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Preface

Cowards die many times before their deaths. The valiant never taste of death but once.
(William Shakespeare, Julius Caesar, Act II, Sc. 2)

The goal of this book project is to set a strong foundation, in terms of (usually small-sample)
distribution theory, for the linear model (regression and ANOVA), univariate time-series analysis
(ARMAX and GARCH), and some multivariate models associated primarily with modeling financial
asset returns (copula-based structures and the discrete mixed normal and Laplace). The primary
target audiences of this book are masters and beginning doctoral students in statistics, quantitative
finance, and economics.
This book builds on the author’s “Fundamental Statistical Inference: A Computational Approach”,

introducing the major concepts underlying statistical inference in the i.i.d. setting, and thus serves as
an ideal prerequisite for this book. I hereafter denote it as book III, and likewise refer to my books on
probability theory, Paolella (2006, 2007), as books I and II, respectively. For example, Listing III.4.7
refers to the Matlab code in Program Listing 4.7, chapter 4 of book III, and likewise for references to
equations, examples, and pages.
As the emphasis herein is on relatively rigorous underlying distribution theory associated with a

handful of core topics, as opposed to being a sweepingmonograph on linear models and time series, I
believe the book serves as a solid and highly useful prerequisite to larger-scope works. These include
(and are highly recommended by the author), for time-series analysis, Priestley (1981), Brockwell
and Davis (1991), Hamilton (1994), and Pollock (1999); for econometrics, Hayashi (2000), Pesaran
(2015), andGreene (2017); formultivariate time-series analysis, Lütkepohl (2005) and Tsay (2014); for
panel data methods, Wooldridge (2010), Baltagi (2013), and Pesaran (2015); for micro-econometrics,
Cameron and Trivedi (2005); and, last but far from least, for quantitative risk management, McNeil
et al. (2015). With respect to the linear model, numerous excellent books dedicated to the topic are
mentioned below and throughout Part I.
Notably in statistics, but also in other quantitative fields that rely on statistical methodology, I

believe this book serves as a strong foundation for subsequent courses in (besides more advanced
courses in linear models and time-series analysis) multivariate statistical analysis, machine learning,
modern inferential methods (such as those discussed in Efron and Hastie (2016), which I mention
below), and also Bayesian statistical methods. As also stated in the preface to book III, the latter
topic gets essentially no treatment there or in this book, the reasons being (i) to do the subject jus-
tice would require a substantial increase in the size of these already lengthy books and (ii) numer-
ous excellent books dedicated to the Bayesian approach, in both statistics and econometrics, and at
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varying levels of sophistication, already exist. I believe a strong foundation in underlying distribution
theory, likelihood-based inference, and prowess in computing are necessary prerequisites to appreci-
ate Bayesian inferential methods.
The preface to book III contains a detailed discussion of my views on teaching, textbook presen-

tation style, inclusion (or lack thereof ) of end-of-chapter exercises, and the importance of computer
programming literacy, all of which are applicable here and thus need not be repeated. Also, this book,
like books I, II, and III, contains far more material than could be covered in a one-semester course.
This book can be nicely segmented into its three parts, with Part I (and Appendices A and B)

addressing the linear (Gaussian) model and ANOVA, Part II detailing the ARMA and ARMAX
univariate time-series paradigms (along with unit root testing and time-varying parameter regres-
sion models), and Part III dedicated to modern topics in (univariate and multivariate) financial
time-series analysis, risk forecasting, and portfolio optimization. Noteworthy also is Appendix C on
some multivariate distributional results, with Section C.1 dedicated to the characteristic function of
the (univariate and multivariate) Student’s t distribution, and Section C.2 providing a rather detailed
discussion of, and derivation of major results associated with, the class of elliptic distributions.
A perusal of the table of contents serves to illustrate the many topics covered, and I forgo a detailed

discussion of the contents of each chapter.
I now list some ways of (academically) using the book.1 All suggested courses assume a strong com-

mand of calculus and probability theory at the level of book I, linear and matrix algebra, as well as
the basics of moment generating and characteristic functions (Chapters 1 and 2 from book II). All
courses except the first further assume a command of basic statistical inference at the level of book
III. Measure theory and an understanding of the Lebesgue integral are not required for this book.
In what follows, “Core” refers to the core chapters recommended from this book, “Add” refers to

additional chapters from this book to consider, and sometimes other books, depending on interest
and course focus, and “Outside” refers to recommended sources to supplement the material herein
with important, omitted topics.

1) One-semester beginning graduate course: Introduction to Statistics and Linear Models.
• Core (not this book):

Chapters 3, 5, and 10 from book II (multivariate normal, saddlepoint approximations, noncen-
tral distributions).
Chapters 1, 2, 3 (and parts of 7 and 8) from book III.

• Core (this book):
Chapters 1, 2, and 3, and Appendix A.

• Add: Appendix D.
2) One-semester course: Linear Models.

• Core (not this book):
Chapters 3, 5, and 10 from book II (multivariate normal, saddlepoint approximations, noncen-
tral distributions).

• Core (this book):
Chapters 1, 2, and 3, and Appendix A.

• Add: Chapters 4 and 5, and Appendices B and D, select chapters from Efron and Hastie (2016).

1 Thanks to some creative students, other uses of the book include, besides a door stop and useless coffee-table centerpiece, a
source of paper for lining the bottom of a bird cage and for mopping up oil spills in the garage.
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• Outside (for regression): Select chapters from Chatterjee and Hadi (2012), Graybill and Iyer
(1994), Harrell, Jr. (2015), Montgomery et al. (2012).2

• Outside (forANOVAandmixedmodels): Select chapters fromGalwey (2014),West et al. (2015),
Searle and Gruber (2017).

• Outside (additional topics, such as generalized linear models, quantile regression, etc.): Select
chapters from Khuri (2010), Fahrmeir et al. (2013), Agresti (2015).

3) One-semester course: Univariate Time-Series Analysis.
• Core: Chapters 4, 5, 6, and 7, and Appendix A.
• Add: Chapters 8, 9, and 10, and Appendix B.
• Outside: Select chapters from Brockwell and Davis (2016), Pesaran (2015), Rachev et al. (2007).

4) Two-semester course: Time-Series Analysis.
• Core: Chapters 4, 5, 6, 7, 8, 9, 10, and 11, and Appendices A and B.
• Add: Chapters 12 and 13, and Appendix C.
• Outside (for spectral analysis, VAR, and Kalman filtering): Select chapters from Hamilton

(1994), Pollock (1999), Lütkepohl (2005), Tsay (2014), Brockwell and Davis (2016).
• Outside (for econometric topics such as GMM, use of instruments, and simultaneous

equations): Select chapters from Hayashi (2000), Pesaran (2015), Greene (2017).
5) One-semester course: Multivariate Financial Returns Modeling and Portfolio Optimization.

• Core (not this book): Chapters 5 and 9 (univariate mixed normal, and tail estimation) from
book III.

• Core: Chapters 10, 11, 12, 13, and 14, and Appendix C.
• Add: Chapter 5 (for TVP regression such as for the CAPM).
• Outside: Select chapters from Alexander (2008), Jondeau et al. (2007), Rachev et al. (2007), Tsay

(2010), Tsay (2012), and Zivot (2018).3
6) Mini-course on SAS.

Appendix D is on data manipulation and basic usage of the SAS system.This is admittedly an odd-
ity, as I useMatlab throughout (as a matrix-based prototyping language) as opposed to a primarily
canned-procedure package, such as SAS, SPSS, Minitab, Eviews, Stata, etc.
The appendix serves as a tutorial on the SAS system, written in a relaxed, informal way, walking
the reader through numerous examples of data input, manipulation, andmerging, and use of basic
statistical analysis procedures. It is included as I believe SAS still has its strengths, as discussed
in its opening section, and will be around for a long time. I demonstrate its use for ANOVA in
Chapters 2 and 3. As with spoken languages, knowing more than one is often useful, and in this
case being fluent in one of the prototyping languages, such as Matlab, R, Python, etc., and one of
(if not the arguably most important) canned-routine/data processing languages, is a smart bet for
aspiring data analysts and researchers.

In line with books I, II, and III, attention is explicitly paid to application and numeric computa-
tion, with examples of Matlab code throughout. The point of including code is to offer a framework
for discussion and illustration of numerics, and to show the “mapping” from theory to computation,

2 All these books are excellent in scope and suitability for the numerous topics associated with applied regression analysis,
including case studies with real data. It is part of the reason this author sees no good reason to attempt to improve upon
them. Notable is Graybill and Iyer (1994) for their emphasis on prediction, and use of confidence intervals (for prediction and
model parameters) as opposed to hypothesis tests; see my diatribe in Chapter III.2.8 supporting this view.
3 Jondeau et al. (2007) provides a toolbox of Matlab programs, while Tsay (2012) and Zivot (2018) do so for R.
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in contrast to providing black-box programs for an applied user to run when analyzing a data set.
Thus, the emphasis is on algorithmic development for implementations involving number crunching
with vectors and matrices, as opposed to, say, linking to financial or other databases, string handling,
text parsing and processing, generation of advanced graphics, machine learning, design of interfaces,
use of object-oriented programming, etc.. As such, the choice of Matlab should not be a substantial
hindrance to users of, say, R, Python, or (particularly) Julia, wishing to port the methods to their pre-
ferred platforms. A benefit of those latter languages, however, is that they are free.The reader without
access to Matlab but wishing to use it could use GNU Octave, which is free, and has essentially the
same format and syntax as Matlab.
The preface of book III contains acknowledgements to the handful of professors with whom I had

the honor of working, and who were highly instrumental in “forging me” as an academic, as well as
to the numerous fellow academics and students who kindly provided me with invaluable comments
and corrections on earlier drafts of this book, and book III. Specific to this book, master’s student
(!!) Christian Frey gets the award for “most picky” (in a good sense), having read various chapters
with a very fine-toothed comb, alerting me to numerous typos and unclarities, and also indicating
numerous passages where “a typical master’s student”might enjoy a bit more verbosity in explanation.
Chris also assisted me in writing (the harder parts of ) Sections 1.A and C.2. I would give him an
honorary doctorate if I could. I am also highly thankful to the excellent Wiley staff who managed
this project, as well as copy editor Lesley Montford, who checked every chapter and alerted me to
typos, inconsistencies, and other aspects of the presentation, leading to a much better final product.
I (grudgingly) take blame for any further errors.
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Linear Models: Regression and ANOVA
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The Linear Model

The application of econometrics requires more than mastering a collection of tricks. It also
requires insight, intuition, and common sense.

(Jan R. Magnus, 2017, p. 31)

The natural starting point for learning about statistical data analysis is with a sample of independent
and identically distributed (hereafter i.i.d.) data, say Y = (Y1,… ,Yn), as was done in book III. The
linear regression model relaxes both the identical and independent assumptions by (i) allowing the
means of the Yi to depend, in a linear way, on a set of other variables, (ii) allowing for the Yi to have
different variances, and (iii) allowing for correlation between the Yi.
The linear regression model is not only of fundamental importance in a large variety of quantitative

disciplines, but is also the basis of a large number of more complex models, such as those arising
in panel data studies, time-series analysis, and generalized linear models (GLIM), the latter briefly
introduced in Section 1.6. Numerous, more advanced data analysis techniques (often referred to now
as algorithms) also have their roots in regression, such as the least absolute shrinkage and selection
operator (LASSO), the elastic net, and least angle regression (LARS). Such methods are often now
showcased under the heading of machine learning.

1.1 Regression, Correlation, and Causality

It is uncomfortably true, although rarely admitted in statistics texts, that many important areas
of science are stubbornly impervious to experimental designs based on randomisation of treat-
ments to experimental units. Historically, the response to this embarrassing problem has been
to either ignore it or to banish the very notion of causality from the language and to claim that
the shadows dancing on the screen are all that exists.
Ignoring the problem doesn’t make it go away and defining a problem out of existence doesn’t

make it so. We need to know what we can safely infer about causes from their observational
shadows, what we can’t infer, and the degree of ambiguity that remains.

(Bill Shipley, 2016, p. 1)1

1 The metaphor to dancing shadows goes back a while, at least to Plato’s Republic and the Allegory of the Cave. One can see
it today in shadow theater, popular in Southeast Asia; see, e.g., Pigliucci and Kaplan (2006, p. 2).

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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The univariate linear regression model relates the scalar random variable Y to k other (possibly
random) variables, or regressors, x1,… , xk in a linear fashion,

Y = 𝛽1x1 + 𝛽2x2 + · · · + 𝛽kxk + 𝜖, (1.1)

where, typically, 𝜖 ∼ N(0, 𝜎2). Values 𝛽1,… , 𝛽k and 𝜎2 are unknown, constant parameters to be esti-
mated from the data. A more useful notation that also emphasizes that the means of the Yi are not
constant is

Yi = 𝛽1xi,1 + 𝛽2xi,2 + · · · + 𝛽kxi,k + 𝜖i, i = 1, 2,… , n, (1.2)

where now a double subscript on the regressors is necessary. The 𝜖i represent the difference between
the values of Yi and the model used to represent them,

∑k
j=1 𝛽jxi,j, and so are referred to as the error

terms. It is important to emphasize that the error terms are i.i.d., but the Yi are not. However, if we
take k = 1 and xi,1 ≡ 1, then (1.2) reduces to Yi = 𝛽1 + 𝜖i, which is indeed just the i.i.d. model with
Yi

i.i.d.∼ N(𝛽1, 𝜎2). In fact, it is usually the case that xi,1 ≡ 1 for any k ⩾ 1, in which case the model is said
to include a constant or have an intercept term.
We refer to Y as the dependent (random) variable. In other contexts, Y is also called the endoge-

nous variable, while the k regressors can also be referred to as the explanatory, exogenous, or inde-
pendent variables, although the latter term should not be taken to imply that the regressors, when
viewed as random variables, are necessarily independent from one another.
The linear structure of (1.1) is one way of building a relationship between the Yi and a set of variables

that “influence” or “explain” them. The usefulness of establishing such a relationship or conditional
model for theYi can be seen in a simple example: Assume a demographer is interested in the income of
people living and employed in Hamburg. A random sample of n individuals could be obtained using
public records or a phone book, and (rather unrealistically) their incomes Yi, i = 1,… , n, elicited.
Assuming that income is approximately normally distributed, an unconditional model for income
could be postulated as N(𝜇u, 𝜎

