	to
be	negatively	correlated.	If	two	variables	don’t	show	any	particular	pattern,	they
are	said	to	be	uncorrelated.

Figure	12-2	shows	a	scatter	plot	for	two	variables	(X	and	Y)	that	are	positively
correlated.
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Figure	12-2:	Scatter	plot	of	two	positively	correlated	variables.

The	scatter	plot	shows	that	as	X	increases,	there’s	a	strong	tendency	for	Y	to	increase
(but	not	necessarily	by	the	same	amount).	This	shows	that	X	and	Y	are	positively
correlated.

Figure	12-3	shows	the	same	scatter	plot	with	a	trend	line;	the	equation	of	this	line	is
estimated	with	regression	analysis.	(See	Chapter	15	for	a	discussion	of	how	to
implement	regression	analysis	and	interpret	the	results.)
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Figure	12-3:	Scatter	plot	of	two	positively	correlated	variables	with	a	trend	line.

The	trend	line	shows	how	much	Y	changes	on	average,	given	a	specific	change	in	X.	A
positively	sloped	trend	line	indicates	that	two	variables	are	positively	correlated;
similarly,	a	negatively	sloped	trend	line	indicates	that	two	variables	are	negatively
correlated.	If	a	trend	line	is	flat	(that	is,	has	a	zero	slope),	this	indicates	that	the	two



variables	are	unrelated	to	each	other.	In	Figure	12-3,	the	positively	sloped	trend	line
shows	that	X	and	Y	are	positively	correlated.

Figure	12-4	shows	a	scatter	plot	and	the	trend	line	for	two	variables	that	are	negatively
correlated.
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Figure	12-4:	Scatter	plot	of	two	negatively	correlated	variables	with	a	trend	line.

The	scatter	plot	shows	that	as	X	increases,	Y	tends	to	decrease;	the	trend	line	has	a
negative	slope.	Therefore,	X	and	Y	are	negatively	correlated.

Figure	12-5	shows	a	scatter	plot	and	the	trend	line	for	two	variables	that	are
uncorrelated.
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Figure	12-5:	Scatter	plot	of	two	uncorrelated	variables	with	a	trend	line.



The	scatter	plot	shows	that	as	X	increases,	Y	sometimes	increases	and	sometimes
decreases.	There	is	no	particular	pattern	to	the	data.	The	points	appear	to	be	randomly
scattered	throughout	the	diagram.	As	a	result,	the	trend	line	is	nearly	flat,	and	this
shows	that	X	and	Y	are	uncorrelated.

For	a	real-world	example,	Figure	12-6	shows	a	scatter	plot	of	the	relationship	between
the	price	of	Apple	stock	and	the	Standard	and	Poor’s	500	stock	market	index	from
January	1,	2013	to	December	31,	2013.
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Figure	12-6:	Scatter	plot	of	daily	prices	of	Apple	stock	and	the	S&P	500.

The	Standard	and	Poor’s	500	(S&P	500)	index	is	an	average	of	the	prices	of	the	500
largest	U.S.	stocks.	The	value	of	this	index	reflects	the	overall	state	of	the	U.S.
economy.	The	plot	shows	that	there’s	a	positive	correlation	between	the	price	of	Apple
stock	and	the	S&P	500.



Box	Plots
A	box	plot	is	designed	to	show	several	key	statistics	for	a	dataset	in	the	form	of	a
vertical	rectangle	or	box.	The	statistics	it	can	show	include	the	following:

Minimum	value
Maximum	value
First	quartile	(Q1)

Second	quartile	(Q2)

Third	quartile	(Q3)

Interquartile	range	(IQR)

The	first	quartile	of	a	dataset	is	a	numerical	measure	that	divides	the	data	into	two
parts:	the	smallest	25	percent	of	the	observations	and	the	largest	75	percent	of	the
observations.	In	other	words,	the	first	quartile	is	a	numerical	value	with	the	following
properties:

25	percent	of	the	observations	in	the	dataset	are	smaller	than	the	first	quartile.
75	percent	of	the	observations	in	the	dataset	are	greater	than	the	first	quartile.

Similarly,	the	second	quartile	(also	known	as	the	median)	divides	the	data	in	half,	so	50
percent	of	the	elements	are	smaller	than	the	median,	and	50	percent	are	larger.

The	third	quartile	is	the	value	for	which	the	following	are	true:

75	percent	of	the	observations	in	the	dataset	are	smaller	than	the	third	quartile.
25	percent	of	the	observations	in	the	dataset	are	greater	than	the	third	quartile.

The	interquartile	range	(IQR)	is	the	difference	between	the	third	quartile	and	first
quartile:	 .

	The	interquartile	range	is	a	measure	of	dispersion;	it	shows	how	much	spread
there	is	between	the	elements	in	the	middle	50	percent	of	a	dataset.

A	box	plot	is	drawn	so	that

The	top	of	the	box	represents	the	third	quartile	(Q3)	of	the	data.

The	bottom	of	the	box	represents	the	first	quartile	(Q1)	of	the	data.

The	middle	of	the	box	(shown	with	a	line)	represents	the	second	quartile	(Q2).

In	addition,	there’s	a	line	above	the	box	to	indicate	the	maximum	value	in	the	data	that



doesn’t	exceed	 	and	a	line	below	the	box	to	indicate	the	minimum	value	in
the	data	that	doesn’t	fall	below	 .	Values	outside	of	this	range	are	outliers
and	are	shown	on	the	box	plot	as	individual	points.	(Outliers	are	discussed	in	Chapter
10.)

Figure	12-7	shows	a	box	plot	of	the	daily	prices	of	Microsoft	stock	from	January	1,
2013	to	December	31,	2013.
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Figure	12-7:	Box	plot	of	daily	prices	for	Microsoft	stock.

There	are	no	outliers	in	this	data.	Therefore,	the	bottom	line	in	the	box	plot	shows	that
the	lowest	price	during	this	period	was	somewhat	less	than	$26.00,	and	the	top	line
shows	that	the	highest	price	was	just	over	$38.	The	bottom	of	the	box	corresponds	to
the	first	quartile,	which	is	$27.43;	the	solid	line	in	the	middle	of	the	box	corresponds	to
the	second	quartile	(median),	which	is	$31.89.	The	top	of	the	box	corresponds	to	the
third	quartile,	which	is	$33.78.	The	height	of	the	box	equals	the	interquartile	range
(IQR),	which	is	$6.35.

As	another	example,	Figure	12-8	shows	a	box	plot	of	the	daily	prices	of	Apple	stock
from	January	1,	2013	to	December	31,	2013.



©	John	Wiley	&	Sons,	Inc.

Figure	12-8:	Box	plot	of	daily	prices	for	Apple	stock	from	January	1,	2013	to	December	31,	2013.

The	lowest	price	in	2013	for	Apple	stock	was	$53.84,	and	the	highest	price	was	$80.11.
There	are	no	outliers	in	the	data,	so	these	values	are	shown	by	the	bottom	line	and	top
line,	respectively.

The	first	quartile,	shown	at	the	bottom	of	the	box,	was	$60.48.	The	second	quartile	was
$63.65	(shown	by	the	solid	black	line)	and	the	third	quartile	was	$70.32,	shown	at	the
top	of	the	box.	As	a	result,	the	interquartile	range	(IQR)	is	$9.84.



Histograms
A	histogram	is	a	graph	that	represents	the	probability	distribution	of	a	dataset.	A
histogram	has	a	series	of	vertical	bars	where	each	bar	represents	a	single	value	or	a
range	of	values	for	a	variable.	The	heights	of	the	bars	indicate	the	frequencies	or
probabilities	for	the	different	values	or	ranges	of	values.

For	example,	Figure	12-9	shows	a	histogram	of	the	daily	prices	of	Apple	stock	from
January	1,	2013	to	December	31,	2013.
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Figure	12-9:	Histogram	of	daily	prices	for	Apple	stock.

According	to	this	histogram,	most	of	the	prices	were	between	$60	and	$65;	the	price
was	in	this	range	81	times	during	the	year.	The	second	most	frequently	observed	prices
were	between	$55	and	$60;	the	price	landed	in	this	range	44	times	during	the	year.	The
third	most	frequent	range	of	prices	was	between	$65	and	$70,	and	the	fourth	most
frequent	range	of	prices	was	between	$70	and	$75.	Very	few	prices	were	between	$50
and	$55,	and	the	fewest	prices	observed	during	the	year	were	between	$80	and	$85.

Based	on	the	graph,	the	mean	and	median	price	were	close	to	the	$60	to	$65	range.	The
actual	mean	was	$65.67,	and	the	actual	median	was	$63.65.	Since	the	mean	exceeds
the	median,	the	distribution	of	prices	for	2013	was	positively	skewed.	This	indicates
that	the	likelihood	of	an	extremely	large	price	is	somewhat	greater	than	the	likelihood
of	an	extremely	low	price.



	A	distribution	is	positively	skewed	if	the	mean	is	greater	than	the	median;	it	is
negatively	skewed	if	the	mean	is	less	than	the	median.	The	distribution	is
symmetrical	about	the	mean	if	the	mean	equals	the	median.	How	much	the	data	is
skewed	depends	on	how	far	the	mean	and	median	differ.	If	they	are	very	close,	it’s
sometimes	practical	to	treat	the	distribution	as	symmetric.

As	another	example,	Figure	12-10	shows	a	histogram	of	the	daily	prices	of	the	S&P
500	stock	index	from	January	1,	2013	to	December	31,	2013.

Figure	12-10:	Histogram	of	daily	prices	for	the	S&P	500.

According	to	the	histogram	in	Figure	12-10,	the	most	frequently	observed	range	of
prices	during	the	year	was	between	$1,650	and	$1,700.	The	mean	turned	out	to	be
$1,643.80,	and	the	median	was	$1,650.41.	Unlike	Apple	stock,	the	mean	was	below	the
median;	the	distribution	of	prices	for	2013	is	negatively	skewed.	This	indicates	that
there	was	a	slightly	greater	tendency	for	the	Standard	and	Poor’s	500	to	trade	below	the
mean	than	above	the	mean	in	2013.

One	of	the	most	important	uses	of	histograms	is	to	determine	if	a	dataset	follows	a
specified	probability	distribution.	Although	there	are	many	formal	statistical	tests	to
determine	which	probability	distribution	a	dataset	follows,	it’s	good	practice	to	visually
inspect	the	data	with	a	graph	before	engaging	in	any	formal	statistical	tests.

Figure	12-9	provides	strong	evidence	that	Apple	stock	prices	are	not	normally
distributed.	The	normal	distribution	is	symmetrical	about	its	mean,	whereas	the	Apple
stock	prices	are	positively	skewed.	Figure	12-10	provides	strong	evidence	that	the	S&P



500	is	also	unlikely	to	be	normally	distributed	because	its	distribution	is	negatively
skewed.

Formal	statistical	tests	would	be	required	to	show	that	neither	distribution	is	normal,
but	the	graphs	are	highly	suggestive.	Because	many	statistical	tests	are	based	on	the
assumption	of	normality,	it’s	important	to	determine	if	a	distribution	is	truly	normal
before	you	use	any	of	these	tests.



Quantile-Quantile	(QQ)	Plots
A	quantile-quantile	plot	(also	known	as	a	QQ-plot)	is	another	way	you	can	determine
whether	a	dataset	matches	a	specified	probability	distribution.	QQ-plots	are	often	used
to	determine	whether	a	dataset	is	normally	distributed.	Graphically,	the	QQ-plot	is	very
different	from	a	histogram.	As	the	name	suggests,	the	horizontal	and	vertical	axes	of	a
QQ-plot	are	used	to	show	quantiles.

We	used	quartiles	earlier	in	this	chapter	to	create	stem-and-leaf	plots.	Quartiles	divide	a
dataset	into	four	equal	groups,	each	consisting	of	25	percent	of	the	data.	But	there	is
nothing	particularly	special	about	the	number	four.	You	can	choose	any	number	of
groups	you	please.

Another	popular	type	of	quantile	is	the	percentile,	which	divides	a	dataset	into	100
equal	groups.	For	example,	the	30th	percentile	is	the	boundary	between	the	smallest	30
percent	of	the	data	and	the	largest	70	percent	of	the	data.	The	median	of	a	dataset	is	the
50th	percentile	of	the	dataset.	The	25th	percentile	is	the	first	quartile,	and	the	75th
percentile	the	third	quartile.

With	a	QQ-plot,	the	quantiles	of	the	sample	data	are	on	the	vertical	axis,	and	the
quantiles	of	a	specified	probability	distribution	are	on	the	horizontal	axis.	The	plot
consists	of	a	series	of	points	that	show	the	relationship	between	the	actual	data	and	the
specified	probability	distribution.	If	the	elements	of	a	dataset	perfectly	match	the
specified	probability	distribution,	the	points	on	the	graph	will	form	a	45	degree	line.

For	example,	Figure	12-11	shows	a	normal	QQ-plot	for	the	price	of	Apple	stock	from
January	1,	2013	to	December	31,	2013.

©	John	Wiley	&	Sons,	Inc.



Figure	12-11:	Normal	QQ-plot	of	daily	prices	for	Apple	stock.

The	QQ-plot	shows	that	the	prices	of	Apple	stock	do	not	conform	very	well	to	the
normal	distribution.	In	particular,	the	deviation	between	Apple	stock	prices	and	the
normal	distribution	seems	to	be	greatest	in	the	lower	left-hand	corner	of	the	graph,
which	corresponds	to	the	left	tail	of	the	normal	distribution.	The	discrepancy	is	also
noticeable	in	the	upper	right-hand	corner	of	the	graph,	which	corresponds	to	the	right
tail	of	the	normal	distribution.

The	graph	shows	that	the	smallest	prices	of	Apple	stock	are	not	small	enough	to	be
consistent	with	the	normal	distribution;	similarly,	the	largest	prices	of	Apple	stock	are
not	large	enough	to	be	consistent	with	the	normal	distribution.	This	shows	that	the	tails
of	the	Apple	stock	price	distribution	are	too	“thin”	or	“skinny”	compared	with	the
normal	distribution.	The	conclusion	to	be	drawn	from	this	is	that	the	Apple	stock	prices
are	not	normally	distributed.

Figure	12-12	shows	a	normal	QQ-plot	for	the	daily	returns	to	Apple	stock	from
January	1,	2013	to	December	31,	2013:
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Figure	12-12:	Normal	QQ-plot	of	daily	returns	to	Apple	stock.

The	QQ-plot	shows	that	the	returns	to	Apple	stock	do	not	conform	to	the	normal
distribution,	either.	In	this	case,	the	smallest	returns	to	Apple	stock	are	too	small	to	be
consistent	with	the	normal	distribution.	Similarly,	the	largest	returns	to	Apple	stock	are
too	large	to	be	consistent	with	the	normal	distribution.	This	shows	that	the	tails	of	the
Apple	return	distribution	are	too	“thick”	or	“fat”	compared	with	the	normal
distribution.	Therefore,	Apple	returns	are	not	normally	distributed.



	In	many	applications,	the	returns	to	financial	assets	are	assumed	to	be	normally
distributed,	but	in	actual	practice,	these	returns	tend	to	have	“fat”	tails.	With	a	fat-
tailed	distribution,	extremely	large	or	small	outcomes	occur	more	frequently	than
they	would	with	the	normal	distribution.	As	Chapter	15	points	out,	there	are	ways
of	transforming	the	data	to	bring	it	more	in	line	with	the	normal	distribution.



Autocorrelation	Plots
An	autocorrelation	plot	shows	the	properties	of	a	type	of	data	known	as	a	time	series.
(Chapter	16	discusses	time	series	analysis	in	detail.)

	A	time	series	refers	to	observations	of	a	single	variable	over	a	specified	time
horizon.	For	example,	the	daily	price	of	Microsoft	stock	during	the	year	2013	is	a
time	series.	Cross-sectional	data	refers	to	observations	on	many	variables	at	a
single	point	in	time.	For	example,	the	closing	prices	of	the	30	stocks	contained	in
the	Dow	Jones	Industrial	Average	on	January	31,	2014,	would	be	considered
cross-sectional	data.

An	autocorrelation	plot	is	designed	to	show	whether	the	elements	of	a	time	series	are
positively	correlated,	negatively	correlated,	or	independent	of	each	other.	(The	prefix
auto	means	“self”—	autocorrelation	specifically	refers	to	correlation	among	the
elements	of	a	time	series.)

An	autocorrelation	plot	shows	the	value	of	the	autocorrelation	function	(acf)	on	the
vertical	axis.	It	can	range	from	–1	to	1.

The	horizontal	axis	of	an	autocorrelation	plot	shows	the	size	of	the	lag	between	the
elements	of	the	time	series.	For	example,	the	autocorrelation	with	lag	2	is	the
correlation	between	the	time	series	elements	and	the	corresponding	elements	that	were
observed	two	time	periods	earlier.

Figure	12-13	shows	an	autocorrelation	plot	for	the	daily	prices	of	Apple	stock	from
January	1,	2013	to	December	31,	2013.
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Figure	12-13:	Autocorrelation	plot	of	daily	prices	of	Apple	stock.

On	the	graph,	there	is	a	vertical	line	(a	“spike”)	corresponding	to	each	lag.	The	height
of	each	spike	shows	the	value	of	the	autocorrelation	function	for	the	lag.

	The	autocorrelation	with	lag	zero	always	equals	1,	because	this	represents	the
autocorrelation	between	each	term	and	itself.	Price	and	price	with	lag	zero	are	the
same	variable.

Each	spike	that	rises	above	or	falls	below	the	dashed	lines	is	considered	to	be
statistically	significant.	(Chapter	16	talks	about	this	in	detail.)	This	means	the	spike	has
a	value	that	is	significantly	different	from	zero.	If	a	spike	is	significantly	different	from
zero,	that	is	evidence	of	autocorrelation.	A	spike	that’s	close	to	zero	is	evidence	against
autocorrelation.

In	this	example,	the	spikes	are	statistically	significant	for	lags	up	to	24.	This	means	that
the	Apple	stock	prices	are	highly	correlated	with	each	other.	In	other	words,	when	the
price	of	Apple	stock	rises,	it	tends	to	continue	rising.	When	the	price	of	Apple	stock
falls,	it	tends	to	continue	falling.	Figure	12-14	illustrates	this.
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Figure	12-14:	Time	series	plot	of	daily	prices	of	Apple	stock.

Even	though	the	daily	prices	of	Apple	stock	are	highly	correlated,	the	daily	returns	may
not	be.	You	compute	the	daily	returns	from	the	daily	prices	as	follows:

where

rt	=	The	continuously	compounded	return	at	time	t

Pt	=	The	price	at	time	t

Pt-1	=	The	price	at	time	t	–	1	(one	period	before	t)

ln	=	The	natural	logarithm

	The	natural	logarithm	is	the	logarithm	with	base	e,	which	is	approximately
equal	to	2.71828…	.

Figure	12-15	shows	an	autocorrelation	plot	for	the	daily	returns	to	Apple	stock	from
January	1,	2013	to	December	31,	2013.
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Figure	12-15:	Autocorrelation	plot	of	daily	returns	to	Apple	stock.

The	autocorrelation	plot	for	daily	returns	to	Apple	stock	shows	that	most	of	the	spikes
are	not	statistically	significant.	This	indicates	that	the	returns	are	not	highly	correlated,
as	shown	in	Figure	12-16.
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Figure	12-16:	Time	series	plot	of	daily	returns	to	Apple	stock	from	January	1,	2013	to	December	31,	2013.



The	graph	shows	that	except	for	one	major	downturn,	the	returns	to	Apple	stock
between	January	1,	2013	and	December	31,	2013	do	not	show	any	particular	pattern	—
they	tend	to	fluctuate	randomly	around	zero.	This	means	that	the	returns	are	largely
independent	of	each	other.

You	can	use	an	autocorrelation	plot	to	determine	whether	the	elements	of	a	time	series
are	random	(that	is,	unrelated	to	each	other).	This	is	important,	because	many	statistical
tests	involving	time	series	are	based	on	this	assumption.

As	you	can	see,	there	are	many	different	ways	to	visualize	your	data.	A	picture	is	worth
a	thousand	words,	as	the	saying	goes.	And	it	definitely	holds	true	in	data	analysis.
Statistical	software	packages	generally	come	equipped	with	easy-to-use	graphical	tools.
By	taking	advantage	of	them,	you	can	quickly	gain	insight	into	your	data	that	no
amount	of	number	crunching	could	give	you.



Chapter	13



You’re	the	Only	Variable	for	Me:
Univariate	Statistical	Techniques

In	This	Chapter
	Understanding	the	properties	of	discrete	probability	distributions:	the	binomial	and

Poisson

	Exploring	continuous	probability	distributions:	the	normal,	Student’s	t,	lognormal,
chi-square,	and	F

	Implementing	statistical	tests	of	randomness

Chapter	4	introduces	the	notion	of	a	probability	distribution.	You	use	a	probability
distribution	to	describe	the	properties	of	a	random	variable.	A	random	variable	is
actually	a	function	—	it	assigns	numerical	values	to	the	outcomes	of	a	random	process.
For	example,	you	might	define	a	random	variable	as	“the	return	to	Apple	stock	over	the
coming	trading	day”	or	“the	number	of	bonds	in	a	portfolio	that	default	over	the
coming	year.”

The	two	basic	types	of	probability	distributions	you	may	encounter	in	statistics	are
discrete	distributions	and	continuous	distributions:

A	discrete	distribution	is	one	for	which	every	outcome	has	a	positive	probability.
A	continuous	distribution	assigns	probabilities	to	ranges	of	values.

For	example,	the	distribution	of	bonds	that	default	over	the	coming	year	would	be
discrete,	because	every	bond	has	a	distinct	probability	of	defaulting.	The	distribution	of
returns	to	Apple	stock	is	continuous	because	we	assign	to	probabilities	to	the	return
falling	into	ranges.	We	talk	about	the	probability	that	the	return	will	exceed	10%,	for
example.

Each	probability	distribution	is	appropriate	for	different	types	of	applications.	For
example,	you	can	model	the	likelihood	of	bond	defaults	over	the	coming	year	based	on
the	binomial	distribution,	because	a	default	is	an	all-or-nothing	event.	(Recall	from
Chapter	4	that	you	use	the	binomial	distribution	to	describe	situations	where	only	one
of	two	things	can	happen.)	You	can	model	the	returns	to	Apple	stock	based	on	the
normal	distribution	because	the	normal	distribution	is	a	continuous	distribution	with
several	convenient	properties.

The	discrete	distributions	covered	in	this	chapter	are	the	binomial	and	the	Poisson.
Both	are	widely	used	in	business	applications.	The	chapter	also	covers	several
continuous	distributions	that	are	prevalent	in	business	applications,	such	as	the	normal,
Student’s	t-distribution,	lognormal,	chi-square,	and	F-distribution.

Each	of	the	distributions	in	this	chapter	is	an	example	of	a	univariate	distribution.	That



is,	these	distributions	describe	the	properties	of	a	single	random	variable.	By	contrast,	a
multivariate	distribution	describes	the	joint	behavior	of	two	or	more	random	variables.
(For	more	on	multivariate	distributions,	see	Chapter	14.)

This	chapter	also	discusses	statistical	tests	of	randomness,	along	with	methods	for
determining	whether	any	data	is	an	outlier.	An	outlier	is	a	value	that’s	substantially
different	from	other	values	in	the	same	sample;	in	some	cases,	you	need	to	remove
outliers	from	a	dataset	to	avoid	distorting	the	estimation	results.



Counting	Events	Over	a	Time	Interval:	The
Poisson	Distribution

The	Poisson	distribution	is	useful	for	measuring	how	many	events	may	occur	during	a
given	time	horizon,	such	as	the	number	of	customers	who	enter	a	store	during	the	next
hour,	the	number	of	hits	a	website	gets	during	the	next	minute,	and	so	forth.	The
Poisson	distribution	is	based	on	the	Poisson	process,	where	events	are	counted	over
intervals	of	time.	What	characterizes	a	Poisson	process	is	that	the	number	of	events
observed	in	a	given	time	period	does	not	depend	at	all	on	the	number	of	events	that
were	observed	in	the	previous	time	period	(or	any	other	time	period).

One	type	of	situation	that	tends	to	follow	a	Poisson	distribution	is	waiting	times	for	a
bus	or	subway	train.	It	turns	out	that	your	expected	waiting	time	for	the	next	bus
remains	the	same	no	matter	how	long	you’ve	already	been	waiting.	This	is	the
signature	(and	rather	strange)	feature	of	the	Poisson	distribution.	The	fact	that	you’ve
been	waiting	for	20	minutes	has	no	bearing	on	the	probability	that	a	bus	will	arrive	in
the	next	5	minutes.

Computing	Poisson	probabilities
You	calculate	Poisson	probabilities	with	the	following	formula:

where

X	=	A	Poisson	random	variable
x	=	Number	of	events	that	occur
λ	=	The	Greek	letter	lambda,	used	to	represent	the	average	number	of	events	that
occur	per	time	interval.	Obviously,	the	value	of	λ	depends	on	length	of	the	time
interval	you	choose.
e	=	A	constant	that	is	approximately	equal	to	2.71828

For	example,	suppose	a	bank	discovers	that	from	historical	experience,	on	average,
three	customers	use	the	ATM	in	its	lobby	each	hour.	What	is	the	probability	that	during
the	next	hour,	five	customers	will	use	the	ATM?

In	this	case,	the	value	of	lambda	(λ)	is	equal	to	3	because	the	average	number	of
customers	using	the	ATM	each	hour	equals	3.	The	probability	of	five	customers	using
the	ATM	during	the	next	hour	is	computed	using	the	Poisson	formula,	with	 	and	

:



	If	you	don’t	care	for	using	formulas	or	a	table,	try	a	specialized	calculator	or
Excel.	For	Excel	2007	and	older	versions,	use	the	POISSON	function;	for	Excel
2010,	use	the	POISSON.DIST	function.

The	values	you	must	supply	are	x	(the	number	of	events),	λ,	and	a	variable	known	as
cumulative.	This	value	equals	1	if	you	want	a	“less	than	or	equal	to”	probability;
otherwise,	this	value	equals	0.	Based	on	the	ATM	example,	you	would	enter
=POISSON.DIST(5,	3,	0).

Moments	of	the	Poisson	distribution
Just	like	the	binomial	distribution,	the	Poisson	distribution	has	specialized	formulas	for
computing	the	expected	value,	variance,	and	standard	deviation.	These	appear	in	the
following	sections.

Poisson	distribution:	Calculating	the	expected	value

The	expected	value	of	the	Poisson	distribution	is	computed	like	this:

This	is	because	λ	represents	the	average	number	of	events	that	occur	during	a	given
time	interval.	In	the	ATM	example,	the	average	number	of	customers	who	use	the	ATM
per	hour	is	three.	That’s	the	expected	value	of	X.

Poisson	distribution:	Computing	variance	and	standard	deviation

Compute	the	variance	of	the	Poisson	distribution	as	 ;	the	standard	deviation	(σ)
equals	the	square	root	of	λ.	For	the	ATM	example,	the	variance	is	3,	and	the	standard
deviation	is	the	square	root	of	3,	which	is	approximately	1.732.

Graphing	the	Poisson	distribution
As	with	the	binomial	distribution,	the	Poisson	distribution	can	be	illustrated	with	a
histogram.	For	the	ATM	example,	 .	Figure	13-1	shows	the	histogram	of	the
Poisson	distribution	with	 .
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Figure	13-1:	Poisson	distribution	with	 .



Continuous	Probability	Distributions
As	discussed	in	Chapter	4,	continuous	probability	distributions	are	used	in	situations
where	probabilities	are	assigned	to	ranges	of	values	rather	than	to	specific	outcomes.
Some	of	the	most	widely	used	continuous	distributions	in	business	applications	are	the
normal,	Student’s	t,	lognormal,	chi-square,	and	F-distributions.	The	normal	distribution
is	introduced	in	detail	in	Chapter	4.	We	discuss	the	others	here.

The	Student’s	t-distribution
The	Student’s	t-distribution	(also	known	simply	as	the	Student’s	t	or	simply	the	t-
distribution)	was	derived	in	the	early	20th	century	by	William	S.	Gosset,	who	was
employed	as	a	statistician	at	the	Guinness	Brewing	Company	and	wrote	about	it	under
the	pseudonym	Student.	The	t-distribution	was	developed	to	describe	the	statistical
properties	of	sample	means	that	are	estimated	from	small	samples.	As	a	rule	of	thumb,
“small”	generally	means	less	than	30.

You	will	run	across	the	Student’s	t-distribution	several	times	in	the	ensuing	chapters.	It
is	useful	in	several	contexts	related	to	evaluating	predictive	models.	For	now,	this
section	concentrates	on	describing	the	properties	of	the	Student’s	t.

Comparing	the	t-distribution	with	the	standard	normal	distribution
The	t-distribution	has	several	important	properties	in	common	with	the	standard	normal
distribution:

It	has	a	mean	of	zero.
It	is	symmetrical	about	the	mean	—	that	is,	the	area	below	the	mean	is	a	mirror
image	of	the	area	above	the	mean.
It	can	be	described	graphically	with	a	bell-shaped	curve.

The	main	difference	between	the	two	distributions	is	that	the	variance	and	standard
deviation	of	the	t-distribution	are	larger	than	those	of	the	standard	normal	distribution.
As	a	result,	the	t-distribution	has	more	area	in	the	“tails”	and	less	area	near	the	mean
than	the	standard	normal	distribution.	(For	this	reason,	the	t-distribution	is	sometimes
said	to	have	“fat	tails.”)

	The	variance	and	standard	deviation	of	the	standard	normal	distribution	are
both	equal	to	1.	The	mean	equals	0.

The	larger	variance	and	standard	deviation	in	the	t-distribution	reflect	the	fact	that	there
will	be	much	more	variability	among	the	means	of	small	samples	than	among	the
means	of	large	samples.

The	t-distribution	is	actually	an	infinite	set	of	distributions,	each	uniquely	characterized



by	the	degrees	of	freedom.	The	larger	the	number	of	degrees	of	freedom,	the	more
closely	the	t-distribution	resembles	the	standard	normal	distribution.	With	30	or	more
degrees	of	freedom,	the	two	distributions	are	extremely	similar	to	each	other.	This	is
why	only	the	first	30	of	these	distributions	is	widely	used	in	applications.

Figure	13-2	shows	the	standard	normal	distribution	and	the	t-distribution	with	two
degrees	of	freedom.
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Figure	13-2:	The	t-distribution	with	2	degrees	of	freedom.

The	graph	shows	that	the	t-distribution	has	more	area	in	the	tails	and	less	area	around
the	mean	than	the	standard	normal	distribution	does.	As	a	result,	more	extreme
observations	(positive	and	negative)	are	likely	to	occur	under	the	t-distribution	than
under	the	standard	normal	distribution.	The	t-distribution	reflects	the	fat	tails
referenced	earlier.

With	30	degrees	of	freedom,	the	t-distribution	and	the	standard	normal	distribution	are
almost	indistinguishable.	You	can	see	this	in	Figure	13-3.
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Figure	13-3:	The	t-distribution	with	30	degrees	of	freedom.

Moments	of	the	t-distribution
For	the	t-distribution	with	ν	degrees	of	freedom,	the	mean	(or	expected	value)	equals
the	following:

	μ	represents	the	mean	of	a	population	or	a	probability	distribution.	ν	is	the
Greek	letter	nu.	It	is	commonly	used	to	designate	the	number	of	degrees	of
freedom	of	a	distribution.

As	with	the	standard	normal	distribution,	the	t-distribution	is	“centered”	around	0.	The
mean	isn’t	affected	by	the	degrees	of	freedom.	The	variance	of	the	t-distribution	equals
the	following:

In	this	formula,	ν	represents	the	number	of	degrees	of	freedom	associated	with	the	t-
distribution.	The	formula	shows	that	the	variance	of	the	t-distribution	is	greater	than	the
variance	of	the	standard	normal	distribution	(which	is	1).	For	example,	with	10	degrees
of	freedom,	the	variance	of	the	t-distribution	equals	the	following:

With	30	degrees	of	freedom,	here’s	the	variance	of	the	t-distribution:



These	calculations	show	that	as	the	number	of	degrees	of	freedom	increases,	the
variance	of	the	t-distribution	continues	to	decline,	getting	progressively	closer	to	1.

The	standard	deviation	equals	the	square	root	of	the	variance:

Using	the	t-table
Chapter	4	explains	how	to	calculate	the	area	of	tails	under	the	normal	distribution.	It
works	the	same	way	here.	You	can	find	the	value	of	a	given	tail	area	under	the	t-
distribution	using	a	t-table.	Table	13-1	is	an	excerpt	taken	from	the	t-table.

Table	13-1	The	t-table

Degrees	of	Freedom	(df)
t0.10
t0.20

t0.05
t0.10

t0.025
t0.05

t0.01
t0.02

t0.005
t0.01

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106

12 1.356 1.782 2.179 2.681 3.055

The	top	row	of	the	t-table	represents	tail	areas	under	the	t	curve.	The	fact	that	each
column	has	two	headings	allows	the	table	to	be	used	for	both	one-	and	two-tailed	tests.
The	subscript	on	the	top	t	in	each	column	reflects	the	significance	level	for	a	one-tailed
test.	The	subscript	on	the	bottom	t	is	the	significance	level	for	a	two-tailed	test.

For	example,	if	you	were	doing	a	two-tailed	test	with	the	t-distribution	at	5%
significance,	each	tail	has	an	area	of	2.5%,	for	a	total	tail	area	of	5%.	In	order	to	find
the	appropriate	critical	values,	the	relevant	column	heading	is	the	one	that	shows	t0.025
(the	area	in	each	tail)	and	t0.05	(the	total	area	in	both	tails).	If	the	df	=	8,	then	the	critical
values	for	the	confidence	interval	would	be	±	2.306,	which	is	found	in	the	first	row,
under	the	third	column.	If	you	were	doing	a	one-tailed	test,	this	same	critical	value
would	correspond	to	a	2.5%	significance.

	As	an	alternative	to	using	a	t-table,	you	can	find	the	appropriate	values	with	the
Excel	TINV	function	(the	inverse	of	the	t-distribution).

The	TINV	function	requires	you	to	supply	the	total	tail	area	and	the	degrees	of
freedom.	For	the	last	example,	you	would	use	=	TINV(0.05,	8)	to	find	the	value	of



2.306.

The	lognormal	distribution
The	lognormal	distribution	is	derived	directly	from	the	normal	distribution.	Like	the
normal	distribution,	the	lognormal	distribution	is	uniquely	characterized	by	its	mean
and	standard	deviation.	Unlike	the	normal	distribution,	the	lognormal	distribution	is
undefined	for	negative	values.

Applications	of	the	lognormal	distribution
The	lognormal	distribution	is	used	for	several	important	financial	applications.	For
example,	you	would	use	it	to	calculate	rates	of	return	to	financial	assets	on	a
continuously	compounded	basis.

	A	continuously	compounded	rate	of	return	is	compounded	an	infinite	number
of	times	during	a	given	time	horizon.	A	discretely	compounded	rate	of	return	is
compounded	a	finite	number	of	times	during	a	given	time	horizon.

Daily	compounding	is	an	example	of	discrete	compounding.	Although	rates	are
normally	compounded	on	a	discrete	basis	in	actual	practice,	continuously	compounded
rates	have	several	convenient	mathematical	properties.	As	a	result,	they	are	used	in
very	sophisticated	financial	models.

	Continuously	compounded	returns	are	often	used	in	pricing	models	for
derivative	securities,	such	as	options.	These	are	highly	complex	products	that	may
be	used	to	manage	risk	—	the	models	used	to	price	them	use	extremely	advanced
math.

The	lognormal	distribution	is	positively	skewed	(it	has	a	long	right	tail)	and	is
undefined	for	negative	values.	Figure	13-4	is	a	graph	of	the	lognormal	distribution	with
a	mean	of	0	and	a	standard	deviation	of	1.
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Figure	13-4:	The	lognormal	distribution	with	mean	=	0	and	standard	deviation	=	1.

Defining	a	lognormal	random	variable
The	lognormal	distribution	is	directly	related	to	the	normal	distribution.	As	its	name
implies,	a	distribution	is	lognormally	distributed	if	you	get	a	normal	distribution	when
you	take	its	natural	logarithm.	You	can	think	of	this	in	two	ways:

If	ln(X)	is	normally	distributed,	then	X	is	lognormally	distributed.

If	X	is	normally	distributed,	then	eX	is	lognormally	distributed.

For	example,	you	compute	the	continuously	compounded	return	to	an	asset	as	follows:

where

ln	=	The	“natural	log”
rt	=	The	continuously	compounded	return	at	time	t

Pt	=	The	price	at	time	t

Pt-1	=	The	price	at	time	t	–	1,	representing	one	period	in	the	past

	is	known	as	a	price	relative.

	The	natural	log	is	the	logarithm	with	base	e.	e	is	equal	to	approximately
2.71828.	It	represents	the	exponent	to	which	you	would	have	to	raise	e	to	get	a

given	value.	So	for	example,	 	and	 .	The	natural	logarithm	can	be
calculated	for	any	positive	number.	It	is	useful	in	analyzing	compound	growth
because	interest	(and	returns)	generally	grows	exponentially.

It	is	often	assumed	in	financial	models	that	rates	of	return	are	normally	distributed.
Based	on	the	properties	of	the	lognormal	distribution,	this	implies	that	the	price
relatives	are	lognormally	distributed.

Moments	of	the	lognormal	distribution
The	moments	of	the	lognormal	distribution	are	based	on	the	normal	distribution	from
which	they	are	derived.

The	mean	(expected	value)	of	the	lognormal	distribution	is	as	follows:



where

μ	is	the	expected	value	of	the	corresponding	normal	distribution.

σ 2	is	the	variance	of	the	corresponding	normal	distribution.

	exp(x)	is	an	alternative	way	of	expressing	ex;	exp	often	improves	legibility	in
mathematical	equations.

You	calculate	the	variance	of	the	lognormal	distribution	like	this:

The	standard	deviation	of	the	lognormal	distribution	is	simply	the	square	root	of	the
variance:

As	an	example,	suppose	Y	is	a	normally	distributed	random	variable	with	a	mean	of	1
and	a	standard	deviation	of	2.	Then	 	is	a	lognormally	distributed	random
variable.	Its	mean,	variance,	and	standard	deviation	are	computed	as	follows:

The	standard	deviation	is	the	square	root	of	the	variance	of	21,623.037,	which	is	about
147.05.

	You	can	use	the	Excel	function	LOGNORM.DIST	to	find	the	probability	that	a
lognormally	distributed	random	variable	X	is	less	than	or	equal	to	a	specified
value.	This	is	also	known	as	the	cumulative	probability	of	X.	(The	function	is
LOGNORM.DIST	in	Excel	2010;	in	older	editions	of	Excel,	the	function	is
LOGNORMDIST.)

The	values	required	for	the	LOGNORM.DIST	function	are	x	(the	value	whose
cumulative	probability	you	are	looking	for),	mean	(the	mean	of	the	distribution),
standard_dev	(the	standard	deviation	of	the	distribution),	and	cumulative.	Cumulative
equals	1	if	you	are	solving	for	a	“less	than	or	equal	to”	probability,	and	0	otherwise.

For	example,	suppose	X	is	lognormal	with	a	mean	of	0	and	a	standard	deviation	of	1.
You	compute	the	probability	that	X	is	less	than	or	equal	to	1	as	LOGNORM.DIST(1,	0,
1,	1)	=	0.5.



The	chi-square	distribution
The	chi-square	distribution	(χ 2)	is	a	continuous	probability	distribution	derived	from
the	standard	normal	distribution.	Similar	to	the	t-distribution,	the	chi-square
distribution	is	uniquely	characterized	by	the	number	of	degrees	of	freedom	(df).

	The	letter	χ	is	the	Greek	letter	chi	(pronounced	“ki”).

Applications	of	the	chi-square	distribution
You	can	use	the	chi-square	distribution	in	several	different	business	applications,	such
as	testing	hypotheses	about	a	population	variance,	conducting	goodness	of	fit	tests	(to
determine	whether	a	population	follows	a	specified	distribution),	testing	for	the
independence	of	two	populations,	and	so	forth.

The	chi-square	distribution	has	one	key	feature	in	common	with	the	t-distribution:	It’s
uniquely	characterized	by	its	degrees	of	freedom.	Unlike	the	t-distribution	(and	the
standard	normal	distribution),	the	chi-square	distribution

Is	defined	only	for	positive	values.
Is	not	symmetrical	about	its	mean	—	instead,	it	is	positively	skewed.

A	positively	skewed	distribution	has	a	long	right	tail.	Figures	13-5	through	13-7	show
the	chi-square	distribution	with	5,	10,	and	30	df.	In	each	case,	the	horizontal	axis
represents	different	values	that	may	be	assumed	by	a	chi-square	random	variable,	and
the	vertical	axis	represents	the	corresponding	probabilities.
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Figure	13-5:	The	chi-square	distribution	with	5	df.
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Figure	13-6	The	chi-square	distribution	with	10	df.
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Figure	13-7	The	chi-square	distribution	with	30	df.

Each	of	the	graphs	in	the	three	figures	shows	that	the	distribution	is	undefined	for
negative	values	(notice	that	there	are	no	negative	values	along	the	horizontal	axis).
Additionally,	as	the	number	of	degrees	of	freedom	increases,	the	distribution	shifts	to
the	right	and	begins	to	resemble	the	normal	distribution.	As	mentioned	earlier,	the
distribution	has	a	long	right	tail	(it’s	skewed	to	the	right).

Defining	a	chi-square	random	variable
A	chi-square	random	variable	is	a	sum	of	independent,	squared	standard	normal
random	variables.	The	following	equation	expresses	this:

Each	Z	is	a	standard	normal	random	variable.	Because	each	term	is	squared,	the	sum	of



these	terms	is	positive.	(This	is	why	the	chi-square	distribution	isn’t	defined	for
negative	values.)	The	number	of	terms	in	this	expression	is	written	as	ν	and	represents
the	number	of	degrees	of	freedom	of	the	distribution.	For	example,	the	chi-square
distribution	with	5	df	is	as	follows:

Moments	of	the	chi-square	distribution
For	the	chi-square	distribution,	the	expected	value	is	computed	like	this:

This	formula	shows	that	the	expected	value	simply	equals	the	number	of	degrees	of
freedom	of	the	distribution.	For	example,	in	the	case	of	the	chi-square	distribution	with
5	df,	the	average	value	under	this	distribution	is	5.

You	compute	the	variance	like	this:

This	equation	shows	that	the	variance	equals	two	times	the	number	of	degrees	of
freedom.

The	standard	deviation	is	the	square	root	of	the	variance:

Using	the	chi-square	table
You	find	locations	in	the	right	tail	of	the	chi-square	distribution	with	a	specified	tail
area	with	a	chi-square	table.	Table	13-2	shows	a	portion	of	the	chi-square	table.

Table	13-2	The	Chi-square	Table

Degrees	of	Freedom/	Tail	Area 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01

1 0.000 0.000 0.000 0.016 2.706 3.841 5.024 6.635

2 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210

3 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345

4 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277

5 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086

For	example,	suppose	the	critical	value	of	a	hypothesis	test	is	based	on	the	chi-square
distribution	with	4	df	and	a	right	tail	area	of	0.05.	The	appropriate	value	in	the	chi-
square	distribution	is	9.488	(found	at	the	intersection	of	the	row	labeled	4	and	the
column	labeled	0.05).



	As	an	alternative	to	using	a	chi-square	table,	you	can	use	Excel’s	built-in
function	CHISQ.INV	(the	inverse	of	the	chi-square	distribution).

There	are	two	values	required	for	this	function.	It	is	invoked	as
CHISQ.INV(probability,	degrees	of	freedom).	One	important	way	in	which	the	table
and	the	Excel	function	differ	is	that	the	table	shows	areas	in	the	right	tail	of	the
distribution,	whereas	the	Excel	function	is	based	on	areas	in	the	left	tail.	As	a	result,	to
use	the	Excel	function	for	areas	in	the	right	tail,	you	must	use	1	minus	the	probability
that	you	are	looking	for	with	the	Excel	function.	Based	on	the	last	example,
CHISQ.INV(1	–	0.05,	4)	=	CHISQ.INV(0.95,	4)	gives	a	value	of	9.488.

The	F-distribution
The	F-distribution	is	a	continuous	probability	distribution	derived	from	the	chi-square
distribution.	One	thing	that	distinguishes	the	F-distribution	from	the	chi-square
distribution	is	that	the	F-distribution	has	two	different	types	of	degrees	of	freedom,
which	are	known	as	numerator	degrees	of	freedom	and	denominator	degrees	of
freedom.	Similar	to	the	chi-square	and	lognormal	distribution,	it’s	positively	skewed
and	is	undefined	for	negative	values.	Figure	13-8	shows	the	F-distribution.
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Figure	13-8:	The	F	distribution	with	5	numerator	and	5	denominator	df.

Applications	of	the	F-distribution
The	F-distribution	has	several	different	applications	in	statistical	analysis,	including	the
following:

Testing	hypotheses	about	the	equality	of	population	variances
Testing	joint	hypotheses	about	the	slope	coefficients	in	a	regression	equation

Defining	an	F	random	variable
An	F	random	variable	is	the	ratio	of	two	chi-square	random	variables,	each	divided	by



its	own	degrees	of	freedom:

where

χ12	and	χ22	are	chi-square	random	variables.

ν1	and	ν2	are	the	corresponding	degrees	of	freedom.

ν1	is	referred	to	as	the	numerator	df	of	the	F	random	variable,	and	ν2	is	referred	to	as
the	denominator	df.

Moments	of	the	F-distribution
The	moments	of	the	F-distribution	are	computed	as	follows.	Here’s	the	mean	(expected
value)	of	the	F-distribution:

ν2	is	the	denominator	df;	the	mean	is	only	defined	for	values	of	ν2	greater	than	2	(to
avoid	division	by	0).

The	variance	of	the	F-distribution	is	calculated	like	this:

The	variance	is	defined	only	for	values	of	ν1	greater	than	zero	and	values	of	ν2	greater
than	4	(to	avoid	division	by	0).

The	standard	deviation	of	the	F-distribution	is	simply	the	square	root	of	the	variance:

Using	the	F-table
You	use	the	F-table	to	show	the	location	of	the	right	tail	of	the	distribution.	To	find
values	of	the	F-distribution	with	a	table,	you	must	specify	both	the	numerator	and
denominator	degrees	of	freedom.	Therefore,	the	entire	table	can	be	used	only	for	a
single	area	of	the	right	tail.

For	example,	suppose	you’re	looking	for	the	value	under	the	F-distribution	such	that
the	area	in	the	right	tail	is	5	percent.	(This	area	is	often	expressed	as	α,	which	is	the



Greek	letter	alpha.)	The	numerator	degrees	of	freedom	are	4,	and	the	denominator
degrees	of	freedom	are	3.	You	can	find	the	appropriate	value	in	Table	13-3	at	the
intersection	of	the	column	headed	4	and	the	row	labeled	3;	the	value	is	9.12.

Table	13-3	A	Section	of	the	F-table	with	α	=	0.05

ν2	\	ν1 2 3 4 5 6 7 8

2 19.00 19.16 19.25 19.30 19.33 19.35 19.37

3 9.55 9.28 9.12 9.01 8.94 8.89 8.85

4 6.94 6.59 6.39 6.26 6.16 6.09 6.04

5 5.79 5.41 5.19 5.05 4.95 4.88 4.82

6 5.14 4.76 4.53 4.39 4.28 4.21 4.15

7 4.74 4.35 4.12 3.97 3.87 3.79 3.73

8 4.46 4.07 3.84 3.69 3.58 3.50 3.44

	As	an	alternative	to	using	the	F-table,	you	can	use	Excel’s	built-in	function
F.INV	(the	inverse	of	the	F-distribution).	The	values	required	for	this	function	are
F.INV(probability,	deg_freedom1,	deg_freedom2).

Unlike	the	table,	the	probability	in	this	function	refers	to	the	area	in	the	left	tail.
deg_freedom1	represents	the	numerator	degrees	of	freedom,	and	deg_freedom2
represents	the	denominator	degrees	of	freedom.

For	example,	for	the	F-distribution	with	5	numerator	degrees	of	freedom	and	7
denominator	degrees	of	freedom,	the	location	of	the	5	percent	right	tail	(which	is	also
the	95	percent	left	tail),	you	enter	the	following:	F.INV(1-0.05,	5,	7),	which	is	equal	to
=	F.INV(0.95,	5,	7).	The	result	is	3.97.

That’s	a	lot	to	digest.	But	rest	assured	we	use	these	distributions	in	ensuing	chapters	to
answer	practical	questions	about	financial	assets	and	returns	on	investment.	We	also
use	these	distributions	to	evaluate	the	accuracy	of	the	predictive	models	that	we
discuss.



Chapter	14



To	All	the	Variables	We’ve	Encountered:
Multivariate	Statistical	Techniques

In	This	Chapter
	Understanding	how	hypothesis	tests	can	be	conducted	for	two	population	means

	Using	the	F-distribution	to	compare	the	variances	of	two	populations

	Comparing	the	means	of	three	or	more	populations	with	ANOVA

	Checking	out	different	approaches	to	measuring	correlation

Multivariate	techniques	are	used	to	analyze	the	relationship	between	two	or	more
variables.	These	techniques	are	of	necessity	more	complex	than	univariate	techniques
(which	are	covered	in	Chapter	13).

This	chapter	shows	how	hypothesis	testing	can	be	used	to	determine	the	relationship
between	any	and	all	of	the	following:

Two	population	means
Two	population	variances
Three	or	more	population	means

The	chapter	also	discusses	correlation	in	detail,	showing	two	different	approaches	to
computing	it:

Pearson’s	product-moment	correlation	coefficient
Spearman’s	rank	correlation	coefficient



Testing	Hypotheses	about	Two	Population
Means

Testing	a	hypothesis	about	the	means	of	two	different	populations	is	conducted	in	six
steps:

1.	 Stating	the	null	hypothesis
2.	 Stating	the	alternative	hypothesis
3.	 Specifying	the	level	of	significance
4.	 Computing	the	test	statistic
5.	 Determining	the	critical	value	or	values
6.	 Making	a	decision

Before	beginning	the	hypothesis	testing	procedure,	a	sample	of	data	is	chosen	from
both	populations,	and	key	measures	such	as	the	sample	mean	and	sample	standard
deviation	are	computed	from	each.	The	null	hypothesis	will	be	rejected	if	the	sample
data	is	“too	extreme”	to	be	consistent	with	the	null	hypothesis.

The	null	hypothesis	for	two	population	means
To	test	the	equality	of	two	population	means,	the	null	hypothesis	is	expressed	like	so:

The	key	terms	are:

H0:	The	null	hypothesis

μ1:	The	mean	of	population	1

μ2:	The	mean	of	population	2

	The	null	hypothesis	is	a	statement	that’s	assumed	to	be	true	unless	there	is
strong	contrary	evidence.	In	this	case,	the	alternative	hypothesis	is	accepted
instead.

Alternative	hypotheses	for	two	population	means
The	alternative	hypothesis	can	take	one	of	three	forms:

Right-tailed	test:	
Left-tailed	test:	



Two-tailed	test:	

The	right-tailed	test	is	used	if	you’re	looking	for	strong	evidence	that	the	mean	of
population	1	is	greater	than	the	mean	of	population	2.	Equivalently,	the	left-tailed	test
is	used	if	you	are	looking	for	strong	evidence	that	the	mean	of	population	1	is	less	than
the	mean	of	population	2.	The	two-tailed	test	is	used	if	you	are	looking	for	evidence
that	the	mean	of	population	1	is	either	greater	than	or	less	than	the	mean	of	population
2.

Level	of	significance
The	level	of	significance,	usually	designated	α	(Greek	alpha)	is	typically	chosen	to	be
0.01,	0.05,	or	0.10.	This	number	refers	to	the	likelihood	of	rejecting	the	null	hypothesis
when	it	is	actually	true,	which	is	known	as	a	Type	I	error	—	a	Type	II	error	occurs
when	the	null	hypothesis	is	false	but	is	not	rejected.

The	higher	the	level	of	significance,	the	greater	the	probability	of	committing	a	Type	I
error,	but	the	lower	the	probability	of	committing	a	Type	II	error.	The	choice	of	the
level	of	significance	depends	on	the	relative	importance	of	avoiding	a	Type	I	error
relative	to	avoiding	a	Type	II	error.	In	many	business	applications,	the	level	of
significance	is	set	equal	to	0.05.

Test	statistics	and	critical	values	for	testing
hypotheses	about	two	population	means
The	test	statistic	is	designed	to	show	whether	the	sample	data	that	has	been	chosen	is
consistent	with	the	null	hypothesis.	When	you’re	testing	hypotheses	about	two
population	means,	the	appropriate	test	statistic	depends	on	whether	the	following	are
true:

The	samples	drawn	from	the	two	populations	are	independent	of	each	other.
The	variances	of	the	two	populations	are	equal.
The	samples	chosen	from	the	two	populations	are	large	or	small.

For	this	type	of	hypothesis	test,	a	small	sample	contains	fewer	than	30	observations;	a
large	sample	contains	at	least	30	observations.

	The	dividing	line	between	small	and	large	samples	comes	from	the	Central
Limit	Theorem,	which	shows	that	the	distribution	of	the	means	of	large	samples	is
approximately	normal.

Samples	are	independent	if	the	selection	of	the	first	sample	has	no	bearing	on	the
selection	of	the	second.	For	example,	suppose	you	want	to	compare	gas	prices	in	New
York	and	New	Jersey.	You	might	select	a	random	sample	of	gas	stations	from	each



state.	Because	the	stations	are	in	different	states,	the	selection	of	the	New	Jersey	gas
stations	has	no	effect	on	which	stations	are	selected	from	New	York.	Thus	the	samples
are	independent.

On	the	other	hand,	if	volunteers	are	trying	out	a	new	drug	to	determine	whether	it	can
reduce	cholesterol,	the	readings	of	the	volunteers	prior	to	taking	the	drug	and	after
taking	the	drug	could	be	thought	of	as	two	separate	dependent	populations.	In	fact,
once	the	members	of	the	first	sample	are	chosen,	the	members	of	the	second	sample	are
completely	determined.

For	independent	populations,	there	are	three	relevant	scenarios:

The	variances	of	the	two	populations	are	equal	(or	assumed	to	be	so).
The	variances	of	the	two	populations	are	unequal,	and	at	least	one	sample	is	small.
The	variances	of	the	two	populations	are	unequal,	and	both	samples	are	large.

Independent	populations
When	using	samples	from	independent	populations,	if	the	variances	of	the	two
populations	are	equal,	the	test	statistic	is	automatically	based	on	the	Student’s	t-
distribution.	The	sizes	of	the	samples	drawn	from	the	two	populations	are	irrelevant.

Equal	population	variances
If	the	variances	of	two	populations	are	equal	(or	are	assumed	to	be	equal),	the
appropriate	test	statistic	is	based	on	the	Student’s	t-distribution:

The	key	terms	in	this	formula	are	as	follows:

	is	the	mean	of	the	sample	chosen	from	population	1.
	is	the	mean	of	the	sample	chosen	from	population	2.

μ1	is	the	mean	of	population	1.

μ2	is	the	mean	of	population	2.

(μ1	–	μ2)0	is	the	hypothesized	difference	between	populations	1	and	2;	this	equals	0
when	the	population	means	are	hypothesized	to	be	equal.
n1	is	the	size	of	the	sample	chosen	from	population	1.

n2	is	the	size	of	the	sample	chosen	from	population	2.

s21	is	the	variance	of	the	sample	chosen	from	population	1.

s22	is	the	variance	of	the	sample	chosen	from	population	2.



s2p	is	the	estimated	“pooled”	variance	of	the	two	populations;	this	is	the	average
variance	of	the	two	populations	and	is	computed	as	follows:

The	critical	values	are:

Two-tailed	test:	

Right-tailed	test:	

Left-tailed	test:	

The	degrees	of	freedom	in	each	case	are:	 .

Unequal	population	variances:	At	least	one	sample	is	small
If	the	variances	of	two	populations	are	not	equal	and	at	least	one	sample	is	small	(less
than	30),	the	appropriate	test	statistic	is	as	follows:

In	this	case,	the	critical	values	are	drawn	from	the	t-distribution	with	degrees	of
freedom	equal	to

This	number	must	be	rounded	to	the	nearest	integer.

Unequal	population	variances:	Both	sample	sizes	are	large
If	the	variances	of	two	populations	are	not	equal,	and	both	samples	are	large	(30	or
greater),	the	appropriate	test	statistic	is	based	on	the	standard	normal	distribution:

	There	are	an	infinite	number	of	normal	distributions,	each	with	its	own	unique
mean	and	standard	deviation.	The	standard	normal	distribution	has	a	mean	of	0
and	a	standard	deviation	of	1.



The	critical	values	are	as	follows:

Two-tailed	test:	
Right-tailed	test:	
Left-tailed	test:	

The	decision
The	decision	as	to	whether	or	not	a	null	hypothesis	should	be	rejected	is	determined	as
follows:

For	a	right-tailed	test,	the	null	hypothesis	is	rejected	if	the	test	statistic	is	greater
than	the	critical	value.
For	a	left-tailed	test,	the	null	hypothesis	is	rejected	if	the	test	statistic	is	less	than
the	critical	value.
For	a	two-tailed	test,	the	null	hypothesis	is	rejected	if	the	test	statistic	is	greater
than	the	positive	critical	value	or	less	than	the	negative	critical	value.

The	case	of	dependent	populations
If	samples	are	chosen	from	two	dependent	populations,	they	are	referred	to	as	paired
samples.	In	this	case,	the	null	hypothesis	is	based	on	the	differences	between	the
sample	elements.	(You	can	think	of	this	as	a	test	of	a	single	population	consisting	of	the
differences	between	the	original	populations.)	In	this	case,	the	notation	is	slightly
different.	For	example,	the	null	hypothesis	is	written	like	this:

where:

μd	represents	the	mean	difference	between	the	two	populations;	  .

The	three	possible	alternative	hypotheses	are:

Right-tailed	test:	 .	In	this	case,	the	alternative	hypothesis	is	that	the
mean	of	population	1	is	greater	than	the	mean	of	population	2.
Left-tailed	test:	 .	In	this	case,	the	alternative	hypothesis	is	that	the	mean
of	population	1	is	less	than	the	mean	of	population	2.
Two-tailed	test:	 .	In	this	case,	the	alternative	hypothesis	is	that	the	means
of	populations	1	and	2	are	not	equal.

For	paired	samples,	the	test	statistic	is	always	based	on	the	Student’s	t-distribution:



The	key	terms	in	this	equation	are:

	=	the	average	(mean)	difference	between	paired	samples
sd	=	the	standard	deviation	of	the	sample	differences

You	compute	the	mean	difference	in	the	same	way	as	the	sample	mean	when	the
sample	is	drawn	from	a	single	population:

This	formula	indicates	that	you	calculate	the	average	difference	of	the	paired	samples
by	adding	up	all	the	individual	differences	and	then	dividing	by	the	total	number	of
samples.

The	standard	deviation	of	the	sample	differences	is	computed	like	this:

With	paired	samples,	the	critical	values	are	as	follows:

Two-tailed	test:	

Right-tailed	test:	

Left-tailed	test:	

The	degrees	of	freedom	in	each	case	is	n	–	1;	n	is	the	number	of	pairs	of	observations
chosen	from	the	two	populations.

As	an	example,	suppose	that	Twinings	Tea	decides	to	increase	tea	consumption	in	the
United	States	by	embarking	on	a	major	advertising	campaign.	In	order	to	determine	the
effectiveness	of	the	campaign,	a	sample	of	six	consumers	is	chosen.	Table	14-1	shows
the	consumers’	annual	spending	on	tea	before	and	after	campaign	advertising.

Table	14-1	Paired	Differences	between	Two	Samples

Consumer Spending	Prior	to	Advertisements	(x1) Spending	After	Advertisements	(x2) di	=	x1	–	x2 di2

1 150 160 –10 100

2 225 240 –15 225

3 230 225 5 25



4 180 195 –15 225

5 160 165 –5 25

6 90 95 –5 25

Sum 1,035 1,080 –45 625

The	column	labeled	 	shows	the	differences	between	spending	prior	to	the
advertisements	and	spending	after	for	each	consumer.	(A	negative	difference	indicates
that	the	consumer	is	spending	more	after	the	advertising	takes	place.)	The	column
labeled	di2	shows	the	squared	differences.

The	company	tests	the	null	hypothesis	that	tea	consumption	remains	unchanged	after
the	advertising	campaign	takes	place	at	the	5	percent	level	of	significance	as	follows:

The	null	hypothesis	is:

Because	Twinings	is	looking	for	strong	evidence	that	the	spending	per	consumer
increased	after	the	advertising	campaign,	this	is	a	left-tailed	test.	(In	other	words,	the
company	hopes	to	find	that	spending	has	increased,	which	implies	a	negative
difference.)

The	alternative	hypothesis	is	this:

You	would	compute	the	test	statistic	by	substituting	the	values	in	the	table	as	follows
(note	that	n	=	6	because	there	are	six	paired	samples):

 

Based	on	the	table	for	the	Student’s	t-distribution,	the	critical	value	is:

Because	the	test	statistic	(–2.42)	falls	below	the	critical	value	(–1.943),	the	null
hypothesis	is	rejected	in	favor	of	the	alternative	hypothesis.	That	is,	the	difference



between	the	consumption	of	tea	prior	to	the	advertising	campaign	and	after	the
campaign	is	negative,	which	indicates	that	the	advertising	campaign	has	been
successful.



Using	Analysis	of	Variance	(ANOVA)	to
Test	Hypotheses	about	Population	Means

Analysis	of	variance	(acronymed	as	ANOVA)	is	a	technique	you	can	use	to	test
hypotheses	about	the	equality	of	two	or	more	population	means.	The	ANOVA	process
is	based	on	observations	taken	from	independent	subjects.	For	example,	a	corporation
could	use	ANOVA	to	compare	the	mean	sales	of	its	divisions	in	the	United	States,
Canada,	and	Mexico.

As	an	example,	suppose	a	researcher	wants	to	compare	the	grade	point	averages
(GPAs)	of	students	who	are	attending	business	schools,	schools	of	arts	and	science,	and
performing	arts	schools.	He	suspects	that	GPAs	are	highest	at	business	schools	and
wants	to	determine	whether	this	is	true	or	not.

A	sample	of	GPAs	is	chosen	at	four	universities;	the	mean	values	are	shown	in	Table
14-2.

Table	14-2	Grade	Point	Average,	by	School

Business	Administration Arts	and	Sciences Performing	Arts

University	1 3.10 2.90 3.40

University	2 2.90 3.00 3.30

University	3 3.30 2.70 2.90

University	4 3.00 3.10 3.00

In	this	case,	the	GPA	is	considered	to	be	the	dependent	variable.	The	three	different
types	of	schools	are	referred	to	as	treatments.	In	this	case,	differences	in	GPAs	may	be
attributed	to	the	following:

Variation	between	groups	(that	is,	between	schools)
Variation	within	groups	(variation	among	students	in	the	same	school)

Here	is	the	null	hypothesis:

The	alternative	hypothesis	is	that	the	means	are	not	all	equal.

In	this	case,	assume	that	the	level	of	significance	is	set	equal	to	0.05	(that	is,	5	percent).

The	test	statistic	for	the	ANOVA	process	is	quite	complex	to	calculate.	Within	the
formulas	that	will	be	used	to	compute	the	test	statistic,	each	element	in	the	table	will	be
designated	Xij.	The	subscripts	i	and	j	represent	the	row	and	column,	respectively,	in
which	each	value	is	found.	The	subscripts	for	the	data	is	shown	in	Table	14-3.



Table	14-3	Grade	Point	Averages	Shown	with	Subscripts

Business	Administration Arts	and	Sciences Performing	Arts

University	1 X11 X12 X13

University	2 X21 X22 X23

University	3 X31 X32 X33

University	4 X41 X42 X43

For	example,	X32	is	the	value	found	at	the	intersection	of	the	third	row	and	second
column	of	the	table,	whereas	X12	is	found	at	the	intersection	of	the	first	row	and	second
column.

Computing	the	sum	of	squared	errors	(SSE)
In	order	to	construct	the	test	statistic,	the	first	step	is	to	compute	the	means	for	each
column.	You	compute	the	mean	of	column	1	as	follows:

where:

	=	The	mean	of	column	1	(the	bar	indicates	that	this	is	a	mean);	the	subscripts
indicate	that	this	average	is	computed	from	all	elements	within	column	1.

	=	The	value	of	X	in	row	i	and	column	1.
n1	=	The	number	of	elements	in	column	1.

In	this	example,

The	means	of	columns	2	and	3	are	computed	as	follows:

The	next	step	is	to	subtract	the	mean	of	each	column	from	each	element	within	that



column	and	then	square	the	result.	The	calculations	are	shown	in	Table	14-4.

Table	14-4	Grade	Point	Averages:	Differences	fromthe	Column	Means

Business	Administration Arts	and	Sciences Performing	Arts

University	1

University	2

University	3

University	4

Sum 0.0875 0.0875 0.1700

The	sum	of	these	column	totals	is	 .	This	sum	is	known
as	the	error	sum	of	squares	(SSE).

Computing	the	sum	of	squares	for	treatment	(SSTR)
The	next	step	is	to	compute	the	treatment	sum	of	squares	(SSTR).	This	requires	the
calculation	of	the	overall	average	for	the	sample,	known	as	the	overall	mean	or	grand
mean.

In	this	example,	there	are	12	total	observations	(four	universities	and	three	schools).
The	sum	of	the	12	observations	is	as	follows:

Dividing	this	by	12	gives	the	overall	mean	of	 .

You	compute	the	treatment	sum	of	squares	(SSTR)	with	the	following	steps:

For	each	column:

Compute	the	squared	difference	between	the	column	mean	and	the	overall	mean.
Multiply	the	result	by	the	number	of	elements	in	the	column.

SSTR	is	the	sum	of	these	calculations.

In	this	case,	SSTR	equals

Computing	the	total	sum	of	squares	(SST)



The	total	sum	of	squares	(SST)	equals	the	sum	of	the	treatment	sum	of	squares	(SSTR)
and	the	error	sum	of	squares	(SSE).	This	is	shown	as	follows:

Computing	the	mean	sums	of	squares
The	mean	sums	of	squares	are	the	average	values	of	the	corresponding	sums	of
squares.	The	two	mean	sums	of	squares	that	are	needed	for	this	hypothesis	test	are	as
follows:

Treatment	mean	square	(MSTR)
Error	mean	square	(MSE)

MSTR	is	computed	according	to	the	following	formula:

In	this	formula,	t	is	the	number	of	treatments	(in	this	case,	the	number	of	types	of
schools).	MSTR	is	the	mean	of	the	treatment	sum	of	squares	(SSTR).

In	this	example,

MSE	is	computed	according	to	the	following	formula:

In	this	formula,	N	is	the	total	number	of	observations	in	the	sample.	MSE	is	the	mean
of	the	error	sum	of	squares	(SSE).	In	this	example,

Computing	the	F-statistic
The	test	statistic	for	the	ANOVA	process	follows	the	F-distribution;	it	is	therefore
referred	to	as	an	F-statistic.	This	is	computed	as	the	ratio	of	MSTR	to	MSE,	as	follows:

This	value	is	compared	to	the	critical	value	to	determine	if	the	null	hypothesis	should
be	rejected.



The	F-Distribution
The	F-distribution	is	a	continuous	probability	distribution,	named	after	the	statistician
Sir	Ronald	Fisher	(1890–1962).	Chapter	13	introduces	the	F-distribution	and	some	of
its	properties.

Two	of	the	most	important	properties	of	the	F-distribution	are	the	following:

It	is	defined	only	for	positive	values.
It	is	positively	skewed.

The	F-distribution	is	characterized	by	two	numerical	values,	or	parameters,	which	are
known	as	degrees	of	freedom.	There	are	two	types	of	degrees	of	freedom	that
characterize	the	F-distribution:

Numerator	degrees	of	freedom
Denominator	degrees	of	freedom

Figure	14-1	shows	a	graph	of	the	F-distribution	for	different	combinations	of
numerator	and	denominator	degrees	of	freedom.	In	each	case,	numerator	degrees	of
freedom	are	listed	first,	and	denominator	degrees	of	freedom	are	listed	second	(for
example,	1,5).	The	level	of	significance	in	each	case	is	0.05.
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Figure	14-1:	The	F-distribution.

The	graph	shows	that	the	distribution	is	undefined	for	negative	values.	Additionally,	as
the	number	of	degrees	of	freedom	increases,	the	shape	of	the	distribution	changes;	it
shifts	to	the	right	and	begins	to	resemble	the	normal	distribution.



Finding	the	critical	values	using	the	F-table
Because	the	F-distribution	is	based	on	two	different	types	of	degrees	of	freedom,	there
is	one	table	for	each	possible	value	of	α	(the	level	of	significance).	Table	14-5	shows
the	different	values	of	the	F-distribution	corresponding	to	a	0.05	(5	percent)	level	of
significance.

Table	14-5	The	F-distribution	with	α	=	0.05

ν2\ν1 2 3 4 5 6 7 8 9 10

2 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40

3 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

4 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96

5 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

6 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

7 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

8 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

9 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

The	top	row	of	the	table	represents	the	numerator	degrees	of	freedom	(ν1).	The	first
column	represents	the	denominator	degrees	of	freedom	(ν2).

For	the	one-way	ANOVA	process,	the	degrees	of	freedom	are	computed	as	follows:

Numerator	degrees	of	freedom	=	
Denominator	degrees	of	freedom	=	

In	this	example,	find	a	right-tail	area	of	5	percent	with	 	and	 .
You’ll	find	this	critical	value	at	the	intersection	of	the	column	labeled	“2”	and	the	row
labeled	“9”	—	it	equals	4.26.	It’s	written	like	this:

Making	a	decision
The	one-way	ANOVA	hypothesis	test	is	a	right-tailed	test;	if	the	test	statistic	exceeds
the	critical	value,	the	null	hypothesis	that	all	population	means	are	equal	is	rejected;
otherwise,	it	is	not.

In	this	example,	the	test	statistic	equals	1.37,	whereas	the	critical	value	equals	4.26.
Because	the	test	statistic	does	not	exceed	the	critical	value,	the	null	hypothesis	that	the
three	population	means	are	equal	is	not	rejected.



This	shows	that	the	means	of	the	GPAs	among	students	in	the	schools	of	business
administration,	schools	of	arts	and	science,	and	performing	arts	schools	are	equal.



F-Test	for	the	Equality	of	Two	Population
Variances

Hypothesis	testing	for	the	variance	of	two	populations	is	based	on	the	F-distribution.
The	appropriate	steps	are	similar	to	other	hypothesis	tests.	The	main	differences	are	in
the	form	of	the	null	and	alternative	hypotheses,	as	well	as	the	specific	test	statistic	and
critical	values	that	are	used.

Null	hypothesis
The	null	hypothesis	is	written	as	follows:

where:

σ12	=	The	variance	of	population	1

σ22	=	The	variance	of	population	2

The	null	hypothesis	shows	that	the	population	variances	are	assumed	to	be	equal	unless
there	is	strong	contradictory	evidence	against	this	assumption.