2
u), where the subscript u denotes the unconditional model and the

usual estimators for the mean and variance of a normal sample could be used.
(We emphasize that this example is just an excuse to discuss some concepts. While actual incomes

for certain populations can be “reasonably” approximated as Gaussian, they are, of course, not: They
are strictly positive, will thus have an extended right tail, and this tail might be heavy, in the sense of
being Pareto—this naming being no coincidence, as Vilfredo Pareto worked on modeling incomes,
and is also the source of what is now referred to in micro-economics as Pareto optimality. An alter-
native type of linear model, referred to as GLIM, that uses a non-Gaussian distribution instead of the
normal, is briefly discussed below in Section 1.6. Furthermore, interest might not center on model-
ing the mean income—which is what regression does—but rather the median, or the lower or upper
quantiles. This leads to quantile regression, also briefly discussed in Section 1.6.)
A potentially much more precise description of income can be obtained by taking certain factors

into consideration that are highly related to income, such as age, level of education, number of years
of experience, gender, whether he or she works part or full time, etc. Before continuing this simple
example, it is imperative to discuss the three Cs: correlation, causality, and control.
Observe that (simplistically here, for demonstration) age and education might be positively cor-

related, simply because, as the years go by, people have opportunities to further their schooling and
training. As such, if one were to claim that income tends to increase as a function of age, then one can-
not conclude this arises out of “seniority” at work, but rather possibly because some of the older people
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have received more schooling. Another way of saying this is, while income and age are positively
correlated, an increase in age is not necessarily causal for income; age and incomemay be spuriously
correlated, meaning that their correlation is driven by other factors, such as education, which might
indeed be causal for income. Likewise, if one were to claim that income tends to increase with educa-
tional levels, then one cannot claim this is due to education per se, but rather due simply to seniority
at the workplace, possibly despite their enhanced education. Thus, it is important to include both of
these variables in the regression.
In the former case, if a positive relationship is found between income and agewith education also in

the regression, then one can conclude a seniority effect. In the literature, one might say “Age appears
to be a significant predictor of income, and this being concluded after having also controlled for
education.” Examples of controlling for the relevant factors when assessing causality are ubiquitous
in empirical studies of all kinds, and are essential for reliable inference. As one example, in the field
of “economics and religion” (which is now a fully established area in economics; see, e.g., McCleary,
2011), in the abstract of one of the highly influential papers in the field, Gruber (2005) states “Re-
ligion plays an important role in the lives of many Americans, but there is relatively little study by
economists of the implications of religiosity for economic outcomes.This likely reflects the enormous
difficulty inherent in separating the causal effects of religiosity from other factors that are correlated
with outcomes.” The paper is filled with the expression “having controlled for”.
A famous example, in a famous paper, is Leamer (1983, Sec. V), showing how conclusions from a

study of the factors influencing the murder rate are highly dependent on which set of variables are
included in the regression. The notion of controlling for the right variables is often the vehicle for
critiquing other studies in an attempt to correct potentially wrong conclusions. For example, Farkas
and Vicknair (1996, p. 557) state “[Cancio et al.] claim that discrimination, measured as a residual
from an earnings attainment regression, increased after 1976.Their claim depends crucially on which
variables are controlled and which variables are omitted from the regression. We believe that the
authors have omitted the key control variable—cognitive skill.”
The concept of causality is fundamental in econometrics and other social sciences, and we have not

even scratched the surface. The different ways it is addressed in popular econometrics textbooks is
discussed in Chen and Pearl (2013), and debated in Swamy et al. (2015), Raunig (2017), and Swamy
et al. (2017).These serve to indicate that the theoretical framework for understanding causality and its
interface to statistical inference is still developing. The importance of causality for scientific inquiry
cannot be overstated, and continues to grow in importance in light of artificial intelligence. As a sim-
ple example, humans understand that weather is (global warming aside) exogenous, and carrying an
umbrella does not cause rain. How should a computer know this? Starting points for further reading
include Pearl (2009), Shipley (2016), and the references therein.
Our development of the linearmodel in this chapter serves two purposes: First, it is the required the-

oretical statistical framework for understanding ANOVAmodels, as introduced in Chapters 2 and 3.
As ANOVA involves designed experiments and randomization, as opposed to observational studies
in the social sciences, we can avoid the delicate issues associated with assessing causality. Second, the
linear model serves as the underlying structure of autoregressive time-series models as developed in
Part II, and our emphasis is on statistical forecasting, as opposed to the development of structural
economic models that explicitly need to address causality.
We now continue with our very simple illustration, just to introduce some terminology. Let xi,2

denote the age of the ith person. A conditional model with a constant and age as a regressor is given
by Yi = 𝛽1 + 𝛽2xi,2 + 𝜖i, where 𝜖i

i.i.d.∼ N(0, 𝜎2). The intercept is measured by 𝛽1 and the slope of income
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Figure 1.1 Scatterplot of age versus income overlaid with fitted regression curves.

is measured by 𝛽2. Because age is expected to explain a considerable part of variability in income, we
expect 𝜎2 to be significantly less than 𝜎2

u. A useful way of visualizing the model is with a scatterplot of
xi,2 and yi. Figure 1.1 shows such a graphbased on afictitious set of data for 200 individuals between the
ages of 16 and 60 and their monthly net income in euros. It is quite clear from the scatterplot that age
and income are positively correlated. If age is neglected, then the i.i.d. normalmodel for income results
in �̂�u = 1,797 euros and �̂�u = 1,320 euros. Using the techniques discussed below, the regressionmodel
gives estimates 𝛽1 = −1,465, 𝛽2 = 85.4, and �̂� = 755, the latter being about 43% smaller than �̂�u. The
model implies that, conditional on the age x, the incomeY ismodeled asN(−1,465 + 85.4x, 7552).This
is valid only for 16 ⩽ x ⩽ 60; because of the negative intercept, small values of age would erroneously
imply a negative income. The fitted model y = 𝛽1 + 𝛽2x is overlaid in the figure as a solid line.
Notice in Figure 1.1 that the linear approximation underestimates income for both low and high

age groups, i.e., income does not seem perfectly linear in age, but rather somewhat quadratic. To
accommodate this, we can add another regressor, xi,3 = x2i,2, into the model, i.e., Yi = 𝛽1 + 𝛽2xi,2 +

𝛽3xi,3 + 𝜖i, where 𝜖i
i.i.d.∼ N(0, 𝜎2

q) and 𝜎2
q denotes the conditional variance based on the quadraticmodel.

It is important to realize that the model is still linear (in the constant, age, and age squared).The fitted
model turns out to be Yi = 190 − 12.5xi,2 + 1.29xi,3, with �̂�q = 733, which is about 3% smaller than �̂�.
The fitted curve is shown in Figure 1.1 as a dashed line.
One caveat still remains with the model for income based on age: The variance of income appears

to increase with age. This is a typical finding with income data and agrees with economic theory. It
implies that both the mean and the variance of income are functions of age. In general, when the
variance of the regression error term is not constant, it is said to be heteroskedastic, as opposed
to homoskedastic. The generalized least squares extension of the linear regression model discussed
below can be used to address this issue when the structure of the heteroskedasticity as a function of
the Xmatrix is known.
In certain applications, the ordering of the dependent variable and the regressors is important

because they are observed in time, usually equally spaced. Because of this, the notation Yt will be
used, t = 1,… ,T . Thus, (1.2) becomes

Yt = 𝛽1xt,1 + 𝛽2xt,2 + · · · + 𝛽kxt,k + 𝜖t, t = 1, 2,… ,T ,
where xt,i indicates the tth observation of the ith explanatory variable, i = 1,… , k, and 𝜖t is the tth
error term. In standard matrix notation, the model can be compactly expressed as

Y = X𝜷 + 𝝐, (1.3)
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where [X]t,i = xt,i, i.e., with xt = (xt,1,… , xt,k)′,

X =
⎡⎢⎢⎣
x′1
⋮
x′T

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣

x1,1 x1,2 · · · x1,k
x2,1 x2,2 · · · x2,k
⋮ ⋮ ⋮
xT ,1 xT ,2 xT ,k

⎤⎥⎥⎥⎦ , 𝝐 ∼ N(𝟎, 𝜎2I),

Y and 𝝐 are T × 1, X is T × k and 𝜷 is k × 1. The first column of X is usually 𝟏, the column of ones.
Observe that Y ∼ N(X𝜷, 𝜎2I).
An important special case of (1.3) is with k = 2 and xt,1 = 1. Then Yt = 𝛽1 + 𝛽2Xt + 𝜖t , t = 1,… ,T ,

is referred to as the simple linear regression model. See Problems 1.1 and 1.2.

1.2 Ordinary and Generalized Least Squares

1.2.1 Ordinary Least Squares Estimation

The most popular way of estimating the k parameters in 𝜷 is the method of least squares,2 which
takes 𝜷 = argmin S(𝜷), where

S(𝜷) = S(𝜷;Y ,X) = (Y−X𝜷)′(Y−X𝜷) =
T∑
t=1

(Yt − x′t𝜷)2, (1.4)

and we suppress the dependency of S on Y and X when they are clear from the context.
Assume that X is of full rank k. One procedure to obtain the solution, commonly shown in most

books on regression (see, e.g., Seber and Lee, 2003, p. 38), uses matrix calculus; it yields 𝜕 S(𝜷)∕𝜕𝜷 =
−2X′(Y−X𝜷), and setting this to zero gives the solution

𝜷 = (X′X)−1X′Y. (1.5)

This is referred to as the ordinary least squares, or o.l.s., estimator of 𝜷 . (The adjective “ordinary” is
used to distinguish it from what is called generalized least squares, addressed in Section 1.2.3 below.)
Notice that 𝜷 is also the solution to what are referred to as the normal equations, given by

X′X𝜷 = X′Y. (1.6)

To verify that (1.5) indeed corresponds to the minimum of S(𝜷), the second derivative is checked for
positive definiteness, yielding 𝜕2 S(𝜷)∕𝜕𝜷𝜕𝜷 ′ = 2X′X, which is necessarily positive definite whenX is
full rank. Observe that, ifX consists only of a column of ones, which we write asX=𝟏, then 𝜷 reduces
to the mean, Ȳ , of the Yt . Also, if k = T (and X is full rank), then 𝜷 reduces to X−1Y, with S(𝜷) = 0.
Observe that the derivation of 𝜷 in (1.5) did not involve any explicit distributional assumptions.

One consequence of this is that the estimator may not have any meaning if the maximally existing
moment of the {𝜖t} is too low. For example, take X=𝟏 and {𝜖t} to be i.i.d. Cauchy; then 𝛽 = Ȳ is
a useless estimator. If we assume that the first moment of the {𝜖t} exists and is zero, then, writing
𝜷 = (X′X)−1X′(X𝜷 + 𝝐) = 𝜷 + (X′X)−1X′𝝐, we see that 𝜷 is unbiased:

𝔼[𝜷] = 𝜷 + (X′X)−1X′𝔼[𝝐] = 𝜷. (1.7)

2 This terminology dates back to Adrien-Marie Legendre (1752–1833), though the method is most associated in its origins
with Carl Friedrich Gauss, (1777–1855). See Stigler (1981) for further details.
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Next, if we have existence of second moments, and 𝕍 (𝝐) = 𝜎2I, then 𝕍 (𝜷 ∣ 𝜎2) is given by

𝔼[(𝜷 − 𝜷)(𝜷 − 𝜷)′ ∣ 𝜎2] = (X′X)−1X′𝔼[𝝐𝝐′]X(X′X)−1 = 𝜎2(X′X)−1. (1.8)

It turns out that 𝜷 has the smallest variance among all linear unbiased estimators; this result is often
referred to as the Gauss–Markov Theorem, and expressed as saying that 𝜷 is the best linear unbi-
ased estimator, or BLUE. We outline the usual derivation, leaving the straightforward details to the
reader. Let 𝜷

∗
= A′Y, where A′ is a k × T nonstochastic matrix (it can involve X, but not Y). Let

D = A − X(X′X)−1. First calculate 𝔼[𝜷
∗
] and show that the unbiased property implies that D′X = 𝟎.

Next, calculate 𝕍 (𝜷
∗
∣ 𝜎2) and show that 𝕍 (𝜷

∗
∣ 𝜎2) = 𝕍 (𝜷 ∣ 𝜎2) + 𝜎2D′D. The result follows because

D′D is obviously positive semi-definite and the variance is minimized when D = 𝟎.
In many situations, it is reasonable to assume normality for the {𝜖t}, in which case we may easily

estimate the k + 1 unknown parameters 𝜎2 and 𝛽i, i = 1,… , k, by maximum likelihood. In particu-
lar, with

fY(y) = (2𝜋𝜎2)−T∕2 exp
{
− 1
2𝜎2 (y − X𝜷)′(y − X𝜷)

}
, (1.9)

and log-likelihood

𝓁(𝜷, 𝜎2;Y) = −T
2
log(2𝜋) − T

2
log(𝜎2) − 1

2𝜎2 S(𝜷), (1.10)

where S(𝜷) is given in (1.4), setting
𝜕𝓁
𝜕𝜷

= − 2
2𝜎2X

′(Y−X𝜷) and 𝜕𝓁
𝜕𝜎2 = − T

2𝜎2 + 1
2𝜎4 S(𝜷)

to zero yields the same estimator for 𝜷 as given in (1.5) and �̃�2 = S(𝜷)∕T . It will be shown in Section
1.3.2 that the maximum likelihood estimator (hereafter m.l.e.) of 𝜎2 is biased, while estimator

�̂�2 = S(𝜷)∕(T − k) (1.11)

is unbiased.
As 𝜷 is a linear function of Y, (𝜷 ∣ 𝜎2) is multivariate normally distributed, and thus characterized

by its first two moments. From (1.7) and (1.8), it follows that (𝜷 ∣ 𝜎2) ∼ N(𝜷, 𝜎2(X′X)−1).

1.2.2 Further Aspects of Regression and OLS

The coefficient of multiple determination, R2, is a measure many statisticians love to hate. This
animosity exists primarily because the widespread use of R2 inevitably leads to at least occa-
sional misuse.

(Richard Anderson-Sprecher, 1994)

In general, the quantity S(𝜷) is referred to as the residual sum of squares, abbreviated RSS. The
explained sum of squares, abbreviated ESS, is defined to be

∑T
t=1 (Ŷt − Ȳ )2, where the fitted value

of Yt is Ŷt ∶= x′t𝜷 , and the total (corrected) sum of squares, or TSS, is
∑T

t=1 (Yt − Ȳ )2. (Annoyingly,
both words “error” and “explained” start with an “e”, and some presentations define SSE to be the error
sum of squares, which is our RSS; see, e.g., Ravishanker and Dey, 2002, p. 101.)
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The term corrected in the TSS refers to the adjustment of the Yt for their mean.This is done because
the mean is a “trivial” regressor that is not considered to do any real explaining of the dependent
variable. Indeed, the total uncorrected sum of squares,

∑T
t=1 Y 2

t , could be made arbitrarily large just
by adding a large enough constant value to the Yt , and the model consisting of just the mean (i.e.,
an Xmatrix with just a column of ones) would have the appearance of explaining an arbitrarily large
amount of the variation in the data.
While certainly Yt − Ȳ = (Yt − Ŷt) + (Ŷt − Ȳ ), it is not immediately obvious that

T∑
t=1

(Yt − Ȳ )2 =
T∑
t=1

(Yt − Ŷt)2 +
T∑
t=1

(Ŷt − Ȳ )2,

i.e.,

TSS = RSS + ESS. (1.12)

This fundamental identity is proven below in Section 1.3.2.
A popular statistic that measures the fraction of the variability of Y taken into account by a linear

regressionmodel that includes a constant, compared to use of just a constant (i.e., Ȳ ), is the coefficient
of multiple determination, designated as R2, and defined as

R2 = ESS
TSS

= 1 − RSS
TSS

= 1 − S(𝜷,Y,X)
S(Ȳ ,Y, 𝟏)

, (1.13)

where 𝟏 is aT-length column of ones.The coefficient ofmultiple determinationR2 provides ameasure
of the extent to which the regressors “explain” the dependent variable over and above the contribution
from just the constant term. It is important thatX contain a constant or a set of variables whose linear
combination yields a constant; see Becker andKennedy (1992) andAnderson-Sprecher (1994) and the
references therein for more detail on this point.
By construction, the observed R2 is a number between zero and one. As with other quantities

associated with regression (such as the nearly always reported “t-statistics” for assessing individual
“significance” of the regressors), R2 is a statistic (a function of the data but not of the unknown param-
eters) and thus is a random variable. In Section 1.4.4 we derive the F test for parameter restrictions.
With J such linear restrictions, and �̂� referring to the restricted estimator, wewill show (1.88), repeated
here, as

F =
[S(�̂�) − S(𝜷)]∕J
S(𝜷)∕(T − k)

∼ F(J ,T − k), (1.14)

under the null hypothesis H0 that the J restrictions are true. Let J = k − 1 and �̂� = Ȳ , so that the
restricted model is that all regressor coefficients, except the constant are zero.Then, comparing (1.13)
and (1.14),