Alternative	hypothesis
The	three	possible	alternative	hypotheses	are	as	follows:

For	a	right-tailed	test:	

For	a	left-tailed	test:	

For	a	two-tailed	test:	

The	right-tailed	test	shows	whether	there’s	sufficient	evidence	to	conclude	that	the
variance	of	population	1	is	greater	than	the	variance	of	population	2;	the	left-tailed	test
shows	whether	there’s	sufficient	evidence	to	conclude	that	the	variance	of	population	1
is	less	than	the	variance	of	population	2.	The	two-tailed	test	shows	whether	or	not	the
population	variances	are	equal.

Level	of	significance
The	level	of	significance	(α)	must	be	specified	in	order	to	conduct	a	hypothesis	test;
this	equals	the	probability	of	a	Type	I	error.

Test	statistic
The	test	statistic	equals	the	ratio	of	the	sample	variances	(the	larger	of	the	two	is



always	put	in	the	numerator):

where

s12	=	Sample	variance	1

s22	=	Sample	variance	2

Critical	values
For	this	type	of	hypothesis	test,	the	critical	value	is	taken	from	the	F-distribution.	The
critical	values	of	the	test	correspond	to	the	alternative	hypothesis	that	is	chosen,	as
follows:

Right-tailed	test:	Critical	value	=	
Left-tailed	test:	Critical	value	=	

Two-tailed	test:	Critical	value	=	

where

ν1	=	Numerator	degrees	of	freedom;	this	equals	 ,	where	n1	is	the	size	of	the
sample	drawn	from	population	1.
ν2	=	Denominator	degrees	of	freedom;	this	equals	 ,	where	n2	is	the	size	of	the
sample	drawn	from	population	2.

Decision	rule
The	decision	rule	depends	on	the	type	of	alternative	hypothesis	that	is	being	used.	In
each	case,	if	the	test	statistic	is	more	“extreme”	than	the	critical	value,	the	null
hypothesis	will	be	rejected.

The	decision	rule	can	be	summarized	as	follows:

For	a	right-tailed	test,	the	null	hypothesis	will	be	rejected	if	 .
For	a	left-tailed	test,	the	null	hypothesis	will	be	rejected	if	 .

For	a	two-tailed	test,	the	null	hypothesis	will	be	rejected	if	 .

As	an	example,	suppose	an	investor	wants	to	determine	whether	two	portfolios	have
the	same	volatility.	A	sample	of	ten	stocks	is	taken	from	both	portfolios;	the	sample
standard	deviation	of	Portfolio	1	is	0.26	(26	percent),	and	the	sample	standard



deviation	of	Portfolio	2	is	0.24	(24	percent).	The	null	and	alternative	hypotheses	are
like	this:

Assume	that	the	level	of	significance	is	10	percent	( ).	The	test	statistic	is	as
follows:

Substituting	the	appropriate	values	gives	the	following	result:

Because	this	is	a	two-tailed	test	with	a	10	percent	level	of	significance,	with	two
samples	of	ten	each,	you	compute	the	numerator	and	denominator	degrees	like	so:

Table	14-5	contains	the	appropriate	critical	value	(3.18):

Because	the	test	statistic	equals	 ,	and	the	critical	value	is	3.18,	this	shows	that

Therefore,	the	null	hypothesis	fails	to	be	rejected.	There	is	insufficient	evidence	to
reject	the	proposition	that	the	volatilities	of	the	two	portfolios	are	equal.



Correlation
Correlation	is	a	measure	of	the	dependency	between	two	variables.	Variables	that	tend
to	rise	or	fall	at	the	same	time	are	said	to	be	positively	correlated;	variables	that	tend	to
move	in	opposite	directions	are	said	to	be	negatively	correlated;	and	variables	that	are
not	related	to	each	other	are	said	to	be	uncorrelated	or	independent.

For	example,	the	number	of	runs	scored	by	a	baseball	team	during	a	season	and	the
number	of	games	that	it	wins	are	usually	positively	correlated.	The	number	of	runs
allowed	by	a	team’s	pitching	staff	and	the	number	of	games	that	the	team	wins	are
usually	negatively	correlated.	Most	likely,	the	mean	daily	temperature	during	the
season	and	the	number	of	games	won	by	the	team	would	be	uncorrelated.

You	can	compute	correlation	in	several	different	ways.	Here	are	two	of	the	more
commonly	used	techniques:

Pearson’s	product-moment	correlation	coefficient
Spearman’s	rank	correlation	coefficient

Pearson’s	product-moment	correlation	coefficient
The	Pearson’s	product-moment	correlation	coefficient	is	computed	for	two	samples,	X
and	Y,	as	follows:

where

rXY	=	Pearson’s	product-moment	correlation	coefficient

n	=	Number	of	elements	in	each	sample
Xi	=	An	element	in	sample	X

Yi	=	An	element	in	sample	Y

	=	Mean	of	sample	X
	=	Mean	of	sample	Y

Based	on	this	formula,	this	correlation	coefficient	can	only	assume	values	between	–1
and	1.	A	value	of	–1	indicates	that	X	and	Y	are	perfectly	negatively	correlated,	and	a
value	of	1	indicates	that	X	and	Y	are	perfectly	positively	correlated.

As	an	example,	Table	14-6	shows	the	prices	of	Stock	X	and	Stock	Y	during	five	years.



Table	14-6	Stock	Prices	2010–2014

Year Stock	X Stock	Y

2010 100 50

2011 98 48

2012 114 56

2013 108 61

2014 105 65

The	mean	price	of	Stock	X:

The	mean	price	of	Stock	Y:

The	remaining	calculations	are	shown	in	Table	14-7.

Table	14-7	Calculations	for	Pearson’s	Product-Moment	Correlation
Coefficient

Year Stock	X	(Xi) Stock	Y	(Yi)

2010 100 50 25 36 30

2011 98 48 49 64 56

2012 114 56 81 0 0

2013 108 61 9 25 15

2014 105 65 0 81 0

Sum 525 280 164 206 101

The	numbers	are	substituted	into	the	formula	as	follows:

This	shows	that	the	prices	of	Stocks	X	and	Y	are	positively	correlated.	Both	stocks	tend



to	do	well	during	the	same	years	and	poorly	during	the	same	years.

You	can	use	the	same	formula	to	compute	the	correlation	between	two	populations;	in
that	case,	the	correlation	is	written	as	 .

	ρ	is	the	Greek	letter	rho.

Spearman’s	rank	correlation	coefficient
Spearman’s	rank	correlation	coefficient	(also	known	as	Spearman’s	rho)	is	a	non-
parametric	measure	of	dependency	between	two	variables.

	A	non-parametric	measure	isn’t	based	on	any	distributional	assumptions.
Pearson’s	product-moment	correlation	coefficient	is	valid	only	for	certain
probability	distributions,	including	the	normal	and	the	Student’s	t-distribution.

You	compute	the	Spearman’s	rank	correlation	coefficient	by	converting	sample	data
into	ranks.	For	example,	suppose	that	a	sample	of	six	supermarkets	in	New	York	and
six	supermarkets	in	New	Jersey	are	randomly	chosen,	and	the	price	of	a	pound	of	the
store’s	brand	of	coffee	is	recorded.	X	represents	the	prices	at	the	New	York
supermarkets,	and	Y	represents	the	prices	at	the	New	Jersey	supermarkets.	Table	14-8
shows	the	individual	values.

Table	14-8	Sample	Coffee	Prices

New	York	Supermarket Price	of	a	Pound	of	Coffee	(Xi) New	Jersey	Supermarket Price	of	a	Pound	of	Coffee	(Yi)

1 $2.99 1 $3.89

2 $3.29 2 $2.59

3 $2.79 3 $2.89

4 $3.49 4 $3.39

5 $2.89 5 $3.49

6 $3.09 6 $3.59

The	sorted	values	of	Xi	are	as	follows:

2.79,	2.89,	2.99,	3.09,	3.29,	3.49

The	sorted	values	of	Yi	are	as	follows:

2.59,	2.89,	3.39,	3.49,	3.59,	3.89

These	values	are	substituted	into	the	following	equation,	which	defines	the	Spearman



rank	correlation	coefficient:

where

ρ	=	Spearman’s	rank	correlation	coefficient
di	=	Difference	between	the	ranks	for	observation	i;	that	is,	

n	=	Number	of	elements	in	each	sample

Table	14-9	shows	the	calculations.	The	values	of	X	and	Y	have	been	sorted.

Table	14-9	Calculations	for	Spearman’s	Rank	Correlation	Coefficient

New	York
Supermarket	Sorted
Ranks

Price	of	a	Pound
of	Coffee	(Xi)

New	Jersey
Supermarket	Sorted
Ranks

Price	of	a	Pound
of	Coffee	(Yi)

Rank	Difference	 Squared	Rank
Difference	di2

3 2.79 2 2.59 1 1

5 2.89 3 2.89 2 4

1 2.99 4 3.39 –3 9

6 3.09 5 3.49 1 1

2 3.29 6 3.59 –4 16

4 3.49 1 3.89 3 9

Sum 0 40

The	values	from	the	last	column	are	then	substituted	into	the	equation	for	the
Spearman’s	rank	correlation	coefficient:

This	shows	that	there’s	a	negative	correlation	between	the	coffee	prices	at	the	two
supermarket	chains.

That	brings	us	to	the	end	of	another	technical	chapter.	If	you’ve	gotten	this	far,	your
head	may	be	spinning	a	bit.	But	be	of	good	cheer.	In	actual	business	applications,	you
won’t	have	to	make	these	calculations	by	hand.	Statistical	software	will	do	the	heavy
lifting	for	you.	We’ve	found,	however,	that	having	some	sense	of	what’s	going	on
inside	the	black	box	of	your	statistical	package	will	make	the	results	more	meaningful
to	you.



Chapter	15



Regression	Analysis
In	This	Chapter

	Understanding	the	statistical	assumptions	on	which	regression	analysis	is	based

	Exploring	how	to	implement	simple	and	multiple	regression	models

	Grasping	how	to	test	and	interpret	regression	results

Regression	analysis	is	a	statistical	framework	that	is	used	to	estimate	the	strength	and
direction	of	the	relationship	between	two	or	more	variables.	Simple	regression	analysis
is	used	to	estimate	the	relationship	between	a	dependent	variable	(Y)	and	an
independent	variable	(X).	Multiple	regression	analysis	is	used	to	estimate	the
relationship	between	a	dependent	variable	and	two	or	more	independent	variables.	We
typically	think	of	the	independent	variable	as	something	you	are	trying	to	predict	and
the	dependent	variables	as	quantities	you	can	measure.	Regression	analysis	is	heavily
used	in	economics	and	finance	to	understand	relationships	between	variables	such	as
interest	rates,	GDP	growth	rates,	stock	prices,	corporate	profits,	and	more.

This	chapter	covers	the	methodology	that	is	used	to	implement	and	interpret	the	results
of	regression	analysis.	It	explains	the	statistical	assumptions	underlying	regression
analysis	in	detail,	and	includes	a	consideration	of	the	problems	that	may	arise	with
regression	analysis.	It	also	introduces	two	more	advanced	regression	techniques:
stepwise	regression	and	logistic	regression.

You	use	stepwise	regression	to	find	the	model	that	best	fits	or	explains	a	given	dataset.
You	use	logistic	regression	(sometimes	known	as	logit	regression)	when	the	dependent
variable	can	only	assume	a	small	number	of	possible	values.	This	chapter	introduces
binary	logistic	regression,	where	the	dependent	variable	can	only	assume	one	of	two
values	—	male	or	female,	for	example.



The	Fundamental	Assumption:	Variables
Have	a	Linear	Relationship

Regression	analysis	is	based	on	the	assumption	that	there’s	a	linear	relationship
between	two	random	variables	X	and	Y.	If	this	assumption	is	false,	an	alternate
technique	must	be	used;	otherwise,	the	results	will	be	highly	unreliable.

	If	the	relationship	between	two	variables	can	be	expressed	in	the	following
form,	they	are	said	to	be	linearly	related:

Y	=	The	dependent	variable
X	=	The	independent	variable
m	=	The	slope	(this	equals	the	change	in	Y	divided	by	the	change	in	X)
b	=	The	intercept	(this	is	the	value	of	Y	when	X	equals	0)

To	determine	whether	a	relationship	is	linear,	one	quick	and	easy	test	is	to	construct	a
scatter	plot	of	the	data.	This	makes	it	easy	to	see	the	relationship	between	the	two
variables	at	a	glance.	Figure	15-1,	a	little	later	in	the	chapter,	shows	what	a	scatter	plot
looks	like.	In	the	case	of	a	linear	relationship,	the	scatter	plot	will	show	the	data	points
lying	roughly	along	a	straight	line.
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Figure	15-1:	Scatter	plot	of	gym	time	and	weight	loss.



Defining	the	Population	Regression
Equation

The	population	regression	equation	or	population	regression	line	is	an	equation	that
best	“fits”	or	“explains”	the	relationship	between	X	and	Y	in	a	population.	You	write	the
equation	like	this:

	β0	and	β1	are	known	as	coefficients	of	the	regression	line.	β1	is	the	slope
coefficient,	and	β0	is	the	intercept	coefficient	(or	simply	the	intercept).	The	slope
coefficient	is	by	far	the	more	important	of	the	two;	it	shows	how	sensitive	Y	is	to
changes	in	X.

The	other	terms	in	the	equation	are	as	follows:

i	=	An	index;	this	is	used	to	identify	the	individual	members	of	the	population.
Yi	=	A	single	value	of	Y,	indexed	by	i,	in	a	population	of	size	n,	with	the	values	of	Y
expressed	as	Y1,	Y2,	Y3,	…,	Yn
Xi	=	A	single	value	of	X,	indexed	by	i,	in	a	population	of	size	n,	with	the	values	of
X	expressed	as	X1,	X2,	X3,	…,	Xn
εi	=	An	“error	term,”	indexed	by	i,	as	each	observation	in	the	population	(Xi,	Yi)	has
an	error	term	associated	with	it

In	the	population	regression	equation,	there’s	a	slope	and	an	intercept,	but	there’s	also
one	additional	term	that	you	don’t	normally	find	in	the	equation	for	a	straight	line	—
the	error	term.	The	error	term	is	included	because	the	population	regression	equation
doesn’t	perfectly	capture	the	relationship	between	X	and	Y.	(This	is	because	factors
other	than	X	may	account	for	the	value	of	Y.)	For	each	(Xi,	Yi)	pair,	the	error	term	εi
equals	the	difference	between	the	actual	value	of	Yi	and	the	value	predicted	by	the
regression	line.	The	error	terms	may	be	positive	or	negative;	on	average,	they	equal
zero.



Estimating	the	Population	Regression
Equation

In	most	situations,	estimating	the	population	regression	line	with	data	from	the	entire
population	would	be	impractical,	because	it’s	usually	a	very	time-consuming	and
expensive	process.	Instead,	you	can	draw	a	sample	from	the	underlying	population.

	It’s	extremely	important	to	ensure	that	any	samples	that	are	drawn	truly	reflect
the	properties	of	the	underlying	population!	Otherwise,	the	results	are	unlikely	to
be	accurate.

You	use	the	sample	data	to	construct	a	sample	regression	equation	or	sample	regression
line,	which	is	an	estimate	of	the	population	regression	equation.	The	sample	regression
equation	is	expressed	like	this:

The	terms	in	this	equation	are	as	follows:

,	the	estimated	value	of	Yi

,	the	estimated	value	of	β0

,	the	estimated	value	of	β1

	The	symbol	^	is	often	used	in	statistics	to	indicate	an	estimated	value.	The
proper	name	of	this	punctuation	mark	is	caret.	Informally,	it’s	called	a	“hat.”	For
example,	you	pronounce	 	as	“beta	zero	hat.”

You	determine	the	estimated	values	for	 and	 	by	minimizing	the	sum	of	the	squared
differences	between	the	observed	Y	values	in	the	sample	and	those	predicted	by	the
sample	regression	equation,	as	shown	in	the	following	equation:

In	this	formula,	min	stands	for	minimize.

The	difference	between	the	actual	value	of	Yi	and	the	predicted	value	of	Yi	is	known	as
a	residual:



You	use	 	to	represent	the	residual	associated	with	a	single	observation	(Xi,Yi).	Think
of	the	residual	as	an	estimated	error	term.
Minimizing	the	residuals	of	the	sample	regression	equation	produces	the	following	formulas	for	the	estimated
coefficients:

	 is	the	mean	(average)	value	of	X;	 is	the	mean	(average)	value	of	Y.

As	an	example,	suppose	a	medical	researcher	decides	to	test	the	relationship	between
the	time	spent	working	out	in	a	gym	and	the	corresponding	weight	loss.	Eight
volunteers	spend	a	year	working	out	in	a	local	gym.

Table	15-1	shows	the	number	of	hours	spent	in	the	gym	and	corresponding	weight	loss
(in	pounds).

Table	15-1	Gym	Time	and	Weight	Loss

Y	(Weight	Loss	in	Pounds) X	(Hours	Spent	at	the	Gym)

15 100

11 75

15 80

14 90

8 60

9 50

2 25

5 40

Figure	15-1	shows	a	scatter	plot	for	the	data.

The	scatter	plot	shows	that	the	relationship	between	gym	time	and	weight	loss	is
approximately	linear.	The	scatter	plot	also	shows	that	there’s	a	positive	(direct)
relationship	between	weight	loss	and	gym	time;	as	gym	time	increases,	weight	loss	also
increases	(and	vice	versa).

Because	the	relationship	between	X	and	Y	appears	to	be	linear,	you	can	estimate	the
relationship	between	them	with	simple	regression	analysis.



	If	the	relationship	between	X	and	Y	is	not	linear,	there	are	techniques	available
that	may	be	able	to	transform	the	data	into	a	linear	form.	For	example,	the
dependent	variable	Y	may	be	replaced	with	the	natural	log	of	Y,	or	ln(Y).	You	see
this	later	in	this	chapter	when	we	start	to	model	financial	returns.

In	addition,	there	are	specialized	regression	techniques	that	may	be	used	with	nonlinear
data.	These	include	weighted	least	squares	(WLS)	and	generalized	least	squares
(GLS).	(These	are	beyond	the	scope	of	this	book.)

The	coefficients	of	the	sample	regression	equation	are	computed	as	follows.	The	first
step	is	to	compute	the	sample	means	of	X	and	Y.	This	is	shown	in	the	following
equations:

Table	15-2	shows	the	remaining	calculations.

Table	15-2	Computing	the	Regression	Slope	and	Intercept

Y	(Weight	Loss) X	(Hours	at	the	Gym)

15 100 35 1225 5.125 179.375

11 75 10 100 1.125 11.250

15 80 15 225 5.125 76.875

14 90 25 625 4.125 103.125

8 60 -5 25 -1.875 9.375

9 50 -15 225 -0.875 13.125

2 25 -40 1600 -7.875 315.000

5 40 -25 625 -4.875 121.875

Sum 	 	 4650 	 830

Compute	the	third	column	 	by	subtracting	the	mean	of	X	from	each	value	of	X.
You	compute	the	fourth	column	 	by	squaring	the	value	of	 	in	the	third



column.	Compute	the	fifth	column	 	by	subtracting	the	mean	of	Y	from	each
value	of	Y.	In	the	sixth	column,	 	is	computed	by	multiplying	the	third
and	fifth	columns.

The	sum	in	the	fourth	column	shows	that	 .

The	sum	in	the	sixth	column	shows	that	 .

Based	on	these	results,	you	compute	the	estimated	coefficents	as	follows:

Based	on	these	results,	you	write	the	estimated	(sample)	regression	equation	like	this:

The	slope	of	this	equation	suggests	that	each	additional	hour	of	time	spent	at	the	gym
leads	to	a	weight	loss	of	0.1785	pounds.	(Although	the	intercept	of	a	regression
equation	doesn’t	always	have	an	interpretation,	in	this	case	the	intercept	seems	to
indicate	that	someone	who	doesn’t	visit	the	gym	will	gain	1.7275	pounds!)

You	can	use	the	sample	regression	equation	to	predict	the	weight	loss	that	would	result
from	a	specified	amount	of	time	spent	working	out.	For	example,	for	someone	who
works	out	for	50	hours,	the	sample	regression	equation	predicts	a	weight	loss	of	7.1975
pounds:

	Forecasting	with	a	regression	equation	is	valid	only	for	values	of	X	(hours	at
the	gym)	that	fall	within	the	range	spanned	by	the	sample	data	used	to	estimate	the
equation.	In	this	example,	the	values	of	X	range	from	25	to	100	in	the	sample	data.
Therefore,	this	equation	should	only	be	used	to	forecast	weight	loss	for	working
out	times	that	range	between	25	and	100	hours.



Testing	the	Estimated	Regression	Equation
Once	you’ve	estimated	the	regression	equation,	you	need	to	test	the	results	to	be	sure
they’re	valid.	That	is,	you	need	to	see	that	the	independent	variable	(X)	really	does
explain	the	value	of	the	dependent	variable	(Y).	You	can	check	the	overall	fit	of	the
model	to	the	sample	data	with	a	measure	known	as	the	coefficient	of	determination,
also	known	as	R2.	The	statistical	validity	of	the	regression	coefficients	can	be	tested
with	a	hypothesis	test	based	on	the	Student’s	t-distribution;	this	is	known	as	the	t-test
(see	Chapter	13	for	more	on	the	t-test).

The	coefficient	of	determination	(R2)
The	coefficient	of	determination,	also	known	as	R2	(“R-squared”),	is	a	statistical
measure	that	shows	the	proportion	of	variation	explained	by	the	estimated	regression
line.

	Variation	refers	to	the	sum	of	the	squared	deviations	between	the	values	of	Y
and	the	mean	value	of	Y.	Variation	is	given	by	the	following	formula:

The	smaller	the	variation	of	a	regression	model,	the	better	the	independent	variable	(X)
explains	the	values	of	the	dependent	variable	(Y).	In	other	words,	the	smaller	is	the
variation,	the	better	the	regression	model	“fits”	the	sample	data.

R2	always	takes	on	a	value	between	0	and	1,	as	shown	in	the	following	inequalities:

The	closer	R2	is	to	1,	the	better	the	estimated	regression	equation	fits	or	explains	the
relationship	between	X	and	Y.

Total	sum	of	squares	(TSS)
The	expression

is	also	known	as	the	total	sum	of	squares	(TSS).	This	sum	can	be	divided	into	two
categories:

Explained	sum	of	squares	(ESS)
Residual	sum	of	squares	(RSS)



Explained	sum	of	squares	(ESS)
You	compute	the	ESS	with	this	formula:

This	expression	is	also	known	as	explained	variation.	It’s	the	portion	of	total	variation
that	measures	how	well	the	regression	equation	explains	the	relationship	between	X	and
Y.

Residual	sum	of	squares	(RSS)
You	compute	the	RSS	with	this	formula:

This	expression	is	also	known	as	unexplained	variation.	This	is	the	portion	of	total
variation	that	measures	discrepancies	(errors)	between	the	actual	values	of	Y	and	those
estimated	by	the	regression	equation.

The	sum	of	RSS	and	ESS	equals	TSS.

That	is,	RSS	+	ESS	=	TSS.

Now,	you	can	compute	the	coefficient	of	determination	(R2)	in	one	of	two	equivalent
ways:

	For	a	simple	regression	equation	containing	a	single	dependent	variable	X,	R2
is	the	square	of	the	correlation	coefficient	between	X	and	Y.	This	means	that	the
more	closely	X	and	Y	track	each	other,	the	better	the	regression	model	will	explain
the	relationship	between	X	and	Y.

Computing	the	coefficient	of	determination
Returning	to	the	weight-loss	example,	you	calculate	the	coefficient	of	determination.

Table	15-3	shows	the	calculations	required	for	determining	the	value	of	R2.



Table	15-3	Computing	the	Coefficient	of	Determination	(R2)

Yi Xi

15 100 16.123 1.260 39.031 26.266

11 75 11.660 0.436 3.186 1.266

15 80 12.553 5.990 7.169 26.266

14 90 14.338 0.114 19.914 17.016

8 60 8.983 0.965 0.797 3.516

9 50 7.198 3.249 7.169 0.766

2 25 2.735 0.540 50.980 62.016

5 40 5.413 0.170 19.914 23.766

Sum 	 	 12.724 148.159 160.875

Based	on	the	results	shown	in	Table	15-3:

This	shows	that	92.10	percent	of	the	variation	in	Y	is	explained	by	variation	in	X.	The
regression	line	does	a	good	job	of	explaining	the	relationship	between	the	two
variables.

The	t-test
Another	important	test	of	the	results	of	regression	analysis	is	to	determine	whether	the
slope	coefficient	(β1)	is	different	from	zero.	If	the	slope	coefficient	is	close	to	zero,	that
indicates	that	X	provides	little	or	no	explanatory	power	for	the	value	of	Y.	In	such	a
case,	you	should	replace	X	with	another	independent	variable	in	the	regression
equation.

To	determine	whether	β1	is	different	from	zero,	you	conduct	a	hypothesis	test.	Chapter
5	introduces	hypothesis	testing,	and	examples	of	how	to	apply	it	appear	throughout	the
chapters	in	Part	III	of	this	book.	In	this	case,	we	use	the	t-test	to	determine	whether	or
not	the	slope	coefficient	β1	of	the	estimated	regression	equation	is	significantly
different	from	zero.	If	β1	=	0,	that	indicates	that	X	does	not	explain	the	value	of	Y,	and
the	regression	results	are	then	meaningless.

Null	and	alternative	hypotheses
With	the	t-test,	the	null	hypothesis	is	that	the	slope	coefficient	(β1)	equals	zero



The	alternative	hypothesis	is	that	the	slope	coefficient	does	not	equal	zero	(null
hypothesis	rejected):

If	the	null	hypothesis	is	accepted	(if	it	cannot	be	rejected),	then	the	independent
variable	X	does	not	explain	the	value	of	the	dependent	variable	Y.

Level	of	significance
When	you	test	hypotheses	about	regression	coefficients,	the	level	of	significance	(α)	is
often	set	equal	to	0.05	(5	percent).	The	level	of	significance	is	the	probability	of
rejecting	the	null	hypothesis	when	it	is	actually	true.

	Rejecting	the	null	hypothesis	when	it	is	actually	true	is	known	as	a	Type	I	error.
Failing	to	reject	the	null	hypothesis	when	it	is	false	is	known	as	a	Type	II	error.
The	smaller	the	level	of	significance	(α),	the	lower	the	risk	of	committing	a	Type	I
error	but	the	greater	the	risk	of	committing	a	Type	II	error.	For	many	financial
applications,	a	level	of	significance	of	5	percent	(0.05)	is	used.

Test	statistic
For	this	type	of	hypothesis	test,	the	test	statistic	is	this:

This	expression	is	known	as	a	t-statistic,	because	it	follows	the	t-distribution.	The	new
term	in	this	equation	is	as	follows:

=	the	standard	error	of	

Think	of	the	standard	error	of	 	as	the	standard	deviation	of	 .	In	other	words,
consider	it	to	be	the	amount	of	uncertainty	associated	with	using	 	to	estimate	 .	You
compute	this	in	the	following	way:

The	first	step	is	to	compute	the	standard	error	of	the	estimate	(SEE).	This	is	a	measure
of	the	dispersion	of	the	sample	values	above	and	below	the	estimated	regression	line.
Use	this	formula:

For	the	weight-loss	example,	based	on	the	sample	in	Table	15-3	for	the	R2	calculations,
you	get	the	following:



Therefore,	with	a	sample	size	of	8,

The	next	step	is	to	compute	the	standard	error	of	 .	Here’s	the	formula:

You	can	get	the	values	in	the	denominator	of	this	formula	from	Table	15-4.

Table	15-4	Computing	the	Standard	Error	of	

Xi

100 10,000

75 5,625

80 6,400

90 8,100

60 3,600

50 2,500

25 625

40 1,600

The	mean	of	X	has	previously	been	determined	to	be	65.	The	sum	of	the	squared	Xs
equals:

or

With	 	=	0.1785,	the	t-statistic	for	 	is	computed	as



Critical	values
The	critical	values	are	taken	from	the	t-table	with	 	degrees	of	freedom.	In	the
weight-loss	example,	the	sample	size	was	8,	so	we	use	the	t-distribution	with	6	degrees
of	freedom.

In	this	case,	say	you	choose	the	level	of	significance	(α)	to	be	0.05.	Since	the	sample
size	(n)	is	8,	the	appropriate	critical	values	are	as	follows:

These	are	found	in	the	t-table.	Table	15-5	shows	an	excerpt.

Table	15-5	The	t-distribution

Degrees	of	Freedom t0.10 t0.05 t0.025 t0.01 t0.005

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

The	value	of	the	positive	critical	value	 	(we’re	using	a	two-tailed	test)	is	found	at
the	intersection	of	the	row	with	6	degrees	of	freedom	and	the	column	labeled	t0.025.
This	equals	2.447.	The	value	of	the	negative	critical	value	 	then	is	–2.447.

Decision	rule
If	the	value	of	the	test	statistic	is	greater	than	2.447,	the	null	hypothesis	 	is
rejected	in	favor	of	the	alternative	hypothesis	 .	If	the	value	of	the	test	statistic
is	less	than	–2.447,	then	the	null	hypothesis	 	is	rejected	in	favor	of	the
alternative	hypothesis	 .	If	the	test	statistic	falls	between	–2.447	and	2.447,	the
null	hypothesis	 	is	not	rejected.

In	this	case,	the	test	statistic	is	8.357,	which	is	greater	than	2.447.	Therefore,	the	null
hypothesis	 	is	rejected	in	favor	of	 ;	this	indicates	that	 	is
statistically	significant	(that	is,	different	from	zero).	This	is	strong	evidence	that	X
(hours	spent	at	the	gym)	does	explain	the	value	of	Y	(weight	loss).

You	can	also	test	whether	the	estimated	intercept	( )	is	statistically	significant,	but	this
is	usually	not	necessary	because	the	slope	coefficient	is	the	most	important	value	in	the



regression	equation.



Using	Statistical	Software
Many	spreadsheet	programs	and	specialized	statistical	packages	are	available	to
generate	the	results	you	need	for	regression	analysis.	Using	this	kind	of	software	avoids
the	need	to	do	all	the	tedious	calculations	by	hand!

Excel
For	example,	you	can	use	a	spreadsheet	program	such	as	Excel	to	generate	the	results
for	the	weight-loss	data.	See	Figure	15-2.
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Figure	15-2:	Excel	printout	of	the	regression	results	for	the	weight-loss	data.

The	printout	shows	the	values	of	 	and	 	under	the	Coefficients	column.	 	is	the
intercept	and	has	a	value	of	–1.727150538,	whereas	 	is	the	slope	and	has	a	value	of
0.178494624.

The	values	of	the	coefficient	of	determination	(R2)	and	the	standard	error	of	the
estimate	(SEE)	appear	under	the	Regression	Statistics	column.	R2	(“R-square”)	has	a
value	of	0.920904663,	and	the	standard	error	of	the	estimate	(shown	as	Standard	Error
in	Figure	15-2)	has	a	value	of	1.456277353.

Using	the	p-value
The	spreadsheet	printout	shown	in	Figure	15-2	provides	one	additional	useful	measure
you	can	use	to	test	hypotheses	about	the	coefficients.	These	are	p-values	(that	is,
probability	values).	The	values	are	under	the	P-value	column.	The	p-value	for	the
intercept	( )	is	0.28765033,	and	the	p-value	for	the	slope	( )	is	0.00015945.

The	p-value	represents	the	likelihood	of	obtaining	the	given	t-statistic	if	the	null
hypothesis	is	true.	An	extremely	low	p-value	indicates	that	the	null	hypothesis	of	a	zero
coefficient	should	be	rejected.	In	fact,	the	p-value	represents	the	lowest	level	of
significance	at	which	the	null	hypothesis	can	be	rejected.



More	formally,	when	testing	the	hypothesis	 ,	if	the	p-value	is	less	than	the
level	of	significance	(α),	the	null	hypothesis	is	rejected;	otherwise,	it	is	not	rejected.

In	this	example,	the	p-value	for	 	is	0.00015945;	the	level	of	significance	is	0.05.
Therefore,	because	the	p-value	is	less	than	the	level	of	significance,	the	null	hypothesis	

	is	rejected,	and	your	regression	coefficient	is	statistically	significant.	This
confirms	the	results	found	when	testing	the	hypothesis	with	the	t-statistic.

	Using	the	t-statistic	or	the	p-value	to	test	the	significance	of	a	regression
coefficient	will	always	provide	the	same	results.



Assumptions	of	Simple	Linear	Regression
The	simple	regression	model	shown	in	this	chapter	is	based	on	several	extremely
important	assumptions.	If	any	of	these	assumptions	is	violated,	the	reliability	of	the
regression	results	is	questionable.

The	most	important	assumptions	are	as	follows:

The	expected	value	of	each	error	term	is	zero:	 .	This	shows	that	although
some	error	terms	are	positive	and	some	are	negative,	on	average	they	equal	zero.
The	variances	of	the	error	terms	are	finite	and	constant	for	all	values	of	xi;	this
common	variance	is	designated	σ2.
The	error	terms	are	independent	of	each	other	(that	is,	they	do	not	influence	each
other).
Each	error	term	εi	is	independent	of	the	corresponding	value	of	Xi.

An	assumption	that	isn’t	required	for	linear	regression	but	is	often	used	is	that	the
error	terms	are	normally	distributed.	Incorporating	this	assumption	lets	you
compute	confidence	intervals	for	the	regression	coefficients.	It	also	allows	you	to
test	hypotheses	about	the	coefficients.

Violations	of	the	assumptions
With	simple	regression	analysis,	two	of	the	most	important	violations	of	these
assumptions	are	autocorrelation	and	heteroscedasticity.

Autocorrelation
Autocorrelation	occurs	when	the	error	terms	are	correlated	with	each	other.	This
violates	the	assumption	of	independence.

	Two	independent	variables	have	a	correlation	of	zero	(0)	between	them.	The
reverse	is	not	necessarily	true.	It	is	possible	to	have	uncorrelated	variables	that	are
not	independent.

Autocorrelated	error	terms	can	cause	the	standard	errors	of	the	regression	coefficients
to	be	understated.	This	would	increase	the	risk	that	coefficients	will	be	found	to	be
statistically	significant	when	they	are	not.

Heteroscedasticity
Heteroscedasticity	(that’s	easy	for	you	to	say!)	occurs	when	the	error	terms	don’t	have
a	constant	variance.	This	problem	can	cause	the	standard	errors	of	the	regression
coefficients	to	be	understated,	increasing	the	risk	that	coefficients	will	be	found	to	be
statistically	significant	when	they	are	not.



Formal	statistical	tests	are	available	to	determine	whether	these	problems	are	present.	If
they	are,	you	must	take	corrective	steps	before	continuing	with	regression	analysis	or
choose	a	different	modeling	procedure.



Multiple	Regression	Analysis
With	simple	regression,	you	estimate	a	relationship	between	a	dependent	variable	(Y)
and	an	independent	variable	(X).	With	multiple	regression	analysis,	you	estimate	the
relationship	between	a	dependent	variable	(Y)	and	two	or	more	independent	variables
(X1,	X2,…).	This	introduces	several	additional	complexities,	but	also	provides	a	great
deal	of	additional	flexibility,	because	you	can	include	any	number	of	variables	in	the
regression	equation.

Multiple	regression	uses	the	same	basic	approach	as	simple	linear	regression.	We’ll
spare	you	the	gory	details	in	this	section.	The	calculations	involved	in	multiple
regression	can	get	unmanageable	pretty	quickly,	so	statistical	software	is	used	to	build
these	multiple	regression	lines.

For	example,	the	following	multiple	regression	equation	contains	k	independent
variables:

For	example,	suppose	a	bank	wants	to	determine	whether	the	salaries	of	its	non-
managerial	employees	are	closely	related	to	education,	experience,	and	hours	worked
per	week.	The	bank	chooses	a	random	sample	of	eight	employees.	The	annual	salaries
(measured	in	thousands	of	dollars	per	year),	years	of	post-high	school	education,	years
of	experience,	and	average	hours	worked	each	week	are	recorded.

Here	are	the	following	variables:

Y	represents	an	employee’s	annual	salary,	measured	in	thousands	of	dollars.
X1	represents	an	employee’s	years	of	education.	A	value	of	0	represents	someone
who	only	has	a	high	school	diploma.	Any	value	greater	than	4	indicates	graduate
education.
X2	represents	years	of	experience.

X3	represents	average	number	of	hours	worked	each	week.

Table	15-5	shows	the	sample	data.

Table	15-5	Sample	Data	for	Employees

Y	(Annual	Salary,	$
Thousands)

X1	(Years	of	Post-high	School
Education)

X2	(Years	of
Experience)

X3	(Average	Hours	Worked	per
Week)

82 4 4 40

48 0 2 40

60 4 1 50

85 6 1 50



72 0 4 50

62 0 3 40

90 4 3 50

101 6 4 60

The	regression	is	run	using	Excel.	Figure	15-3	shows	the	results.
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Figure	15-3:	Printout	of	salaries	regression	results.

Based	on	the	printout	in	Figure	15-3,	the	estimated	regression	equation	is	as	follows:

(The	coefficients	are	rounded	to	three	digits	past	the	decimal	point.)

This	equation	shows	that	at	this	bank,	the	following	things	are	true:

The	starting	salary	for	a	new	employee	with	no	experience	or	post-high	school
education	is	$18,558.	This	is	based	on	the	intercept	of	the	regression	equation.
Each	additional	year	of	college	or	graduate	school	adds	$4,945	to	an	employee’s
salary;	this	is	based	on	the	coefficient	of	X1.

Each	additional	year	of	experience	adds	$7,350	to	an	employee’s	salary;	this	is
based	on	the	coefficient	of	X2.

Each	additional	hour	worked	per	week	adds	$450	to	an	employee’s	salary;	this	is
based	on	the	coefficient	of	X3.

Predicting	the	value	of	Y
This	multiple	regression	equation	can	be	used	to	predict	the	annual	salary	of	an
employee	with	a	specific	amount	of	experience	and	education.	For	example,	suppose	a



randomly	chosen	employee	is	a	college	graduate,	has	2	years	of	experience,	and	works
an	average	of	40	hours	per	week.	The	predicted	salary	of	this	employee	would	be	as
follows:

This	result	shows	that	the	predicted	annual	salary	is	 .

	You	should	do	forecasting	with	a	regression	equation	only	with	values
contained	within	the	sample	data.

Testing	the	results	of	the	multiple	regression
equation
Testing	the	results	of	a	multiple	regression	equation	is	similar	to	testing	the	results	of	a
simple	regression	equation.	There	are	two	main	differences:

You	use	the	adjusted	coefficient	of	determination	instead	of	the	coefficient	of
determination	to	indicate	how	well	the	regression	equation	fits	the	sample	data.
You	use	an	additional	hypothesis	test	to	determine	if	all	the	slope	coefficients	are
jointly	equal	to	zero;	this	test	is	known	as	the	F-test.

The	adjusted	coefficient	of	determination
The	adjusted	coefficient	of	determination	is	closely	related	to	the	coefficient	of
determination	that’s	used	with	simple	regression.	The	following	equation	shows	the
relationship	between	the	adjusted	coefficient	of	determination	and	the	coefficient	of
determination:

In	this	equation:

	=	The	adjusted	coefficient	of	determination	(also	known	as	“R	bar	squared”)

R2	=	The	coefficient	of	determination	(also	known	as	“R	squared”)
n	=	The	sample	size
k	=	The	number	of	independent	variables

As	with	the	coefficient	of	determination,	the	range	of	possible	values	for	the	adjusted
coefficient	of	determination	is	from	0	to	1:



	Use	the	adjusted	coefficient	of	determination	with	multiple	regression	analysis
instead	of	the	coefficient	of	determination.	You	do	this	because	the	coefficient	of
determination	increases	automatically	as	new	independent	variables	are	added	to	a
regression	equation,	even	if	they	don’t	contribute	any	new	explanatory	power	to
the	equation.

The	adjusted	coefficient	of	determination,	on	the	other	hand,	increases	only	when	new
independent	variables	are	added	that	do	increase	the	explanatory	power	of	the
regression	equation.	This	makes	it	a	much	more	useful	measure	of	how	well	a	multiple
regression	equation	fits	the	sample	data.

The	adjusted	coefficient	of	determination	for	the	salaries	data	is	found	at	the	top	of
Figure	15-3.	(It	is	listed	as	“Adjusted	R	Square.”)	This	value	equals	approximately
0.8258.	This	means	that	the	proportion	of	variation	explained	by	the	estimated
regression	line	is	0.8258,	or	82.58	percent.

The	F-test
With	a	multiple	regression	equation,	it’s	often	useful	to	test	the	hypothesis	that	all	slope
coefficients	equal	0.	If	this	is	true,	then	the	regression	equation	does	not	explain	the
relationship	between	the	dependent	and	the	independent	variables.	In	this	case,	a	new
set	of	independent	variables	may	be	used	to	try	to	explain	the	value	of	the	dependent
variable.

The	null	and	alternative	hypotheses

With	three	independent	variables,	this	hypothesis	test	is	set	up	as	follows:

Here	is	the	null	hypothesis:

This	hypothesis	indicates	that	all	three	slope	coefficients	jointly	equal	0.	A	coefficient
of	0	indicates	that	an	independent	variable	does	not	explain	the	value	of	the	dependent
variable.	If	this	hypothesis	cannot	be	rejected,	then	the	regression	equation	cannot	be
used	to	explain	the	relationship	between	salaries,	education,	experience,	and	hours
worked.

The	alternative	hypothesis	is	that	at	least	one	slope	coefficient	does	not	equal	0.	In
other	words,	at	least	one	of	the	independent	variables	does	belong	in	the	regression
equation.

The	level	of	significance

In	most	business	applications,	you	choose	the	level	of	significance	to	be	0.01,	0.05,	or
0.10;	0.05	is	a	common	choice.	The	Greek	letter	α	(alpha)	is	often	used	to	represent	the



level	of	significance.

The	test	statistic

You	compute	the	test	statistic	(also	known	as	the	F-statistic	because	it	follows	the	F-
distribution,	discussed	in	Chapter	13)	as	follows:

The	key	terms	in	this	equation	are	as	follows:

R2	=	Coefficient	of	determination
n	=	Sample	size
k	=	Number	of	independent	variables	(that	is,	the	number	of	Xs	in	the	regression
equation)

In	this	example,	the	F-statistic	equals

	The	test	statistic	follows	the	F-distribution	with	k	numerator	degrees	of

freedom	and	 	denominator	degrees	of	freedom.	Figure	15-3	shows	that
the	value	of	the	F-statistic	can	also	be	found	on	the	spreadsheet	printout.	The
value	of	the	F-statistic	is	found	under	the	column	headed	“F”;	this	is	12.06	(the
difference	with	the	calculations	above	is	due	to	rounding).

The	critical	values

In	this	case,	there’s	a	single	critical	value	that	is	uniquely	determined	by	the	level	of
significance	and	two	different	types	of	degrees	of	freedom.	As	covered	in	Chapter	13,
these	are	known	as	the	numerator	and	denominator	degrees	of	freedom.	They	are
calculated	as	follows:

Numerator	degrees	of	freedom	=	

Denominator	degrees	of	freedom	=	

You	choose	the	appropriate	critical	value	from	an	F-table.	Unlike	the	tables	used	for
most	other	probability	distributions,	one	entire	F-table	is	needed	for	a	single	value	of
the	level	of	significance.	Table	15-6	shows	an	excerpt	from	the	F-table	for	a	5	percent
level	of	significance	( ).

Table	15-6	A	Section	of	the	F-table	with	α	=	0.05



ν2\ν1 2 3 4 5 6 7 8 9

2 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

3 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

4 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

7 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

8 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

9 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

The	top	row	represents	the	numerator	degrees	of	freedom	(ν1).	The	first	column
represents	the	denominator	degrees	of	freedom	(ν2).

	ν	is	the	Greek	letter	often	used	to	represent	degrees	of	freedom.

In	this	example,	you’re	looking	for	a	right-tail	area	of	5	percent	with	 ,	and	 .
Remember	from	Chapter	13	that	the	F-distribution	is	one-tailed	to	the	right,	so	all	tests
using	the	F-distribution	are	right-tailed	tests.	You	find	this	critical	value	at	the
intersection	of	the	column	labeled	3	and	the	row	labeled	4.	This	is	shown	as	the
following:

The	decision	rule

If	the	test	statistic	exceeds	the	critical	value,	the	null	hypothesis	is	rejected;	otherwise,
it	is	not.	In	this	case:

The	test	statistic	is	approximately	12.05.
The	critical	value	is	6.59.

Because	the	test	statistic	is	greater	than	the	critical	value,	the	appropriate	decision	is	to
reject	the	null	hypothesis	 .	This	indicates	that	at	least	one	of	the
slope	coefficients	is	statistically	significant	at	the	5	percent	level.	In	other	words,	at
least	one	of	the	variables	(education,	experience,	or	hours	worked)	does	explain	the
annual	salary	of	an	employee	at	this	company.

Testing	hypotheses	with	the	p-value

As	an	alternative	to	comparing	the	F-statistic	with	a	critical	value,	you	can	test	the
hypothesis	by	comparing	the	p-value	with	the	level	of	significance.

When	you’re	using	the	p-value,	the	decision	rule	goes	like	this:



If	the	p-value	is	less	than	the	level	of	significance,	reject	the	null	hypothesis.
Otherwise,	do	not	reject	the	null	hypothesis.

In	the	example,	the	level	of	significance	is	0.05	(5	percent).	Figure	15-3	shows	the	p-
value	(under	the	heading	“Significance	F”)	as	approximately	0.0179.	Because	the	p-
value	is	well	below	the	level	of	significance,	the	null	hypothesis	is	rejected.	Therefore,
at	least	one	of	the	slope	coefficients	is	statistically	significant	at	the	5	percent	level.

The	t-test
Once	you	have	used	the	F-test	to	confirm	that	at	least	one	slope	coefficient	isn’t	equal
to	0,	you	test	each	slope	coefficient	separately	using	the	t-test.	The	t-test	lets	you
determine	which	of	the	slope	coefficients	is	statistically	significant,	or	if	both	are
statistically	significant.

Null	and	alternative	hypotheses

With	the	t-test,	the	null	hypothesis	is	that	the	slope	coefficient	equals	0.	For	example,
you	can	test	whether	or	not	 	with	the	following	null	and	alternative	hypotheses:

The	level	of	significance

When	you	test	hypotheses	about	regression	coefficients,	you	typically	set	the	level	of
significance	(α)	to	0.05	(5	percent).

The	test	statistic

For	this	type	of	hypothesis	test,	the	test	statistic	is	the	ratio	of	the	estimated	coefficient
to	the	standard	error	of	the	coefficient.	For	example,	the	test	statistic	for	determining	if	

	is	this:

	This	expression	is	known	as	a	t-statistic,	because	it	follows	the	t-distribution.

You	can	find	the	values	you	need	to	construct	the	t-statistic	from	the	regression	printout
under	the	Coefficients	and	Standard	Error	headings.

For	X1	(education),	the	coefficient	is	approximately	4.945,	and	the	standard	error	is
approximately	1.408.	The	t-statistic	is	computed	as	 .	Similar
calculations	show	that	the	t-statistics	for	X2	(experience)	and	X3	(hours	worked)	are
3.238	and	0.874,	respectively.



The	critical	values

With	a	multiple	regression	equation,	you	take	the	critical	values	from	the	t-table	with	
	degrees	of	freedom.	n	is	the	sample	size,	and	k	is	the	number	of	independent

variables.	In	this	case,	 	since	there	are	three	independent	variables.

To	test	a	hypothesis	for	each	slope	coefficient	with	a	level	of	significance	of	0.05,	the
appropriate	critical	values	will	be	like	this:

Remember,	we’re	using	a	two-tailed	test	here,	which	is	why	the	subscript	has	the	value
.025	rather	than	.05.	These	values	are	in	the	t-table.	Table	15-7	shows	an	excerpt.

Table	15-7	The	t-distribution

Degrees	of	Freedom t0.10 t0.05 t0.025 t0.01 t0.005

4 1.533 2.132 2.776 3.747 4.604

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

The	value	of	the	positive	critical	value	 	is	found	at	the	intersection	of	the	row
labeled	4	degrees	of	freedom	and	the	t0.025	column.	This	equals	2.776.	The	value	of	the
corresponding	negative	critical	value	is	–2.776.

The	decision	rule

For	testing	the	hypothesis	 ,	you	reach	the	appropriate	decision	as	follows:

If	the	value	of	the	test	statistic	is	greater	than	2.776,	the	null	hypothesis	 	is
rejected	in	favor	of	the	alternative	hypothesis	 .
If	the	value	of	the	test	statistic	is	less	than	–2.776,	then	the	null	hypothesis	

	is	rejected	in	favor	of	the	alternative	hypothesis	 .
If	the	test	statistic	falls	between	–2.776	and	2.776,	the	null	hypothesis	 	is
not	rejected.

You	follow	the	same	process	when	you	test	the	hypothesis	 	and	the	hypothesis
.

For	β1,	the	test	statistic	is	3.512,	which	is	greater	than	2.776.	Therefore,	the	null



hypothesis	 	is	rejected	in	favor	of	 .	This	indicates	that	β1	is	different
from	0	(that	is,	it	is	statistically	significant).	Therefore,	there’s	strong	evidence	that	X1
(education)	helps	explain	the	value	of	Y	(annual	salary).

For	β2,	the	test	statistic	is	3.238,	which	is	greater	than	2.776.	Therefore,	the	null
hypothesis	 	is	rejected	in	favor	of	 ;	this	indicates	that	β2	is	different
from	0	(that	is,	it	is	statistically	significant).	Therefore,	there’s	strong	evidence	that	X2
(experience)	explains	the	value	of	Y	(annual	salary).

For	β3,	the	test	statistic	is	0.874,	which	is	between	–2.776	and	2.776.	Therefore,	the
null	hypothesis	 	is	not	rejected.	Therefore,	X3	(hours	worked)	does	not
explain	the	value	of	Y	(annual	salary).

Testing	hypotheses	with	the	p-value

As	an	alternative	of	comparing	the	t-statistic	with	critical	values,	you	can	test	the
hypothesis	by	comparing	the	p-value	with	the	level	of	significance.	The	decision	rule	is
then	as	follows:

If	the	p-value	is	less	than	the	level	of	significance,	reject	the	null	hypothesis.
Otherwise,	do	not	reject	the	null	hypothesis.

In	this	example,	the	level	of	significance	is	0.05	(5	percent).	The	p-values	for	X1,	X2,
and	X3	are	0.0246,	0.0317,	and	0.431,	respectively.	This	shows	that	X1	and	X2	are
statistically	significant,	whereas	X3	is	not.



Multicollinearity
One	of	the	potential	difficulties	that	comes	with	multiple	regression	analysis	is
multicollinearity.	This	occurs	when	two	or	more	of	the	independent	variables	are
highly	correlated	with	each	other.

Multicollinearity	is	unique	to	multiple	regression.	With	a	simple	regression,	there’s
only	a	single	independent	variable.

	Multicollinearity	causes	the	correlated	variables	to	have	large	standard	errors,
so	they	appear	to	be	statistically	insignificant	even	if	they	are	not.

Multicollinearity	is	indicated	if	the	coefficient	of	determination	R2	exceeds	0.8,
whereas	the	t-tests	on	individual	coefficients	show	that	they	are	not	statistically
significant.

One	approach	to	removing	multicollinearity	is	to	eliminate	one	of	the	correlated
variables	from	the	regression.	Doing	so	has	the	effect	of	lowering	the	p-values	of	the
uncorrelated	independent	variables,	which	reduces	the	risk	that	they	will	be	considered
statistically	insignificant	when	they	are	not.

We	cover	a	lot	of	detail	in	this	chapter.	That’s	because	regression	models	are	widely
used	in	all	kinds	of	applications.	The	mechanics	of	building	the	models	is	handled
pretty	easily	by	statistical	software.	But	it	is	important	to	know	how	to	interpret	what
those	software	packages	feed	back	to	you.	In	particular,	it’s	important	to	know	how	to
evaluate	how	well	your	model	is	performing.	You	should	continue	to	re-evaluate	your
regression	models	occasionally.	Coefficients	in	these	models	can	change	over	time.



Chapter	16



When	You’ve	Got	the	Time:	Time	Series
Analysis

In	This	Chapter
	Understanding	the	properties	of	a	time	series

	Forecasting	a	time	series	with	decomposition	methods	and	smoothing	techniques

	Understanding	how	a	time	series	may	be	modeled	and	forecasted	with	regression
analysis

A	time	series	is	a	sequence	of	values	observed	over	a	period	of	time.	For	example,	the
daily	closing	price	of	IBM	stock	over	the	past	30	trading	days	is	a	time	series.	The
monthly	rainfall	in	Seattle	over	the	past	five	years	is	also	a	time	series,	as	is	the	daily
price	of	gold	over	the	past	two	years.

For	many	applications,	a	time	series	is	the	most	useful	organization	of	data.	For
example,	the	properties	of	a	stock	could	be	best	analyzed	with	a	time	series	of
historical	prices.	As	another	example,	you	might	produce	a	forecast	of	the	demand	for	a
company’s	products,	based	on	the	past	buying	patterns	of	the	company’s	customers.

This	chapter	covers	the	key	statistical	features	needed	to	analyze	a	time	series,	along
with	three	forecasting	techniques:	decomposition	methods,	smoothing	techniques,	and
time	series	regression.



Key	Properties	of	a	Time	Series
The	properties	of	a	time	series	may	be	modeled	in	terms	of	the	following	components
or	factors.	Most	time	series	contain	one	or	more	of	the	following:

Trend	component
Seasonal	component
Cyclical	component
Irregular	component

Trend	component
A	trend	is	a	long-run	increase	or	decrease	in	a	time	series.	As	an	example,	gold	prices
over	the	past	40	years	would	show	a	very	strong	positive	trend,	as	prices	have	risen
consistently	over	this	period.	Other	items	that	would	show	a	long-run	positive	trend
over	recent	decades	would	be	the	population	of	the	United	States,	the	Dow	Jones
Industrial	Average,	the	size	of	the	U.S.	federal	deficit,	and	so	forth.	In	recent	years,
U.S.	interest	rates	would	show	a	strong	negative	trend	since	reaching	a	peak	in	2000.
From	a	modeling	perspective,	the	trend	is	the	most	important	component	of	a	time
series.

Seasonal	component
Much	economic	data	is	affected	by	the	time	of	the	year.	For	example,	sales	of	bathing
suits,	surfboards,	swimming	pools,	gardening	equipment,	and	similar	items	are	much
stronger	during	the	warmer	months.	The	demand	for	heating	oil	rises	during	the	winter
and	falls	during	the	warmer	months.	Sales	of	snow	shovels,	turkeys,	and	pumpkin	pies
are	stronger	during	the	colder	months	and	weaker	during	the	warmer	months.

However,	some	items,	such	as	cellphones,	aren’t	heavily	affected	by	the	season.	The
seasonal	component	is	often	measured	on	a	quarterly	or	monthly	basis.

Cyclical	component
The	business	cycle	has	an	impact	on	virtually	all	economic	activity.	For	example,	sales
of	expensive	items	such	as	new	homes,	new	cars,	new	furniture,	and	so	forth	typically
decline	when	the	economy	falls	into	recession.	As	another	example,	sales	at	fast-food
chains	may	rise	during	recessions,	when	consumers	are	more	cost-conscious,	and	then
fall	during	recoveries.	On	the	other	hand,	the	demand	for	basic	consumer	staples,	such
as	shampoo	and	detergent,	depends	less	on	the	business	cycle.

The	cyclical	component	is	measured	over	a	long	time	horizon,	typically	one	year	or
longer.

Irregular	component



Irregular	effects	are	the	impact	of	random	events	such	as	strikes,	earthquakes,	and
sudden	changes	in	the	weather.	By	their	nature,	these	effects	are	completely
unpredictable.



Forecasting	with	Decomposition	Methods
Decomposition	methods	are	based	on	an	analysis	of	the	individual	components	of	a
time	series.	The	strength	of	each	component	is	estimated	separately	and	then
substituted	into	a	model	that	explains	the	behavior	of	the	time	series.	Two	of	the	more
important	decomposition	methods	are

Multiplicative	decomposition
Additive	decomposition

Multiplicative	decomposition
The	multiplicative	decomposition	model	is	expressed	as	the	product	of	the	four
components	of	a	time	series:

These	variables	are	defined	as	follows:

yt	=	Value	of	the	time	series	at	time	t

TRt	=	Trend	at	time	t

St	=	Seasonal	component	at	time	t

Ct	=	Cyclical	component	at	time	t

It	=	Irregular	component	at	time	t

Each	component	has	a	subscript	t	to	indicate	a	specific	time	period.	The	time	period
can	be	measured	in	weeks,	months,	quarters,	years,	and	so	forth.

For	example,	sales	of	air	conditioners	depend	heavily	on	the	season	of	the	year;	due	to
population	growth,	sales	of	air	conditioners	also	show	a	positive	trend	over	time.
Suppose	you	use	the	following	equation	to	estimate	(and	to	explain)	the	trend	in	the
demand	for	air	conditioners:

Quarterly	data	is	used,	so	t	represents	the	time	measured	in	quarters.	This	equation
indicates	that	over	time,	sales	of	air	conditioners	tend	to	rise	by	25	units	per	quarter.
Using	the	trend	equation,	the	forecast	of	air	conditioner	sales	over	the	coming	year
looks	like	this:



Seasonal	factors	are	handled	by	giving	different	weights	to	each	season	that	are	used	to
adjust	the	trend	components.	Assume	that	the	seasonal	factors	for	four	seasons	are	as
follows:

These	values	show	that	the	seasonal	demand	for	air	conditioners	is	strongest	in	the
third	quarter	and	weakest	in	the	fourth	and	first	quarters.	(If	there	is	no	seasonal	effect,
then	each	of	these	factors	would	be	equal	to	1.)	Incorporating	the	seasonal	factors	into
the	model	gives	the	following	adjusted	forecasts:

Now,	suppose	you	estimate	the	four	cyclical	(quarterly)	factors	to	be:

Incorporating	the	cyclical	factors	gives	the	following	adjusted	forecast	for	the	four
quarters	over	the	coming	year:

Additive	decomposition
With	additive	decomposition,	a	time	series	is	modeled	as	the	sum	of	the	trend,	seasonal
effect,	cyclical	effect,	and	irregular	effects.	This	is	shown	in	the	following	equation:



The	additive	decomposition	method	is	more	appropriate	when	the	seasonal	factors	tend
to	be	steady	from	one	year	to	the	next.	By	contrast,	multiplicative	decomposition	is
more	widely	used	since	many	economic	time	series	have	a	seasonal	factor	that	grows
proportionately	with	the	level	of	the	time	series.	In	other	words,	economic	growth
tends	to	be	multiplicative	rather	than	linear,	because	returns	are	compounded	over	time.

For	example,	sales	of	ice-cream	increase	more	during	the	summer	as	the	population
grows,	so	the	seasonal	factor	increases	over	time.	In	this	case,	you’d	use	multiplicative
decomposition	to	forecast	the	demand	for	ice-cream.



Smoothing	Techniques
Smoothing	techniques	remove	fluctuations	in	a	time	series.	The	fluctuations	may	be
due	to	seasonal	and	irregular	components,	so	the	result	of	removing	them	from	the	time
series	reflects	only	the	trend	and	cyclical	components.	You	can	estimate	the	seasonal
component	(if	any)	separately.

Here	are	three	widely	used	smoothing	techniques:

Moving	averages
Centered	moving	averages
Exponential	smoothing

You	may	recall	that	Chapter	5	discusses	four	data	types:	nominal,	ordinal,	interval,	and
ratio,	and	that	not	all	statistical	processes	can	be	legitimately	applied	to	all	four	data
types.	When	applying	smoothing	techniques,	these	distinctions	are	important.	All	the
smoothing	techniques	require	interval	data,	and	some	of	them,	like	exponential
smoothing,	require	ratio	data.

Moving	averages
An	n-period	moving	average	is	the	average	value	of	the	n	most	recent	observations
taken	from	a	time	series.	This	is	computed	as	follows:

where

yt	is	the	value	of	the	time	series	at	time	t

n	is	the	size	of	the	period

For	example,	Table	16-1	shows	the	prices	for	a	stock	over	the	past	ten	months.

Table	16-1	Sample	Data	for	Stock	Prices

Time Price

October	2013 100

November	2013 101

December	2013 103

January	2014 99

February	2014 97

March	2014 102

April	2014 101



May	2014 98

June	2014 104

July	2014 106

A	three-month	moving	average	is	constructed	as	follows.	The	average	of	the	first	three
observations	would	be	 .	The	average	of	the	next	three
observations	(the	second,	third,	and	fourth	months)	is	 .	You
continue	this	process	for	the	entire	dataset.	See	Table	16-2	for	the	resulting	three-month
moving	averages	(MAs).

Table	16-2	Three-Month	Moving	Average	for	Stock	Prices

Time Price 3-Month	MA

October	2013 100 ***

November	2013 101 101.33

December	2013 103 101.00

January	2014 99 99.67

February	2014 97 99.33

March	2014 102 100.00

April	2014 101 100.33

May	2014 98 101.00

June	2014 104 102.67

July	2014 106 ***

The	first	three-month	moving	average	is	listed	next	to	November	2013,	even	though	it
represents	the	average	of	October	2013,	November	2013,	and	December	2013.	This
shows	that	November	2013	is	the	“center”	of	the	moving	average.

Similarly,	the	three-month	moving	average	constructed	from	the	November	2013,
December	2013,	and	January	2014	prices	is	shown	next	to	December	2013.	Plotting
these	moving	averages	and	the	original	prices	shows	that	moving	averages	“smooth
out”	the	data,	as	shown	in	Figure	16-1.
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Figure	16-1:	Three-month	moving	average.

The	size	of	the	period	used	to	construct	a	moving	average	is	often	determined	by	the
characteristics	of	the	data.	For	example,	12-month	moving	averages	are	often	used	with
monthly	data.

Centered	moving	averages	with	an	odd	period	size
A	centered	moving	average	is	an	average	of	moving	averages.	For	example,	using	the
stock	prices	from	the	previous	example	(Table	16-1),	the	first	three-month	moving
average	is	101.33,	and	the	second	three-month	moving	average	is	101.	The	centered
moving	average	is	 .

See	Table	16-3	for	the	resulting	centered	moving	averages.

Table	16-3	Three-Month	Centered	Moving	Average	for	Stock	Prices

Time Price 3-Month	MA 3-Month	Centered	MA

October	2013 100 *** ***

November	2013 101 101.33 101.17

December	2013 103 101.00 100.33

January	2014 99 99.67 99.50

February	2014 97 99.33 99.67

March	2014 102 100.00 100.17

April	2014 101 100.33 100.67

May	2014 98 101.00 101.83



June	2014 104 102.67 ***

July	2014 106 *** ***

Plotting	the	moving	average	and	centered	moving	average	against	the	original	prices
shows	that	the	centered	moving	average	smoothes	out	the	data	even	more	than	the
moving	average,	as	shown	in	Figure	16-2.
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Figure	16-2:	Three-month	moving	average	and	centered	moving	average.

Centered	moving	averages	with	an	even	period	size
If	the	size	of	the	period	is	an	even	number,	the	computation	of	a	centered	moving
average	is	slightly	different	than	it	is	for	an	odd	number.	For	example,	Table	16-4
shows	the	results	of	computing	a	four-month	centered	moving	average	for	the	same
data.

Table	16-4	Four-Month	Centered	Moving	Average	for	Stock	Prices

Time Price 4-Month	Moving	Total Average	4-Month	Moving	Total 4-Month	Centered	MA

October	2013 100 *** *** ***

November	2013 101 *** *** ***

December	2013 103 403.00 *** ***

January	2014 99 400.00 401.50 100.38

February	2014 97 401.00 400.50 100.13

March	2014 102 399.00 400.00 100.00

April	2014 101 398.00 398.50 99.63



May	2014 98 405.00 401.50 100.38

June	2014 104 409.00 407.00 101.75

July	2014 106 *** *** ***

The	four-month	moving	total	is	the	sum	of	the	prices	for	the	previous	two	months,	the
current	month,	and	the	following	month.	For	example,	the	four-month	moving	total	for
December	2013	is	the	sum	of	the	prices	for	October	2013,	November	2013,	December
2013,	and	January	2014.

The	average	four-month	moving	total	is	the	average	of	the	previous	and	current	four-
month	moving	totals.	For	example,	the	average	four-month	moving	total	for	January
2014	is	the	average	of	the	four-month	moving	totals	for	December	2013	and	January
2014.	For	each	month,	the	four-month	centered	moving	average	is	the	average	four-
month	moving	total	for	the	same	month	divided	by	4.

Exponential	smoothing
The	moving	average	and	centered	moving	average	techniques	have	one	common
feature:	Both	assign	equal	weights	to	all	elements	of	a	time	series.	If	a	time	series
consists	of	data	that	becomes	less	relevant	as	time	elapses,	it	may	make	more	sense	to
assign	steadily	declining	weights	to	older	observations.	For	example,	with	stock	prices,
the	information	contained	in	recent	prices	is	much	more	relevant	than	the	information
contained	in	older	prices,	so	it	would	make	sense	to	develop	a	time	series	model	based
on	declining	weights.	You	can	do	that	with	exponential	smoothing.

With	exponential	smoothing,	the	members	of	the	time	series	are	weighted	in	such	a
way	as	to	ensure	that	newer	observations	assume	more	importance	than	older
observations.	You	implement	the	scheme	using	smoothing	constants.

The	exponential	smoothing	approach	uses	the	following	formula:

where

Et	=	Exponentially	smoothed	value	at	time	t

Et–1	=	Exponentially	smoothed	value	at	time	t	–	1	(that	is,	one	period	in	the	past)

α	=	The	smoothing	constant	—	α	assumes	a	value	between	0	and	1
yt	=	The	value	of	the	time	series	at	time	t

For	example,	Table	16-5	shows	daily	gold	prices	between	7/23/14	and	8/5/2014.

Table	16-5	Daily	Gold	Prices

Date Price	($/Ounce)

7/23/2014 1,304.51



7/24/2014 1,293.54

7/25/2014 1,306.98

7/28/2014 1,303.95

7/29/2014 1,299.09

7/30/2014 1,296.12

7/31/2014 1,282.51

8/1/2014 1,293.66

8/4/2014 1,288.13

8/5/2014 1,288.47

Table	16-6	shows	the	exponentially	smoothed	values	of	the	daily	gold	prices;	in	the
third	column,	α	is	set	equal	to	0.3,	and	in	the	fourth	column,	α	is	set	equal	to	0.7.

Table	16-6	Exponentially	Smoothed	Daily	Gold	Prices

Date Price	($/Ounce) Exponentially	Smoothed	Price	 Exponentially	Smoothed	Price	

7/23/2014 1,304.51 1,304.51 1,304.51

7/24/2014 1,293.54 1,301.22 1,302.21

7/25/2014 1,306.98 1,302.95 1,302.73

7/28/2014 1,303.95 1,303.25 1,303.09

7/29/2014 1,299.09 1,302.00 1,302.33

7/30/2014 1,296.12 1,300.24 1,300.86

7/31/2014 1,282.51 1,294.92 1,296.70

8/1/2014 1,293.66 1,294.54 1,295.19

8/4/2014 1,288.13 1,292.62 1,293.39

8/5/2014 1,288.47 1,291.37 1,291.98

You	perform	the	calculations	for	 	as	follows:

For	7/23/14,	the	exponentially	smoothed	price	equals	the	actual	price	of	$1,304.51.
For	7/24/14,	the	exponentially	smoothed	price	equals	

For	7/25/14,	the	exponentially	smoothed	price	equals	

.

The	same	procedure	is	used	for	 .	In	general,	the	exponentially	smoothed	price



equals

Figure	16-3	shows	the	relationship	between	the	actual	gold	prices	and	the	exponentially
smoothed	gold	prices.
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Figure	16-3:	Exponentially	smoothed	gold	prices.

The	graph	shows	that	the	exponentially	weighted	values	do	not	fluctuate	as	much	as	the
original	values,	and	that	the	values	fluctuate	less	when	 	than	when	 .

With	an	exponential	smoothing	model,	you	can	make	a	forecast	for	the	next	period.
The	forecast	for	time	 	as	of	time	t	equals:

where

Ft	is	the	forecast	for	time	t

	is	the	forecast	for	time	

For	the	gold	price	example,	the	price	on	8/5/14	is	$1,288.47,	while	the	exponentially
smoothed	price	(forecast)	for	8/6	is	$1,291.37.	Here’s	the	calculation:



Seasonal	Components
Many	time	series	contain	strong	seasonal	components.	In	these	cases,	you	can	estimate
the	seasonal	component	of	a	time	series	with	a	technique	known	as	the	ratio-to-moving
average	method.

For	example,	Table	16-7	shows	the	quarterly	sales	(in	millions	of	dollars)	of	ice-cream
for	a	national	grocery	store	chain	from	2011–2014.

Table	16-7	Quarterly	Ice-Cream	Sales	($	Millions)

Year Quarter Sales

2011 1 14

2011 2 32

2011 3 46

2011 4 18

2012 1 16

2012 2 38

2012 3 48

2012 4 17

2013 1 16

2013 2 35

2013 3 49

2013 4 22

2014 1 15

2014 2 37

2014 3 52

2014 4 23

The	seasonal	components	are	derived	from	a	four-month	centered	moving	average,	as
shown	in	Table	16-8.

Table	16-8	Calculation	of	Seasonal	Components	for	Ice-Cream	Sales

Year Quarter Sales 4-Quarter	Moving
Total

Average	4-Quarter	Moving
Total

4-Quarter	Centered
MA

Sales	as	a	%	of	4-Quarter
Centered	MA

2011 1 14 *** *** *** ***

2011 2 32 *** *** *** ***

2011 3 46 110 *** *** ***

2011 4 18 112 111.00 27.75 64.8604



2012 1 16 118 115.00 28.75 55.6504

2012 2 38 120 119.00 29.75 127.7304

2012 3 48 119 119.50 29.88 160.6704

2012 4 17 119 119.00 29.75 57.1404

2013 1 16 116 117.50 29.38 54.4704

2013 2 35 117 116.50 29.13 120.1704

2013 3 49 122 119.50 29.88 164.0204

2013 4 22 121 121.50 30.38 72.4304

2014 1 15 123 122.00 30.50 49.1804

2014 2 37 126 124.50 31.13 118.8804

2014 3 52 127 126.50 31.63 164.4304

2014 4 23 *** *** *** ***

The	average	sales	percentage	for	each	quarter	is	as	follows:

You	make	one	final	adjustment.	The	sum	of	these	percentages	is	403.2104%.	You	want
the	average	adjustment	to	be	1	(or	100%).	So,	you	apply	an	adjustment	factor	of	400%
/	403.21%	(which	results	in	99.20%)	to	each	of	the	average	sales	percentages	to	get	the
appropriate	seasonal	components:

These	can	be	substituted	into	the	decomposition	model	like	so:

Once	you’ve	computed	the	seasonal	components,	you	can	remove	the	influence	of
seasonal	variation	from	a	time	series.	This	process	is	known	as	deseasonalizing	the
time	series.	A	time	series	that	has	been	deseasonalized	contains	seasonally	adjusted
data	(a	term	you’ve	no	doubt	frequently	heard	on	TV),	making	it	possible	to	analyze
just	the	trend	and	cyclical	components	of	a	time	series.