F = T − k
k − 1

R2

1 − R2 , or R2 = (k − 1)F
(T − k) + (k − 1)F

. (1.15)

Dividing the numerator and denominator of the latter expression by T − k and recalling the relation-
ship between F and beta random variables (see, e.g., Problem I.7.20), we immediately have that

R2 ∼ Beta
(
k − 1
2

,
T − k
2

)
, (1.16)
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so that𝔼[R2] = (k − 1)∕(T − 1) from, for example, (I.7.12). Its variance could similarly be stated. Recall
that its distribution was derived under the null hypothesis that the k − 1 regression coefficients are
zero. This implies that R2 is upward biased, and also shows that just adding superfluous regressors
will always increase the expected value of R2. As such, choosing a set of regressors such that R2 is
maximized is not appropriate for model selection.
However, the so-called adjusted R2 can be used. It is defined as

R2
adj = 1 − (1 − R2)T − 1

T − k
. (1.17)

Virtually all statistical software for regression will include this measure. Less well known is that it
has (like so many things) its origin with Ronald Fisher; see Fisher (1925). Notice how, like the Akaike
information criterion (hereafter AIC) and other penalty-based measures applied to the obtained log
likelihood, when k is increased, the increase in R2 is offset by a factor involving k in R2

adj.
Measure (1.17) can be motivated in (at least) two ways. First, note that, under the null hypothesis,

𝔼[R2
adj] = 1 −

(
1 − k − 1

T − 1

)
T − 1
T − k

= 0,

providing a perfect offset to R2’s expected value simply increasing in k under the null. A second way
is to note that, while R2 = 1 − RSS∕TSS from (1.13),

R2
adj = 1 −

RSS∕(T − k)
TSS∕(T − 1)

= 1 − 𝕍 (�̂�)
𝕍 (Y)

,

the numerator and denominator being unbiased estimators of their respective variances, recalling
(1.11). The use of R2

adj for model selection is very similar to use of other measures, such as the (cor-
rected) AIC and the so-called Mallows’ Ck ; see, e.g., Seber and Lee (2003, Ch. 12) for a very good
discussion of these, and other criteria, and the relationships among them.
Section 1.2.3 extends the model to the case in which Y = X𝜷 + 𝝐 from (1.3), but 𝝐 ∼ N(𝟎, 𝜎2𝚺),

where 𝚺 is a known, positive definite variance–covariance matrix. There, an appropriate expression
for R2 will be derived that generalizes (1.13). For now, the reader is encouraged to express R2 in (1.13)
as a ratio of quadratic forms, assuming 𝝐 ∼ N(𝟎, 𝜎2𝚺), and compute and plot its density for a given X
and 𝚺, such as given in (1.31) for a given value of parameter a, as done in, e.g., Carrodus and Giles
(1992). When a = 0, the density should coincide with that given by (1.16).
We end this section with an important remark, and an important example.

Remark It is often assumed that the elements of X are known constants. This is quite plausible in
designed experiments, where X is chosen in such a way as to maximize the ability of the experiment
to answer the questions of interest. In this case, X is often referred to as the design matrix. This
will rarely hold in applications in the social sciences, where the x′t reflect certain measurements and
are better described as being observations of random variables from the multivariate distribution
describing both x′t and Yt . Fortunately, under certain assumptions, one may ignore this issue and
proceed as if x′t were fixed constants and not realizations of a random variable.
Assume matrix X is no longer deterministic. Denote by X an outcome of random variable  , with

kT-variate probability density function (hereafter p.d.f.) f (X ;𝜽), where 𝜽 is a parameter vector. We
require the following assumption:
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0. The conditional distribution Y ∣ ( = X) depends only onX and parameters 𝜷 and 𝜎 and such that
Y ∣ ( = X) has mean X𝜷 and finite variance 𝜎2I.

For example, we could have Y ∣ ( = X) ∼ N(X𝜷, 𝜎2I). Under the stated assumption, the joint den-
sity of Y and  can be written as

fY , (y,X ∣ 𝜷, 𝜎2,𝜽) = fY∣ (y ∣X;𝜷, 𝜎2) ⋅ f (X;𝜷, 𝜎2,𝜽). (1.18)

Now consider the following two additional assumptions:

1) The distribution of  does not depend on 𝜷 or 𝜎2, so we can write f (X;𝜷, 𝜎2,𝜽) = f (X;𝜽).
2) The parameter space of 𝜽 and that of (𝜷, 𝜎2) are not related, that is, they are not restricted by one

another in any way.

Then, with regard to 𝜷 and 𝜎2, f is only amultiplicative constant and the log-likelihood correspond-
ing to (1.18) is the same as (1.10) plus the additional term log f (X;𝜽). As this term does not involve 𝜷
or 𝜎2, the (generalized) least squares estimator still coincides with the m.l.e.When the above assump-
tions are satisfied, 𝜽 and (𝜷, 𝜎2) are said to be functionally independent (Graybill, 1976, p. 380), or
variation-free (Poirier, 1995, p. 461). More common in the econometrics literature is to say that one
assumes X to be (weakly) exogenous with respect to Y.
The extent to which these assumptions are reasonable is open to debate. Clearly, without them, esti-

mation of 𝜷 and 𝜎2 is not so straightforward, as then f (X;𝜷, 𝜎2,𝜽)must be (fully, or at least partially)
specified. If they hold, then

𝔼[𝜷] = 𝔼 [𝔼[𝜷 ∣  = X]] = 𝔼 [𝜷 + (X′X)−1X′𝔼[𝝐 ∣ ]] = 𝔼 [𝜷] = 𝜷

and

𝕍 (𝜷 ∣ 𝜎2) = 𝔼 [𝔼[(𝜷 − 𝜷)(𝜷 − 𝜷)′ ∣  = X, 𝜎2]] = 𝜎2𝔼 [( ′)−1],

the latter being obtainable only when f (X;𝜽) is known.
A discussion of the implications of falsely assuming that X is not stochastic is provided by Binkley

and Abbott (1987).3 ◾

Example 1.1 Frisch–Waugh–Lovell Theorem
It is occasionally useful to express the o.l.s. estimator of each component of the partitioned vector
𝜷 = (𝜷 ′

1, 𝜷
′
2)′, where 𝜷1 is k1 × 1, 1 ⩽ k1 < k.With the appropriate corresponding partition ofX, model

(1.3) is then expressed as

Y =
(

X1 X2
)( 𝜷1

𝜷2

)
+ 𝝐 = X1𝜷1 + X2𝜷2 + 𝝐.

The normal equations (1.6) then read(
X′

1
X′

2

)(
X1 X2

)( 𝜷1
𝜷2

)
=

(
X′

1
X′

2

)
Y,

or

X′
1X1𝜷1 + X′

1X2𝜷2 = X′
1Y and X′

2X1𝜷1 + X′
2X2𝜷2 = X′

2Y, (1.19)

3 We use the tombstone, QED, or halmos, symbol ◾ to denote the end of proofs of theorems, as well as examples and
remarks, acknowledging that it is traditionally only used for the former, as popularized by Paul Halmos.
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so that

𝜷1 = (X′
1X1)−1X′

1(Y − X2𝜷2) (1.20)

and 𝜷2 = (X′
2X2)−1X′

2(Y − X1𝜷1). To obtain an expression for 𝜷2 that does not depend on 𝜷1, letM1 =
I − X1(X′

1X1)−1X′
1, premultiply (1.20) by X1, and substitute X1𝜷1 into the second equation in (1.19)

to get

X′
2(I −M1)(Y − X2𝜷2) + X′

2X2𝜷2 = X′
2Y,

or, expanding and solving for 𝜷2,

𝜷2 = (X′
2M1X2)−1X′

2M1Y. (1.21)

A similar argument (or via symmetry) shows that

𝜷1 = (X′
1M2X1)−1X′

1M2Y, (1.22)

whereM2 = I − X2(X′
2X2)−1X′

2.
An important special case of (1.21) discussed further in Chapter 4 is when k1 = k − 1, so that X2 is

T × 1 and 𝜷2 in (1.21) reduces to the scalar

𝛽2 =
X′

2M1Y
X′

2M1X2
. (1.23)

This is a ratio of a bilinear form to a quadratic form, as discussed in Appendix A.
The Frisch–Waugh–Lovell theorem has both computational value (see, e.g., Ruud, 2000, p. 66, and

Example 1.9 below) and theoretical value; see Ruud (2000), Davidson andMacKinnon (2004), and also
Section 5.2. Extensions of the theorem are considered in Fiebig et al. (1996). ◾

1.2.3 Generalized Least Squares

Now consider the more general assumption that 𝝐 ∼ N(𝟎, 𝜎2𝚺), where 𝚺 is a known, positive definite
variance–covariance matrix. The density of Y is now given by

fY(y) = (2𝜋)−T∕2|𝜎2𝚺|−1∕2 exp{
− 1
2𝜎2 (y − X𝜷)′𝚺−1(y − X𝜷)

}
, (1.24)

and one could use calculus to find the m.l.e. of 𝜷 . Alternatively, we could transform the model in
such a way that the above results still apply. In particular, with 𝚺−1∕2 the symmetric matrix such that
𝚺−1∕2𝚺−1∕2 = 𝚺−1, premultiply (1.3) by 𝚺−1∕2 so that

𝚺−1∕2Y = 𝚺−1∕2X𝜷 + 𝚺−1∕2𝝐, 𝚺−1∕2𝝐 ∼ NT (𝟎, 𝜎2I). (1.25)

Then, using the previous maximum likelihood approach as in (1.10), with

Y∗ ∶= 𝚺−1∕2Y and X∗ ∶= 𝚺−1∕2X (1.26)

in place of Y and X implies the normal equations

(X′𝚺−1X)𝜷𝚺 = X′𝚺−1Y (1.27)

that generalize (1.6), and

𝜷𝚺 = (X′
∗X∗)−1X′

∗Y∗ = (X′𝚺−1X)−1X′𝚺−1Y, (1.28)
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where the notation 𝜷𝚺 is used to indicate its dependence on knowledge of 𝚺. This is known as the
generalized least squares (g.l.s.) estimator, with variance given by

𝕍 (𝜷𝚺 ∣ 𝜎2) = 𝜎2(X′𝚺−1X)−1. (1.29)

It is attributed to A. C. Aitken from 1934. Of course, 𝜎2 is unknown.The usual estimator of (T − k)𝜎2

is given by

S(𝜷;Y∗,X∗) = (Y∗ − X∗𝜷𝚺)′(Y∗ − X∗𝜷𝚺) = (Y−X𝜷𝚺)′𝚺−1(Y−X𝜷𝚺). (1.30)

Example 1.2 Let 𝜖t
ind∼ N(0, 𝜎2kt), where the kt are known, positive constants, so that 𝚺−1 =

diag(k−11 ,… , k−1T ). Then 𝜷𝚺 is referred to as the weighted least squares estimator. If in the Hamburg
income example above, we take kt = xt , then observations {yt , xt} receive weights proportional to
x−1t . This has the effect of down-weighting observations with high ages, for which the uncertainty of
the slope parameter is higher, and vice versa. ◾

Example 1.3 Let the model be given by Yt = 𝜇 + 𝜖t , t = 1,… ,T . With X=𝟏, we have

(X′X)−1X′ = [T−1,… ,T−1],

and the o.l.s. estimator of 𝜇 is just the simple average of the observations, Ȳ = (X′X)−1X′Y. Assume,
however, that the 𝜖t are not i.i.d., but are given by the recursion 𝜖t = a𝜖t−1 +Ut , |a| < 1, and Ut

i.i.d.∼
N(0, 𝜎2). This is referred to as a stationary first order autoregressive model, abbreviated AR(1), and is
the subject of Chapter 4.There, the covariancematrix of 𝝐 = (𝜖1,… , 𝜖T )′ is shown to be Cov(𝝐) = 𝜎2𝚺
with

𝚺 = 1
1 − a2

⎡⎢⎢⎢⎢⎢⎢⎣

1 a a2 · · · aT−1

a 1 a · · · aT−2

a2 a 1 · · · aT−3

⋮ ⋮ ⋮ ⋱ ⋮

aT−1 aT−2 aT−3 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦
. (1.31)

The g.l.s. estimator of 𝜇 is now a weighted average of the Yt , where the weight vector is given by w =
(X′𝚺−1X)−1X′𝚺−1. Straightforward calculation shows that, for a = 0.5, (X′𝚺−1X)−1 = 4∕(T + 2) and

X′𝚺−1 =
[1
2
,
1
4
,
1
4
,… ,

1
4
,
1
2

]′
,

so that the first and last weights are 2∕(T + 2) and the middle T − 2 are all 1∕(T + 2). Note that the
weights sum to one. A similar pattern holds for all |a| < 1, with the ratio of the first and last weights to
the center weights converging to 1∕2 as a → −1 and to∞ as a → 1. Thus, we see that (i) for constant
T , the difference between g.l.s. and o.l.s. grows as a → 1 and (ii) for constant a, |a| < 1, the difference
between g.l.s. and o.l.s. shrinks as T → ∞. The latter is true because a finite number of observations,
in this case only two, become negligible in the limit, and because the relative weights associated with
these two values converges to a constant independent of T .
Now consider the model Yt = 𝜇 + 𝜖t , t = 1,… ,T , with 𝜖t = bUt−1 +Ut , |b| < 1, Ut

i.i.d.∼ N(0, 𝜎2).
This is referred to as an invertible first-order moving average model, or MA(1), and is discussed in
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detail in Chapter 6. There, it is shown that Cov(𝝐) = 𝜎2𝚺 with

𝚺 =

⎡⎢⎢⎢⎢⎢⎣

1 + b2 b 0 · · · 0
b 1 + b2 ⋱ ⋮
0 b ⋱ 0
⋮ 0 ⋱ b
0 · · · 0 b 1 + b2

⎤⎥⎥⎥⎥⎥⎦
.

The weight vectors w = (X′𝚺−1X)−1X′𝚺−1 for the two values, b = −0.9 and b = 0.9, are plotted in
Figure 1.2 for T = 100. This is clearly quite a different weighting structure than for the AR(1) model.
In the limiting case b → 1, we have

Y1 = 𝜇 +U0 +U1, Y2 = 𝜇 +U1 +U2, … , YT = 𝜇 +UT−1 +UT

so that
T∑
t=1

Yt = T𝜇 + U0 +UT + 2
T−1∑
t=1

Ut ,
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Figure 1.2 Weight vector for an MA(1) model with T = 100 and b = 0.9 (top) and b = −0.9 (bottom).
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𝔼[Ȳ ] = 𝜇 and

𝕍 (Ȳ ) = 𝜎2 + 𝜎2 + 4(T − 1)𝜎2

T2 = 4𝜎2

T
− 2𝜎2

T2 .

For T = 100 and 𝜎2 = 1, 𝕍 (Ȳ ∣ b = 1) ≈ 0.0398. Similarly, for b = −1,
∑T

t=1 Yt = T𝜇 +U0 +UT and
𝕍 (Ȳ ∣ b = −1) = 2𝜎2∕T2 = 0.0002. ◾

Consideration of the previous examplemight lead one to ponder if it is possible to specify conditions
such that 𝜷𝚺 will equal 𝜷I = 𝜷 for 𝚺 ≠ I. A necessary and sufficient condition for 𝜷𝚺 = 𝜷 is if the k
columns of X are linear combinations of k of the eigenvectors of 𝚺, as first established by Anderson
(1948); see, e.g., Anderson (1971, p. 19 and p. 561) for proof.
This question has generated a large amount of academic work, as illustrated in the survey of Pun-

tanen and Styan (1989), which contains about 90 references (see also Krämer et al., 1996). There are
several equivalent conditions for the result to hold, a rather useful and attractive one of which is that

𝜷𝚺 = 𝜷 if and only if P𝚺 is symmetric, (1.32)

i.e., if and only if P𝚺 = 𝚺P, where P = X(X′X)−1X′. Another is that there exists a matrix F satisfying
XF = 𝚺−1X, which is demonstrated in Example 1.5.