For	the	multiplicative	decomposition	method

the	deseasonalized	data	is	obtained	by	dividing	out	the	seasonal	component,	like	this:



For	the	additive	decomposition	method

the	deseasonalized	data	is	obtained	by	subtracting	the	seasonal	component:



Modeling	a	Time	Series	with	Regression
Analysis

An	alternative	approach	to	modeling	the	components	of	a	time	series	is	to	use
regression	analysis	(Chapter	15	covers	regression	analysis).

The	basic	form	of	a	time	series	regression	model	goes	like	this:

The	key	terms	in	this	equation	are	as	follows:

TRt	=	The	trend	of	the	time	series	at	time	t

εt	=	An	error	term	at	time	t

You	can	model	seasonal	components	and	cyclical	components	by	including	additional
terms	in	the	regression	equation.

Identifying	the	trend
The	first	step	in	estimating	a	time	series	regression	model	is	to	identify	the	type	of
trend	(if	any)	that’s	present	in	the	data.	The	basic	types	of	trends	that	may	appear	in	a
time	series	include	the	following:

No	trend
Linear	trend
Quadratic	trend
Exponential	trend

No	trend
When	there’s	no	trend,	the	values	of	the	time	series	may	rise	or	fall	over	time,	but	on
average	they	tend	to	return	to	the	same	level.	The	trend	is	written	like	this:

Figure	16-4	shows	a	time	series	with	no	trend.
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Figure	16-4:	A	time	series	with	no	trend.

Linear	trend
With	a	linear	trend,	the	values	of	a	time	series	tend	to	rise	or	fall	over	time	at	a	constant
rate	(β1).	If	the	values	tend	to	rise,	then	the	time	series	has	a	positive	trend;	if	the	values
tend	to	fall,	then	the	time	series	has	a	negative	trend.	For	a	linear	trend:

Figure	16-5	shows	a	time	series	with	a	positive	linear	trend.
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Figure	16-5:	A	time	series	with	a	positive	linear	trend.

Quadratic	trend
With	a	quadratic	trend,	the	values	of	a	time	series	tend	to	rise	or	fall	at	a	rate	that
changes	over	time.	You	model	a	quadratic	trend	using	the	following	equation:

Figure	16-6	shows	a	time	series	with	a	quadratic	trend.	In	this	case,	the	value	of	yt
increases	at	an	increasing	rate	over	time.



©	John	Wiley	&	Sons,	Inc.

Figure	16-6:	A	time	series	with	a	quadratic	trend.

Exponential	trend
This	trend	is	used	when	the	growth	rate	of	a	time	series	is	proportional	to	the	current
level	of	the	time	series.	In	other	words,	growth	is	faster	at	higher	values	of	the	time
series	than	at	lower	values.	The	general	expression	for	a	higher	order	polynomial	trend
goes	like	this:

Estimating	the	trend
The	first	step	in	estimating	the	trend	of	a	time	series	is	to	create	a	time	series	plot	to
analyze	the	characteristics	of	the	data.	The	time	series	plot	shows	whether	there’s	a
trend	in	the	data;	if	there	is	one,	you	can	use	the	plot	to	identify	the	order	of	the	trend.

For	example,	suppose	a	portfolio	manager	has	reason	to	believe	that	there	may	be	a
linear	trend	in	a	time	series	of	daily	ExxonMobil	stock	prices	from	August	2004	to
August	2014.	These	are	shown	in	Figure	16-7.
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Figure	16-7:	Daily	prices	for	ExxonMobil	stock.

In	this	case,	there	does	appear	to	be	a	trend	in	the	data;	although	the	price	does
fluctuate,	over	time	it	is	steadily	rising.

To	formally	test	whether	there’s	a	linear	trend	in	the	data,	you	can	run	a	time	series
regression	with	a	time	trend	as	the	independent	variable;	this	is	written	as	follows:

In	this	example

The	dependent	variable	(yt)	is	the	price	of	ExxonMobil	stock.

The	independent	variable	(t)	is	time	(measured	in	months).

Figure	16-8	shows	the	results	of	running	a	regression	of	the	price	of	ExxonMobil	stock
against	time.
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Figure	16-8:	Regression	results	for	ExxonMobil	stock:	linear	trend.

In	this	case,	the	independent	variable	is	time.	The	first	observation	in	the	sample
(8/2/2004)	is	assigned	a	time	value	of	1,	the	second	observation	in	the	sample



(8/3/2004)	is	assigned	a	time	value	of	2,	and	so	forth.	The	final	observation	on
8/1/2014	is	assigned	a	time	value	of	2,519.

In	the	regression,	the	coefficient	of	time	is	approximately	0.0183,	indicating	that	on
average	the	price	of	ExxonMobil	stock	rises	by	$0.0183	each	trading	day.	That
represents	a	positive	trend.	Here’s	the	equation	of	the	trend:

The	coefficient	of	time	is	statistically	significant	at	the	5	percent	level,	because	the	p-
value	of	the	time	coefficient	is	well	below	0.05.	(See	Chapter	15	for	more	information.)

Forecasting	with	time	series	regression
You	can	use	the	time	series	regression	equation	to	forecast	future	stock	prices	for
ExxonMobil.	For	example,	suppose	a	portfolio	manager	wants	to	forecast	the	price	of
ExxonMobil	stock	for	August	2,	2014.	Because	the	price	on	August	1,	2014,	has	a	time
value	of	2,519,	the	time	value	for	August	2,	2014,	is	2,520.	You	substitute	this	into	the
trend	equation	to	come	up	with	a	forecast	for	the	price	of	ExxonMobil	stock	on	August
2,	2014:

Prediction	interval
A	value	predicted	by	a	regression	equation	is	subject	to	uncertainty;	to	estimate	the
range	of	possible	values	for	a	prediction,	you	can	construct	a	prediction	interval.	The
prediction	interval	is	computed	like	so:

In	the	ExxonMobile	example,	a	95	percent	prediction	interval	is	estimated.	This
indicates	that	 	so	that	 	and	 .	Based	on	Figure	16-8,	the
standard	error	of	the	regression	(s)	equals	8.1441,	and	the	sample	size	(n)	equals	2,519.

The	predicted	value	of	ExxonMobil	stock	for	8/2/2014	is	91.24.	The	average	value	of	t
during	the	sample	period	is	1,260.	The	sum	of	the	squared	differences	between	t	and
the	average	value	of	t	is	1,331,996,820.

Because	the	sample	size	is	extremely	large	(you	had	more	than	2,500	days	of	data),	you
can	take	the	critical	value	from	the	standard	normal	distribution	(z);	for	a	95	percent
prediction	interval,	this	value	is	1.96.	Substituting	these	results	into	the	equation	gives
the	following:



The	predicted	value	for	ExxonMobil	stock	is	$91.24.	The	prediction	interval	shows
with	95	percent	certainty	that	the	actual	value	of	ExxonMobil	stock	is	expected	to	be
between	$75.28	and	$107.20.

Estimating	a	quadratic	trend
Now	let’s	say	the	portfolio	manager	wants	to	determine	whether	there’s	a	quadratic
trend	in	the	time	series	of	ExxonMobil	stock	prices.	To	do	so,	he	or	she	would	use	the
following	model:

Figure	16-9	shows	the	results	of	running	this	regression.
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Figure	16-9:	Regression	results	for	ExxonMobil	stock:	quadratic	trend.

Figure	16-9	shows	that	the	coefficients	of	t	and	t2	are	both	statistically	significant,
indicating	that	there	is	a	quadratic	trend	in	the	data.	The	estimated	model	is	this:

Here,	then,	is	the	predicted	value	for	ExxonMobil	stock	on	August	2,	2014:

Seasonal	variation
As	mentioned	earlier,	seasonal	variation	refers	to	recurring	changes	in	a	time	series	that



are	due	to	the	season	of	the	year.	For	example,	the	demand	for	petroleum	products
(gasoline	and	diesel	fuel)	tends	to	be	greater	during	the	summer	than	during	the	winter.

You	can	use	a	scatter	plot	to	determine	whether	a	time	series	exhibits	seasonal
variation.	In	this	case,	the	time	series	regression	model	can	be	extended	to	include	a
variable	(St)	that	represents	the	seasonal	component:

Modeling	seasonal	variation	with	dummy	variables
One	method	you	can	use	to	determine	the	effect	of	seasonality	(St)	is	called	a	dummy
variable.	A	dummy	variable	is	a	binary	variable	with	a	value	of	0	or	1.	A	dummy
variable	is	used	to	indicate	whether	a	condition	is	true	or	false;	a	value	of	1	indicates
that	the	condition	is	true,	while	a	value	of	0	indicates	that	the	condition	is	false.

You	use	a	dummy	variable	to	measure	the	effect	of	non-quantitative	variables,	such	as
gender,	geographical	region,	and	so	forth,	on	the	dependent	variable.	For	modeling
seasonal	variation,	you	use	a	dummy	variable	to	indicate	whether	an	observation	in	a
time	series	belongs	to	a	given	season.

For	example,	suppose	an	analyst	wants	to	see	whether	the	demand	for	heating	oil
depends	on	the	quarter	of	the	year.	He	or	she	has	reason	to	believe	that	demand	is
highest	in	the	fourth	and	first	quarters	due	to	the	cold	weather.	The	following	seasonal
dummy	variables	are	defined:

	if	time	period	t	is	in	the	first	quarter,	0	otherwise
	if	time	period	t	is	in	the	second	quarter,	0	otherwise
	if	time	period	t	is	in	the	third	quarter,	0	otherwise

In	this	case,	there	are	only	three	dummy	variables,	not	four.	That’s	because	including
one	for	each	season	would	lead	to	the	problem	of	multicollinearity,	which	affects	the
reliability	of	the	regression	results.	(Chapter	15	talks	more	about	multicollinearity.)	The
fourth	quarter	is	represented	by	process	of	elimination.	If	all	three	dummy	variables	are
0,	then	you’re	in	the	fourth	quarter.	As	a	result,	the	seasonal	effect	of	the	fourth	quarter
is	captured	by	the	trend.

With	three	seasonal	dummy	variables	and	a	linear	trend,	the	time	series	regression
equation	is	as	follows:

Table	16-9	shows	the	relationship	between	the	values	of	D1,	D2,	and	D3	and	the	quarter
of	the	year.

Table	16-9	Dummy	Variables



Quarter D1 D2 D3

1 1 0 0

2 0 1 0

3 0 0 1

4 0 0 0

For	example,	imagine	a	department	store	that	sells	surfboards.	Its	sales	are	heavily
dependent	on	the	quarter	of	the	year.	In	particular,	sales	are	strongest	during	the	second
and	third	quarters	(April–September),	and	are	extremely	weak	during	the	first	and
fourth	quarters	(January–March	and	October–December).

To	analyze	the	relationship	between	sales	and	the	season,	you	run	a	regression	with	ten
years	of	quarterly	data.	Sales	is	the	dependent	variable;	the	independent	variables	are	a
time	trend	and	a	series	of	three	quarterly	dummy	variables.

These	are	defined	as	follows:

	if	first	quarter,	0	otherwise
	if	second	quarter,	0	otherwise
	if	third	quarter,	0	otherwise

To	avoid	the	problem	of	multicollinearity,	no	dummy	variable	is	used	for	the	fourth
quarter.	Instead,	the	intercept	and	the	trend	of	the	regression	equation	are	used	to
capture	the	effect	of	the	fourth	quarter	on	sales.	Figure	16-10	shows	quarterly	sales	(in
thousands	of	dollars)	for	2005–2014.	There’s	also	a	trend	line.
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Figure	16-10:	Quarterly	sales.

The	graph	in	Figure	16-10	shows	that	the	trend	line	by	itself	does	a	very	poor	job	of
explaining	sales	because	sales	are	highly	seasonal.	But	when	you	run	a	regression	with



a	trend	and	the	seasonal	dummies,	you	see	the	results	shown	in	Figure	16-11.
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Figure	16-11:	Time	trend	regression	with	seasonal	dummy	variables	for	quarterly	sales.

The	results	show	that	each	of	the	independent	variables	has	a	statistically	significant
coefficient	and	therefore	belongs	in	the	regression	equation,	because	in	each	case	the	p-
value	is	below	0.05.

The	(approximate)	coefficients	of	the	variables	are	as	follows:

Intercept: 13.9029

Trend: –0.1071

Dummy	1: –4.8560

Dummy	2: 8.2464

Dummy	3: 7.6572

The	trend	indicates	that	sales	are	decreasing	by	$107.10	(0.1071	×	$1,000)	per	quarter.
The	coefficients	of	the	remaining	dummy	variables	show	the	value	of	sales	compared
with	a	trend	line	at	the	level	of	average	fourth	quarter	sales.	This	is	a	line	with	an
intercept	of	13.9029	and	a	slope	of	–0.1071.

The	coefficient	of	D1	shows	that	sales	during	the	first	quarter	are	below	the	trend	by
$4,856.00	(4.8560	×	$1,000).	The	coefficient	of	D2	shows	that	sales	during	the	second
quarter	are	above	the	trend	by	$8,246.40	(8.2464	×	$1,000).	The	coefficient	of	D3
shows	that	sales	during	the	third	quarter	are	above	the	trend	by	$7,657.20	(7.6572	×
$1,000).

Cyclical	variation



Cyclical	variation	refers	to	recurring	changes	in	a	time	series	that	are	due	to	the
business	cycle.	For	example,	the	demand	for	luxury	goods	like	expensive	cars	tends	to
fall	when	the	economy	is	in	recession	and	rise	when	the	economy	recovers.	In	this
case,	the	time	series	regression	model	can	be	extended	to	include	a	variable	that
represents	the	cyclical	component	(Ct):

This	variable	may	also	take	the	form	of	a	series	of	dummy	variables.



Comparing	Different	Models:	MAD	and
MSE

Because	you	might	use	many	different	models	to	describe	the	behavior	of	a	time	series,
it	is	important	to	be	able	to	determine	which	model	best	“fits”	or	explains	the	observed
data.	The	following	are	two	techniques	that	may	be	used	for	this	purpose:

Mean	absolute	deviation	(MAD)
Mean	square	error	(MSE)

Mean	absolute	deviation	(MAD)
Mean	absolute	deviation	(MAD)	is	computed	as	follows:

MAD	is	the	average	absolute	value	of	the	differences	between	the	actual	values	of	yt
and	the	predicted	values.

Mean	square	error	(MSE)
Mean	square	error	(MSE)	is	computed	as	follows:

MSE	is	the	average	squared	value	of	the	differences	between	the	actual	values	of	yt	and
the	predicted	values.

These	measures	make	it	possible	to	choose	between	different	time	series	models	based
on	their	predictive	ability.	The	lower	the	value	of	MAD	or	MSE,	the	more	accurate	a
time	series	model	is.	These	measures	are	clearly	related	because	they	use	the	same
inputs.	MSE	can	be	thought	of	as	a	measure	of	how	well	your	regression	model	fits	the
data,	whereas	MAD	gives	you	a	better	sense	of	how	close	you	are	to	the	actual	values
you’re	trying	to	predict.



Part	IV



Big	Data	Applications

	Find	out	more	about	visualizing	and	seeing	your	data	in	an	online	article	at
www.dummies.com/extras/statisticsforbigdata.

http://www.dummies.com/extras/statisticsforbigdata




In	this	part	…
	Seeing	the	future	with	forecasting

	Crunching	the	numbers	on	your	desktop	or	laptop

	Finding	sources	of	data	online



Chapter	17



Using	Your	Crystal	Ball:	Forecasting	with
Big	Data

In	This	Chapter
	Understanding	the	properties	of	time	series

	Transforming	data	to	fit	modeling	assumptions

	Forecasting	a	time	series	using	ARIMA	modeling

	Seeing	how	simulation	is	used	for	forecasting	purposes

You	can	use	a	few	different	techniques	to	forecast	the	future	values	of	a	time	series:

Time	series	regression
ARIMA	modeling
Simulation

Chapter	16	covers	time	series	regression.	This	chapter	covers	ARIMA	modeling	and
simulation	techniques.	ARIMA	models	use	the	past	values	of	a	time	series	to	develop	a
forecasting	model,	whereas	simulation	techniques	are	based	on	a	statistical	model	of
the	variable	that’s	being	forecast.



ARIMA	Modeling
ARIMA	(autoregressive	integrated	moving	average)	modeling	uses	the	past	behavior
of	a	time	series	to	determine	its	key	statistical	properties	and	takes	this	information	to
develop	a	forecasting	model.

ARIMA	modeling	is	only	valid	for	a	time	series	that’s	both	stationary	and	nonseasonal.
A	time	series	is	stationary	if	the	basic	statistical	properties	of	the	time	series	don’t
change	over	time.	In	particular,	this	means	that	neither	the	values	of	the	time	series	nor
their	variances	grow	(or	shrink)	over	time.	A	time	series	is	nonseasonal	if	its	values	are
not	affected	by	the	time	of	the	year.	For	example,	if	a	time	series	consists	of	the	sales	of
skis	by	a	department	store	over	a	period	of	ten	years,	the	data	would	show	large
increases	in	sales	during	winter	months	followed	by	significant	declines	during	the	rest
of	the	year.	As	a	result,	you	couldn’t	apply	ARIMA	modeling	to	this	time	series	—
because	it’s	seasonal.

Testing	for	stationarity
There	are	two	main	ways	you	can	evaluate	a	time	series	as	nonstationary:

Seeing	whether	the	time	series	contains	a	trend
Seeing	whether	the	variance	of	the	time	series	changes	over	time

	A	trend	shows	a	long-term	tendency	for	a	variable	to	rise	or	fall.	For	example,
the	population	of	the	United	States	shows	a	long-term	positive	trend.

You	make	a	plot	of	a	time	series	to	see	whether	there’s	any	indication	of
nonstationarity.	If	the	plot	shows	a	trend	(positive	or	negative),	this	is	a	sign	that	the
time	series	may	be	nonstationary.	If	the	plot	shows	increasingly	large	(or	small)
fluctuations	over	time,	that	points	to	a	fluctuating	variance,	which	can	only	occur	in	a
nonstationary	time	series.	By	contrast,	the	plot	of	a	stationary	time	series	would	show
steady	fluctuations	without	a	trend.	After	inspecting	the	plot	of	a	time	series,	you	can
use	more	formal	statistical	tests	to	confirm	whether	the	time	series	is	stationary	or
nonstationary.

Figure	17-1	shows	an	example	of	a	stationary	time	series.
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Figure	17-1:	A	stationary	time	series.

The	time	series	“randomly”	drifts	up	and	down	over	time	—	that	is,	there’s	no	trend.
Also,	the	size	of	the	fluctuations	is	constant	over	time,	which	is	another	indicator	that
the	time	series	is	stationary.

Figure	17-2	shows	an	example	of	a	nonstationary	time	series.
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Figure	17-2:	A	nonstationary	time	series	with	a	positive	trend.

Although	the	fluctuations	in	the	time	series	are	stable,	there’s	a	pronounced	positive
(upward)	trend.	That	is	an	indication	that	the	time	series	is	nonstationary.

Figure	17-3	shows	a	different	example	of	a	nonstationary	time	series.
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Figure	17-3:	A	nonstationary	time	series	with	increasing	variance.

Although	the	time	series	in	Figure	17-3	doesn’t	have	a	trend,	the	size	of	the
fluctuations	is	increasing	over	time.	That’s	a	sign	of	nonconstant	variances,	which	is
inconsistent	with	a	stationary	time	series.

	There	are	two	types	of	stationarity:	weak	form	and	strong	form.	ARIMA
modeling	may	be	performed	if	a	time	series	exhibits	weak	form	stationarity.	The
conditions	required	for	strong	form	stationarity	are	unlikely	to	be	met	in	practice.

When	trying	to	get	your	head	around	the	statistics	of	time	series	analysis,	it	is
important	to	be	clear	about	what	a	time	series	is.	From	one	point	of	view,	a	time	series
is	simply	a	series	of	observations	over	time.	But	in	statistics,	we	treat	these
observations	as	the	outcomes	of	a	series	of	random	variables	over	time.	Each	of	these
random	variables	has	its	own	distribution.	In	simple	terms,	stationarity	means	that	we
can	reasonably	assume	that	these	random	variables	have	basically	the	same
distributions	as	time	progresses.

Weak	form	stationarity
A	time	series	exhibits	weak	form	stationarity	if	it	meets	the	following	three	conditions:

The	expected	value	(mean)	of	each	element	of	the	time	series	is	constant	over	time.
The	variance	of	each	element	of	the	time	series	is	constant	over	time.
The	value	of	the	covariance	of	each	element	in	the	time	series	with	its	own	past
values	depends	only	on	the	lag	between	the	elements	(that	is,	the	time	between	the
elements).	You	may	recall	from	Chapter	5	that	covariance	is	a	measure	of
association	between	two	random	variables	—	that	is,	how	much	their	values	tend	to
move	together	in	a	pattern.	Loosely	speaking,	weak	form	stationarity	requires	that
the	only	thing	linking	the	behavior	between	two	points	in	time	is	how	far	apart	they



are.

Autocovariance	and	autocorrelation
The	covariance	between	two	elements	of	the	same	time	series	is	known	as
autocovariance.	For	example,	suppose	the	elements	of	a	time	series	are	written	like
this:

xt	is	the	current	value	of	the	time	series.	xt-1	is	the	value	of	the	time	series	one	period	in
the	past	(that	is,	with	lag	1),	xt-2	is	the	value	of	the	time	series	two	periods	in	the	past
(that	is,	with	lag	2),	and	so	forth.

With	a	weakly	stationary	time	series,	the	covariance	between	xt-2	and	xt-4	is	the	same	as
the	covariance	between	xt-3	and	xt-5,	a	lag	of	two	in	both	cases.	Similarly,	the
covariance	between	xt-3	and	xt-6	is	the	same	as	the	covariance	between	xt-4	and	xt-7,	a
lag	of	three	in	both	cases.

Autocorrelation	refers	to	the	correlation	between	elements	of	the	same	time	series.	Its
relationship	with	autocovariance	is	analogous	to	the	relationship	between	correlation
and	covariance.

Adjustments	for	nonstationarity
Under	some	conditions,	it	may	be	possible	to	transform	a	nonstationary	time	series	into
a	stationary	one.	One	commonly	used	approach	is	known	as	first	differencing.	You
create	a	new	time	series	in	which	each	element	is	the	difference	between	two
consecutive	elements	in	the	original	time	series.	The	first	difference	of	a	time	series	is
expressed	this	way:

where

xt	is	an	element	of	the	original	time	series.

xt-1	is	the	value	of	the	time	series	one	period	in	the	past.

zt	is	an	element	of	the	transformed	time	series.

For	example,	using	the	time	series	in	Figure	17-2,	Figure	17-4	is	a	graph	of	the	time
series	after	first	differencing.
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Figure	17-4:	First	difference	of	a	time	series	with	a	positive	trend.

The	graph	in	Figure	17-4	shows	that	the	trend	has	been	removed	from	the	data,	making
it	into	a	stationary	time	series.	The	reason	this	works	is	that	the	original	trend	was	a
line.	One	way	of	defining	a	line	is	that	it	moves	up	or	down	by	a	constant	amount	over
each	unit	on	the	horizontal	axis.	Therefore,	by	taking	distances	you	remove	the	slope	of
the	line.

If	first	differencing	isn’t	sufficient	to	transform	a	nonstationary	time	series	into	a
stationary	time	series,	you	can	try	second	differencing.	In	this	case,	each	element	in	the
new	time	series	is	the	difference	between	consecutive	elements	in	the	first-differenced
time	series.

Steps	used	in	ARIMA	modeling
Once	you	have	determined	that	a	time	series	is	stationary,	you	can	apply	the	ARIMA
modeling	process.	This	entails	four	key	steps:

Model	identification
Parameter	estimation
Model	checking
Forecasting

Model	identification
In	the	model	identification	phase,	you	determine	the	properties	of	a	time	series;	then
you	choose	a	structural	form	for	modeling	the	time	series.	As	mentioned	earlier,	you
are	now	treating	the	time	series	as	a	series	of	random	variables.	This	is	generally
referred	to	as	a	random	process.	The	basic	types	of	ARIMA	models	are	as	follows:

Autoregressive	(AR)
Moving	average	(MA)
Autoregressive	moving	average	(ARMA)



Autoregressive	integrated	moving	average	(ARIMA)

A	time	series	may	be	primarily	an	autoregressive	process,	a	moving	average	process,	or
a	combination	of	both.	To	identify	the	type	of	process	followed	by	a	time	series,	the
first	step	is	to	plot	two	key	functions:

Sample	autocorrelation	function	(ACF)
Sample	partial	autocorrelation	function	(Partial	ACF)

The	ACF	shows	the	correlations	between	the	elements	of	a	time	series	as	a	function	of
their	lags.	The	partial	ACF	shows	the	correlations	between	the	elements	of	a	time
series	for	each	lag,	holding	constant	the	impact	of	all	other	lags.	You	can	use	the
patterns	shown	in	these	plots	to	identify	the	appropriate	type	of	ARIMA	model.

For	example,	Figure	17-5	shows	the	ACF	for	a	time	series	consisting	of	the	price	of
Microsoft	stock	from	January	1,	2013	to	January	1,	2014.
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Figure	17-5:	Autocorrelation	function	(ACF)	for	Microsoft	stock	prices.

Each	“spike”	on	the	graph	is	the	autocorrelation	between	elements	of	the	time	series
with	a	specified	lag.	In	this	case,	the	spikes	are	declining	very	slowly	as	the	lag
increases	—	a	sign	of	a	nonstationary	time	series.

	Any	spike	that	rises	above	the	upper	dashed	line	or	falls	below	the	lower
dashed	line	is	“statistically	significant”	or	significantly	different	from	zero.	The
placement	of	the	dashed	lines	is	based	on	a	hypothesis	test	similar	to	the	ones
described	in	Chapters	15	and	16.

Figure	17-6	shows	a	plot	of	Microsoft	stock	prices	during	the	same	time	period.
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Figure	17-6:	Price	of	Microsoft	stock	January	1,	2013–January	1,	2014.

Figure	17-6	clearly	shows	an	upward	trend	in	the	time	series,	which	indicates
nonstationarity.

Figure	17-7	illustrates	the	partial	autocorrelation	function	for	the	price	of	Microsoft
stock	from	January	1,	2013	to	January	1,	2014.

©	John	Wiley	&	Sons,	Inc.

Figure	17-7:	Partial	autocorrelation	function	for	Microsoft	stock	prices.

In	order	to	convert	the	Microsoft	prices	to	a	stationary	series,	first	differencing	is
applied.	Figure	17-8	shows	the	results.
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Figure	17-8:	First-differenced	time	series	of	Microsoft	stock	prices.

Figure	17-9	shows	the	ACF	for	the	first-differenced	data.
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Figure	17-9:	ACF	of	first-differenced	time	series	of	Microsoft	stock	prices.

The	fact	that	the	spikes	no	longer	exceed	the	dashed	lines	indicates	that	the	time	series
is	stationary.

Figure	17-10	is	a	plot	of	the	partial	autocorrelation	function.
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Figure	17-10:	Partial	ACF	of	first-differenced	time	series	of	Microsoft	stock	prices.

The	autocorrelation	function	and	partial	autocorrelation	function	for	the	first-
differenced	Microsoft	stock	prices	can	now	be	used	to	identify	whether	the	time	series
follows	a	moving	average	process,	an	autoregressive	process,	or	some	combination	of
the	two.

Moving	average	(MA)	processes
A	moving	average	process	is	composed	of	a	linear	combination	of	white	noise	terms.

	A	white	noise	process	is	a	special	type	of	time	series	in	which	the	elements	are
independent	of	each	other	and	have	no	trend.	This	means	that	the	value	of	the	time
series	at	any	given	point	does	not	depend	in	any	way	on	its	previous	values.
Another	defining	characteristic	of	a	white	noise	process	is	that	all	the	random
variables	that	make	up	the	process	have	the	same	distribution,	and	the	mean	of
that	distribution	is	zero.	The	process	evolves	randomly	over	time.



To	get	a	sense	of	what’s	going	on	here,	think	of	a	simple	random	walk.	Flip	a	coin.	If	it
comes	up	heads	take	a	step	forward.	If	it	comes	up	tails,	take	a	step	back.	Over	time,	if
the	coin	is	fair,	the	heads	will	balance	out	the	tails	and	you’ll	end	up	back	where	you
started.	We	treat	the	random	fluctuations	in	stock	prices	in	a	similar	way,	though	with	a
broader	distribution	of	outcomes	than	just	up	or	down.

In	general,	a	moving	average	process	is	written	as	follows:

where

μ	=	A	constant
ut	=	A	white	noise	term	at	time	t

θt	=	The	coefficient	of	the	white	noise	term	at	time	t

q	=	The	number	of	lags	in	the	process

This	is	known	as	an	MA(q)	process,	because	there	are	q	lagged	white	noise	terms.	For
an	MA(q)	process,	the	autocovariance	and	autocorrelation	functions	equal	zero	for	all
lags	greater	than	q.

Unlike	some	of	the	other	modeling	techniques	we’ve	explored	(such	as	regression
analysis),	the	coefficients	in	ARIMA	models	are	not	calculated	directly	based	on	a
formula.	Instead,	they	are	estimated	based	on	comparing	a	large	number	of	random
simulations	to	the	observed	data.	As	an	example,	a	simulated	version	of	the	MA(1)
process

is	illustrated	in	Figure	17-11.
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Figure	17-11:	Plot	of	simulated	MA(1)	process.

Figure	17-12	shows	the	autocorrelation	function	for	this	process.
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Figure	17-12:	ACF	of	simulated	MA(1)	process.

The	graph	shows	a	statistically	significant	spike	at	a	lag	of	one;	most	of	the	remaining
spikes	are	not	statistically	significant.	This	is	indicative	of	an	MA(1)	process.

Figure	17-13	is	a	graph	of	the	partial	autocorrelation	function	for	this	process.
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Figure	17-13:	Partial	ACF	of	simulated	MA(1)	process.

The	graph	shows	that	the	partial	autocorrelations	decline	very	gradually	in	magnitude,
which	is	also	indicative	of	an	MA(1)	process.

Autoregressive	(AR)	processes
An	autoregressive	process	is	composed	of	a	linear	combination	of	its	own	past	values
and	a	white	noise	term.	In	general,	this	is	written	as	follows:

where

μ	=	A	constant
ut	=	A	white	noise	term	at	time	t

ϕt	=	The	coefficient	of	a	lagged	value	of	x	at	time	t

p	=	The	number	of	lags	in	the	process



	ϕ	is	the	Greek	letter	phi.

This	process	is	an	AR(p)	process,	because	there	are	p	lagged	terms.

As	an	example,	a	simulated	version	of	the	AR(1)	process

is	illustrated	in	Figure	17-14.	Note	that	unlike	the	MA(1)	process	pictured	in	Figure	17-
11,	this	model	uses	the	lagged	value	of	the	stock	price	combined	with	a	white	noise
term.
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Figure	17-14:	Plot	of	simulated	AR(1)	process.

Figure	17-15	shows	the	autocorrelation	function	for	this	process.
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Figure	17-15:	ACF	of	simulated	AR(1)	process.

The	spikes	are	declining	in	magnitude	very	slowly,	which	is	characteristic	of	an	AR
process.

Figure	17-16	is	a	plot	of	the	partial	autocorrelation	function	for	this	process.
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Figure	17-16:	Partial	ACF	of	simulated	AR(1)	process.

Most	of	the	spikes	aren’t	statistically	significant,	which	is	characteristic	of	an	AR
function.

Autoregressive	moving	average	(ARMA)	processes
An	autoregressive	moving	average	process	is	a	combination	of	an	autoregressive	and	a
moving	average	process.	In	general,	this	is	written	as	follows:

This	is	known	as	an	ARMA(p,q)	process,	because	there	are	p	lagged	terms	and	q	white
noise	terms.

For	example,	here’s	a	simulated	version	of	the	ARMA(1,1)	process:

Figure	17-17	illustrates	the	results.
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Figure	17-17:	Plot	of	simulated	ARMA(1,1)	process.

Figure	17-18	shows	the	autocorrelation	function	of	this	process.
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Figure	17-18:	ACF	of	simulated	ARMA(1,1)	process.

The	spikes	are	declining	in	magnitude	very	slowly,	which	is	characteristic	of	an	ARMA
process.

Figure	17-19	displays	the	partial	autocorrelation	function	of	this	process.

©	John	Wiley	&	Sons,	Inc.

Figure	17-19:	Partial	ACF	of	simulated	ARMA(1,1)	process.

The	spikes	are	declining	in	magnitude	very	slowly,	which	is	characteristic	of	an	ARMA
process.

Autoregressive	integrated	moving	average
(ARIMA)	processes
An	autoregressive	integrated	moving	average	(ARIMA)	process	is	an	ARMA	process
in	which	the	original	time	series	has	been	differenced	in	order	to	make	it	stationary.	For
example,	an	ARMA(2,	2)	model	that	has	been	first-differenced	is	known	as	an
ARIMA(2,	1,	2)	model.	In	general,	an	ARIMA	model	is	written	as	ARIMA(p,	d,	q),
where	p	is	the	number	of	AR	terms,	q	is	the	number	of	MA	terms,	and	d	is	the	number
of	times	that	the	time	series	has	been	differenced.

Parameter	estimation
Once	you	have	tentatively	identified	the	form	of	an	ARIMA	model,	the	next	step	is	to
estimate	the	coefficients	or	parameters	of	the	model.	You	can	accomplish	this	with	a



couple	of	advanced	techniques:

Regression	analysis
Maximum	likelihood	estimation

Model	checking
Once	you’ve	estimated	a	model,	you	can	determine	the	quality	of	the	results	with	a
measure	known	as	an	information	criterion.	This	is	a	test	statistic	whose	value	is
minimized	for	the	best	fitting	model.	One	of	the	most	widely	used	information	criterion
is	known	as	Akaike’s	Information	Criterion	(AIC).

As	an	example,	you	can	model	the	first-differenced	data	for	Microsoft	stock	prices	with
several	different	forms;	each	is	compared	based	on	its	AIC.	Table	17-1	shows	the
results.

Table	17-1	Results	of	Fitting	Microsoft	Stock	Prices

p d q AIC

1 1 0 377.10

2 1 0 378.92

0 1 1 377.08

0 1 2 378.96

1 1 1 379.04

2 1 1 379.21

1 1 2 379.37

2 1 2 374.74

Each	row	in	the	table	shows	the	number	of	lagged	terms	(p),	the	number	of	white	noise
terms	(q),	and	the	number	of	times	the	series	was	differenced	(d).	In	this	case,	the
Microsoft	stock	price	time	series	is	nonstationary;	the	first	difference	of	this	time	series
is	stationary.

The	first	row	shows	the	results	of	estimating	an	AR(1)	model	(because	 	and	 ).
The	second	row	shows	the	results	of	estimating	an	AR(2)	model	(because	 	and	

).	The	third	row	shows	the	results	of	estimating	an	MA(1)	model	(because	
and	 ).	The	last	row	shows	the	results	of	estimating	an	ARIMA(2,	1,	2)	model
(because	 ,	and	 ).	Since	this	model	has	the	smallest	value	for	the	AIC
statistic,	this	is	the	best	choice	of	a	model	for	the	Microsoft	stock	time	series.	The
estimated	model	is:

where



zt	is	the	first	difference	of	the	original	time	series	at	time	t

ut	is	a	white	noise	term	at	time	t

	We	obtained	the	AIC	values	and	estimated	parameters	using	the	R
programming	language	with	the	function	ARIMA.	In	general,	developing	ARIMA
models	is	dependent	on	having	a	statistical	package	at	your	disposal.	In	addition	to
R,	SAS	and	SPSS	are	both	widely	used	in	business	applications.