Example 1.4 With X = 𝟏 (a T-length column of ones), Anderson’s condition implies that 𝟏 needs
to be an eigenvector of 𝚺, or 𝚺1 = s𝟏 for some nonzero scalar s. This means that the sum of each row
of 𝚺 must be the same value. This obviously holds when 𝚺 = I, and clearly never holds when 𝚺 is a
diagonal weighting matrix with at least two weights differing.
To determine if 𝜷𝚺 = 𝜷 is possible for the AR(1) and MA(1) models from Example 1.3, we use a

result of McElroy (1967), who showed that, if X is full rank and contains 𝟏, then 𝜷𝚺 = 𝜷 if and only if
𝚺 is full rank and can be expressed as k1I + k2𝟏𝟏′, i.e., the equicorrelated case. We will see in Chapters
4 and 7 that this is never the case for AR(1) and MA(1) models or, more generally, for stationary and
invertible ARMA(p, q) models. ◾

Remark The previous discussion begets the question of how one could assess the extent to which
o.l.s. will be inferior relative to g.l.s., notably because, in many applications, 𝚺 will not be known.
This turns out to be a complicated endeavor in general; see Puntanen and Styan (1989, p. 154) and
the references therein for further details. Observe also how (1.28) and (1.29) assume the true 𝚺. The
determination of robust estimators for the variance of 𝜷 for unknown 𝚺 is an important and active
research area in statistics and, particularly, econometrics (and for other model classes beyond the
simple linear regression model studied here). The primary reference papers are White (1980, 1982),
MacKinnon andWhite (1985), Newey andWest (1987), andAndrews (1991), giving rise to the class of
so-called heteroskedastic and autocorrelation consistent covariance matrix estimators, or HAC.
With respect to computation of theHAC estimators, see Zeileis (2006), Heberle and Sattarhoff (2017),
and the references therein. ◾

It might come as a surprise that defining the coefficient of multiple determination R2 in the g.l.s.
context is not so trivial, and several suggestions exist. The problem stems from the definition in the
o.l.s. case (1.13), withR2 = 1 − S(𝜷,Y,X)∕S(Ȳ ,Y, 𝟏), and observing that, if 𝟏 ∈ (X) (the column space
of X, as defined below), then, via the transformation in (1.26), 𝟏 ∉ (X∗).
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To establish a meaningful definition, we first need the fact that, with Ŷ = X𝜷𝚺 and �̂� = Y − Ŷ,

Y′𝚺−1Y = Ŷ′𝚺−1Ŷ + �̂�
′𝚺−1�̂�, (1.33)

which is derived in (1.47). Next, from the normal equations (1.27) and lettingXi denote the ith column
of X, i = 1,… , k, we have a system of k equations, the ith of which is, with 𝜷𝚺 = (𝛽1,… , 𝛽k)′,

(X′
i𝚺

−1X1)𝛽1 + (X′
i𝚺

−1X2)𝛽2 + · · · + (X′
i𝚺

−1Xk)𝛽k = X′
i𝚺

−1Y.

Similarly, premultiplying both sides of X𝜷𝚺 = Ŷ by X′
i𝚺

−1 gives

(X′
i𝚺

−1X1)𝛽1 + (X′
i𝚺

−1X2)𝛽2 + · · · + (X′
i𝚺

−1Xk)𝛽k = X′
i𝚺

−1Ŷ,

so that

X′
i𝚺

−1(Y − Ŷ) = 0,

which we will see again below, in the context of projection, in (1.63). In particular, with X1 = 𝟏 =
(1, 1,… , 1)′ the usual first regressor, 𝟏′𝚺−1Ŷ = 𝟏′𝚺−1Y. We now follow Buse (1973), and define the
weighted mean to be

Ȳ ∶= Ȳ𝚺 ∶= 𝟏′𝚺−1Y
𝟏′𝚺−1𝟏

(
= 𝟏′𝚺−1Ŷ

𝟏′𝚺−1𝟏

)
, (1.34)

which obviously reduces to the simple sample mean when𝚺 = I.The next step is to confirm by simply
multiplying out that

(Y − Ȳ𝟏)′𝚺−1(Y − Ȳ𝟏) = Y′𝚺−1Y − (𝟏′𝚺−1Y)2

𝟏′𝚺−1𝟏
,

and, likewise,

(Ŷ − Ȳ𝟏)′𝚺−1(Ŷ − Ȳ𝟏) = Ŷ′𝚺−1Ŷ − (𝟏′𝚺−1Y)2

𝟏′𝚺−1𝟏
,

so that (1.33) can be expressed as

(Y − Ȳ𝟏)′𝚺−1(Y − Ȳ𝟏) = (Ŷ − Ȳ𝟏)′𝚺−1(Ŷ − Ȳ𝟏) + �̂�
′𝚺−1�̂�. (1.35)

The definition of R2 is now given by

R2 = R2
𝚺 = 1 − �̂�

′𝚺−1�̂�

(Y − Ȳ𝟏)′𝚺−1(Y − Ȳ𝟏)
, (1.36)

which is indeed analogous to (1.13) and reduces to it when 𝚺 = I.
Along with examples of other, less desirable, definitions, Buse (1973) discusses the benefits of this

definition, which include that it is interpretable as the proportion of the generalized sum of squares
of the dependent variable that is attributable to the influence of the explanatory variables, and that it
lies between zero and one. It is also zero when all the estimates coefficients (except the constant) are
zero, and can be related to the F test as was done above in the ordinary least squares case.
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1.3 The Geometric Approach to Least Squares

In spite of earnest prayer and the greatest desire to adhere to proper statistical behavior, I have
not been able to say why the method of maximum likelihood is to be preferred over other
methods, particularly the method of least squares.

(Joseph Berkson, 1944, p. 359)

The following sections analyze the linear regressionmodel using the notion of projection.This com-
plements the purely algebraic approach to regression analysis by providing a useful terminology and
geometric intuition behind least squares. Most importantly, its use often simplifies the derivation and
understanding of various quantities such as point estimators and test statistics.The reader is assumed
to be comfortable with the notions of linear subspaces, span, dimension, rank, and orthogonality. See
the references given at the beginning of Section B.5 for detailed presentations of these and other
important topics associated with linear and matrix algebra.

1.3.1 Projection

The Euclidean dot product or inner product of two vectors u = (u1,u2,… ,uT )′ and v =
(𝑣1, 𝑣2,… , 𝑣T )′ is denoted by ⟨u , v⟩ = u′v =

∑T
i=1 ui𝑣i. Observe that, for y ,u ,w ∈ ℝT ,⟨y−u ,w⟩ = (y−u)′w = y′w − u′w = ⟨y ,w⟩ − ⟨u ,w⟩. (1.37)

The norm of vector u is ‖u‖ = ⟨u ,u⟩1∕2.The squarematrixUwith columns u1,…, uT is orthonormal
if UU′ = U′U= I, i.e., U′ = U−1, implying ⟨ui,uj⟩ = 1 if i = j and zero otherwise.
For a fixed T × k matrix X, k ⩽ T and usually such that k ≪ T (“is much less than”), the column

space of X, denoted (X), or the linear span of the k columns X, is the set of all vectors that can be
generated as a linear sum of, or spanned by, the columns of X, such that the coefficient of each vector
is a real number, i.e.,

(X) = {y ∶ y=Xb ,b ∈ ℝk}. (1.38)

In words, if y ∈ (X), then there exists b ∈ ℝk such that y=Xb.
It is easy to verify that (X) is a subspace of ℝT with dimension dim((X)) = rank(X) ⩽ k. If

dim((X)) = k, then X is said to be a basis matrix (for (X)). Furthermore, if the columns of X are
orthonormal, then X is an orthonormal basis matrix and X′X = I.
LetV be a basis matrix with columns v1,… , vk .Themethod ofGram–Schmidt can be used to con-

struct an orthonormal basismatrixU = [u1,… ,uk] as follows. First setu1 = v1∕‖v1‖ so that ⟨u1,u1⟩ =
1. Next, let u∗

2 = v2 − ⟨v2,u1⟩u1, so that⟨u∗
2,u1⟩ = ⟨v2,u1⟩ − ⟨v2,u1⟩⟨u1,u1⟩ = ⟨v2,u1⟩ − ⟨v2,u1⟩ = 0, (1.39)

and set u2 = u∗
2∕‖u∗

2‖. By construction of u2, ⟨u2,u2⟩ = 1, and from (1.39), ⟨u2,u1⟩ = 0. Continuewith
u∗
3 = v3 − ⟨v3,u1⟩u1 − ⟨v3,u2⟩u2 and u3 = u∗

3∕‖u∗
3‖, up to u∗

k = vk −
∑k−1

i=1 ⟨vk ,ui⟩ui and uk = u∗
k∕‖u∗

k‖.
This renders U an orthonormal basis matrix for (V).
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The next example offers some practice with column spaces, proves a simple result, and shows how
to use Matlab to investigate a special case.

Example 1.5 Consider the equality of the generalized and ordinary least squares estimators. Let X
be aT × k regressormatrix of full rank,𝚺 be aT × T positive definite covariancematrix,A = (X′X)−1,
and B = (X′𝚺−1X) (both symmetric and full rank). Then, for all T-length column vectors Y ∈ ℝT ,

𝜷 = 𝜷𝚺 ⇐⇒ (X′𝚺−1X)−1X′𝚺−1Y = (X′X)−1X′Y
⇐⇒ B−1X′𝚺−1Y = AX′Y
⇐⇒ X′𝚺−1Y = BAX′Y ⇐⇒ Y′(𝚺−1X) = Y′(XAB)
⇐⇒ 𝚺−1X = XAB, (1.40)

where the ⇒ in (1.40) follows because Y is arbitrary. (Recall from (1.32) that equality of 𝜷 and 𝜷𝚺
depends only on properties of X and 𝚺. Another way of confirming the⇒ in (1.40) is to replace Y in
Y′(𝚺−1X) = Y′(XAB) with Y = X𝜷 + 𝝐 and take expectations.)
Thus, if z ∈ (𝚺−1X), then there exists a v such that z = 𝚺−1Xv. But then (1.40) implies that

z = 𝚺−1Xv = XABv = Xw,

wherew = ABv, i.e., z ∈ (X).Thus, (𝚺−1X) ⊂ (X). Similarly, if z ∈ (X), then there exists a v such
that z = Xv, and (1.40) implies that

z = Xv = 𝚺−1XB−1A−1v = 𝚺−1Xw,

where w = B−1A−1v, i.e., (X) ⊂ (𝚺−1X). Thus, 𝜷 = 𝜷𝚺 ⇐⇒ (X) = (𝚺−1X). This column space
equality implies that there exists a k × k full rank matrix F such that XF = 𝚺−1X. To compute F,
left-multiply by X′ and, as we assumed that X is full rank, we can then left-multiply by (X′X)−1, so
that F = (X′X)−1X′𝚺−1X.4
As an example, with JT the T × T matrix of ones, let 𝚺 = 𝜌𝜎2JT + (1 − 𝜌)𝜎2IT , which yields the

equi-correlated case.Then, experimenting withX in the code in Listing 1.1 allows one to numerically
confirm that 𝜷 = 𝜷𝚺 when 𝟏T ∈ (X), but not when 𝟏T ∉ (X). The fifth line checks (1.40), while the
last line checks the equality ofXF and𝚺−1X. It is also easy to add code to confirm thatP𝚺 is symmetric
in this case, and not when 𝟏T ∉ (X). ◾

The orthogonal complement of (X), denoted (X)⟂, is the set of all vectors inℝT that are orthog-
onal to (X), i.e., the set {z ∶ z′y = 0, y ∈ (X)}. From (1.38), this set can be written as {z ∶ z′Xb =

1 s2=2; T=10; rho=0.8; Sigma=s2*( rho*ones(T,T)+(1-rho)*eye(T));
2 zeroone=[zeros(4,1);ones(6,1)]; onezero=[ones(4,1);zeros(6,1)];
3 X=[zeroone, onezero, randn(T,5)];
4 Si=inv(Sigma); A=inv(X'*X); B=X'*Si*X;
5 shouldbezeros1 = Si*X - X*A*B
6 F=inv(X'*X)*X'*Si*X; % could also use: F=X\(Si*X);
7 shouldbezeros2 = X*F - Si*X

Program Listing 1.1: For confirming that 𝜷 = 𝜷𝚺 when 𝟏T ∈ (𝐗).
4 In Matlab, one can also use the mldivide operator for this calculation.
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0, b ∈ ℝk}. Taking the transpose and observing that z′Xb must equal zero for all b ∈ ℝk , we may
also write

(X)⟂ = {z ∈ ℝT ∶ X′z=𝟎}.

Finally, the shorthand notation z ⟂ (X) or z ⟂ X will be used to indicate that z ∈ (X)⟂.
The usefulness of the geometric approach to least squares rests on the following fundamental result

from linear algebra.

Theorem 1.1 Projection Theorem Given a subspace  of ℝT , there exists a unique u ∈  and
v ∈ ⟂ for every y ∈ ℝT such that y = u + v. The vector u is given by

u = ⟨y,w1⟩w1 + ⟨y,w2⟩w2 + · · · + ⟨y,wk⟩wk , (1.41)

where {w1,w2,… ,wk} are a set of orthonormal T × 1 vectors that span  and k is the dimension of
 . The vector v is given by y − u.

Proof : To show existence, note that, by construction, u ∈  and, from (1.37) for i = 1,… , k,

⟨v,wi⟩ = ⟨y − u,wi⟩ = ⟨y,wi⟩ − k∑
j=1

⟨y,wj⟩ ⋅ ⟨wj,wi⟩ = 0,

so that v ⟂  , as required.
To show that u and v are unique, suppose that y can be written as y = u∗ + v∗, with u∗ ∈  and

v∗ ∈ ⟂. It follows that u∗ − u = v − v∗. But as the left-hand side is contained in  and the right-hand
side in ⟂, both u∗ − u and v − v∗ must be contained in the intersection  ∩ ⟂ = {0}, so that u = u∗

and v = v∗. ◾

Let T = [w1 w2 … wk], where the wi are given inTheorem 1.1 above. From (1.41),

u = [w1 w2 … wk]

⎡⎢⎢⎢⎢⎣
⟨y,w1⟩⟨y,w2⟩

⋮⟨y,wk⟩
⎤⎥⎥⎥⎥⎦
= T

⎡⎢⎢⎢⎢⎣
w′

1
w′

2
⋮
w′

k

⎤⎥⎥⎥⎥⎦
y = TT′y = Py, (1.42)

where the matrix P = TT′ is referred to as the projectionmatrix onto  . Note thatT′T = I. Matrix
P is unique, so that the choice of orthonormal basis is not important; see Problem 1.4. We can
write the decomposition of y as the (algebraically obvious) identity y = Py + (IT − P )y. Observe
that (IT − P ) is itself a projection matrix onto ⟂. By construction,

Py ∈  , (1.43)
(IT − P )y ∈ ⟂. (1.44)

This is, in fact, the definition of a projection matrix, i.e., the matrix that satisfies both (1.43) and (1.44)
for a given  and for all y ∈ ℝT is the projection matrix onto  .
From Theorem 1.1, if X is a T × k basis matrix, then rank(P(X)) = k. This also follows from

(1.42), as rank(TT′) = rank(T) = k, where the first equality follows from the more general result
that rank(KBB′) = rank(KB) for any n ×m matrix B and s × n matrix K (see, e.g., Harville, 1997,
Cor. 7.4.4, p. 75).
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Observe that, if u = Py, then Pu must be equal to u because u is already in  . This also fol-
lows algebraically from (1.42), i.e.,P = TT′ andP 2 = TT′TT′ =TT′ = P , showing that thematrix
P is idempotent, i.e., PP = P . Therefore, ifw = (IT − P )y ∈ ⟂, then Pw = P (IT − P )y=𝟎.
Another property of projection matrices is that they are symmetric, which follows directly from
P = TT′.

Example 1.6 Let y be a vector inℝT and  a subspace ofℝT with corresponding projection matrix
P . Then, with P⟂ = IT − P from (1.44),‖P⟂y‖2 = ‖y − Py‖2 = (y − Py)′(y − Py)

= y′y − y′Py − y′P′y + y′P′Py = y′y − y′Py = ‖y‖2 − ‖Py‖2,
i.e., ‖y‖2 = ‖Py‖2 + ‖P⟂y‖2. (1.45)

ForX a full-rankT × kmatrix and  = (X), this implies, for regressionmodel (1.3) with Ŷ = X𝜷 and
�̂� = Y−X𝜷 ,

Y′Y = Ŷ′Ŷ + �̂�
′
�̂�

= (Ŷ + �̂�)′(Ŷ + �̂�).
(1.46)

In the g.l.s. framework, use of (1.46) applied to the transformed model (1.25) and (1.26) yields, with
Ŷ∗ = X∗𝜷𝚺 and �̂�∗ = Y∗ − Ŷ∗,

Y′
∗Y∗ = Ŷ′

∗Ŷ∗ + �̂�
′
∗�̂�∗ = (Ŷ∗ + �̂�∗)′(Ŷ∗ + �̂�∗),

or, with Ŷ = X𝜷𝚺 and �̂� = Y − Ŷ,

Y′𝚺−1∕2𝚺−1∕2Y = Y′
∗Y∗

= (Ŷ∗ + �̂�∗)′(Ŷ∗ + �̂�∗) = (Ŷ + �̂�)′𝚺−1∕2𝚺−1∕2(Ŷ + �̂�),

or, finally,

Y′𝚺−1Y = Ŷ′𝚺−1Ŷ + �̂�
′𝚺−1�̂�, (1.47)

which is (1.33), as was used for determining the R2 measure in the g.l.s. case. ◾

An equivalent definition of a projection matrix P onto  is when the following are satisfied:
v ∈  ⇒ Pv= v (projection) (1.48)
w ⟂  ⇒ Pw=𝟎 (perpendicularity). (1.49)

The following result is both interesting anduseful; it is proven in Problem1.8,where further comments
are given.

Theorem 1.2 If P is symmetric and idempotent with rank(P) = k, then (i) k of the eigenvalues of P
are unity and the remaining T − k are zero, and (ii) tr(P) = k.
This is understood as follows: If T × T matrix P is such that rank(P) = tr(P) = k and k of the eigen-

values of P are unity and the remainingT − k are zero, then it is not necessarily the case that P is sym-
metric and idempotent. However, if P is symmetric and idempotent, then tr(P) = k ⇐⇒ rank(P) = k.
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1 function G=makeG(X) % G is such that M=G'G and I=GG'
2 k=size(X,2); % could also use k = rank(X).
3 M=makeM(X); % M=eye(T)-X*inv(X'*X)*X', where X is size TXk
4 [V,D]=eig(0.5*(M+M')); % V are eigenvectors, D eigenvalues
5 e=diag(D);
6 [e,I]=sort(e); % I is a permutation index of the sorting
7 G=V(:,I(k+1:end)); G=G';

Program Listing 1.2: Computes matrix𝐆 in Theorem 1.3. Function makeM is given in Listing B.2.

Let M = IT − P with dim() = k, k ∈ {1, 2,… ,T − 1}. As M is itself a projection matrix, then,
similar to (1.42), it can be expressed as VV′, where V is a T × (T − k) matrix with orthonormal
columns.We state this obvious, but important, result as a theorem because it will be useful elsewhere
(and it is slightly more convenient to use V′V instead of VV′).

Theorem 1.3 Let X be a full-rank T × k matrix, k ∈ {1, 2,… ,T − 1}, and  = (X) with dim() =
k. LetM = IT − P . The projection matrixMmay be written asM=G′G, whereG is (T − k) × T and
such that GG′ = IT−k and GX=𝟎.

A less direct, but instructive, method for provingTheorem 1.3 is given in Problem 1.5. MatrixG can
be computed by taking its rows to be theT − k eigenvectors ofM that correspond to the unit eigenval-
ues.The small program in Listing 1.2 performs this computation. Alternatively,G can be computed by
applying Gram–Schmidt orthogonalization to the columns of M and keeping the nonzero vectors.5
Matrix G is not unique and the two methods just stated often result in different values.
It turns out that any symmetric, idempotent matrix is a projection matrix:

Theorem 1.4 The symmetry and idempotency of a matrix P are necessary and sufficient conditions
for it to be the projection matrix onto the space spanned by its columns.

Proof : Sufficiency: We assume P is a symmetric and idempotent T × T matrix, and must show that
(1.43) and (1.44) are satisfied for all y ∈ ℝT . Let y be an element of ℝT and let  = (P). By the def-
inition of column space, Py ∈  , which is (1.43). To see that (1.44) is satisfied, we must show that
(I−P)y is perpendicular to every vector in  , or that (I−P)y ⟂ Pw for all w ∈ ℝT . But

((I−P)y)′Pw= y′Pw− y′P′Pw=𝟎
because, by assumption, P′P=P.
For necessity, following Christensen (1987, p. 335), write y= y1 + y2, where y ∈ ℝT , y1 ∈  and

y2 ∈ ⟂. Then, using only (1.48) and (1.49), Py = Py1 + Py2 = Py1 = y1 and

P2y=P2y1 + P2y2 = Py1 = Py,

so that P is idempotent. Next, as Py1 = y1 and (I−P)y = y2,

y′P′(I−P)y = y′1y2 = 0,

5 In Matlab, the orth function can be used. The implementation uses the singular value decomposition (svd) and attempts
to determine the number of nonzero singular values. Because of numerical imprecision, this latter step can choose too many.
Instead, just use [U,S,V]=svd(M); dim=sum(round(diag(S))==1); G=U(:,1:dim)’;, where dim will equal
T − k for full rank Xmatrices.
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because y1 and y2 are orthogonal. As y is arbitrary, P′(I−P) must be 𝟎 , or P′ = P′P. From this and
the symmetry of P′P, it follows that P is also symmetric. ◾

The following fact will be the key to obtaining the o.l.s. estimator in a linear regression model, as
discussed in Section 1.3.2.

Theorem 1.5 Vector u in  is the closest to y in the sense that‖y−u‖2 = min
ũ∈ ‖y− ũ‖2.

Proof : Let y = u + v, where u ∈  and v ∈ ⟂. We have, for any ũ ∈  ,‖y− ũ‖2 = ‖u+ v− ũ‖2 = ‖u− ũ‖2 + ‖v‖2 ⩾ ‖v‖2 = ‖y−u‖2,
where the second equality holds because v ⟂ (u − ũ). ◾

The next theorem will be useful for testing whether the mean vector of a linear model lies in a
subspace of (X), as developed in Section 1.4.

Theorem 1.6 Let 0 ⊂  be subspaces of ℝT with respective integer dimensions r and s, such that
0 < r < s < T . Further, let \0 denote the subspace  ∩ ⟂

0 with dimension s − r, i.e., \0 = {s ∶
s ∈ ; s ⟂ 0}. Then

a. PP0
= P0

and P0
P = P0

. d. P\0
= P⟂

0 \⟂ = P⟂
0
− P⟂ .

b. P\0
= P − P0

. e. PP\0
= P\0

P = P\0
.

c. ‖P\0
y‖2 = ‖Py‖2 − ‖P0

y‖2. f. ‖P⟂
0 \⟂y‖2 = ‖P⟂

0
y‖2 − ‖P⟂y2‖.

Proof : (part a) For all y ∈ ℝT , as P0
y ∈  , P (P0

y) = P0
y. Transposing yields the second result.

Another way of seeing this (and which is useful for proving the other results) is to partitionℝT into
subspaces  and ⟂, and then  into subspaces 0 and \0. Take as a basis for ℝT the vectors

0 basis
⏞⏞⏞⏞⏞

r1,… , rr,

\0 basis
⏞⏞⏞⏞⏞⏞⏞⏞⏞

sr+1,… , ss
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

 basis

, zs+1,… , zT
⏟⏞⏞⏞⏟⏞⏞⏞⏟

⊥ basis

(1.50)

and let y= r+ s+ z, where r ∈ 0, s ∈ \0 and z ∈ ⟂ are orthogonal. Clearly, P0
y= r while

Py= r+ s and P0
Py = P0

(r+ s) = r.
The remaining proofs are developed in Problem 1.9. ◾

1.3.2 Implementation

For the linear regression model

Y(T×1) = X(T×k)𝜷 (k×1) + 𝝐(T×1), (1.51)
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with subscripts indicating the sizes and 𝝐 ∼ N(𝟎, 𝜎2IT ), we seek that 𝜷 such that ‖Y − X𝜷‖2 is
minimized. From Theorem 1.5, X𝜷 is given by PXY, where PX ≡ P(X) is an abbreviated notation for
the projection matrix onto the space spanned by the columns of X. We will assume that X is of full
rank k, though this assumption can be relaxed in a more general treatment; see, e.g., Section 1.4.2.
If X happens to consist of k orthonormal column vectors, then T=X, where T is the orthonor-

mal matrix given in (1.42), so that PX = TT′. If (as usual), X is not orthonormal, with columns,
say, v1,… , vk , then T could be constructed by applying the Gram–Schmidt procedure to v1,… , vk .
Recall that, under our assumption thatX is full rank, v1,… , vk forms a basis (albeit not orthonormal)
for (X).
This can be more compactly expressed in the following way: From Theorem 1.1, vector Y can

be decomposed as Y = PXY + (I − PX)Y, with PXY =
∑k

i=1 civi, where c = (c1,… , ck)′ is the unique
coefficient vector corresponding to the basis v1,… , vk of (X). Also from Theorem 1.1, (I − PX)Y is
perpendicular to (X), i.e., ⟨(I − PX)Y, vi⟩ = 0, i = 1,… , k. Thus,

⟨Y, vj⟩ = ⟨PXY + (I − PX)Y, vj⟩ = ⟨PXY, vj⟩ = ⟨ k∑
i=1

civi, vj

⟩
=

k∑
i=1

ci⟨vi, vj⟩,
j = 1,… , k, which can be written in matrix terms as⎡⎢⎢⎢⎢⎣

⟨Y, v1⟩⟨Y, v2⟩
⋮⟨Y, vk⟩

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
⟨v1, v1⟩ ⟨v1, v2⟩ · · · ⟨v1, vk⟩⟨v2, v1⟩ ⟨v2, v2⟩ · · · ⟨v2, vk⟩

⋮ ⋮ ⋮⟨vk , v1⟩ ⟨vk , v2⟩ ⟨vk , vk⟩
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
c1
c2
⋮
ck

⎤⎥⎥⎥⎥⎦
,

or, in terms of X and c, as X′Y = (X′X)c. As X is full rank, so is X′X, showing that c = (X′X)−1X′Y is
the coefficient vector for expressing PXY using the basis matrix X. Thus, PXY = Xc=X(X′X)−1X′Y,
i.e.,

PX = X(X′X)−1X′. (1.52)

As PXY is unique fromTheorem 1.1 (and from the full rank assumption onX), it follows that the least
squares estimator 𝜷 = c. This agrees with the direct approach used in Section 1.2. Notice also that, if
X is orthonormal, then X′X= I and X(X′X)−1X′ reduces to XX′, as in (1.42).
It is easy to see that PX is symmetric and idempotent, so that fromTheorem 1.4 and the uniqueness

of projection matrices (Problem 1.4), it is the projection matrix onto  , the space spanned by its
columns. To see that  = (X), we must show that, for all Y ∈ ℝT , PXY ∈ (X) and (IT − PX)Y ⟂
(X). The former is easily verified by taking b = (X′X)−1X′Y in (1.38). The latter is equivalent to the
statement that (IT − PX)Y is perpendicular to every column of X. For this, defining the projection
matrix

M ∶= I − PX = IT − X(X′X)−1X′, (1.53)

we have

X′MY = X′(Y − PXY) = X′Y−X′X(X′X)−1X′Y = 𝟎, (1.54)

and the result is shown. Result (1.54) impliesMX=𝟎. This follows from direct multiplication, but can
also be seen as follows: Note that (1.54) holds for anyY ∈ ℝT , and taking transposes yieldsY′M′X = 𝟎,
or, asM is symmetric,MX=𝟎.
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Example 1.7 Themethod of Gram–Schmidt orthogonalization is quite naturally expressed in terms
of projection matrices. Let X be a T × k matrix not necessarily of full rank, with columns z1,… , zk ,
z1 ≠ 𝟎. Define w1 = z1∕‖z1‖ and

P1 = P(z1) = P(w1) = w1(w′
1w1)−1w′

1 = w1w′
1.

Now let r2 = (I − P1)z2, which is the component in z2 perpendicular to z1. If ‖r2‖ > 0, then set w2 =
r2∕‖r2‖ and P2 = P(w1,w2), otherwise set w2 = 𝟎 and P2 = P1. This is then repeated for the remain-
ing columns of X. The matrix W with columns consisting of the j nonzero wi, 1 ⩽ j ⩽ k, is then an
orthonormal basis for (X). ◾

Example 1.8 Let PX be given in (1.52) with 𝟏 ∈ (X) and P𝟏 = 𝟏𝟏′∕T be the projection matrix onto
𝟏, i.e., the line (1, 1,… , 1) in ℝT . Then, from Theorem 1.6, PX − P𝟏 is the projection matrix onto
(X)\(𝟏) and‖(PX − P𝟏)Y‖2 = ‖PXY‖2 − ‖P𝟏Y‖2.
Also fromTheorem 1.6, ‖PX\𝟏Y‖2 = ‖P𝟏⟂\X⟂Y‖2 = ‖P𝟏⟂Y‖2 − ‖PX⟂Y‖2. As‖PX\𝟏Y‖2 = ‖(PX − P𝟏)Y‖2 = ∑

(Ŷ − Ȳ )2,‖P𝟏⟂Y‖2 = ‖(I − P𝟏)Y‖2 = ∑
(Yt − Ȳ )2,‖PX⟂Y‖2 = ‖(I − PX)Y‖2 = ∑
(Yt − Ŷ )2,

we see that
T∑
t=1

(Yt − Ȳ )2 =
T∑
t=1

(Yt − Ŷ )2 +
T∑
t=1

(Ŷ − Ȳ )2, (1.55)

proving (1.12). ◾

Often it will be of interest to work with the estimated residuals of the regression (1.51), namely

�̂� ∶= Y−X𝜷 = (IT − PX)Y = MY = M(X𝜷 + 𝝐) = M𝝐, (1.56)

whereM is the projection matrix onto the orthogonal complement of X, given in (1.53), and the last
equality in (1.56) follows because MX=𝟎, confirmed by direct multiplication or as shown in (1.54).
From (1.4) and (1.56), the RSS can be expressed as

RSS = S(𝜷) = �̂�
′
�̂� = (MY)′MY = Y′MY = Y′(I−PX)Y. (1.57)

Example 1.9 Example 1.1, the Frisch–Waugh–Lovell Theorem, cont.
From the symmetry and idempotency ofM1, the expression in (1.21) can also also be written as