Forecasting
Once	an	ARIMA	model	has	been	estimated,	you	can	forecast	future	values	for	the	time
series.	The	predicted	value	for	Microsoft	stock	on	January	2,	2014,	is	37.37.

	We	obtained	this	prediction	using	the	R	programming	language	with	the
function	PREDICT.



Simulation	Techniques
Simulation	techniques	are	used	to	model	the	behavior	of	a	time	series	by	making
assumptions	about	its	statistical	behavior.	This	approach	has	the	advantage	that	it
doesn’t	require	large	amounts	of	historical	data	to	be	implemented,	as	ARIMA
modeling	does.	The	main	drawback	to	simulation	techniques	is	that	they	can	be
extremely	time-consuming	to	implement.

This	section	covers	two	types	of	simulation	techniques:

Historical	simulation
Monte	Carlo	simulation

Historical	simulation
Historical	simulation	is	a	technique	you	can	use	to	generate	a	probability	distribution
for	a	variable’s	future	value	based	on	a	time	series	of	its	own	past	values.	The	success
of	this	technique	depends	heavily	on	the	assumption	that	the	past	will	be	repeated	in
the	future.

The	historical	simulation	approach	has	one	key	advantage	over	other	forecasting
techniques:	It	doesn’t	require	any	specific	assumptions	about	the	following:

The	probability	distribution	followed	by	the	elements	of	a	time	series
The	statistical	relationship	between	the	elements	of	a	time	series	(that	is,	the
correlation	and	covariance)
The	moments	of	the	elements	of	a	time	series	(mean,	variance,	and	so	forth)

In	many	financial	applications,	the	elements	of	a	time	series	are	assumed	to	be
normally	distributed.	Further,	the	elements	of	a	time	series	are	frequently	assumed	to
be	independent	of	each	other	—	in	other	words,	they	do	not	influence	each	other.

	If	variables	are	independent	of	each	other,	they	will	have	a	correlation	(or
covariance)	of	zero	between	them.

The	historical	simulation	approach	is	useful	when	it’s	difficult	to	justify	making	these
types	of	assumptions	or	if	the	statistical	properties	of	the	time	series	are	unknown.

The	historical	simulation	approach	has	some	disadvantages	compared	with	other
forecasting	techniques:

Its	accuracy	depends	on	the	extent	to	which	the	past	behavior	of	a	time	series
continues	to	be	replicated	in	the	future.
The	results	depend	on	how	much	past	data	is	used;	for	example,	the	results	are



likely	to	be	different	if	30	days	of	data	are	used	compared	to	2	years	of	data.
The	technique	can	be	extremely	time-consuming	compared	with	other	forecasting
techniques.

Application:	Using	historical	simulation	to	compute	Value	at	Risk	(VaR)
Value	at	Risk	(VaR)	is	a	measure	used	to	determine	how	much	risk	an	investor	is
exposed	to	by	holding	an	asset	or	a	portfolio	of	assets.	A	probability	distribution	is
derived	for	the	return	on	an	asset	or	portfolio;	the	left	tail	of	this	distribution	represents
the	worst	outcomes	that	may	occur	with	a	given	probability.

For	example,	suppose	that	as	of	August	25,	2014,	an	investor	holds	a	portfolio	of
stocks	that	is	worth	$1,000,000.	The	returns	to	the	portfolio	over	the	previous	ten
trading	days	are	given	in	Table	17-2.

Table	17-2	Time	Series	of	Portfolio	Returns

Day Return	%

August	11,	2014 1.21

August	12,	2014 0.74

August	13,	2014 –0.43

August	14,	2014 0.02

August	15,	2014 –0.26

August	18,	2014 0.63

August	19,	2014 0.31

August	20,	2014 –0.78

August	21,	2014 0.54

August	22,	2014 0.12

You	can	use	historical	simulation	to	create	a	probability	distribution	for	these	returns,
which	can	then	be	used	to	determine	the	VaR	of	this	portfolio.	Assume	that	the	investor
wants	to	compute	VaR	at	the	90	percent	confidence	level.	There	is	a	10%	chance	that
the	investor	will	lose	this	amount	(VaR)	or	more	on	the	following	trading	day.

The	first	step	is	to	sort	the	historical	returns	from	the	worst	to	the	best;	these	are	 .

-0.78	percent,	-0.43	percent,	-0.26	percent,	0.02	percent,	0.12	percent,	0.31
percent,	0.54	percent,	0.63	percent,	0.74	percent,	1.21	percent

Figure	17-20	illustrates	these	returns	in	a	histogram.
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Figure	17-20:	Histogram	of	portfolio	returns.

	A	histogram	is	a	graph	you	can	use	to	represent	a	discrete	probability
distribution.	Each	bar	represents	a	single	category,	which	is	a	value	or	range	of
values.	The	heights	of	the	bars	represent	the	frequency	of	each	category.

On	the	histogram	in	Figure	17-20,	the	categories	are	ranges	of	returns.	For	example,
the	bar	labeled	-0.75%	includes	all	returns	of	at	least	-1.00%	up	to	(but	not	including)
-0.75%.	The	bar	labeled	-0.50%	includes	all	returns	of	at	least	-0.50	percent	up	to	(but
not	including)	-0.25	percent.

With	only	ten	returns	in	the	sample,	the	Value	at	Risk	with	90	percent	confidence	is	the
10th	worst	outcome,	which	is	a	loss	of	0.78	percent.	Since	the	portfolio	is	worth
$1,000,000,	a	loss	of	0.78	percent	translates	into	a	dollar	loss	of	

.

This	can	be	interpreted	as	follows:	Over	the	coming	trading	day,	there	is	a	10	percent
chance	that	the	losses	to	the	portfolio	will	exceed	$7,800.	Another	way	of	looking	at
this	is	that	over	the	coming	trading	day,	there	is	a	10	percent	chance	that	the	value	of
the	portfolio	will	fall	below	 .

Note	that	the	mean	of	this	distribution	is	a	gain	of	0.21	percent.	You	obtain	this	by
averaging	all	ten	returns.	You	can	use	this	result	as	a	forecast	of	the	actual	return	over
the	coming	trading	day.

Monte	Carlo	simulation
Monte	Carlo	simulation	is	a	technique	in	which	random	numbers	are	substituted	into	a
mathematical	model	in	order	to	compute	future	values	of	a	variable.	Monte	Carlo
simulation	has	the	advantages	of	being	extremely	powerful	and	flexible;	it	can	be	used
to	price	highly	complex	financial	assets.	The	main	drawback	to	Monte	Carlo
simulation	is	that	it’s	extremely	time-consuming	to	implement	compared	to	other



modeling	techniques.

	Monte	Carlo	is	a	city	in	the	principality	of	Monaco,	in	the	south	of	France;	it’s
known	for	the	Grand	Prix	and	its	casinos.	Monte	Carlo	simulation	was	given	its
name	by	a	physicist	working	on	the	Manhattan	Project	during	World	War	II,
because	it	reminded	him	of	the	casinos	in	Monte	Carlo.

Steps	used	in	a	Monte	Carlo	simulation
Monte	Carlo	simulation	is	conducted	in	several	stages	or	steps.	You	generate	a	series	of
trials	or	paths,	which	show	the	evolution	of	a	variable	over	time.	You	get	each	of	the
values	on	a	single	path	by	substituting	a	random	number	into	a	statistical	model.	At	the
end	of	each	path,	you	obtain	a	forecasted	value.	The	values	are	averaged	to	get	a	single
forecasted	value	for	the	variable.

Simulating	stock	prices	with	a	Monte	Carlo	simulation
For	the	specific	case	of	simulating	stock	prices,	you	take	the	following	steps:

1.	 Specify	a	statistical	model	that	explains	how	the	stock	price	evolves	over	time.
2.	 Generate	random	numbers.
3.	 Substitute	the	random	numbers	into	the	statistical	model.
4.	 Repeat	this	process	multiple	times	until	an	entire	path	is	obtained	that	shows

the	evolution	of	the	stock	price	over	a	specified	time	horizon.	Each	path
provides	a	simulated	value	for	the	stock	price	at	a	specified	point	in	the	future.

5.	 Generate	a	large	number	of	paths;	the	average	final	value	over	all	the	paths	is
used	as	a	forecast	of	the	stock	price.

Specifying	a	statistical	model
Simulating	a	stock’s	price	with	Monte	Carlo	simulation	requires	several	key
assumptions:

The	statistical	process	followed	by	the	stock	over	time
The	probability	distribution	that	the	stock’s	price	changes	follow	over	time
The	moments	of	the	stock’s	price

	You	can	model	the	statistical	process	that	a	stock’s	price	follows	over	time	with
a	stochastic	differential	equation	(SDE).	A	stochastic	differential	equation	shows
how	the	value	of	an	asset	changes	over	time.	It’s	based	on	several	assumptions,
such	as	the	probability	distribution	followed	by	the	asset	price,	how	the	volatility
of	the	asset	price	changes	over	time,	and	so	forth.



Geometric	Brownian	motion

	One	popular	choice	for	modeling	stock	prices	is	a	stochastic	differential
equation	known	as	geometric	Brownian	motion	(GBM).

Geometric	Brownian	motion	is	the	process	used	to	model	stock	prices	by	the	Black-
Scholes	option	pricing	model.

The	geometric	Brownian	motion	process	is	given	by	the	following	stochastic
differential	equation:

where

S	is	the	price	of	the	stock.
dS	is	an	instantaneous	change	in	the	stock	price.
μ	is	the	drift	rate	of	the	asset	(how	quickly	S	grows	over	time).
dt	is	an	instantaneous	change	in	time.
σ	is	the	volatility	of	the	stock	price.
dZ	is	another	stochastic	process	known	as	Brownian	motion

	Volatility	is	another	name	for	the	standard	deviation	of	the	continuously
compounded	return	to	the	stock.

Brownian	motion	is	a	continuous	process	that	randomly	drifts	up	and	down	in	such	a
way	that	its	average	value	is	zero	and	its	variance	increases	over	time.

Figure	17-21	is	an	illustration	of	Brownian	motion.	The	figure	shows	that	Brownian
motion	aimlessly	wanders	around	a	value	of	zero,	but	can	move	further	and	further
away	from	zero	as	time	elapses.
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Figure	17-21:	Plot	of	Brownian	motion.

The	Monte	Carlo	process	isn’t	continuous	but	is	instead	implemented	as	a	series	of
discrete	time	steps	along	a	path.	For	pricing	stocks,	the	GBM	process	can	be
implemented	as	follows:

where

ΔS	is	a	small	change	in	the	stock	price.
Δt	is	a	small	change	in	time.
ε	is	a	random	number	chosen	from	the	standard	normal	distribution.

	ε	is	the	Greek	letter	epsilon.

	There	are	infinitely	many	normal	distributions,	each	uniquely	characterized	by
its	mean	and	standard	deviation.	The	standard	normal	distribution	has	a	mean	of	0
and	a	standard	deviation	of	1.

Generating	random	numbers
One	of	the	biggest	challenges	of	correctly	implementing	Monte	Carlo	simulation	is
correctly	generating	random	numbers.	You	choose	a	random	number	from	a	specified
probability	distribution.	For	example,	you	could	randomly	choose	a	number	from	the
set	{1,	2,	3,	4,	5}	in	such	a	way	that	each	number	is	equally	likely	to	be	chosen.	As
another	example,	you	could	choose	a	number	from	the	interval	0	to	1	in	such	a	way	that
a	number	from	each	interval	is	equally	likely	to	be	chosen.	In	this	case,	a	number
between	0.1	and	0.2	is	equally	likely	to	be	chosen	as	a	number	between	0.2	and	0.3,	a
number	between	0.3	and	0.4,	and	so	forth.	This	is	because	each	of	these	intervals	has
the	same	width	(0.1).	As	another	example,	you	could	choose	a	number	from	the	normal
distribution.

	Excel	has	a	built-in	random	number	generator	which	you	can	access	with	the
function	RAND.	This	chooses	a	number	between	0	and	1	in	such	a	way	that	equal-
sized	intervals	between	0	and	1	are	equally	likely	to	be	chosen.	To	generate	a
random	number,	enter	the	formula	=RAND().	(Notice	that	you	don’t	enter	a	value
between	the	parentheses.)	The	Data	Analysis	Toolpak	also	contains	a	large
number	of	different	random	number	generators.



	Excel	doesn’t	have	a	random	number	generator	for	the	standard	normal
distribution,	but	there’s	a	way	to	work	around	this.	The	function	=NORMSINV
(RAND())	chooses	a	random	number	between	0	and	1	and	then	transforms	it	into
a	standard	normal	random	number	with	the	NORMSINV	command	(NORMSINV
stands	for	the	inverse	of	the	standard	normal	distribution).

For	example,	suppose	a	researcher	wants	to	create	a	probability	distribution	for	the
price	of	ABC	stock	one	year	in	the	future.	The	stock	is	currently	selling	for	$100,	the
annual	drift	of	the	stock’s	price	is	5	percent,	and	the	annual	volatility	is	30	percent.	The
researcher	wants	to	use	Monte	Carlo	simulation	to	simulate	ABC’s	price	using	a	series
of	paths,	each	consisting	of	12	one-month	time	steps.	In	this	case,	Δt	equals	

.

Table	17-3	shows	the	calculations	needed	for	a	single	path.

Table	17-3	Time	Series	of	Portfolio	Returns

Time S ε

0 100.00 2.2941 20.28

1 120.28 0.2149 2.74

2 123.02 –0.8880 –8.95

3 114.08 1.8354 18.61

4 132.68 –0.5759 –6.07

5 126.62 –0.5869 –5.91

6 120.71 –1.8972 –19.33

7 101.38 0.0813 1.14

8 102.52 0.8101 7.62

9 110.13 1.6526 16.22

10 126.36 –0.3860 –3.70

11 122.66 –0.1299 –0.87

12 121.79 0.5710 6.53

The	stock	price	is	initially	$100.	For	each	time	step,	a	random	number	is	chosen	from
the	standard	normal	distribution.	The	result	appears	in	the	ε	column.	This	is	substituted
into	the	discrete	version	of	geometric	Brownian	motion	to	obtain	a	simulated	change	in
the	stock	price	over	the	next	time	step	(the	next	month).	This	change	is	added	to	the
current	value	of	S	to	obtain	the	simulated	value	in	the	next	time	step.	For	example,	the
change	in	S	over	the	first	month	is	20.28,	so	the	simulated	stock	price	in	one	month	is
therefore	 .



The	stock	price	in	one	year	is	estimated	to	be	$121.79.	You	can	think	of	this	as	a
forecasted	value	for	the	stock	price	in	one	year.

The	standard	error	of	an	estimated	value	and	confidence	intervals
One	of	the	drawbacks	to	the	Monte	Carlo	method	is	that	the	value	simulated	on	each
path	is	unlikely	to	be	a	good	estimate	of	the	actual	future	value	of	the	stock	price.
Normally,	you	would	generate	a	very	large	number	of	paths.	Then,	you	average	the
future	values	of	the	stock	to	get	a	single	forecasted	price.	This	leaves	one	important
question	unanswered:	How	much	uncertainty	is	there	associated	with	this	estimate?

You	can	determine	the	uncertainty	with	a	measure	known	as	the	standard	error.	You
use	the	standard	error	to	construct	a	confidence	interval	to	provide	a	measure	of	how
much	uncertainty	is	associated	with	a	simulated	price.

	A	confidence	interval	is	a	range	of	values	that	is	likely	to	contain	the	true	value
of	an	estimated	variable.	For	example,	you	can	construct	a	confidence	interval	for
the	mean	of	a	population.	A	confidence	interval	is	associated	with	a	confidence
level,	such	as	95	percent,	that	indicates	how	much	uncertainty	is	associated	with
the	confidence	interval.

The	standard	error	is	computed	as	follows:

where

s	is	the	standard	deviation	of	the	stock	price	across	the	simulated	paths.
n	is	the	number	of	paths	generated.

	The	standard	deviation	of	a	sample	of	data	is	computed	like	so:

where

xi	is	a	single	element	in	the	sample.

x	is	the	mean	of	the	elements	in	the	sample.
n	is	the	sample	size.

You	can	then	construct	a	95	percent	confidence	interval:



	The	value	1.96	is	used	in	a	95	percent	confidence	interval	because	95	percent
of	the	standard	normal	distribution	falls	within	1.96	standard	deviations	of	the
mean.

As	an	example,	suppose	that	the	researcher	in	the	previous	example	decides	to	generate
100,000	paths	in	order	to	estimate	the	correct	price	of	ABC	stock.	Figure	17-22	shows
a	histogram	that	summarizes	the	results.
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Figure	17-22:	Histogram	of	Monte	Carlo	results.

The	mean	price	of	these	trials	is	$108.74.	This	is	the	estimated	(forecasted)	price	of
ABC	stock.	If	the	standard	deviation	is	7.49,	then	the	standard	error	of	the	estimated
price	would	be	this:

The	standard	error	of	the	estimated	price	is	$0.0236.	A	95	percent	confidence	interval
for	the	estimated	price	would	then	be	this:

This	can	be	interpreted	as	follows:	If	this	simulation	is	repeated	100	times,	the	interval
$108.69	to	$108.79	will	contain	the	true	price	of	ABC	stock	in	95	of	these	cases.

Simulating	Value	at	Risk	with	Monte	Carlo	simulation
The	paths	generated	by	Monte	Carlo	simulation	generate	a	probability	distribution	for



the	value	of	an	asset.	You	can	compute	the	VaR	of	an	asset	or	a	portfolio	by	identifying
the	left	tail	of	the	distribution,	similar	to	historical	simulation.

Referring	to	the	example	of	the	ABC	stock,	suppose	the	researcher	wants	to	determine
the	VaR	of	ABC	stock	at	the	95	percent	level	of	confidence.	With	100,000	paths,	the
5,000	worst	outcomes	would	be	the	threshold	of	the	left	5	percent	tail	of	the
distribution.	Suppose	that	the	5,000th	worst	outcome	is	a	price	of	$94.77.	Then	the
Value	at	Risk	for	ABC	stock	is	a	loss	of	 	per	share.	For	an	investor
who	holds	100	shares	of	ABC	stock,	there	is	a	5	percent	chance	that	his	or	her	losses
over	the	coming	trading	day	will	exceed	100($5.23),	or	$523.00.

Once	again,	we’ve	been	through	a	lot	of	statistical	methods	in	this	chapter.	But	as
always,	remember	that	much	of	the	heavy	lifting	involved	in	applying	these	statistical
techniques	is	done	by	software.	In	the	business	world,	this	software	is	very	easy	to	use
as	well	as	quite	powerful.	Unfortunately,	it	is	also	quite	expensive.	Chapter	18	takes
you	through	some	of	the	technical	details	involved	in	applying	statistical	processes
using	software	that	is	either	free	or	that	you	probably	already	have	on	your	computer.



Chapter	18



Crunching	Numbers:	Performing
Statistical	Analysis	on	Your	Computer

In	This	Chapter
	Discovering	the	key	statistical	capabilities	of	some	widely	used	software	packages

	Accessing	Visual	Basic	for	Applications	(VBA)	in	Excel

	Introducing	the	R	programming	language	and	the	R	Studio	interface

Performing	any	type	of	statistical	analysis	usually	requires	the	use	of	a	specialized
program.	There	are	many	available	choices,	ranging	from	the	very	basic	to	the
extremely	sophisticated.	Some	cost	thousands	of	dollars	—	others	you	can	download
for	free	from	the	Internet.

This	chapter	introduces	the	statistical	capabilities	of	three	widely	used	such	programs:

Excel
Visual	Basic	for	Applications	(VBA)
The	R	programming	language	and	interface

This	chapter	does	assume	some	familiarity	with	coding	in	the	Microsoft	Office
environment,	particularly	with	VBA.	If	that	environment	is	totally	unfamiliar	to	you,
you	may	want	to	bone	up	on	some	of	the	basics	and	then	come	back	to	this	chapter.
One	good	resource	is	Excel	VBA	Programming	For	Dummies	by	John	Walkenbach
(Wiley,	2013).



Excelling	at	Excel
Microsoft	Excel	is	a	hugely	popular	spreadsheet	program	that	offers	a	wide	range	of
capabilities.	One	of	its	great	strengths	is	its	ability	to	perform	complex	statistical
analysis	with	built-in	commands.	Excel	is	also	very	useful	for	organizing	and	storing
data.	Many	statistical	packages	are	capable	of	reading	data	from	Excel	files	and	can
also	export	their	own	results	as	Excel	files.	In	addition	to	its	built-in	statistical
functions,	the	capabilities	of	Excel	have	been	extended	with	an	add-in	package	known
as	the	Analysis	ToolPak.

	The	Analysis	ToolPak	is	no	longer	included	with	the	Mac	version	of	Excel.
(You	can	download	a	free	version	of	StatPlus,	which	has	similar	functionality,
from	http://statplus-mac.en.softonic.com/mac/download	.	It	is	produced	by
the	same	company,	Softonic,	that	makes	the	Analysis	ToolPak.)

Key	Excel	statistical	functions
Excel	contains	a	numerous	built-in	statistical	functions,	including	the	following:

Summary	measures,	such	as	mean,	variance,	and	standard	deviation
Measures	of	association,	such	as	correlation	and	covariance
Functions	for	computing	probabilities	for	discrete	distributions,	such	as	the
binomial	and	Poisson
Functions	for	computing	probabilities	for	continuous	distributions	such	as	the
normal,	Student’s	t-distribution,	and	chi-square
Regression	analysis	functions,	such	as	slope	and	intercept

In	each	case,	the	function	requires	one	or	more	inputs,	usually	in	a	specific	order.	You
can	enter	these	directly	or	use	cell	references	instead.	As	a	simple	example,	suppose	the
average	gas	price	in	New	York	City	is	$3.59,	and	is	stored	in	cell	A1.	The	average	gas
price	in	New	Jersey	is	$3.29,	stored	in	cell	A2.	To	determine	the	greater	of	the	two,	you
use	the	function	MAX	as	follows:

To	implement	an	Excel	function,	you	enter	an	equals	sign,	followed	by	the	name	of	the
function,	a	left	parenthesis,	the	inputs	to	the	function,	and	a	right	parenthesis.	Then
press	the	Enter	key.	After	you	type	the	equals	sign,	the	name	of	the	function,	and	the
left	parenthesis,	Excel	provides	a	“ribbon”	that	lists	all	required	inputs.	In	this	case,	the
ribbon	shows	the	following	information:

http://statplus-mac.en.softonic.com/mac/download


This	shows	that	MAX	requires	at	least	one	numerical	input.	number	2	is	surrounded	by
square	brackets,	which	indicates	that	it’s	optional.	The	three	dots	indicate	that	you	can
supply	as	many	numbers	as	you	like.

Alternatively,	you	can	implement	the	function	as	follows:

In	this	case,	you	use	the	cell	references	A1	and	A2	instead	of	directly	entering	the	two
values.	The	advantage	of	this	approach	is	that	references	to	these	cells	will	change
automatically	if	you	change	the	values	in	cells	A1	and	A2.

In	both	cases,	the	function	returns	the	correct	value	of	3.59.

Another	way	to	implement	a	function	is	by	clicking	the	fx	icon	to	the	left	of	the
formula	bar.	In	the	example	in	Figure	18-1,	the	fx	icon	appears	directly	above	column
D.

Source:	Alan	Anderson

Figure	18-1:	The	fx	icon	in	Excel.

After	clicking	on	the	fx	icon,	a	window	containing	all	of	Excel’s	functions	opens.	To
find	the	MAX	function,	you	enter	MAX	in	the	“Search	for	a	function”	field;	the	next
step	is	to	click	the	Go	button	on	the	right.	(If	you	misspell	the	function	name,	Excel
may	not	be	able	to	find	it.	Just	try	again!)	See	Figure	18-2.

Source:	Alan	Anderson

Figure	18-2:	The	Insert	Function	window	in	Excel.

Once	you	find	the	MAX	function,	click	the	OK	button.	This	produces	a	window	that
prompts	you	for	each	required	value.	The	window	also	contains	a	brief	explanation	of
the	function	and	its	required	inputs,	as	shown	in	Figure	18-3.



Source:	Alan	Anderson

Figure	18-3:	The	Function	Arguments	window.

The	examples	in	this	section	show	how	to	compute	summary	measures	for	a	sample	of
stock	returns	and	how	to	determine	the	likelihood	of	default	for	the	bonds	in	a
portfolio,	using	Excel’s	built-in	functions.

Computing	summary	measures	in	Excel
Table	18-1	shows	the	steps	used	to	compute	summary	measures	for	a	sample	of	returns
to	a	stock.	The	data	are	entered	in	two	columns;	column	A	contains	the	year	in	which
each	return	occurred,	and	column	B	contains	the	actual	return	for	each	year.	Column
labels	are	in	row	1,	and	the	years	and	returns	are	found	in	rows	2	through	6.	The
appropriate	Excel	functions	are	shown	in	cells	B7	through	B9.

Table	18-1	Computing	Summary	Measures	for	a	Sample	in	Excel

A B

1 Year Return

2 2011 3.40	percent

3 2012 2.70	percent

4 2013 8.10	percent

5 2014 5.90	percent

6 2015 6.40	percent

7 MEAN =	AVERAGE(B2:B6)

8 VARIANCE =	VAR.S(B2:B6)

9 STANDARD	DEVIATION =	STDEV.S(B2:B6)

Table	18-1	shows	that	in	order	to	compute	the	mean	of	a	sample	in	Excel,	you	use	the
function	AVERAGE	(no	distinction	is	made	between	a	sample	and	a	population	when
using	the	AVERAGE	function).	For	computing	the	sample	variance,	you	use	VAR.S;
for	a	sample	standard	deviation,	you	use	STDEV.S.

	Unlike	the	mean,	the	formulas	for	computing	a	population	variance	and	a



population	standard	deviation	are	slightly	different	from	the	formulas	for
computing	a	sample	variance	and	a	sample	standard	deviation.	The	functions	that
provide	population	variance	and	population	standard	deviation	are	VAR.P	and
STDEV.P,	respectively.

In	this	case,	the	results	are	as	follows:

Sample	mean	=	0.053	=	5.3	percent
Sample	variance	=	0.00049
Sample	standard	deviation	=	0.02224	=	2.224	percent

	Because	the	sample	data	consist	of	returns,	which	are	measured	as	a
percentage,	the	mean	and	standard	deviation	are	also	measured	as	percentages.
The	variance	is	actually	measured	as	a	percentage	squared.	This	is	difficult	to
interpret,	so	standard	deviation	is	more	likely	than	variance	to	be	used	as	a
measure	of	uncertainty.

Computing	probabilities	in	Excel
Suppose	a	portfolio	manager	is	responsible	for	the	performance	of	an	extremely	risky
bond	fund	that	contains	ten	“junk”	bonds.	Each	bond	comes	from	a	different	sector	of
the	economy,	so	the	performance	of	each	bond	can	be	treated	as	independent	from	the
other	bonds	in	the	fund.	Suppose	the	portfolio	manager	has	determined	from	historical
experience	that	each	bond	has	a	40	percent	chance	of	defaulting	over	the	coming	year.

The	portfolio	manager	determines	that	the	probability	distribution	which	can	best
explain	the	default	behavior	of	the	bonds	is	the	binomial	distribution.	(Chapter	4
introduces	this	distribution	and	discusses	it	at	length.)	Based	on	this	assumption,	the
portfolio	manager	can	use	Excel	to	create	a	probability	distribution	for	the	number	of
bonds	that	default	over	the	coming	year.

	The	binomial	distribution	is	used	when	independent	“trials”	are	taking	place,
and	each	trial	can	have	only	one	of	two	possible	outcomes.	Here,	the	performance
of	each	bond	can	be	thought	of	as	a	trial	where	only	one	of	two	things	can	happen:
default	or	no	default.

Table	18-2	shows	the	steps	that	would	be	used	to	compute	binomial	probabilities	for
the	portfolio	manager.

Table	18-2	Using	the	Binomial	Distribution	Function	in	Excel

A B C D

1 n 10



2 p 0.4

3

4 Default Probability Default Probability

5 0 =BINOM.DIST(A5,	$B$1,	$B$2,	0) 6 =BINOM.DIST(C5,	$B$1,	$B$2,	0)

6 1 =BINOM.DIST(A6,	$B$1,	$B$2,	0) 7 =BINOM.DIST(C6,	$B$1,	$B$2,	0)

7 2 =BINOM.DIST(A7,	$B$1,	$B$2,	0) 8 =BINOM.DIST(C7,	$B$1,	$B$2,	0)

8 3 =BINOM.DIST(A8,	$B$1,	$B$2,	0) 9 =BINOM.DIST(C8,	$B$1,	$B$2,	0)

9 4 =BINOM.DIST(A9,	$B$1,	$B$2,	0) 10 =BINOM.DIST(C9,	$B$1,	$B$2,	0)

10 5 =BINOM.DIST(A10,	$B$1,	$B$2,	0)

The	Excel	function	BINOM.DIST	is	used	to	compute	binomial	probabilities.	When
entering	the	function	BINOM.DIST,	the	following	ribbon	appears:

The	variables	listed	in	parentheses	show	the	inputs	that	are	required	as	well	as	the	order
in	which	they	must	be	entered:

number_s
trials
probability_s
cumulative

number_s	refers	to	the	number	of	“successes”	that	occur.	In	this	example,	each	default
is	referred	to	as	a	success,	and	each	non-default	is	referred	to	as	a	failure.	For	example,
to	compute	the	probability	that	no	bonds	default,	number_s	is	set	equal	to	0.	Similarly,
to	compute	the	probability	that	exactly	one	bond	defaults,	number_s	is	set	equal	to	1.
The	remaining	probabilities	are	computed	in	the	same	way.

trials	refers	to	the	number	of	times	the	process	is	repeated;	in	this	example,	each	bond
in	the	portfolio	is	considered	to	be	a	trial,	so	trials	is	set	equal	to	10.	probability_s	is	the
probability	of	a	success	on	a	single	trial,	which	in	this	case	is	0.40,	or	40	percent.

cumulative	is	a	binary	variable	that	accepts	only	one	of	two	values:

0	represents	false.
1	represents	true.

The	cumulative	variable	is	set	to	1	only	when	computing	“cumulative”	probabilities.
For	example,	the	probability	that	the	number	of	defaults	is	less	than	or	equal	to	5.
Here,	the	portfolio	manager	is	interested	in	the	probabilities	of	specific	numbers	of
defaults,	not	cumulative	probabilities,	so	cumulative	is	set	equal	to	0.



Notice	that	the	number	of	trials	and	the	probability	of	success	are	constants;	they	are
stored	at	the	top	of	the	spreadsheet.	The	number	of	trials	is	in	cell	B1,	whereas	the
probability	of	success	is	in	cell	B2.	When	you	enter	the	number	of	trials	into	the
BINOM.DIST	formula,	use	either	the	value	10	or	the	cell	reference	B1.	Similarly,
when	you	enter	the	probability	of	success	into	the	BINOM.DIST	formula,	use	either
the	value	0.40	or	the	cell	reference	B2.	In	general,	it’s	safer	to	use	cell	references
because	these	values	are	easy	to	change.

	Notice	that	the	cell	references	B1	and	B2	contain	dollar	signs	($)	in	the
BINOM.DIST	formula.	The	dollar	signs	lock	these	references	into	place	and
prevent	them	from	shifting	should	you	copy	the	formula	into	other	cells.	The	cells
references	A5,	A6,	A7,	and	so	forth	are	allowed	to	change	because	these	contain
the	number	of	trials,	which	will	be	different	for	each	probability	you’re
computing.

Table	18-3	shows	the	actual	probabilities	for	each	possible	number	of	defaults.	You	can
think	of	this	table	as	a	probability	distribution.

Table	18-3	Computing	Default	Probabilities	in	Excel

Defaults Probability Defaults Probability

0 0.0060 6 0.1115

1 0.0403 7 0.0425

2 0.1209 8 0.0106

3 0.2150 9 0.0016

4 0.2508 10 0.0001

5 0.2007

The	portfolio	manager	can	now	see	at	a	glance	that	the	most	likely	outcome	is	four
defaults,	and	that	the	likelihood	of	no	defaults	is	only	0.0060.	This	information	can	also
be	used	to	determine	the	average	number	of	defaults	that	are	likely	to	occur,	the
standard	deviation	of	the	number	of	defaults	(that	is,	the	uncertainty	associated	with	the
number	of	defaults),	and	so	on.

Updated	statistical	functions
Microsoft	updated	many	of	its	built-in	functions	with	the	2010	version	of	Excel	for
Windows	and	the	2011	version	of	Excel	for	the	Mac.	Here	are	a	few	of	the	most
important	changes	made:

Increased	speed	of	calculations
More	consistent	naming	of	functions



Introduction	of	a	few	completely	new	functions

In	some	cases,	the	algorithms	used	to	implement	the	functions	have	been	replaced	or
improved	to	increase	the	speed	and	accuracy	of	the	calculations.	For	example,
according	to	Microsoft,	the	BETADIST	function	was	not	implemented	accurately	in
earlier	versions	of	Excel,	and	this	has	been	corrected.	(BETADIST	is	used	to	compute
probabilities	for	the	beta	distribution.)

Another	major	change	took	place	with	the	spelling	of	the	statistical	functions.	Many
inconsistencies	have	been	eliminated.	For	example,	in	older	versions	of	Excel,	the
population	variance	was	computed	with	the	function	VARP,	whereas	the	sample
variance	was	computed	with	the	function	VAR.	These	functions	are	now	spelled	VAR.P
and	VAR.S,	respectively.	(P	stands	for	population,	and	S	stands	for	standard	deviation.)
Similarly,	the	population	standard	deviation	was	previously	spelled	STDEVP	and	the
sample	standard	deviation	was	spelled	STDEV.	These	have	been	replaced	with
STDEV.P	and	STDEV.S,	respectively.	All	sample	measures	now	end	with	.S,	and	all
population	measures	now	end	with	.P.

	In	spite	of	all	of	these	changes,	Excel	has	maintained	backward	compatibility.
This	means	that	the	original	spellings	of	Excel	functions	still	work	in	the	newest
versions	of	Excel.

In	addition	to	the	improvements	to	existing	functions,	several	completely	new
functions	have	been	added.	Table	18-4	shows	some	of	the	new	functions.

Table	18-4	New	Excel	Functions

CHISQ.DIST T.DIST

CHISQ.INV T.INV

F.DIST CONFIDENCE.T

F.INV CONFIDENCE.NORM

CHISQ.DIST	is	used	to	compute	probabilities	under	the	chi-square	distribution,	and
CHISQ.INV	is	used	to	determine	the	location	under	the	chi-square	distribution	that
corresponds	to	a	given	probability.	Similarly,	F.DIST	and	T.DIST	are	used	to	compute
probabilities	for	the	F	and	Student’s	t-distribution,	respectively.	F.INV	and	T.INV	are
used	to	find	locations	under	the	F-	and	T-distributions,	respectively.

You	can	use	CONFIDENCE.T	and	CONFIDENCE.NORM	to	construct	confidence
intervals.	CONFIDENCE.T	is	based	on	the	Student’s	t-distribution,	which	is	used
when	constructing	a	confidence	interval	for	the	population	mean	with	an	unknown
population	standard	deviation.	CONFIDENCE.NORM	is	based	on	the	normal
distribution,	which	is	used	when	constructing	a	confidence	interval	for	the	population
mean	with	a	known	population	standard	deviation.	In	both	cases,	the	function	returns



the	margin	of	error.	You	must	compute	the	actual	confidence	interval.

For	example,	you	can	construct	a	confidence	interval	for	a	population	mean	as	follows:

The	sample	mean	is	an	estimate	of	the	population	mean.	The	margin	of	error	indicates
how	much	uncertainty	is	associated	with	this	estimate.

For	example,	suppose	a	university	has	10,000	students	with	normally	distributed	grade
point	averages	(GPAs).	The	university	would	like	to	estimate	the	average	GPA	of	all
the	students.	Due	to	time	constraints,	the	university	will	not	calculate	the	actual	mean
(the	population	mean)	for	the	entire	university.	Instead,	an	analyst	will	construct	a
confidence	interval	from	sample	data.

The	analyst	chooses	a	sample	of	ten	students,	among	whom	the	sample	mean	GPA	is
3.10,	and	the	sample	standard	deviation	is	0.25.	The	university	would	like	to	use	this
information	to	construct	a	95	percent	confidence	interval	for	the	population	mean	GPA
(in	other	words,	for	the	mean	GPA	of	the	entire	student	body).

Because	the	analyst	knows	only	the	sample	standard	deviation,	he	or	she	uses	the
Student’s	t-distribution	(discussed	in	Chapter	13)	to	construct	the	confidence	interval.
The	margin	of	error	is	based	on	the	Student’s	t-distribution,	and	is	computed	with	the
following	formula:

where

n	is	the	sample	size.
α	is	the	level	of	significance.
s	is	the	sample	standard	deviation.

	is	a	location	under	the	Student’s	t-distribution.

In	this	example,	n	is	10,	because	there	are	ten	GPAs	in	the	sample.	The	level	of
significance	(α)	is	0.05,	or	5	percent.	This	is	because	the	confidence	interval	is	being
constructed	with	a	95	percent	level	of	confidence,	and	the	level	of	significance	equals	1
minus	the	level	of	confidence.	s	=	0.25,	because	this	is	the	standard	deviation	of	the
sample	GPAs.

The	appropriate	value	chosen	from	the	Student’s	t-distribution	is	based	on	the	level	of
significance	and	the	number	of	degrees	of	freedom,	which	equals	the	sample	size	minus
1.	In	this	case,	the	degrees	of	freedom	equals	9.	Using	this	information,	the	analyst	can
compute	the	Student’s	t	value	using	Excel’s	T.INV	function:



The	probability	is	set	equal	to	1	-	(α/2)	=	1	-	(0.05/2)	=	1	-	0.025	=	0.975.	The	degrees
of	freedom	(deg_freedom)	equals	 .	Therefore,	the	function	with	values

is	equal	to	approximately	2.262.	As	a	result,	the	margin	of	error	equals	the	following:

The	confidence	interval	is	therefore

	represents	the	sample	mean	in	this	formula.

The	confidence	interval	can	be	written	as	 	or	(2.911,	3.289).
This	interval	provides	a	sense	of	how	close	the	population	GPA	is	likely	to	be	to	the
sample	mean	of	3.10.

Analysis	ToolPak
The	Analysis	ToolPak	is	an	add-in	package	included	with	Excel	for	Windows	(StatPlus
for	Macs	has	similar	functionality).	You	can	use	it	to	perform	several	types	of	statistical
procedures:

Hypothesis	testing	for	one	or	two	populations
Regression	analysis
ANOVA	(analysis	of	variance)
Generating	summary	statistics,	such	as	the	mean,	median,	mode,	variance,	standard
deviation,	and	so	on
Computing	covariances	and	correlations	between	datasets
Generating	random	numbers

	You	access	the	Analysis	ToolPak	through	the	Data	tab.	It	appears	in	the
Analysis	section	on	the	far	right	of	the	ribbon.	If	the	icon	doesn’t	appear	on	the
ribbon,	you	can	install	it	using	the	following	steps:

1.	 Click	the	File	tab.
2.	 Choose	Options.
3.	 In	the	Excel	Options	window,	choose	Add-Ins.



4.	 Click	the	Go	button.
5.	 In	the	Add-Ins	dialog	box,	select	Analysis	ToolPak.
6.	 Click	the	OK	button.

Figure	18-4	shows	the	Data	toolbar	with	the	Analysis	tab	on	the	far	right.

Source:	Alan	Anderson

Figure	18-4:	The	Data	toolbar	with	Analysis	tab.

Clicking	the	Data	Analysis	icon	opens	the	Data	Analysis	window.	You	use	a	function
by	selecting	it	and	clicking	the	OK	button.	For	each	function,	a	dialog	box	appears	that
prompts	you	for	the	required	information.

Figure	18-5	shows	the	Data	Analysis	dialog	box.

Source:	Alan	Anderson

Figure	18-5:	The	Data	Analysis	window.

For	example,	suppose	you’re	conducting	a	Monte	Carlo	simulation	study	that	requires
100	numbers	that	are	randomly	chosen	from	the	standard	normal	distribution.	These
numbers	will	be	used	to	produce	a	probability	distribution	of	100	possible	values	for
the	returns	to	a	stock.

	The	normal	distribution	(sometimes	known	as	the	bell-shaped	curve)	is
uniquely	characterized	by	two	values:	the	mean	and	the	standard	deviation.	There
are	infinitely	many	normal	distributions.	The	special	case	in	which	the	mean
equals	0	and	the	standard	deviation	equals	1	is	known	as	the	standard	normal
distribution.	Many	applications	in	a	wide	variety	of	disciplines	use	this
distribution.

Excel	can	generate	a	random	number	with	the	function	=RAND().	This	number	is
based	on	the	standard	uniform	distribution,	so	a	number	between	0	and	1	will	be
generated.	The	probability	of	getting	a	number	within	a	specific	range	depends	only	on
the	width	of	the	range.	For	example,	the	probability	of	getting	a	number	between	0.1
and	0.2	is	the	same	as	the	probability	of	getting	a	number	between	0.3	and	0.4,	and	the
same	as	the	probability	of	getting	a	number	between	0.5	and	0.6,	and	so	forth.	In	each



case,	the	probability	is	0.1	since	each	of	these	intervals	represents	one-tenth	of	the
entire	range	of	possibilities	from	0	to	1.

If	you	need	another	probability	distribution,	you	must	use	a	different	approach.	One
possibility	is	to	use	the	random	number	generator	included	in	the	Analysis	ToolPak.

Figure	18-6	shows	the	window	produced	after	you	select	Random	Number	Generation
in	the	Analysis	ToolPak	window.

Source:	Alan	Anderson

Figure	18-6:	The	Random	Number	Generation	window.

In	this	example,	the	following	information	is	entered	into	the	dialog	box.	The	number
of	variables	equals	1,	since	the	random	numbers	are	being	used	to	compute	different
possible	values	for	a	single	variable,	the	stock	price.	The	number	of	random	numbers
being	generated	is	100.	You	choose	the	normal	distribution	from	the	Distribution	drop-
down	menu.

Once	you	choose	the	normal	distribution,	the	window	prompts	for	the	appropriate
inputs.	In	this	case,	the	inputs	are	the	mean	and	the	standard	deviation	of	the	normal
distribution.	Because	the	random	numbers	are	meant	to	be	chosen	from	the	standard
normal	distribution,	the	mean	is	set	equal	to	0	and	the	standard	deviation	is	set	equal	to
1.

The	random	seed	is	an	optional	value	and	is	needed	only	if	this	process	will	be	repeated
more	than	once.	You	use	this	field	to	save	different	sets	of	random	numbers.

The	output	options	allow	you	to	choose	from	the	following	options:

Have	the	results	written	on	the	same	worksheet.
Have	the	results	written	to	a	new	worksheet	in	the	same	Excel	workbook.
Have	the	results	written	to	an	entirely	new	Excel	workbook.

Figure	18-7	shows	the	inputs	used	for	this	example.



Source:	Alan	Anderson

Figure	18-7:	Generating	100	standard	normal	random	numbers	with	the	Analysis	ToolPak.

When	you’ve	entered	all	needed	parameters,	click	OK.



Programming	with	Visual	Basic	for
Applications	(VBA)

Some	applications	may	require	more	advanced	statistical	or	data	preparation
procedures	than	the	ones	that	are	built	in	to	Excel	or	included	with	the	Analysis
ToolPak.	Or	it	may	be	necessary	to	perform	statistical	analyses	much	more	quickly
than	is	possible	in	Excel.	In	these	cases,	you	can	extend	Excel’s	capabilities	with	a
built-in	programming	language	known	as	Visual	Basic	for	Applications	(VBA).

You	access	the	VBA	language	from	the	Developer	tab.	When	Excel	is	first	installed	on
a	computer,	the	Developer	tab	doesn’t	automatically	appear.	Follow	these	steps	to	add
the	Developer	tab	to	the	other	tabs	in	the	menu	bar:

1.	 Click	the	File	tab.
2.	 Click	Options.
3.	 Click	Customize	Ribbon.
4.	 On	the	right-hand	side	of	the	dialog	box,	check	the	Developer	check	box.

Once	you	have	installed	the	Developer	tab,	choosing	it	will	produce	a	specialized
ribbon	that	contains	the	VBA	editor.

Figure	18-8	shows	the	Developer	ribbon.

Source:	Alan	Anderson

Figure	18-8:	The	Developer	ribbon.

To	write	a	new	VBA	program,	the	first	step	is	to	choose	the	Visual	Basic	icon	on	the
Developer	ribbon.	Figure	18-9	shows	a	section	of	the	VBA	editor.

Source:	Alan	Anderson

Figure	18-9:	The	VBA	editor.

To	write	a	new	program,	select	the	Insert	tab	and	choose	Module.	A	blank	module	will
appear	in	the	VBA	editor.	You	type	all	the	code	in	the	module.	For	example,	suppose
an	investor	wants	to	compute	the	volatility	of	a	stock	based	on	pricing	data	from	the



previous	12	months.	The	data	is	shown	in	Table	18-5.

Table	18-5	Month	Stock	Price	Data

Month Prices

January	2015 100.00

February	2015 101.25

March	2015 103.89

April	2015 104.15

May	2015 102.88

June	2015 103.15

July	2015 109.08

August	2015 107.66

September	2015 105.38

October	2015 104.93

November	2015 106.92

December	2015 107.63

The	VBA	code	is	shown	in	Figure	18-10.

Source:	Alan	Anderson

Figure	18-10:	VBA	code	for	computing	volatility.

The	program	reads	in	the	12	monthly	prices,	computes	monthly	returns,	and	then
calculates	the	standard	deviation	(volatility)	of	these	returns.	It	also	converts	the
monthly	volatility	into	an	annual	volatility	using	the	square	root	of	time	rule.

	According	to	the	square	root	of	time	rule,	monthly	volatility	can	be	converted
to	annual	volatility	by	multiplying	the	monthly	volatility	by	the	square	root	of	12



(because	there	are	12	months	in	a	year).

The	following	is	an	explanation	of	the	code:

Option	Base	1:	This	command	ensures	that	the	index	used	with	any	array	variables
starts	with	1.	By	default,	the	index	starts	with	0.
Function:	This	command	gives	the	name	of	the	function	and	shows	any	required
inputs.	In	this	case,	the	required	inputs	are	the	number	of	observations	(obs)	and	the
monthly	prices.
Dim:	This	command	tells	VBA	the	names	and	types	of	the	variables	and	constants
that	will	be	used	in	the	program.
ReDim:	This	command	tells	VBA	the	dimensions	of	any	array	variables	being
used.	In	this	case,	the	returns	are	stored	in	an	array.
For/To/Next:	These	commands	create	a	“for”	loop.	They	tell	VBA	to	repeat	the
commands	contained	within	the	loop	a	specified	number	of	times.	In	this	case,	the
index	i	ranges	from	2	to	obs	(2	to	12).	Therefore,	the	loop	will	be	executed	11
times.
returns(i)	=	Log(prices(i)	/	prices(i	–	1)):	This	command	tells	VBA	that	the
continuously	compounded	monthly	return	equals	the	natural	logarithm	of	the
current	month’s	price	divided	by	the	previous	month’s	price.	Because	this
command	appears	in	the	for	loop,	it	will	be	repeated	11	times,	once	for	each	return.
Note	that	Log	is	used	in	VBA	instead	of	ln,	which	is	used	in	Excel	for	the	natural
logarithm.
Vol	=	Application.StDev(returns)	*	Sqr(12):	This	command	computes	the	value
of	the	volatility	that	will	appear	on	the	spreadsheet.	The	standard	deviation	of	the
monthly	returns	is	multiplied	by	12	to	produce	the	annual	volatility.	The	keyword
Application	is	used	to	tell	VBA	that	the	function	StDev	is	found	in	Excel;	it	is	not
one	of	VBA’s	own	commands.	Note	that	Sqr	is	used	in	VBA	instead	of	sqrt,	which
is	used	in	Excel	for	the	square	root.

In	this	example,	the	final	result	is	a	volatility	of	0.074768,	or	7.4768	percent	per	year.

	All	VBA	keywords	appear	in	blue	in	the	code.	These	words	have	a	specific
meaning	in	VBA	and	cannot	be	used	for	any	other	purposes.



R,	Matey!
Whereas	VBA	is	a	general,	all-purpose	programming	language,	R	is	designed
specifically	for	statistical	analysis.	You	can	download	it	from	the	Internet	—	for	free!	R
becomes	far	more	user-friendly	when	combined	with	an	interface	known	as	R	Studio.
Luckily,	R	Studio	is	also	free	on	the	Internet.

To	download	the	R	language,	go	to	www.r-project.org	;	both	Windows	and	Mac
versions	are	available	(and	Linux	is	available	as	well).	You	can	download	R	Studio
from	www.rstudio.com	.	Be	sure	to	install	R	before	R	Studio.

The	R	language	evolved	from	an	earlier	language	known	as	S,	which	was	developed	at
Bell	Laboratories	in	the	1970s.	With	R,	you	can	generate	results	with	the	built-in
functions	that	are	part	of	the	R	language,	or	you	can	write	you	own	code.	One	of	the
main	advantages	of	R	is	that	it	can	easily	be	extended	with	add-in	packages.	A	large
network	of	R	users,	including	statisticians,	economists,	computer	programmers,	and
mathematicians	regularly	contribute	powerful	new	packages,	all	of	which	can	be
downloaded	online	at	no	cost.

Figure	18-11	shows	the	layout	of	R	Studio.	R	Studio	is	designed	to	make	the	R
language	user-friendly	and	enables	users	to	keep	track	of	several	different	types	of
information	at	once.

Source:	Alan	Anderson

Figure	18-11:	R	Studio.

In	the	upper	left-hand	corner	of	R	Studio	is	an	editor	you	can	use	to	enter	code	without
executing	it.	Once	the	code	is	complete,	you	execute	it	by	highlighting	the	relevant
lines	and	clicking	the	Run	button.	The	editor	window	can	also	be	used	for	several	other
purposes.	For	example,	you	can	use	it	to	retrieve	information	about	R	functions,	create
comments	for	documenting	code,	and	so	on.

The	R	Console	is	in	the	lower	left-hand	corner	of	R	Studio.	This	is	where	the	results	of
executed	code	appear.	You	can	also	enter	R	code	directly	into	the	R	Console	for
immediate	execution.	One	convenient	feature	of	the	console	is	that	you	can	retrieve
past	commands	by	using	the	up-arrow	key;	this	saves	time	entering	commands	and
reduces	the	likelihood	of	errors.

In	the	upper	right-hand	corner	of	R	Studio	is	a	window	containing	the	environment	and

http://www.r-project.org
http://www.rstudio.com


history	tabs.	The	Environment	window	shows	the	variables	that	are	currently	defined	in
R’s	memory.	It	also	shows	the	type	of	each	variable	(numerical,	character,	and	so	on)
and	its	dimensions	(the	number	of	rows	and	columns).	Clicking	the	name	of	a	variable
produces	a	chart	in	the	editor	window	that	contains	the	current	value(s)	of	the	variable.

The	History	window	shows	the	R	code	that	has	been	used	during	the	current	session.
This	code	can	be	executed	by	selecting	it	and	then	clicking	the	To	Console	button.
Also,	you	can	send	it	to	the	editor	by	clicking	the	To	Source	button.

The	bottom	right-hand	corner	of	R	Studio	contains	several	useful	tabs:

Files
Plots
Packages
Help

The	Files	window	shows	the	contents	of	the	directory	that	contains	the	R	software.

The	Packages	window	shows	the	add-in	packages	that	have	been	downloaded	and	are
available	to	R.	These	are	divided	into	two	groups:	Those	that	are	part	of	the	R	language
are	listed	under	System	Library,	and	the	rest	are	listed	under	User	Library.	Packages	in
this	window	must	be	activated	by	clicking	the	check	box	next	to	the	package’s	name	or
using	the	appropriate	command	in	an	R	program.

The	Help	window	contains	a	massive	amount	of	information	about	the	R	language.
Also,	you	can	get	help	for	any	command	by	typing	??	and	the	name	of	the	command	in
the	R	Console.

For	example,	R	contains	a	dataset	that	consists	of	the	number	of	times	(in	minutes)
between	eruptions	of	the	geyser	Old	Faithful.	Figure	18-12	shows	the	results	of
applying	several	statistical	functions	to	the	data.

Source:	Alan	Anderson

Figure	18-12:	Basic	statistical	commands	in	R.

Here	is	the	code:
library("stats")

data	=	faithful$eruption

hist(data)

mean(data)



median(data)

var(data)

sd(data)

The	code	begins	with	the	command	library(“stats”).	The	library	command	is	used	to
activate	an	add-in	package	so	it	can	be	used	by	the	program.	The	stats	package	contains
a	large	number	of	useful	statistical	functions.

The	command	data	=	faithful$eruption	assigns	the	contents	of	the	Old	Faithful	dataset
to	the	variable	called	data.	This	is	done	to	increase	the	readability	of	the	code.

The	hist	command	creates	a	histogram	of	the	data.	Figure	18-13	shows	the	histogram;
it’s	used	to	describe	the	properties	of	a	dataset	by	showing	a	bar	for	each	individual
value	or	range	of	values	on	the	horizontal	axis.	The	corresponding	frequencies	are
represented	by	the	heights	of	the	bars.	The	histogram	for	the	Old	Faithful	data	shows
that	waiting	times	between	4	and	4.5	minutes	are	the	most	common;	waiting	times
between	2.5	and	3	minutes	are	the	least	common.	The	data	also	does	not	appear	to
follow	any	particular	probability	distribution	such	as	the	binomial	or	the	normal.
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Figure	18-13:	Histogram	of	Old	Faithful	data.

The	remaining	commands	compute	statistical	measures	for	the	data:	mean,	median,
sample	variance,	and	sample	standard	deviation.	The	results	appear	in	the	R	Console.

For	the	Old	Faithful	data,	the	mean	waiting	time	is	3.487783	minutes,	and	the	median
time	is	4	minutes.	This	indicates	that	half	of	the	waiting	times	are	less	than	4	minutes,
and	the	rest	are	greater	than	4	minutes.	The	variance	of	the	waiting	times	is	1.302728,
and	the	standard	deviation	is	1.141371	minutes.	(The	variance	is	measured	in	squared
minutes.)

So	as	you	can	see,	even	if	you	don’t	have	an	industrial-strength	statistical	package	at
your	disposal,	there	is	a	great	deal	you	can	do	with	free	computer-based	packages.	True
big-data	applications	in	industry	require	more	firepower,	but	you	can	build	a	good	deal
of	intuition	and	understanding	of	statistical	procedures	using	the	tools	described	in	this
chapter.





Chapter	19



Seeking	Free	Sources	of	Financial	Data
In	This	Chapter

	Checking	out	what	types	of	financial	data	are	available	on	the	Internet

	Downloading	financial	data	from	various	Internet	sources

So	far,	this	book	has	focused	on	financial	applications.	Most	of	the	examples	have	been
in	the	vein	of	modeling	returns	on	various	types	of	assets.	As	pointed	out	throughout
the	chapters	in	Part	I	of	this	book,	big-data	applications	arise	in	a	vastly	diverse
collection	of	circumstances.	Because	of	this	diversity,	it	is	almost	impossible	to	give	an
exhaustive	list	of	data	sources.	The	data	you	use	will	depend	completely	on	your
particular	situation.

So,	this	chapter	aims	to	give	you	some	resources	that	provide	financial	data.	Our
thought	is	that	this	will	help	you	to	get	your	feet	wet	as	you	try	to	apply	some	of	the
techniques	in	this	book	to	actual	real-world	data.

You	can	find	a	large	number	of	sources	of	financial	data	on	the	Internet.	In	many	cases,
you	can	download	the	data	into	a	spreadsheet	—	free	of	charge.	The	available	data
includes	stock	prices,	option	prices,	exchange	rates,	interest	rates,	and	so	forth.	There
are	also	key	financial	measures	for	individual	corporations,	such	as	revenues,	profits,
and	the	price/earnings	(P/E)	ratio.	Many	websites	offer	a	wealth	of	financial	news	and
analysis	as	well.

This	chapter	focuses	on	four	of	the	best	sources	of	free	economic	and	financial	data:

Yahoo!	Finance
Federal	Reserve	Economic	Data	(FRED)
Board	of	Governors	of	the	Federal	Reserve	System
U.	S.	Department	of	the	Treasury



Yahoo!	Finance
The	Yahoo!	Finance	website	at	http://finance.yahoo.com	is	one	of	the	best	online
sources	of	stock	prices	and	corporate	financial	data.	In	addition,	the	website	provides
useful	information	about	the	following	topics:

Option	trading	strategies
Personal	finance
Economic	news
Company	news

The	ticker	symbol
Finding	data	about	a	stock	or	a	corporation	on	Yahoo!	Finance	requires	that	you	use
stock’s	ticker	symbol,	a	series	of	letters	and/or	numbers	that	uniquely	identifies	a	stock.
For	example,	AAPL	represents	Apple	stock,	which	trades	on	the	NASDAQ	(National
Association	of	Securities	Dealer	Automated	Quotation)	system.	Table	19-1	shows	a
sample	of	ticker	symbols	for	other	widely	traded	stocks	(note	that	NYSE	stands	for	the
New	York	Stock	Exchange).

Table	19-1	Stock	Ticker	Symbols

Stock Symbol Exchange

AT&T T NYSE

Bank	of	America BAC NYSE

Citigroup C NYSE

ExxonMobil XOM NYSE

Ford	Motor	Co. F NYSE

General	Electric GE NYSE

Microsoft MSFT NASDAQ

Oracle ORCL NYSE

Twitter TWTR NYSE

Walmart WMT NYSE

http://finance.yahoo.com


Historical	origins	of	ticker	symbols
Ticker	symbols	and	corresponding	stock	prices	were	originally	printed	by	a	machine	known	as	a	stock	ticker.	That’s
an	invention	that	was	used	for	a	century,	from	the	1870s	until	1970.	Thomas	Edison	invented	a	good	one	—	the
Universal	Stock	Ticker	—	in	1869;	it	used	alphanumeric	characters	instead	of	Morse	code.

Data	was	transmitted	from	stock	exchanges	through	telegraph	wires	to	the	stock	ticker	machines,	so	obtaining	this
data	was	very	expensive.	The	machines	printed	transactions	on	a	thin	strip	of	paper	known	as	ticker	tape.	And	of
course,	ticker	tape	was	traditionally	tossed	out	of	the	windows	of	office	buildings	during	parades,	which	became
known	as	ticker	tape	parades.	Because	ticker	tape	was	very	narrow,	it	was	important	for	ticker	symbols	to	be	as
compact	as	possible.

You	can	use	a	search	engine	such	as	Google	to	find	the	symbol	for	virtually	any	stock
traded	in	the	United	States.	For	example,	to	find	the	ticker	symbol	for	ExxonMobil,
just	type	“ticker	symbol	ExxonMobil”	into	Google;	you	immediately	get	a	results
display	that	includes	the	symbol,	recent	selling	price,	and	recent	volume.	You	can	also
click	on	links	that	take	you	to	related	information	about	ExxonMobil.

Alternatively,	it	is	possible	to	search	for	ticker	symbols	on	finance.yahoo.com.	You
type	the	first	few	letters	of	a	corporation’s	name	into	the	dialog	box	at	the	top	of	the
home	page,	and	a	list	of	suggestions	appears.	Clicking	on	the	correct	ticker	symbol
brings	up	the	appropriate	page	for	that	stock.

Downloading	historical	stock	prices
Once	you	find	the	page	for	a	given	stock,	several	types	of	data	are	available	for
download.	The	first	column	on	the	far	left	of	the	page	offers	some	choices	for	data
about	the	stock,	including	historical	prices,	charts,	company	news,	and	financial
statements.

To	download	historical	prices,	click	the	Historical	Prices	link	to	bring	up	the	Historical
Prices	page.

In	the	Set	Date	Range	section	of	the	page,	enter	the	start	date	and	end	date	for	the
desired	data.	There	are	several	frequencies	for	the	data:	daily,	weekly	and	monthly.	It’s
also	possible	to	choose	dividends	instead	of	prices.

Clicking	the	Get	Prices	button	results	in	a	list	of	fields	for	each	date	in	the	chosen
range.	These	fields	are:	Open	Price,	High	Price,	Low	Price,	Close	Price,	Volume,	and
Adjusted	Close.

Open	Price	is	the	price	at	which	the	stock	began	trading.
High	Price	is	the	highest	price	that	the	stock	reached	during	the	trading	day.
Low	Price	is	the	lowest	price	that	the	stock	reached	during	the	trading	day.
Close	Price	is	the	last	price	at	which	the	stock	traded.
Volume	refers	to	the	number	of	shares	that	traded	during	the	day.
Adjusted	Close	is	the	closing	price	after	adjusting	for	dividends	or	any	other	cash
flows	that	took	place	prior	to	the	next	trading	day.

http://finance.yahoo.com


After	clicking	the	Get	Prices	button,	the	selected	data	comes	up.

At	the	bottom	of	the	page	you’ll	find	the	Download	to	Spreadsheet	link.	Clicking	this
link	produces	a	spreadsheet	containing	the	data.	You	can	then	save	that	as	a	.CSV
(comma	separated	variables)	file	or	as	an	.XLSX	(Excel)	file.

	The	.CSV	format	consists	of	data	in	which	the	values	are	separated	by
commas.	The	.CSV	format	doesn’t	offer	as	many	features	as	the	.XLSX	format,
but	is	compatible	with	many	different	types	of	software	in	addition	to	Excel.	You
can	open	or	import	any	.CSV	file	into	Excel	and	save	it	in	the	.XLSX	format.

Finding	stock	option	prices
On	a	stock	page’s	main	menu,	the	first	main	category	is	Quotes.	Under	this	category	is
a	link	called	Options.	Clicking	Options	produces	a	page	showing	the	prices	of	the	calls
and	puts	that	are	available	for	the	stock.

	Owning	a	call	gives	you	the	right	to	buy	a	stock	at	a	specified	price,	known	as
the	strike	price	(or	exercise	price).	The	call	option	matures	at	a	specified	time	in
the	future.	If	the	call	isn’t	exercised	by	then	(that	is,	you	don’t	purchase	the	stock),
the	option	expires	and	becomes	worthless.	A	put	gives	you	the	right	to	sell	a	stock
at	a	specified	strike	price,	and	if	it’s	not	exercised	also	becomes	worthless	after	the
maturity	date	passes.	The	two	basic	option	styles	are	European,	which	may	only
be	exercised	on	the	maturity	date,	and	American,	which	may	be	exercised	at	any
time	until	the	option	matures.

By	default,	the	options	page	is	split	up	so	that	calls	are	at	the	top	and	puts	are	at	the
bottom.	You	can	change	this	by	clicking	on	the	Straddle	button	on	the	top	of	the	page.
Doing	so	causes	call	prices	to	be	shown	on	the	left	of	the	screen	and	put	prices	to	be
shown	on	the	right.

Calls	and	puts	on	a	stock	are	typically	available	with	several	different	strike	prices	and
maturity	dates.	For	each	option,	the	website	shows	Ticker	Symbol,	Last	Price,	Change,
Bid	Price,	Ask	Price,	Volume,	and	Open	Interest:

Last	Price	is	the	last	price	at	which	the	option	traded.
Change	represents	the	change	in	the	option’s	last	price	since	the	previous	trading
day.
Bid	is	the	“bid	price”	of	the	option.	If	an	investor	chooses	to	sell	an	option	to	a
dealer,	he	or	she	will	receive	the	bid	price.
Ask	is	the	“ask	price”	of	the	option.	If	an	investor	chooses	to	buy	an	option	from	a
dealer,	he	or	she	will	pay	the	ask	price.	The	difference	between	the	bid	and	ask
prices	is	known	as	the	“bid-ask”	spread,	and	that’s	the	source	of	a	dealer’s	profits.



Volume	represents	the	number	of	options	that	were	traded	during	the	day.
Open	Interest	represents	the	number	of	outstanding	options	that	have	not	yet
reached	their	maturity	date.

	Looking	at	the	option	prices,	you’ll	notice	that	the	calls	with	the	lowest	strike
prices	are	the	most	expensive,	and	for	puts,	the	pattern	is	reversed.	For	both	calls
and	puts,	a	longer	maturity	option	is	more	expensive	than	a	shorter	maturity
option.

Analyzing	options	strategies
Yahoo!	Finance	gives	investors	the	ability	to	analyze	several	different	option	trading
strategies,	including	the	following:

Butterfly	spreads
Spread	trades
Straddles

Options	may	be	combined	in	many	interesting	ways	in	order	to	hedge	existing
positions	or	speculate	on	the	future	behavior	of	an	asset	price,	interest	rate,	or	index.
Investors	hedge	to	reduce	or	eliminate	the	risk	of	a	position	in	order	to	(hopefully)
make	a	profit.

	You	can	hedge	the	risk	that	the	price	of	an	asset	or	commodity	will	rise	in	the
future	by	buying	a	call	option.	You	can	hedge	the	risk	that	the	price	will	fall	by
buying	a	put	option.	The	call	option	guarantees	your	lower	buying	price,	even	if
the	market	price	rises.	The	put	option	guarantees	your	higher	selling	price,	even	if
the	market	price	drops.

As	an	example	of	a	trading	strategy,	if	a	trader	believes	that	the	price	of	a	stock	will
remain	stable	over	the	next	three	months,	he	or	she	can	set	up	a	butterfly	spread	in
order	to	profit	from	this	view.	This	strategy	will	be	profitable	if	the	price	of	the	stock
doesn’t	fluctuate	a	great	deal,	with	the	added	benefit	that	the	trader’s	losses	cannot
exceed	the	cost	of	setting	up	the	position.

The	butterfly	spread	strategy	essentially	involves	buying	options	with	strike	prices
above	and	below	the	current	market	price	of	the	stock	and	selling	options	at	the	current
market	price.	There	are	a	variety	of	possible	scenarios	from	there,	depending	on	what
the	stock	price	does.	But	in	the	worst	case,	you	can	use	the	options	you	bought	to	cover
your	exposure	on	the	ones	you	sold.	In	the	best	case,	if	the	stock	price	doesn’t	change
at	all,	the	options	you	sold	expire	worthless	and	you	pocket	the	selling	price.	In	this
case,	one	of	the	options	you	bought	will	also	be	in	the	money.



	Options	strategies	provide	stock	investors	with	a	great	deal	of	flexibility	—
flexibility	that	isn’t	usually	possible	with	other	assets.

You	can	find	several	different	options	strategies	by	going	to	the	Options	Center	page.
To	get	there,	follow	these	steps	(bearing	in	mind	that	websites	change	their	designs	all
the	time):

1.	 Enter	a	stock	ticker	symbol	on	the	home	page	for	Yahoo!	Finance	and	then
click	the	Options	link	on	the	main	menu	to	bring	up	the	Options	page.

2.	 Click	the	Market	Data	link	(near	the	top	of	the	page,	directly	below	the	dialog
box)	to	bring	up	the	Market	Data	page.

Hovering	over	the	Market	Data	link	on	the	left-hand	side	of	the	page	produces	a
pop-up	menu.	From	there,	you	can	choose	the	Options	link	to	bring	up	the	Options
Center	page.

Directly	beneath	the	Options	Center	title	is	a	link	titled	Options	Analysis	Tool.	The
options	strategies	are	listed	under	the	section	Options	Strategies	on	the	left-hand
side	of	the	page.	Each	strategy	is	analyzed	in	great	detail	and	provides	links	to	other
relevant	information	about	options.

Finding	key	statistics	for	a	corporation
To	properly	analyze	a	stock,	you	need	an	understanding	of	the	issuing	corporation’s
financial	statements.	The	main	financial	statements	are	the	income	statement,	the
balance	sheet,	and	the	statement	of	cash	flows.

	The	income	statement	shows	the	revenues	and	expenses	incurred	by	a
corporation	during	a	given	year,	and	as	a	result	its	profits	(or	losses)	during	the
same	period.	The	balance	sheet	shows	the	position	(assets,	liabilities,	and	equity)
of	a	corporation	at	a	given	point	in	time.	The	cash	flow	statement	is	a	detailed
look	at	the	corporation’s	receipts	of	cash	and	its	payments	of	cash	during	a	given
time	period.

To	find	the	financial	statements	for	a	corporation,	the	first	step	is	to	find	its	stock	page
using	the	stock’s	ticker	number.	On	the	stock’s	page,	look	for	the	category	Company	on
the	main	menu	at	the	left-hand	side	of	the	screen.	Then	click	the	Key	Statistics	link	to
bring	up	a	page	that	summarizes	a	large	number	of	statistics	from	the	corporation’s
financial	statements.	These	include	market	capitalization,	price-earnings	ratio,	revenue,
gross	profit,	and	so	forth.	The	same	page	also	has	details	about	the	performance	of	the
corporation’s	stock	over	the	past	52	weeks,	including	the	range	of	prices	(the	maximum
and	the	minimum	stock	selling	price),	details	about	dividends,	and	so	forth.

You	can	find	more	detail	under	the	category	Financials	on	the	left-hand	side	of	the



page.	Here	are	the	appropriate	links:

Income	Statement
Balance	Sheet
Cash	Flow

These	three	statements	contain	detailed	information	about	the	performance	of	the
corporation.	The	SEC	(United	States	Securities	and	Exchange	Commission)	requires
corporations	to	file	these	documents	every	year.

Other	information	on	Yahoo!	Finance
Yahoo!	Finance	also	provides	data	about	many	other	financial	assets,	such	as	mutual
funds,	exchange-traded	funds	(ETFs),	bonds,	commodities,	and	currencies.	You	can
find	all	of	these	by	clicking	the	Market	Data	link	on	the	left-hand	side	of	the	home
page.

The	mutual	funds	page	shows	a	list	of	the	best	performing	mutual	funds.	(Recall	that	a
mutual	fund	is	a	collection	of	stocks	that	provides	the	benefits	of	diversification
without	requiring	an	investor	to	choose	individual	stocks.)	The	exchange-traded	fund
(ETF)	page	shows	the	top	performing	ETFs.	ETFs	are	similar	to	mutual	funds	except
that	you	can	trade	them	like	a	single	stock,	whereas	mutual	funds	are	typically	more
restrictive.	And	because	the	ETFs	are	based	on	a	fixed	set	of	stocks	(like	the	S&P	500,
for	example),	you’re	typically	not	paying	for	the	services	of	a	portfolio	manager.

The	bonds	page	summarizes	the	yields	of	currently	traded	U.S.	Treasury	securities.
This	page	also	has	links	to	other	bonds,	such	as	municipal	bonds	(issued	by	city,	state,
and	local	governments)	and	corporate	bonds.

	The	relationship	between	the	yields	and	maturities	of	Treasury	securities	is
known	as	the	term	structure	of	interest	rates.	The	yield	curve	is	a	graph	of	this
relationship.

The	commodities	page	mainly	shows	futures	prices	for	crude	oil,	heating	oil,	and
natural	gas.

	A	futures	contract	is	a	derivative	security	that	allows	an	investor	to	lock	in	the
price	at	which	he	or	she	may	buy	or	sell	an	asset	in	the	future.	Futures	contracts
trade	on	organized	exchanges	and	are	often	used	for	hedging	purposes.	The	price
of	an	asset	that	will	be	delivered	through	a	futures	contract	is	known	as	the	futures
price.