𝜷2 = (X′
2M1X2)−1X′

2M1Y = (X′
2M

′
1M1X2)−1X′

2M
′
1M1Y

= (Q′Q)−1Q′Z,

where Q=M1X2 and Z=M1Y. That is, 𝜷2 can be computed not by regressing Y onto X2, but by
regressing the residuals of Y onto the residuals of X2, where residuals refers to having removed the
component spanned by X1. If X1 and X2 are orthogonal, then

Q=M1X2 = X2 − X1(X′
1X1)−1X′

1X2 = X2,
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and, with I=M1 + P1,

(X′
2X2)−1X′

2Y = (X′
2X2)−1X′

2(M1 + P1)Y
= (X′

2X2)−1X′
2M1Y = (Q′Q)−1Q′Z ,

so that, under orthogonality, 𝜷2 can indeed be obtained by regressing Y onto X2. ◾

It is clear thatM should have rank T − k, or T − k eigenvalues equal to one and k equal to zero. We
can thus express �̂�2 given in (1.11) as

�̂�2 =
S(𝜷)
T − k

= (MY)′MY
T − k

= Y′MY
rank(M)

=
Y′(I−PX)Y
rank(I−PX)

. (1.58)

Observe also that 𝝐′M𝝐 = Y′MY.
It is now quite easy to show that �̂�2 is unbiased. Using properties of the trace operator and the fact

M is a projection matrix (i.e.,M′M=MM=M),

𝔼[�̂�′�̂�] = 𝔼[𝝐′M′M𝝐] = 𝔼[𝝐′M𝝐] = tr(𝔼[𝝐′M𝝐]) = 𝔼[tr(𝝐′M𝝐)]
= 𝔼[tr(M𝝐𝝐′)] = tr(M𝔼[𝝐𝝐′]) = 𝜎2tr(M) = 𝜎2rank(M) = 𝜎2(T − k),

where the fact that tr(M) = rank(M) follows fromTheorem 1.2. In fact, a similar derivation was used
to obtain the general result (A.6), from which it directly follows that

𝔼[𝝐′M𝝐] = tr(𝜎2M) + 𝟎′M𝟎 = 𝜎2(T − k). (1.59)

Theorem A.3 shows that, if Y ∼ N(𝝁,𝚺) with 𝚺 > 0, then the vector CY is independent of the
quadratic form Y′AY if C𝚺A = 0. Using this with 𝚺 = I, C=P and A=M= I−P, it follows that
X𝜷 = PY and (T − k)�̂�2 = Y′MY are independent. That is:

Under the usual regression model assumptions (including that X is not stochastic, or is such
that the model is variation-free), point estimators 𝜷 and �̂�2 are independent.

This generalizes the well-known result in the i.i.d. case: Specifically, if X is just a column of ones,
then PY = T−1𝟏𝟏′Y = (Ȳ , Ȳ ,… , Ȳ )′ and Y′MY=Y′M′MY =

∑T
t=1 (Yt − Ȳ )2 = (T − 1)S2, so that Ȳ

and S2 are independent.
As �̂� = M𝝐 is a linear transformation of the normal random vector 𝝐,

(�̂� ∣ 𝜎2) ∼ N(𝟎, 𝜎2M), (1.60)

though note that M is rank deficient (i.e., is less than full rank), with rank T − k, so that this is a
degenerate normal distribution. In particular, by definition, �̂� is in the column space of M, so that �̂�
must be perpendicular to the column space of X, or

�̂�
′X=𝟎. (1.61)

If, as usual,X contains a column of ones, denoted 𝟏T , or,more generally, 𝟏T ∈ (X), then (1.61) implies
that

∑T
t=1 𝜖t = 0.

We now turn to the generalized least squares case, with the model given by (1.3) and (1.24), and
estimator (1.28). In this more general setting when 𝝐 ∼ N(𝟎, 𝜎2𝚺), the residual vector is given by

�̂� = Y − X𝜷𝚺 = M𝚺Y, (1.62)
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where M𝚺 = IT − X(X′𝚺−1X)−1X′𝚺−1. Although M𝚺 is idempotent, it is not symmetric, and cannot
be referred to as a projection matrix. Observe also that the estimated residual vector is no longer
orthogonal to the columns of X. Instead we have

X′𝚺−1(Y − X𝜷𝚺) = 𝟎, (1.63)

so that the residuals do not necessarily sum to zero.
We now state a result frommatrix algebra, and then use it to prove a theorem that will be useful for

some hypothesis testing situations in Chapter 5.

Theorem 1.7 Let V be an n × n positive definite matrix, and let U and T be n × k and n × (n − k)
matrices, respectively, such that, ifW = [U,T], thenW′W = WW′ = In. Then

V−1 − V−1U(U′V−1U)−1U′V−1 = T(T′VT)−1T′. (1.64)

Proof : See Rao (1973, p. 77). ◾

Let P = PX be the usual projection matrix on the column space of X from (1.52), let M = IT − P,
and let G and H be matrices such that M = G′G and P = H′H, in which case W = [H′,G′] satisfies
W′W = WW′ = IT .

Theorem 1.8 For the regression model given by (1.3) and (1.24), with �̂� = M𝚺Y from (1.62),

�̂�
′𝚺−1�̂� = 𝝐′G′(G𝚺G′)−1G𝝐. (1.65)

Proof : As in King (1980, p. 1268), using Theorem 1.7 with T = G′, U = H′, and V = 𝚺, and the fact
thatH′ can be written as XK, where K is a k × k full rank transformation matrix, we have

𝝐′G′(G𝚺G′)−1G𝝐 = U′(𝚺−1 − 𝚺−1H′(H𝚺−1H′)−1H𝚺−1)U
= U′(𝚺−1 − 𝚺−1XK(K′X′𝚺−1XK)−1K′X′𝚺−1)U
= U′(𝚺−1 − 𝚺−1X(X′𝚺−1X)−1X′𝚺−1)U = �̂�

′𝚺−1�̂�,

which is (1.65). ◾

1.4 Linear Parameter Restrictions

[D]eleting a small unimportant parameter from the model is generally a good idea, because we
will incur a small bias but may gain much precision. This is true even if the estimated param-
eter happens to be highly ‘significant’, that is, have a large t-ratio. Significance indicates that
we have managed to estimate the parameter rather precisely, possibly because we have many
observations. It does not mean that the parameter is important.

(Jan R. Magnus, 2017, p. 30)

In much applied regression analysis, the analyst will wish to know the extent to which certain linear
restrictions on 𝜷 hold. As the quote above by Magnus (2017) suggests, we recommend doing so via
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meansmore related to the purpose of the research, e.g., forecasting, and, particularly, in applications in
the social sciences for which the notion of repeatability of the experiment does not apply, being aware
of the pitfalls of the classic significance testing (use of p-values) and Neyman–Pearson hypothesis
testing paradigm. This issue was discussed in some detail in Section III.2.8, where strong arguments
were raised, and evidence presented, that significance and hypothesis testing might one day make
it to the ash heap of statistical history. In addition to the numerous references provided in Section
III.2.8, such as Ioannidis (2005), the interested reader is encouraged to read Ioannidis (2014), and a
rebuttal to that paper in Leek and Jager (2017), as well as the very pertinent overview in Spiegelhalter
(2017), addressing this issue and themore general theme of trustworthiness in statistical reports, amid
concerns of reproducibility, fake news, and alternative facts.

1.4.1 Formulation and Estimation

A common goal in regression analysis is to test is whether an individual regression coefficient is “sig-
nificantly” different than a given value, often zero. More general tests might involve testing whether
the sum of certain coefficients is a particular value, or testing for the equality of two or more coef-
ficients. These are all special cases of a general linear test that can be expressed as (regrettably with
many Hs, but following standard terminology)

H0 ∶ H𝜷 = h, (1.66)

versus the alternative, H1, corresponding to the unrestricted model. The matrix H is of dimension
J × k and, without loss of generality, assumed to be of full rank J , so that J ⩽ k and h is J × 1. The null
hypothesis can also be written

H0 ∶ Y = X𝜸 + 𝝐, X𝜸 ∈ H , (1.67)

where

H = {z ∶ z=X𝜷, H𝜷 = h, 𝜷 ∈ ℝk}. (1.68)

If h ≠ 𝟎, then H is an affine subspace because it does not contain the zero element (provided both
X andH are full rank, as is assumed).
As an important illustration, for testing if the last J regressors are not significant, i.e., if 𝛽k−J+1 =

· · · = 𝛽k = 0, set h=𝟎 andH = [𝟎J×k−J | IJ ]. For example, if k = 6 and J = 2, then

H =
(

0 0 0 0 1 0
0 0 0 0 0 1

)
.

We next consider how 𝜸 in (1.67) can be estimated, followed by the distribution theory associated
with the formal frequentist testing framework of the null hypothesis for assessing whether or not the
data are in agreement with the proposed set of restrictions.
In many cases of interest, the reduced column space is easily identified. For example, if a set of

coefficients are taken to be zero, then the nonzero elements of �̂� are found by computing the o.l.s.
estimator using an X matrix with the appropriate columns removed. In general, however, it will not
always be clear how to identify the reduced column space, so that a more general method will be
required. Theorem 1.9 gives a nonconstructive proof, i.e., we state the result and confirm it satisfies
the requirements. We subsequently show two constructive proofs.
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Theorem 1.9 AssumingH and X are full rank, the least squares estimator of 𝜸 in (1.67) is given by

�̂� = 𝜷 + AH′[HAH′]−1(h−H𝜷), (1.69)

where A = (X′X)−1.

Proof : By definition, we require that �̂� is the least squares estimator subject to the linear constraint.
Thus, the proof entails showing that (1.69) satisfies the following two conditions:

1) H�̂� = h and
2) ‖Y−X�̂�‖2 ⩽ ‖Y−Xb‖2 for all b ∈ ℝk such thatHb=h.

This is straightforward and detailed in Problem 1.6. ◾

We will refer to �̂� in (1.69) as the restricted least squares, or r.l.s., estimator. It can be derived
in several ways, two important ones of which are now shown. A third way, using projection, is also
straightforward and instructive; see, e.g., Ravishanker and Dey (2002, Sec. 4.6.2) or Seber and Lee
(2003, p. 61).

Derivation of (1.69) Method I: This method makes use of the results for the generalized least
squares estimator and does not explicitly require the use of calculus. We will need the following
well-known matrix result: If matrices A ,B and D are such that A+BDB′ is a square matrix of full
rank, then

(A+BDB′)−1 = A−1 − A−1B(B′A−1B+D−1)−1B′A−1. (1.70)

See, e.g., Abadir and Magnus (2005, p. 107) for proof of the more general case of (A+BDC′)−1.
Let (uncharacteristically, using a lower case letter) v be a vector random variable with mean 𝟎 and

finite covariance matrix 𝜎2
vV, denoted v ∼ (𝟎, 𝜎2

vV). The constraint in (1.66) can be understood as the
limiting case, as 𝜎2

v → 0, of the stochastic set of extraneous information equations on 𝜷 ,

H𝜷 + v = h. (1.71)

The regression model Y=X𝜷 + 𝝐, 𝕍 (𝝐) = 𝜎2IT , can be combined with (1.71) via the so-calledmixed
model of Theil and Goldberger (1961) to give(

Y
h

)
=

(
X
H

)
𝜷 +

(
𝝐

v

)
.

This can be expressed more compactly as

Ym = Xm𝜷m + 𝝐m, 𝝐m ∼ (𝟎 ,𝚺m), 𝚺m =
(
𝜎2IT 𝟎
𝟎 𝜎2

vV

)
,

where the subscriptm denotes “mixed”. Using generalized least squares,

𝜷m = (X′
m𝚺−1

m Xm)−1X′
m𝚺−1

m Ym

= (𝜎−2X′X + 𝜎−2
v H′V−1H)−1(𝜎−2X′Y + 𝜎−2

v H′V−1h)
= (X′X + 𝜆H′V−1H)−1(X′Y + 𝜆H′V−1h),
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where 𝜆 ∶= 𝜎2∕𝜎2
v . Next, following Alvarez and Dolado (1994), use (1.70) with

A ∶= (X′X)−1 and C𝜆 ∶= AH′(HAH′ + 𝜆−1V)−1

to get

𝜷m = [A − C𝜆HA](X′Y+H′(𝜆−1V)−1h)
=AX′Y+AH′(𝜆−1V)−1h−C𝜆HAX′Y−C𝜆HAH′(𝜆−1V)−1h
= 𝜷 + C𝜆(HAH′ + 𝜆−1V)(𝜆−1V)−1h−C𝜆H𝜷 − C𝜆HAH′(𝜆−1V)−1h
= 𝜷 + C𝜆[HAH′(𝜆−1V)−1h+h−H𝜷 −HAH′(𝜆−1V)−1h]
= 𝜷 + C𝜆(h−H𝜷),

where 𝜷 is the unrestricted least squares estimator. Letting 𝜎2
v → 0 gives (1.69). Note that the inverse

ofHAH′ exists because bothH and X (and thus A) are full rank. ◾

Remark Themixedmodel structure is useful in several regressionmodeling contexts, and is related
to formal Bayesian methods, whereby model parameters are treated as random variables, though not
requiring Bayesian methodology. For example, as stated by Lee and Griffiths (1979, pp. 4–5), “Thus,
for stochastic prior information of the form given in [(1.71)], the mixed estimation procedure is more
efficient, is distribution free, and does not involve a Bayesian argument.”
It also provides the most straightforward derivation of the so-called Black–Litterman model for

incorporating viewpoints into a statistical model for financial portfolio allocation; see, e.g., Kolm et al.
(2008, p. 362), as well as Black and Litterman (1992), Meucci (2006), Giacometti et al. (2007), Brandt
(2010, p. 313), and the references therein. ◾

Derivation of (1.69)Method II: Thecalculus technique of Lagrangemultipliers is applicable in this
setting.6 Besides being of interest in itself for deriving �̂�, we will subsequently need equation (1.72)
derived along the way, in Section 1.4.2.
The method implies that the k + J constraints

𝜕

𝜕�̂�i
{‖Y − X�̂�‖2 + 𝝀′(H�̂� − h)} = 0, i = 1,… , k,

H�̂� − h = 𝟎,

must be satisfied, where 𝝀 = (𝜆1,… , 𝜆J )′. The ith equation, i = 1,… , k, is easily seen to be

2
T∑
t=1

(Yt − x′t �̂�)(−xit) + (the ith component of H′𝝀) = 0,

so that the first k equations can be written together as −2X′(Y − X�̂�) +H′𝝀 = 𝟎. These, in turn, can
be expressed together with constraintH�̂� = h as[

2X′X H′

H 𝟎

] [
�̂�

𝝀

]
=

[
2X′Y
h

]
, (1.72)

6 A particularly lucid discussion of Lagrange multipliers is provided by Hubbard and Hubbard (2002, Sec. 3.7).
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from which an expression for �̂� could be derived using the formula for the inverse of a partitioned
matrix. More directly, with A = (X′X)−1, the first set of constraints gives

�̂� = A
(
X′Y − 1

2
H′𝝀

)
. (1.73)

Inserting (1.73) into constraintH�̂� = h givesHAX′Y − 1
2
HAH′𝝀 = h or (as we assume that X andH

are full rank)

𝝀 = 2[HAH′]−1[HAX′Y − h] = 2[HAH′]−1[H𝜷 − h],

where 𝜷 = AX′Y is the unconstrained least squares estimator. Thus, from (1.73),

�̂� =A
(
X′Y − 1

2
H′𝝀

)
=A(X′Y −H′[HAH′]−1[H𝜷 − h])
= 𝜷 − AH′[HAH′]−1[H𝜷 − h],

which is the same as (1.69). ◾

Remark Up to this point, we have considered the linear model Y = X𝜷 + 𝝐 from (1.3). This is an
example of what we refer to as a staticmodel, as opposed to the important class of models involving
time-varying coefficients 𝜷 t , which we refer to as a type of dynamicmodel. Section 5.6 is dedicated to
some dynamic model classes with time-varying 𝜷 t . The most flexible way of dealing with estimation
and inference of the linear model with time-varying parameters is via use of the so-called state space
representation and Kalman filtering techniques; see the remarks at the end of Section 5.6.1.
In some contexts, one is interested in the dynamic regression model Yt = x′t𝜷 t + 𝜖t subject to

time-varying linear constraints Ht𝜷 t = ht , generalizing (1.66). Examples of econometric mod-
els that use such structures, as well as the augmentation of the Kalman filter required for its
estimation are detailed in Doran (1992) and Doran and Rambaldi (1997); see also Durbin and
Koopman (2012). ◾