The	currencies	page	shows	the	exchange	rates	between	the	major	currencies,	such	as
the	dollar,	euro,	British	pound,	Japanese	yen,	Canadian	dollar,	Swiss	franc,	and	so



forth.



Federal	Reserve	Economic	Data	(FRED)
The	Federal	Reserve	Bank	of	St.	Louis	provides	an	economic	database	free	of	charge	to
the	public	at	its	website	http://research.stlouisfed.org/fred2/.	The	database	is
known	as	FRED	(Federal	Reserve	Economic	Data).	Note	that	this	website	requires	you
to	sign	up	for	a	free	account	in	order	to	access	the	data.

	The	Federal	Reserve	System	is	the	central	bank	of	the	United	States.	There	are
12	district	Federal	Reserve	Banks,	and	FRED	is	maintained	by	the	St.	Louis
Federal	Reserve	Bank.	The	primary	purpose	of	the	Federal	Reserve	is	to	manage
the	money	supply	in	the	U.S.

Unlike	Yahoo!	Finance,	FRED	provides	federal	financial	data	and	macroeconomic
data,	including	the	following:

Gross	Domestic	Product	(GDP)	is	the	value	of	all	goods	and	services	produced	in
the	United	States	during	a	given	year.
The	federal	funds	rate	(also	known	as	the	fed	funds	rate)	is	the	interest	rate	charged
by	banks	for	overnight	loans	from	other	banks.
The	Consumer	Price	Index	(CPI)	is	a	measure	of	the	cost	of	goods	and	services
bought	by	consumers	during	the	year.

Finding	macroeconomic	data	on	FRED
To	locate	macroeconomic	data,	first	click	the	Category	link	at	the	top	of	the	home	page.
This	produces	a	page	showing	the	different	categories	of	data.	For	example,	to	locate
the	consumer	price	index	(CPI),	click	Consumer	Prices	(CPI	and	PCE)	under	the	Prices
category.	Several	types	of	price	indexes	are	available.	To	download	the	CPI,	choose
Consumer	Price	Index	for	All	Urban	Consumers:	All	Items.	You	may	choose
seasonally	adjusted	data	or	non-seasonally	adjusted	data.

Once	you’ve	selected	one	or	more	data	series,	click	the	Add	to	Data	List	button.	This
brings	you	to	the	Add	to	My	Data	List	page.	On	this	page,	you’re	offered	many	types
of	data.	For	example,	levels	refers	to	the	actual	CPI;	change	and	percentage	change
show	how	the	CPI	has	changed	since	the	previous	trading	day.

After	clicking	the	type	of	data	you	want,	click	the	Add	Series	to	My	Data	List	button.
This	brings	you	to	the	Data	List	page,	where	clicking	the	Download	Data	button	brings
you	to	the	Download	Data	page.	From	there,	you’re	offered	the	choice	of	downloading
the	data	as	an	Excel	file	or	as	a	tab-delimited	file.	You’re	also	offered	the	chance	to
specify	a	range	of	dates	for	the	data.

	A	tab-delimited	file	is	similar	to	a	comma-separated	file,	except	the	data	fields

http://research.stlouisfed.org/fred2/


are	separated	by	tabs	instead	of	commas.	Also,	because	the	data	files	you’re
downloading	are	potentially	very	large,	they’re	stored	in	a	zip	format.	A	zip	file	is
one	that’s	been	compressed	in	order	to	save	space.	To	read	a	zip	file,	it	must	be
unzipped.	Double-clicking	a	zipped	file	will	usually	unzip	it	on	Windows	and	Mac
machines.

Finding	financial	data	on	FRED
FRED	also	contains	the	following	types	of	financial	data:

Exchange	rates
Interest	rates
Bond	market	indices
Stock	market	indices

To	locate	financial	data,	the	first	step	is	to	click	the	Categories	link	at	the	top	of	the
home	page.	Financial	data	is	under	the	Money,	Banking	&	Finance	category.

For	example,	to	find	exchange	rate	data,	click	on	the	Exchange	Rates	link	under	the
Money,	Banking	&	Finance	category.	There	are	several	choices	within	this	category,
including	daily	rates,	monthly	rates,	and	annual	rates.	Choosing	one	of	these	categories
provides	several	more	choices,	such	as	the	exchange	rate	between	the	U.S.	dollar	and
the	euro,	the	Japanese	yen,	the	Chinese	yuan,	the	Canadian	dollar,	and	several	other
foreign	currencies.	Data	for	each	currency	is	referred	to	as	a	data	series.	You	may
download	as	many	as	you	like	by	clicking	the	check	box	next	to	each	item.

The	remaining	steps	are	the	same	as	for	downloading	macroeconomic	data.	Click	the
Add	to	Data	List	button	to	bring	you	to	the	Add	to	My	Data	List	page.	On	this	page,
you’re	offered	many	types	of	data	for	a	specified	exchange	rate.	For	example,	levels
refers	to	the	actual	exchange	rate,	and	change	and	percentage	change	show	how	an
exchange	rate	has	changed	since	the	previous	trading	day.

After	clicking	the	type	of	data	you	want,	click	the	Add	Series	to	My	Data	List	button.
This	brings	you	to	the	Data	List	page,	where	clicking	the	Download	Data	button	brings
you	to	the	Download	Data	page.	From	here,	you’re	offered	the	choice	of	downloading
the	data	you’ve	selected	as	an	Excel	file	or	a	tab-delimited	file.



Board	of	Governors	of	the	Federal	Reserve
System

The	Board	of	Governors	of	the	Federal	Reserve	System	website	at
http://federalreserve.gov	provides	a	great	deal	of	information	about	the	conduct	of
monetary	policy	in	the	United	States,	along	with	economic	and	financial	data.	The
Board	of	Governors	oversees	the	Federal	Reserve	System.	The	board	is	responsible	for
regulating	the	banking	system,	is	involved	in	the	conduct	of	monetary	policy,	and
produces	economic	data.

You	can	find	economic	and	financial	data	by	clicking	the	Economic	Research	&	Data
tab.	From	the	Economic	Research	and	Data	page,	click	the	Data	Releases	link.	On	the
Data	Releases	page,	several	categories	of	data	appear,	including	exchange	rates,
interest	rates,	bank	finance	data,	and	household	finance	data.

For	example,	under	the	Interest	Rates	category,	there’s	a	link	to	Selected	Interest	Rates
—	the	available	frequencies	are	daily	and	weekly.	Here	are	some	of	the	rates	that	are
available:

Commercial	paper	is	a	short-term	promissory	note	issued	by	a	corporation	to	raise
funds.
U.S.	Treasury	securities	are	bonds	issued	by	the	United	States	Department	of	the
Treasury	in	order	to	raise	funds	for	the	government.
Eurodollar	deposits	are	dollar	deposits	held	at	foreign	banks	or	foreign	branches	of
U.S.	banks.
Interest	rate	swaps	are	derivative	securities	in	which	cash	flows	are	exchanged,
based	on	the	difference	between	two	interest	rates	—	a	fixed	rate	and	a	floating	rate
(that	is,	one	that	is	reset	periodically).

The	Board	of	Governors	website	also	contains	data	for	the	United	States	money	supply
and	industrial	output,	and	data	about	the	assets	and	liabilities	of	United	States	banks.

http://federalreserve.gov


U.S.	Department	of	the	Treasury
The	United	States	Department	of	the	Treasury	website	at	www.treasury.gov	provides	a
great	deal	of	information	about	Treasury	securities,	along	with	their	historical	yields.

The	Treasury	Department	is	responsible	for	raising	revenues	for	the	U.S.	government.
It	is	the	home	of	the	Internal	Revenue	Service	and	also	issues	coins,	which	are
produced	by	the	U.S.	Mint.	(Currently,	all	coins	meant	for	general	circulation	are
produced	by	the	Denver	mint	and	the	Philadelphia	mint.)	The	Treasury	Department
also	oversees	the	banking	system	and	enforces	tax	laws.

In	the	Data	Center	box	at	the	bottom	of	the	home	page,	click	the	Data	Center	link	to
bring	up	the	Resource	Center	page.	Under	the	Interest	Rates	category,	data	is	available
for	Daily	Treasury	Yield	Curve	Rates,	Daily	Treasury	Real	Yield	Curve	Rates,	Daily
Treasury	Bill	Rates,	and	Daily	Long-Term	Rates.

	Treasury	securities	can	be	classified	as	follows:	Treasury	bills	have	a	maturity
of	up	to	1	year,	Treasury	notes	have	a	maturity	between	2	and	10	years,	and
Treasury	bonds	have	a	maturity	between	20	and	30	years.

	Real	rates	of	interest	have	been	adjusted	for	inflation;	nominal	rates	of	interest
(the	ones	observed	every	day)	have	not	been	adjusted	for	inflation.

If	you’re	interested	in	data	about	daily	Treasury	yield	curve	rates,	click	the	Daily
Treasury	Yield	Curve	Rates	link.	This	brings	up	a	page	showing	current	yields	for
Treasury	securities	with	maturities	ranging	from	1	month	to	30	years.	To	get	historical
rates,	choose	the	appropriate	year	in	the	dialog	box	labeled	Select	Time	Period	and
click	Go.	This	shows	the	selected	data	on	the	web	page.	To	download	this	data	into
Excel,	you	can	copy	and	paste	the	data	on	the	web	page.

The	website	also	provides	a	great	deal	of	information	about	economic	policy,	tax
policy,	small	business	programs,	and	international	institutions	such	as	the	International
Monetary	Fund	(IMF).

http://www.treasury.gov


Other	Useful	Financial	Websites
There	are	many	other	websites	where	financial	news,	analysis,	and	data	may	be	found.
These	include:

NASDAQ	(www.nasdaq.com)
Seeking	Alpha	(www.seekingalpha.com)
MarketWatch	(www.marketwatch.com)
Morningstar	(www.morningstar.com)
Bloomberg	(www.bloomberg.com)

The	NASDAQ	website	provides	stock	prices,	option	prices,	and	market	indexes,	as
well	as	news	about	stocks.	It	also	provides	detailed	information	for	investors,	such	as
investment	basics	and	details	about	investing	in	more	sophisticated	securities	such	as
ETFs,	currencies,	bonds,	commodities,	and	options.	It	also	contains	useful	information
about	personal	finance.

Seeking	Alpha	is	intended	for	sophisticated	investors.	It	provides	a	large	number	of
articles	drawn	from	the	Internet	about	different	investment	topics,	news	articles,	and
stock	market	information.	It	also	covers	other	investments	such	as	currencies,	ETFs,
and	so	forth.

MarketWatch,	Morningstar,	and	Bloomberg	also	provide	investors	with	a	substantial
amount	of	financial	news	and	data	about	financial	assets	such	as	stocks,	bonds,
currencies,	and	so	on.

http://www.nasdaq.com
http://www.seekingalpha.com
http://www.marketwatch.com
http://www.morningstar.com
http://www.bloomberg.com


Part	V



The	Part	of	Tens

	There’s	a	free	extra	Part	of	Tens	chapter	at
www.dummies.com/extras/statisticsforbigdata.

http://www.dummies.com/extras/statisticsforbigdata




In	this	part	…
	Following	best	practices	in	data	preparation

	Answering	ten	common	questions	about	EDA



Chapter	20



Ten	(or	So)	Best	Practices	in	Data
Preparation

In	This	Chapter
	Understanding	the	key	steps	in	data	validation

	Preparing	data	for	analysis

The	main	goal	of	this	book	is	to	get	you	familiar	with	the	statistical	methods	that	allow
you	to	build	useful	statistical	models.	But	as	you’ve	probably	noticed,	we	have	spent	a
great	deal	of	time,	particularly	in	Part	II,	talking	about	getting	data	ready	for	analysis.
Statistical	software	packages	are	extremely	powerful	these	days,	but	they	cannot
overcome	poor	quality	data.	This	chapter	provides	a	checklist	of	things	you	need	to	do
before	you	go	off	building	statistical	models.



Check	Data	Formats
Your	analysis	always	starts	with	a	raw	data	file.	Raw	data	files	come	in	many	different
shapes	and	sizes.	Mainframe	data	is	different	than	PC	data,	spreadsheet	data	is
formatted	differently	than	web	data,	and	so	forth.	And	in	the	age	of	big	data,	you	will
surely	be	faced	with	data	from	a	variety	of	sources.	Your	first	step	in	analyzing	your
data	is	making	sure	you	can	read	the	files	you’re	given.	Chapter	7	gives	some	tips
about	how	to	do	this.

Chapter	6	talks	about	the	formats	of	the	individual	data	fields,	or	variables,	in	your	data
file.	You	need	to	actually	look	at	what	each	field	contains.	For	example,	it’s	not	wise	to
trust	that	just	because	a	field	is	listed	as	a	character	field,	it	actually	contains	character
data.

Be	particularly	careful	with	date	formats.	Different	software	packages	treat	dates
differently.	Often	in	statistical	analysis,	you	calculate	elapsed	time	between	two	dates.
This	calculation	may	require	some	massaging	of	your	date	data	to	produce	a
meaningful	result.	Chapter	6	gives	you	detailed	information	about	how	to	deal	with
dates.



Verify	Data	Types
All	data	falls	into	one	of	four	categories	that	affect	what	sort	of	statistics	you	can
appropriately	apply	to	it:

Nominal	data	is	essentially	just	a	name	or	an	identifier.
Ordinal	data	puts	records	into	order	from	lowest	to	highest.
Interval	data	represents	values	where	the	differences	between	them	are	comparable.
Ratio	data	is	like	interval	data	except	that	it	also	allows	for	a	value	of	0.

Chapter	5	discusses	these	categories	in	detail	and	explains	what	statistical	procedures
you	can	apply	to	which	categories	of	data.	It’s	important	to	understand	which
categories	your	data	falls	into	before	you	feed	it	into	the	statistical	software.	Otherwise,
you	risk	ending	up	with	perfectly	reasonable-looking	gibberish.



Graph	Your	Data
Getting	a	sense	of	how	your	data	is	distributed	is	important.	You	can	run	statistical
procedures	until	you’re	blue	in	the	face,	but	none	of	them	will	give	you	as	much	insight
into	what	your	data	looks	like	as	a	simple	graph.

Chapters	11	and	12	talk	extensively	about	data	visualization.	You	can	use	graphical
techniques	for	many	of	the	data	preparation	steps	discussed	in	this	chapter.	In
particular,	the	next	four	sections	describe	processes	that	could	benefit	from	graphical
techniques.



Verify	Data	Accuracy
Once	you’re	comfortable	that	the	data	is	formatted	the	way	you	want	it,	you	still	need
to	make	sure	it’s	accurate	and	that	it	makes	sense.	This	step	requires	that	you	have
some	knowledge	of	the	subject	area	you	are	working	in.

There	isn’t	really	a	cut-and-dried	approach	to	verifying	data	accuracy,	as	discussed	in
Chapter	6.	The	basic	idea	is	to	formulate	some	properties	that	you	think	the	data	should
exhibit	and	test	the	data	to	see	if	those	properties	hold.	Are	stock	prices	always
positive?	Do	all	the	product	codes	match	the	list	of	valid	ones?	Essentially,	you’re
trying	to	figure	out	whether	the	data	really	is	what	you’ve	been	told	it	is.



Identify	Outliers
Outliers	are	data	points	that	are	out	of	whack	with	the	rest	of	the	data.	They	are	either
very	large	or	very	small	values	compared	with	the	rest	of	the	dataset.

Outliers	are	problematic	because	they	can	seriously	compromise	statistics	and
statistical	procedures.	Chapter	10	(about	outliers)	presents	an	example	that	shows	how
a	single	outlier	can	have	a	huge	impact	on	the	value	of	the	mean.	Because	the	mean	is
supposed	to	represent	the	center	of	the	data,	in	a	sense,	this	one	outlier	renders	the
mean	useless.

When	faced	with	outliers,	the	most	common	strategy	is	to	delete	them.	In	some	cases,
though,	you	may	want	to	take	them	into	account.	In	these	cases,	it’s	usually	desirable	to
do	your	analysis	twice	—	once	with	outliers	included	and	once	with	the	outliers
excluded.	This	allows	you	to	evaluate	which	method	gives	more	useful	results.



Deal	with	Missing	Values
Missing	values	are	one	of	the	most	common	(and	annoying)	data	problems	you	will
encounter.	Your	first	impulse	might	be	to	drop	records	with	missing	values	from	your
analysis.	The	problem	with	this	is	that	missing	values	are	frequently	not	just	random
little	data	glitches.

Chapter	9,	which	deals	with	missing	values,	distinguishes	between	several	different
scenarios	involving	missing	values.	The	primary	distinction	is	between	data	that’s
missing	randomly	and	data	that’s	missing	in	some	systematic	way.	In	the	latter	case,
deleting	these	records	may	significantly	change	the	nature	of	the	data	and	therefore
affect	the	analysis.

Chapter	9	goes	on	to	discuss	some	ways	of	supplying	missing	data.	It	describes	several
techniques	for	making	educated	guesses	about	what	the	missing	data	would	actually	be.
You	do	this	by	looking	for	patterns	in	the	records	where	data	isn’t	missing.	In	this	way,
you	can	preserve	the	whole	dataset	and	analyze	it	usefully.



Check	Your	Assumptions	about	How	the
Data	Is	Distributed

Many	statistical	procedures	depend	on	the	assumption	that	the	data	is	distributed	in	a
certain	way.	If	that	assumption	fails	to	be	the	case,	the	accuracy	of	your	predictions
suffers.

The	most	common	assumption	for	the	modeling	techniques	discussed	in	this	book	is
that	the	data	is	normally	distributed.	In	Chapter	8,	which	talks	about	various	ways	of
checking	this	assumption,	points	out	that	it’s	possible	to	quite	rigorously	verify	the
assumption	of	a	normal	distribution.

Or	not.	In	cases	where	the	data	isn’t	distributed	as	you	need	it	to	be,	all	is	not
necessarily	lost.	There	are	a	variety	of	ways	of	transforming	data	to	get	the	distribution
into	the	shape	you	need	it,	some	of	which	are	explored	in	Chapters	15	and	16.

One	of	the	best	ways	to	verify	the	accuracy	of	a	statistical	model	is	to	actually	test	it
against	the	data	once	it’s	built.	One	way	to	do	that	is	to	randomly	split	your	dataset	into
two	files.	You	might	call	these	files	Analysis	and	Test,	respectively.

	You	need	to	split	the	data	randomly	to	be	effective.	You	cannot	simply	split	the
dataset	into	the	top	half	and	the	bottom	half,	for	example.	Almost	all	data	files	are
sorted	somehow	—	by	date	if	nothing	else.	This	introduces	systematic	patterns
that	will	give	different	portions	of	the	file	different	statistical	properties.	When
you	split	the	file	randomly,	you	give	each	record	an	equal	chance	of	being	in
either	file.	Figuratively,	you’re	flipping	a	coin	for	each	record	to	decide	which	file
it	goes	into.	Randomness	gives	both	files	the	same	statistical	properties	as	the
original	data.

Once	you	have	split	the	dataset,	set	aside	the	Test	file.	Then	proceed	to	build	your
predictive	model	using	the	Analysis	file.	Once	the	model	is	built,	apply	it	to	the	Test
file	and	see	how	it	does.

Testing	models	in	this	way	helps	safeguard	against	a	phenomenon	known	as	over-
fitting.	Essentially,	it’s	possible	for	statistical	procedures	to	memorize	the	data	file
rather	than	discover	meaningful	relationships	among	the	variables.	If	over-fitting
occurs,	the	model	will	test	quite	poorly	against	the	Test	file.



Back	Up	and	Document	Everything	You	Do
Because	statistical	software	is	getting	to	be	so	simple	to	use,	it’s	a	piece	of	cake	to	start
generating	reports	and	graphs,	not	to	mention	data	files.	You	can	run	procedures
literally	at	the	touch	of	a	button.	You	can	generate	several	dozen	graphs	based	on
different	data	transformations	in	a	matter	of	a	few	minutes.	That	makes	it	pretty	easy	to
lose	track	of	what	you	have	done,	and	why.

It’s	important	to	make	sure	you	keep	a	written	record	of	what	you’re	up	to.	Graphs
should	be	labeled	with	the	name	(and	version)	of	the	data	that	was	used	to	create	them.
Statistical	procedures	that	you	build	need	to	be	saved	and	documented.

It’s	also	important	to	back	up	your	data	files.	In	the	course	of	your	analysis,	you	will
likely	create	several	versions	of	your	data	that	reflect	various	corrections	and
transformation	of	variables.	You	should	save	the	procedures	that	created	these	versions.
They	should	also	be	documented	in	a	way	that	describes	what	transformations	you
have	made	and	why.

Documentation	isn’t	anyone’s	favorite	task,	but	we	speak	from	experience	when	we
strongly	encourage	you	not	to	rely	on	your	memory	when	it	comes	to	your	analysis
projects.

By	working	through	the	steps	just	described,	you	maximize	the	reliability	of	your
statistical	models.	In	many	cases,	the	prep	work	is	actually	more	time-consuming	than
the	actual	model	building.	But	it’s	necessary.	And	you’ll	thank	yourself	in	the	end	for
working	through	it	methodically.



Chapter	21



Ten	(or	So)	Questions	Answered	by
Exploratory	Data	Analysis	(EDA)

In	This	Chapter
	Understanding	the	most	important	questions	answered	by	Exploratory	Data

Analysis	(EDA)

	Seeing	how	to	use	EDA	to	determine	if	a	dataset	conforms	to	your	assumptions

This	chapter	covers	ten	key	questions	about	a	dataset	that	can	be	answered	by	using
exploratory	data	analysis	(EDA).	These	questions	focus	on	the	statistical	properties	of
the	data,	along	with	the	distribution	followed	by	the	data	and	the	nature	of	the
relationships	among	the	variables	in	the	data.



What	Are	the	Key	Properties	of	a	Dataset?
Prior	to	performing	any	type	of	statistical	analysis,	understanding	the	nature	of	the	data
being	analyzed	is	essential.	You	can	use	EDA	to	identify	the	properties	of	a	dataset	to
determine	the	most	appropriate	statistical	methods	to	apply	to	the	data.	You	can
investigate	several	types	of	properties	with	EDA	techniques,	including	the	following:

The	center	of	the	data
The	spread	among	the	members	of	the	data
The	skewness	of	the	data
The	probability	distribution	the	data	follows
The	correlation	among	the	elements	in	the	dataset
Whether	or	not	the	parameters	of	the	data	are	constant	over	time
The	presence	of	outliers	in	the	data

Chapter	5	introduces	most	of	these	notions.	Chapter	16	talks	about	constancy	over	time
in	its	discussion	of	time	series.	Outliers	are	the	subject	of	Chapter	10.

Another	key	question	EDA	answers	is	“Does	the	data	conform	to	our	assumptions?”

Identifying	the	properties	of	a	dataset	is	very	important,	because	many	statistical
procedures	are	sensitive	to	the	assumptions	you	make	about	the	data.



What’s	the	Center	of	the	Data?
You	identify	the	center	of	a	dataset	with	several	different	summary	measures.	These
include	the	big	three:

Mean
Median
Mode

You	calculate	the	mean	of	a	dataset	by	adding	up	the	values	of	all	the	elements	and
dividing	by	the	total	number	of	elements.	For	example,	suppose	a	small	dataset	consists
of	the	number	of	days	required	to	receive	a	package	by	the	residents	of	an	apartment
complex:

1,	2,	2,	4,	7,	9,	10

The	mean	of	this	dataset	would	be	the	following:

The	average	length	of	time	for	the	residents	to	receive	a	package	is	5	days.

The	median	of	a	dataset	is	a	value	that	divides	the	data	in	half.	The	first	half	contains
the	smallest	elements	and	the	second	half	consists	of	the	largest	elements.	In	the
previous	example,	because	the	data	consist	of	seven	observations,	the	fourth	smallest
value	would	be	the	median:

1,	2,	2,	4,	7,	9,	10

The	median	is	4,	because	half	of	the	observations	are	less	than	4,	and	half	are	greater
than	4.

The	mode	of	a	dataset	is	simply	the	most	frequently	occurring	value.	With	the	package
delivery	example,	the	mode	is	2.

For	a	real-world	example,	Figure	21-1	shows	a	histogram	for	daily	returns	to
ExxonMobil	stock	in	2013.
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Figure	21-1:	Histogram	of	daily	returns	to	ExxonMobil	stock	for	2013.

Each	bar	represents	a	range	of	values;	the	width	of	each	interval	is	0.005.	The	heights
of	the	bars	indicate	how	many	returns	fell	within	each	interval.	The	histogram	makes	it
easy	to	see	which	ranges	of	values	occurred	the	most	frequently	and	which	occurred
the	most	infrequently.

The	histogram	shows	that	most	of	the	returns	are	close	to	the	mean,	which	is	0.000632
(0.0632	percent).	The	median	is	-0.000118,	and	the	mode	could	be	considered	to	be	the
range	of	values	between	-0.005	and	0.



How	Much	Spread	Is	There	in	the	Data?
You	identify	the	spread	of	a	dataset	from	the	center	with	several	different	summary
measures:

Variance
Standard	deviation
Quartiles
Interquartile	range	(IQR)

Variance	is	the	average	squared	deviation	between	the	elements	of	the	dataset	and	the
mean.	For	a	sample	of	data,	the	variance	is	computed	like	this:

where

xi	is	the	value	of	a	single	element	in	the	sample.

	is	the	sample	mean.
n	is	the	sample	size.

The	standard	deviation	is	the	square	root	of	the	variance.	For	most	applications,	the
standard	deviation	is	more	convenient	to	use	than	the	variance	as	a	measure	of	spread.
That’s	because	variance	is	measured	in	squared	units,	whereas	standard	deviation	is
measured	in	the	same	units	as	the	data.	For	example,	the	variance	of	a	dataset
consisting	of	prices	would	be	measured	in	dollars	squared,	and	the	standard	deviation
would	be	measured	in	dollars.	Standard	deviation	is	the	most	widely	used	measure	of
the	spread	in	a	dataset.

Quartiles	divide	a	dataset	into	four	equal	parts.	The	first	quartile	(Q1)	divides	the	data
into	the	lowest	25	percent	of	the	observations	and	the	highest	75	percent	(25	percent	of
the	observations	are	less	than	Q1,	and	75	percent	are	greater	than	Q1).	The	second
quartile	(Q2)	divides	the	data	into	the	lowest	50	percent	of	the	observations	and	the
highest	50	percent.	The	third	quartile	(Q3)	divides	the	data	into	the	lowest	75	percent	of
the	observations	and	the	highest	25	percent.	The	interquartile	range	(IQR)	equals	the
difference	between	the	third	and	first	quartiles:

The	IQR	represents	the	middle	50	percent	of	the	data.

The	quartiles	of	a	dataset	are	best	illustrated	with	a	box	plot.	Figure	21-2	shows	a	box



plot	of	the	daily	returns	to	ExxonMobil	in	2013.
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Figure	21-2:	Box	plot	of	daily	returns	to	ExxonMobil	stock	in	2013.

The	box	plot	shows	several	key	statistics	for	the	ExxonMobil	returns:

The	minimum	return	is	shown	on	a	graph	as	a	single	point	at	the	bottom	of	the	plot	(a
box	plot	shows	outliers	as	individual	points).	Q1	is	shown	as	the	bottom	of	the	box,	Q2
is	the	solid	black	line	in	the	middle	of	the	box,	and	Q3	is	the	top	of	the	box.	The
maximum	return	is	shown	as	a	single	point	at	the	top	of	the	plot.



Is	the	Data	Skewed?
The	histogram	in	Figure	21-1	shows	that	most	of	the	returns	are	close	to	the	mean,
which	is	0.000632	(0.0632	percent).	The	median	is	-0.0001179.	The	relationship
between	the	mean	and	the	median	can	be	used	to	determine	if	a	distribution	is	skewed,
as	follows:

In	this	case,	the	distribution	of	returns	to	ExxonMobil	stock	is	positively	skewed.	This
means	that	large	positive	returns	somewhat	outweigh	large	negative	returns	in	this
dataset.

You	can	also	use	a	histogram	to	determine	if	a	dataset	is	skewed.	For	positively	skewed
data,	the	right	tail	tends	to	be	longer	than	the	left	tail.	The	reverse	is	true	for	negative
skewed	data.	In	Figure	21-1,	the	right	tail	of	the	distribution	appears	to	be	slightly
longer	than	the	left	tail,	which	provides	more	evidence	that	the	data	is	positively
skewed.



What	Distribution	Does	the	Data	Follow?
One	technique	you	can	use	to	identify	the	distribution	a	dataset	follows	is	the	QQ-plot
(QQ	stands	for	quantile-quantile,	which	we	discuss	at	length	in	Chapter	12).	You	can
use	the	QQ-plot	to	compare	a	dataset	to	a	large	number	of	different	probability
distributions.	Often,	data	is	compared	to	the	normal	distribution	because	many
statistical	tests	assume	normally	distributed	data.

Figure	21-3	shows	a	normal	QQ-plot	for	ExxonMobil’s	daily	returns	in	2013.
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Figure	21-3:	QQ-plot	of	daily	returns	to	ExxonMobil	stock	in	2013.

The	QQ-plot	shows	the	quantiles	of	the	normal	distribution	on	the	horizontal	axis	and
the	quantiles	of	the	dataset	on	the	vertical	axis.	If	the	dataset	exactly	matches	the
normal	distribution,	the	points	on	the	graph	exactly	match	the	upward-sloping	line.

In	this	case,	the	returns	to	ExxonMobil	stock	closely	follow	the	normal	distribution,
except	for	small	discrepancies	in	the	left	and	right	tails	of	the	distribution.	(The	upper
right-hand	corner	of	the	QQ-plot	represents	the	right	tail	of	the	distribution	followed	by
ExxonMobil	returns	and	the	bottom	left-hand	corner	represents	the	left	tail.)	The	QQ-
plot	shows	that	the	distribution	of	ExxonMobil	returns	has	slightly	fatter	left	and	right
tails	than	the	normal	distribution.

A	more	formal	statistical	test	would	be	required	to	prove	whether	or	not	the
ExxonMobil	data	is	normally	distributed,	but	the	QQ-plot	shows	that	the	data	is	likely
to	be	normal.



Are	the	Elements	in	the	Dataset
Uncorrelated?

For	a	dataset	that	consists	of	observations	taken	at	different	points	in	time	(that	is,	time
series	data),	it’s	important	to	determine	whether	or	not	the	observations	are	correlated
with	each	other.	This	is	because	many	techniques	for	modeling	time	series	data	are
based	on	the	assumption	that	the	data	is	uncorrelated	with	each	other	(independent).

One	graphical	technique	you	can	use	to	see	whether	the	data	is	uncorrelated	with	each
other	is	the	autocorrelation	function.	The	autocorrelation	function	shows	the
correlation	between	observations	in	a	time	series	with	different	lags.	For	example,	the
correlation	between	observations	with	lag	1	refers	to	the	correlation	between	each
individual	observation	and	its	previous	value.

Figure	21-4	shows	the	autocorrelation	function	for	ExxonMobil’s	daily	returns	in	2013.
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Figure	21-4:	Autocorrelation	function	of	daily	returns	to	ExxonMobil	stock	in	2013.

Each	“spike”	in	the	autocorrelation	function	represents	the	correlation	between
observations	with	a	given	lag.

	The	autocorrelation	with	lag	0	always	equals	1,	because	this	represents	the
correlations	of	the	observations	with	themselves.

On	the	graph,	the	dashed	lines	represent	the	lower	and	upper	limits	of	a	confidence
interval.	If	a	spike	rises	above	the	upper	limit	of	the	confidence	interval	or	falls	below
the	lower	limit	of	the	confidence	interval,	that	shows	that	the	correlation	for	that	lag



isn’t	0.	This	is	evidence	against	the	independence	of	the	elements	in	a	dataset.

In	this	case,	there	is	only	one	statistically	significant	spike	(at	lag	8).	This	spike	shows
that	the	ExxonMobil	returns	may	be	independent.	A	more	formal	statistical	test	would
show	whether	that	is	true	or	not.



Does	the	Center	of	the	Dataset	Change
Over	Time?

For	time	series	data	(see	Chapter	16),	it’s	important	to	know	whether	the	observations
continue	to	have	the	same	mean	over	time.	Many	statistical	tests	and	forecasting
techniques	depend	on	this	assumption.

Figure	21-5	shows	a	time	series	plot	of	ExxonMobil’s	daily	returns	throughout	2013.
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Figure	21-5:	Time	series	plot	of	daily	returns	to	ExxonMobil	stock	in	2013.

The	graph	shows	that	as	time	elapses,	the	observations	seem	to	be	centered	around
zero.	This	indicates	that	the	mean	isn’t	changing	over	time.	If	the	mean	were	rising
over	time,	the	points	on	the	graph	would	tend	to	shift	up;	if	the	mean	were	falling	over
time,	the	points	on	the	graph	would	tend	to	shift	down.



Does	the	Spread	of	the	Dataset	Change
Over	Time?

For	time	series	data,	it’s	also	important	to	know	whether	the	variance	of	the	data	is
changing	over	time.	Figure	21-5	shows	that	as	time	passes,	the	spread	among	the
observations	is	growing	steadily.	(That	is,	data	is	becoming	more	spread	out	as	time
elapses.)	This	indicates	that	the	variance	(as	well	as	the	standard	deviation)	is
increasing	over	time.

If	the	variance	is	changing	over	time,	that	can	cause	serious	problems	for	many
statistical	techniques.	Fortunately,	there	are	methods	available	that	can	correct	for	this
problem.

	The	situation	where	variance	isn’t	constant	over	time	has	a	very	intimidating
name	in	econometrics:	heteroscedasticity.	Pronouncing	this	word	isn’t	easy!
Check	out	www.forvo.com/word/heteroscedasticity/	to	hear	it	spoken.

http://www.forvo.com/word/heteroscedasticity/


Are	There	Outliers	in	the	Data?
An	outlier	is	a	member	of	a	dataset	that	is	significantly	larger	or	smaller	than	the	other
values	in	the	dataset.	(See	Chapter	10	for	a	discussion	of	outliers.)	Outliers	can	greatly
affect	some	statistical	tests,	so	it’s	important	to	determine	whether	outliers	are	present,
and	if	so,	whether	they	should	be	removed	from	the	dataset.

An	outlier	may	be	defined	in	terms	of	quantiles,	as	follows:

If	an	observation	is	less	than	 ,	it’s	considered	to	be	an	outlier.

If	an	observation	is	greater	than	 ,	it’s	considered	to	be	an	outlier.

A	box	plot	shows	outliers	as	individual	points	at	the	top	and	bottom	of	the	plot.	Figure
21-2	shows	that	in	the	ExxonMobil	data,	there	are	three	outliers	greater	than	

	and	two	outliers	smaller	than	 .	These	could	have	been
caused	by	several	factors,	such	as	unexpectedly	good	or	bad	data	released	by	the
company,	surprisingly	large	changes	in	oil	prices,	and	so	forth.



Does	the	Data	Conform	to	Our
Assumptions?

Many	types	of	statistical	analysis	depend	on	key	assumptions	about	the	data.	Chapter	8
discusses	this	notion	at	length.	Some	of	the	most	commonly	used	assumptions	include
the	following:

Normally	distributed	data
Independent	observations	in	the	data
Constant	parameters	(mean,	variance,	and	standard	deviation)	for	the	observations
in	the	data
No	outliers	in	the	data

EDA	techniques	enable	you	to	test	these	assumptions	before	proceeding	with	formal
statistical	tests.	The	results	for	the	ExxonMobil	data	given	in	this	chapter	show	the
following:

The	data	is	close	to	being	normally	distributed.
The	members	of	the	data	are	very	nearly	independent	of	each	other.
The	mean	appears	to	be	constant	over	time.
The	variance	appears	to	be	increasing	over	time.
There	are	several	outliers	in	the	data.
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