1.4.2 Estimability and Identifiability

Expression (1.69) uses 𝜷 , which may not be well-defined, as occurs when X is rank deficient. In our
presentation of the linear model for regression analysis, we always assume that X is of full rank (or
can be transformed to be), so that (1.69) is computable. However, contexts exist for which it is natural
and convenient to work with a rank deficientX, such as the ANOVAmodels in Chapters 2 and 3. Use
of such X matrices are common in these and other designed experiments; see, e.g., Graybill (1976)
and Christensen (2011).
As a simple, unrealistic example to help illustrate the point, let the true data-generating process

be given by Yt = 𝜇 + 𝜖t , and consider using the model Yt = 𝜇1 + 𝜇2 + 𝜖t . Clearly, unique estimators
of 𝜇1 and 𝜇2 do not exist, though 𝜇1 + 𝜇2 can be estimated. More generally, 𝜇1 and 𝜇2 can also be
estimated, provided one imposes an additional linear constraint, e.g., 𝜇1 − 𝜇2 = 0. With this latter
constraint, one would choose H and h in (1.66) such that 𝜇1 and 𝜇2 are equal, i.e., H = [1,−1] and
h = 0. Of course, in this simple setting, �̂� is trivially obtained by fitting the regression with X = 𝟏,
but observe that (1.69) cannot be used for computing it. A straightforward resolution, as proposed
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in Greene and Seaks (1991), is to define the restricted least squares estimator as the solution to (1.72),
written, say, asWd= v, which will be unique if rank(W) = k + J .
In our example, X is a T × 2 matrix of all ones, and

W =
[
2X′X H′

H 𝟎

]
=

⎡⎢⎢⎣
2T 2T 1
2T 2T −1
1 −1 0

⎤⎥⎥⎦ ,
which is full rank, with rank k + J = 3, for any sample sizeT . Let Y• =

∑T
t=1 Yt , so that v in (1.72) when

expressed asWd= v is [2Y•, 2Y•, 0]′. The solution to

Wd =
⎡⎢⎢⎣

2T 2T 1
2T 2T −1
1 −1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
�̂�1
�̂�2
𝜆

⎤⎥⎥⎦ = v =
⎡⎢⎢⎣
2Y•
2Y•
0

⎤⎥⎥⎦
is �̂�i = Y•∕(2T) = Ȳ∕2, i = 1, 2, (and 𝜆 = 0), as was obvious from the simple structure of the setup. An
equivalent condition was derived in Bittner (1974): Estimator �̂� is unique if

rank
([

H
X

])
= k, (1.74)

which is clearly the case in this simple example.
We now briefly discuss the concept of estimability, which is related to identifiability, as defined

in Section III.5.1.1. In the previous simple example, 𝜇1 and 𝜇2 are not identifiable, though 𝜇1 + 𝜇2 is
estimable. For vector 𝓵 of size 1 × k, the linear combination 𝓵𝜷 is said to be estimable if it possesses
a linear, unbiased estimator, say 𝜿Y, where 𝜿 is a 1 × T vector. If 𝓵𝜷 is estimable, then 𝓵𝜷 = 𝔼[𝜿Y] =
𝜿𝔼[Y] = 𝜿X𝜷 , so that𝓵 = 𝜿X, or𝓵′ = X′𝜿′.This implies that𝓵𝜷 is estimable if and only if𝓵′ ∈ (X′),
recalling definition (1.38). In the simple example above, it is easy to see that, for 𝓵 = (1, 1), 𝓵𝜷 is
estimable, i.e., 𝜇1 + 𝜇2 can be estimated, as we stated above. However, for 𝓵 = (0, 1) and 𝓵 = (1, 0),
𝓵𝜷 is not estimable, as, obviously, ∄𝜿 such that𝓵′ = X′𝜿′, which agrees with our intuition that neither
𝜇1 nor 𝜇2 is identifiable.
Turning to a slightly less trivial example, consider the regression model with sample size T = 2n

and

X =
[
𝟏n 𝟏n 𝟎n
𝟏n 𝟎n 𝟏n

]
. (1.75)

The baseline (or null hypothesis) model is that all the observations have the same mean, which corre-
sponds to use of only the first column in X in (1.75), whereas interest centers on knowing if the two
populations, represented with samples Y1,… ,Yn and Yn+1,… ,YT , respectively, have different means,
in which case the alternative model takes X in (1.75) to be the latter two columns. This is an example
of a (balanced) one-way ANOVA model with a = 2 groups, studied in more detail in Chapter 2. The
first regressor corresponds to the mean of all the data, while the other two correspond to the means
specific to each of the two populations. It should be clear from the simple structure that the regression
coefficients 𝛽1, 𝛽2, and 𝛽3 are not simultaneously identified. However, it might be of interest to use the
model in this form, such that 𝛽1 refers to the overall mean, and 𝛽2 (𝛽3) is the deviation of the mean in
group one (two) from the overall mean 𝛽1, in which case we want the constraint that 𝛽2 + 𝛽3 = 0.This
is achieved by takingH = (0, 1, 1) and h = 0.
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1 X= [1 1 0 ; 1 1 0; 1 0 1; 1 0 1]; ell = [1 0 1];
2 kappaPRIME = pinv(X') * ell' % try to solve
3 % now check:
4 disc = ell' - X' * kappaPRIME; check = sum(abs(disc)) % should be zero if estimable

Program Listing 1.3: Attempts to solve 𝓵′ = 𝐗′𝜿′ for 𝜿 via use of the generalized inverse.

Clearly, X in (1.75) is rank deficient, with rank(X) = 2, also seen by deleting all redundant rows,
to give

X∗ =
[
1 1 0
1 0 1

]
,

which is (full) rank 2. From (1.74),

rank
([

H
X

])
= rank

([
H
X∗

])
= rank

⎛⎜⎜⎝
⎡⎢⎢⎣
0 1 1
1 1 0
1 0 1

⎤⎥⎥⎦
⎞⎟⎟⎠ = 3 = k,

so that estimator �̂� is unique, also seen from

W =
⎡⎢⎢⎢⎣

2n n n 0
n n 0 1
n 0 n 1
0 1 1 0

⎤⎥⎥⎥⎦ ,
which is (full) rank k + J = 4.
Without constraints on 𝜷 , for 𝓵 = (1, 1, 1) and 𝓵 = (0, 1, 1), 𝓵𝜷 is not estimable because ∄𝜿 such

that𝓵′ = X′𝜿′, which the reader should confirm, and also shouldmake intuitive sense. Likewise,𝓵𝜷 is
estimable for 𝓵 = (1, 0, 1) and 𝓵 = (1, 1, 0) (both of which form the two unique rows of X). These
results can be checked using Matlab with the code given in Listing 1.3, taking n = 2. For example,
running it with𝓵 = (1, 0, 1) yields solution 𝜿 = (0, 0, 1∕2, 1∕2). Inspection shows another solution
to be (1∕2,−1∕2, 1∕2, 1∕2), emphasizing that 𝜿 need not be unique, only that 𝓵′ ∈ (X′).
A good discussion of estimability (and also its connection to their software) is provided in SAS/S-

TAT 9.2 User’s Guide (2008, Ch. 15), from which our notation was inspired (they use L andK in place
of our 𝓵 and 𝜿).

1.4.3 Moments and the Restricted GLS Estimator

Derivation of the first two moments of �̂� is straightforward: As 𝜷 is unbiased, (1.69) implies

𝔼[�̂�] = 𝜷 + AH′(HAH′)−1(h −H𝜷), (1.76)

where, as usual, A = (X′X)−1. It is then easy to verify that �̂� − 𝔼[�̂�] = (I − B)(𝜷 − 𝜷), where
B = AH′(HAH′)−1H, and

(I−B)A(I−B′)=A−BA−AB′ +BAB′ =A−BA,
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so that
𝕍 (�̂� ∣ 𝜎2) = 𝔼[(�̂� − 𝔼[�̂�])(�̂� − 𝔼[�̂�])′ ∣ 𝜎2] = (I − B)𝕍 (𝜷 ∣ 𝜎2)(I − B)′

= 𝜎2(I − B)A(I − B)′ = 𝜎2(I − B)A = 𝕍 (𝜷) − K, (1.77)

where K = 𝜎2BA = 𝜎2AH′(HAH′)−1HA is positive semi-definite for J < k (Problem 1.12), so that �̂�
has a lower variance than 𝜷 , assuming that the same estimate of 𝜎2 is used. Observe, however, that if
the null hypothesis is wrong, then, via the bias evident in (1.76) with h ≠ H𝜷 , the mean squared error
(hereafter m.s.e.) of �̂� could be higher than that of 𝜷 . A good discussion of this and related issues is
provided in Judge et al. (1985, pp. 52–62).
So far, the derivation of �̂� pertained to the linear regression model with i.i.d. normal errors. If the

errors instead are of the form 𝝐 ∼ N(𝟎, 𝜎2𝚺) for knownpositive definitematrix𝚺, thenwe can combine
themethods of g.l.s. and r.l.s. In particular, just use (1.69) with𝚺−1∕2Y in place ofY and𝚺−1∕2X in place
of X. We will denote this estimator as �̂�𝚺 and refer to it as the restricted generalized least squares,
or r.g.l.s., estimator.

Example 1.10 Wewish to compute by simulation the m.s.e. of 𝜷 based on the four estimators o.l.s.,
g.l.s., r.l.s. and r.g.l.s., using, for convenience, the scalar measureM =

∑k
i=1 (𝛽i − 𝛽)2. Let the model be

Yt = 𝛽1 + 𝛽2Xt,2 + 𝛽3Xt,3 + 𝛽4Xt,4 + 𝜖t , t = 1,… ,T = 20,
for 𝝐 = (𝜖1,… , 𝜖T )′ ∼ N(𝟎, 𝜎2𝚺), where 𝚺 is a known, full rank covariance matrix, and the regression
parameters are constrained as 𝛽2 + 𝛽3 + 𝛽4 = 1, for which we take 𝛽1 = 10, 𝛽2 = 0.4, 𝛽3 = −0.2 and
𝛽4 = 1 − 𝛽2 − 𝛽3 = 0.8.The choice ofXmatrix will determine the m.s.e., and so, for each of the 50,000
replications, we let Xt,i

i.i.d.∼ N(0, 1), i = 2, 3, 4, t = 1,… ,T . Measure M is then approximated by its
sample average.
Five models are used. The first takes 𝜖 ∼ N(0, 𝜎2𝑤t), 𝑤t =

√
t; the second is with 𝑤t = t. The third

and fourthmodels assume anAR(1) structure for 𝜖t (recall Example 1.3), with parameters a = 0.25 and

1 function compareRGLS
2 T=20; beta=[10 0.4 -0.2 0.8]'; H=[0 1 1 1]; h=1;
3 Sigma = diag( [(1:T)'].ˆ(0.5)); Sigmainv=inv(Sigma);
4 [V,D]=eig(0.5*(Sigma+Sigma')); W=sqrt(D);
5 Sighalf = V*W*V'; Sighalfinv=inv(Sighalf);
6 sim=500; emat=zeros(sim,4);
7 for s=1:sim
8 X=[ones(T,1),randn(T,3)]; y=X*beta+Sighalf*randn(T,1);
9 OLS = inv(X'*X)*X'*y; GLS = inv(X'*Sigmainv*X)*X'*Sigmainv*y;

10 RLS = OLSrestrict(y,X,H,h);
11 RGLS = OLSrestrict(Sighalfinv*y,Sighalfinv*X,H,h);
12 emat(s,:) = [sum((OLS-beta).ˆ2) sum((GLS-beta).ˆ2) ...
13 sum((RLS-beta).ˆ2) sum((RGLS-beta).ˆ2)];
14 end
15 M=mean(emat)
16
17 function gamma = OLSrestrict(y,X,H,h)
18 [J,k]=size(H); if nargin<4, h=zeros(J,1); end
19 b=regress(y,X); A=inv(X'*X); gamma = b+A*H'*inv(H*A*H')*(h-H*b);

Program Listing 1.4: Compares performance of o.l.s., g.l.s., r.l.s., and r.g.l.s. for a specific model.
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Table 1.1 Empirical mean squared error over the four regression
parameters, based on 50,000 replications.

Model

Method 1 2 3 4 5

o.l.s. 0.80 2.73 0.30 0.44 0.36
g.l.s. 0.72 1.85 0.28 0.36 0.28
r.l.s. 0.56 1.90 0.22 0.35 0.27
r.g.l.s. 0.50 1.23 0.21 0.29 0.22

a = 0.5, respectively.The fifth model assumes anMA(1) structure for 𝜖t with b = 0.5.The program to
computeM is given in Listing 1.4. The results are shown in Table 1.1.
We see that, for all the models, o.l.s. is the worst and r.g.l.s. is the best estimator. Model 2 stands

out because the covariance matrix differs markedly from the identity matrix. As such, the difference
between o.l.s. and g.l.s., and the difference between r.l.s. and r.g.l.s. is quite large. For the othermodels,
these differences are less pronounced, particularly for model 3 (the AR(1) with a = 0.25). ◾

1.4.4 TestingWith h=𝟎

The source of all great mathematics is the special case, the concrete example. It is frequent in
mathematics that every instance of a concept of seemingly great generality is in essence the
same as a small and concrete special case.

(Paul R. Halmos, 1985, p. 324)

The above quote from Halmos is not fully applicable here because the general case of h≠ 𝟎 is impor-
tant. It is straightforward and subsequently detailed, but the derivation for the special case h=𝟎 is
both easier andmore intuitive because it turns out that we can explicitly express the projectionmatrix
corresponding to H .
With  = (X) and H ⊂  as defined in (1.68), consider the hypothesis as given in (1.67), but with

the additional normality assumption:

H0 ∶ Y=X𝜸 + 𝝐, 𝝐 ∼ N(𝟎, 𝜎2I), X𝜸 ∈ H
H1 ∶ Y=X𝜷 + 𝝐, 𝝐 ∼ N(𝟎, 𝜎2I), X𝜷 ∈  .

For notational convenience, denote the projection matrix onto (X) as simply P instead of P , let
M = I−P and let P = PH

. With h=𝟎, X�̂� from (1.69) can be expressed as

X�̂� = X𝜷 − XAH′[HAH′]−1H𝜷

= (XAX′ − XAH′[HAH′]−1HAX′)Y
= (P − XAH′[HAH′]−1HAX′)Y =∶ (P −N)Y, (1.78)

where N is so defined. Straightforward algebra verifies that P −N is symmetric and idempotent, so
that, fromTheorem 1.4, it is the unique projection matrix onto the subspace

{z ∶ z=X𝜷, 𝜷 ∈ ℝk , H𝜷 = 𝟎}.
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Thus, for h=𝟎, we can express P explicitly as

P = P−N = I−M−N, where P − P = N (1.79)

is symmetric and idempotent. Then, fromTheorem 1.2, rank(N) = tr(N), where

tr(N) = tr(XAH′[HAH′]−1HAX′) = tr([HAH′]−1HAX′ XAH′) = tr(IJ ) = J .

The constrained residual vector is then �̂�H = Y − X�̂�, or

(Y−X𝜷) + (X𝜷 − X�̂�) = Y − X�̂� = (I − P)Y = (M+N)Y,

so that (X𝜷 − X�̂�) = NY. The following result is (in light of previous results) simple, and very impor-
tant:

FromTheorem 1.6,

PP = PP = P , and N=P − P = P\ is a projection matrix. (1.80)

In particular, note that X�̂� = PY = PPY = PX𝜷 , so that X�̂� is the projection of X𝜷
onto H .

If H0 is true, then PY and PY should be close, with the discrepancy arising only from sampling
error. A natural measure7 of the magnitude of the difference is the norm, ‖(P − P)Y‖, or its square,
given by

[(P − P)Y]′(P − P)Y = Y′(P − P)Y.
From (A.6),

𝔼[Y′(P − P)Y] = 𝜎2rank(P − P) + 𝜷 ′X′(P − P)X𝜷, (1.81)

where the latter term is, from (1.79), given by

𝜷 ′X′(P − P)X𝜷 = 𝜷 ′X′NX𝜷 = 𝜷 ′H′[HAH′]−1H𝜷. (1.82)

Under H0, X𝜷 = X𝜸 so that

(P − P)X𝜷 = (P − P)X𝜸 = 𝟎, (1.83)

and (1.81) reduces to

𝔼[Y′(P − P)Y] = 𝜎2rank(P − P) = 𝜎2rank(N) = J𝜎2. (1.84)

By using �̂�2 from the unrestricted model as an estimate for 𝜎2, as given in (1.58), and dividing Y′(P −
P)Y by J �̂�2 = rank(P − P)�̂�2, we expect the value

F =
Y′(P − P)Y ∕ rank(P − P)

�̂�2 =
Y′(P − P)Y ∕ rank(P − P)
Y′(I−P)Y ∕ rank(I − P)

(1.85)

7 Other measures, such as the sum or maximum of the vector of absolute values might also seem “natural”. However, the
sampling distribution of the chosen measure is tractable, and also leads to a UMPI test.
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to be “close to” one under H0 and larger than one under H1. The choice of variable name F alludes to
its distribution, which will be shown shortly. Before doing so, we first note that

Y′(P − P)Y=Y′P′PY−Y′P′PY = ‖X𝜷‖2 − ‖X�̂�‖2, (1.86)

or, in terms of sums of squares quantities already defined,

Y′(P − P)Y = Y′(I − P)Y−Y′(I − P)Y
= Y′(I − P)′(I − P)Y−Y′(I − P)′(I − P)Y

= S(�̂�) − S(𝜷). (1.87)

(These also follow fromTheorem 1.6.) Thus, from (1.84) and (1.87), F in (1.85) can also be expressed
in the attractively simple form

F =
[S(�̂�) − S(𝜷)]∕J
S(𝜷)∕(T − k)

=
S(�̂�) − S(𝜷)

J �̂�2 . (1.88)

Direct calculation shows (I − P)(P − P) = 𝟎, so that

(Y−X𝜷) = �̂� = (I − P)Y ⟂ (P − P)Y = (X𝜷 − X�̂�),

and computing the squared length of both sides of �̂�H = (Y−X𝜷) + (X𝜷 − X�̂�) yields

S(�̂�) = S(𝜷) + ‖X𝜷 − X�̂�‖2. (1.89)

Thus, �̂�H can be decomposed into two orthogonal parts, �̂� = MY and X𝜷 − X�̂�. In fact, substituting
�̂� from (1.69) into ‖X𝜷 − X�̂�‖2 and simplifying shows that (for any h, not just 𝟎), from (1.89),

S(�̂�) − S(𝜷) = (h −H𝜷)′[HAH′]−1(h −H𝜷), (1.90)

so that �̂� and S(�̂�) need not be explicitly calculated. Also, (1.81), (1.82) and (1.87) imply that

𝔼[S(�̂�) − S(𝜷)] = 𝜎2J + 𝜷 ′H′[HAH′]−1H𝜷. (1.91)

As an aside, from (1.86), (1.87) and (1.89), ‖X𝜷 − X�̂�‖2 = ‖X𝜷‖2 − ‖X�̂�‖2. By direct expansion,‖X𝜷 − X�̂�‖2 = ‖X𝜷‖2 + ‖X�̂�‖2 − 2Y′X�̂�, implying Y′X�̂� = ‖X�̂�‖2, i.e., that �̂�′X′X�̂� = �̂�
′X′Y. It is not

true, however, that X′X�̂� = X′Y, which obviously holds for 𝜷 , i.e., X′X𝜷 = X′Y from (1.6).
To obtain the distribution of F , recall Theorems A.1 and A.2. With 𝚺 = 𝜎2I, we see that the prod-

uct N𝚺 = (P − P)𝜎2I is not idempotent, but it is only a scale factor that gets in the way. So, using
Theorem A.1 and the fact that (Y∕𝜎) ∼ N(X𝜷∕𝜎, I),

(Y∕𝜎)′(P − P)(Y∕𝜎) ∼ 𝜒2(J , 𝜷 ′X′(P − P)X𝜷∕𝜎2), (1.92)

and, as (I−P)X=𝟎,

(Y∕𝜎)′(I−P)(Y∕𝜎) ∼ 𝜒2(T − k, 0). (1.93)

As (P − P)(I−P) = 𝟎, Theorem A.2 implies that the numerator and denominator of F are inde-
pendent. By dividing both the numerator and denominator by 𝜎2, it follows that F follows a (singly)
noncentral F distribution,

F ∼ F(J ,T − k, 𝜃), 𝜃 = 𝜷 ′X′(P − P)X𝜷 ∕ 𝜎2. (1.94)
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Recalling (1.83), the noncentrality parameter 𝜃 is zero under the null H0. Thus, a test with size 𝛼 of
H0 ∶ H𝜷 = 𝟎 against the unrestricted alternative H1 is to reject when F > c, where c is the quantile
for which Pr(F(J ,T − k) ⩾ c) = 𝛼.
The test with H0 ∶ 𝛽i = 0, 1 ⩽ i ⩽ k, is a very important special case in multiple regression, as it

tests whether the contribution of the ith regressor is “significant”. Then J = 1, H is a row vector of
zeros with a one in the ith place, h = 0, and the test F > c is equivalent to a two-sided t-test, recalling
the relation between the F and t distributions (see, e.g., page II.374).

1.4.5 TestingWith Nonzero h

If h≠ 𝟎, then H is not a subspace, in which case P should be viewed as an “operator” and not as a
matrix. In particular, it is easy to see that an expression such as (1.78) in which Y can be factored out
onto the right-hand side is no longer possible. However, we discovered that (1.90) (stated here again)

S(�̂�) − S(𝜷) = (h −H𝜷)′[HAH′]−1(h −H𝜷), (*1.90*)

also holds for h≠ 𝟎. As such, we might postulate that a similar expression as in (1.91) holds for
h ≠ 𝟎, i.e.,

𝔼[S(�̂�) − S(𝜷)]
?
= 𝜎2J + (h −H𝜷)′[HAH]−1(h −H𝜷). (1.95)

This is indeed true: Using (1.90), define vector random variable Z such that

𝜎Z = H𝜷 − h = HAX′Y − h = HAX′(X𝜷 + 𝝐) − h = H𝜷 − h +HAX′𝝐,

so that Z ∼ N(𝜎−1(H𝜷 − h), 𝛀), where 𝛀 = 𝜎−2HAX′
𝜎2I XAH = HAH′

> 0, and

𝜎−2[S(�̂�) − S(𝜷)] = Z′[HAH′]−1Z.

Then, fromTheorem A.1, as [HAH′]−1𝛀 = IJ is idempotent,

𝜎−2[S(�̂�) − S(𝜷)] ∼ 𝜒2(J , 𝜂), 𝜂 = 𝜎−2(H𝜷 − h)′[HAH′]−1(H𝜷 − h). (1.96)

Using the fact that 𝔼[𝜒2(J , 𝜂)] = J + 𝜂, (1.95) follows. Also, under the null hypothesis H𝜷 = h,
𝜎−2[S(�̂�) − S(𝜷)] ∼ 𝜒2(J , 0).
From (1.90), the only stochastic element in S(�̂�) − S(𝜷) is 𝜷 , which implies that S(�̂�) − S(𝜷) is inde-

pendent of �̂�2. Thus, the F statistic defined above in (1.88), i.e.,

F =
[S(�̂�) − S(𝜷)]∕J
S(𝜷)∕(T − k)

=
S(�̂�) − S(𝜷)

J �̂�2 , (1.88)

follows the noncentral F distribution, F ∼ F(J , (T − k), 𝜂).

1.4.6 Examples

Example 1.11 A company claims that its new method of coaching for a particular college entrance
exam is superior to the old, standard method. In particular, they say that, initially, the student’s
improvement is slower than that using the old method, but as the student “gets the hang of it”, they
improve faster than they would training with the old method. For both methods, customers have the
choice of how many full-day sessions they wish to take, with one, two, three, or four being typical.
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Figure 1.3 Percentage improvement for the two test groups as a function of number of sessions.

To test the claim, a study was conducted (by an independent researcher) as follows. From a total of
T = 40 people interested in taking lessons (and who have never previously taken the exam or such a
study course), 20 were randomly assigned to the standard method, say A, and the other 20 to the new
method, say B. For each group of 20, 5 received one session, 5 two sessions, 5 three and 5 four sessions.
Each person took a practice exam before, and a practice exam after “treatment” and Yi, the percent
improvement of each person, was recorded.The resulting (fictitious) data are shown in Figure 1.3.The
claim is that, when using a simple linear regression to model the data as a function of s, the number
of sessions, the intercept under teaching method B will be lower than that of A, while the slope (the
coefficient of s) will be higher.
One way of modeling this is to let Y be the stack of observations Yi such that the first 20 belong to

group A, the second 20 to group B, and within a group, the first five correspond to s = 1, the next five
to s = 2, etc. The 40 × 4 design matrix X for the unrestricted model Y = X𝜷 + 𝝐 is then given by

X =
(

𝟏20 𝟎20 v 𝟎20
𝟎20 𝟏20 𝟎20 v

)
,

where v = (1 2 3 4)′ ⊗ 𝟏5 = (1 1 1 1 1 2 2 · · · 5)′. The o.l.s. estimates are
𝛽1 = 0.794(1.73), 𝛽2 = −4.02(1.73), 𝛽3 = 3.06(0.631), 𝛽4 = 5.13(0.631), and �̂� = 3.15, where the
approximate standard errors based on (1.8) are given in parentheses, and S(𝜷) = 358.1. Note that
𝛽1 > 𝛽2 and 𝛽3 < 𝛽4 as claimed. To test this, take

H =
(

1 −1 0 0
0 0 1 −1

)
, h=𝟎, (1.97)

and use (1.69) to get �̂� = (−1.61,−1.61, 4.09, 4.09)′ and S(�̂�) = 412.4, so that F = 2.7310 from (1.88),
with p-value 0.0787. Value S(�̂�) could also be obtained by noting that the reduced column space is

given by Z =
(
𝟏20 v
𝟏20 v

)
.

The data used in the illustration were simulated using 𝜷 = (0,−5, 3, 5)′ and 𝜎 = 3, using the code
in Listing 1.5. With these values, the noncentrality parameter in (1.94) is 𝜃 = 𝜷 ′H′[HAH′]−1H𝜷∕𝜎2 =
50∕9 from (1.82).Thus, with c = F−1

J ,T−k(1 − 𝛼) = 3.26 for J = 2, T − k = 36 and 𝛼 = 0.05, the power of
the F test is 0.513, or not much better than flipping a fair coin. The reader is encouraged to construct
a program to confirm this power via simulation. Observe this is trivially done based on the code in
Listing 1.5, omitting the superfluous graphics commands and calculation ofnum2 andnum3. Based on
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1 randn('state',2); % this is now deprecated in Matlab, but still works in version R2010a
2 cc=5; T=2*4*cc; % cc is cell count. So T is a multiple of 2*4
3 beta=[0 -5 3 5]';
4 dum1=[ones(T/2,1); zeros(T/2,1)]; dum2=1-dum1;
5 time=kron((1:4)',ones(cc,1)); c3=kron([1,0]',time); c4=kron([0,1]',time);
6 X=[dum1 dum2 c3 c4]; y=X*beta+3*randn(T,1);
7
8 figure
9 for i=1:T

10 if X(i,1)==1, h1=plot(X(i,3),y(i),'go','linewidth',2); set(h1,'markersize',8)
11 else h2=plot(X(i,4),y(i),'rx','linewidth',2); set(h2,'markersize',8), end
12 hold on
13 end
14 hold off, set(gca,'XTick',1:4), set(gca,'fontsize',16)
15 ax=axis; axis([0.5 4.5 ax(3) ax(4)]), legend([h1,h2],'old','new',2)
16
17 A=inv(X'*X); betahat=A*X'*y; %#ok<*MINV?
18 yhat=X*betahat; res=y-yhat; Sbeta=sum(res.ˆ2);
19 sig2hat=Sbeta/(T-4); sigma_hat = sqrt(sig2hat); H=[1 -1 0 0; 0 0 1 -1];
20 num1 = (H*betahat)'*inv(H*A*H')*(H*betahat) %#ok<*NOPTS>
21 F = num1 / 2 / sig2hat, pvalue = 1-fcdf(F,2,T-4)
22 gammahat = OLSrestrict(y,X,H); yhat=X*gammahat; res=y-yhat;
23 Sgamma=sum(res.ˆ2); num2 = Sgamma - Sbeta
24 Z = [dum1 + dum2, c3 + c4]; A=inv(Z'*Z); bhat=A*Z'*y; yhat=Z*bhat;
25 res=y-yhat; Sb=sum(res.ˆ2); num3 = Sb - Sbeta

Program Listing 1.5: Computes F statistic (1.88) and the corresponding p-value. Three ways of
obtaining the numerator in (1.88) are computed: num1 uses (1.90), num2 computes �̂� and its asso-
ciated residual sum of squares S(�̂�), and num3 is computed based on the reduced column space given
by matrix Z in the program. Function OLSrestrict is given in Listing 1.6 below.

1 function gamma = OLSrestrict(y,X,H,h)
2 [J,k]=size(H); if nargin<4, h=zeros(J,1); end
3 b=regress(y,X); A=inv(X'*X); gamma = b+A*H'*inv(H*A*H')*(h-H*b);

Program Listing 1.6: Called by the code in Listing 1.5 to compute �̂� from (1.69).

(a total overindulgence of) sim = 10,000, 000 replications, the empirical power is, to three significant
digits, the same, 0.513 (and, for 𝛼 = 0.01, is 0.265).
Problem 1.13 asks the reader to construct a simple program to calculate the minimum necessary

sample size, T , to obtain a specified test size and power. For example, to get a power of 0.90 with
𝛼 = 0.05, T needs to be at least 96. Simulation with T = 96 confirms this, giving an (empirical) power
of 0.906, as the reader should verify, and is 0.752 for 𝛼 = 0.01. ◾

Example 1.12 Example 1.11 cont.
We now wish to see how this regression would be conducted using the SAS system (with details of its
basic use given in Appendix D).The first issue concerns getting the data into SAS.The simple Matlab
code in Listing 1.7 outputs variables y and X, as were generated in Listing 1.5, to a text file, so that
they can be, for example, read in by other programs, as we require here. In general, a bit of trial and
error might be required with the fprintf command to get the desired format.
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1 YX=[y,X]; fileID = fopen('coachingdata.txt','w');
2 fprintf(fileID,'%8.5g %1u %1u %1u %1u \r\n',YX'); fclose(fileID);

Program Listing 1.7: Outputs variables 𝐲 and 𝐗 generated in Listing 1.5 as a text file.

ods pdf file='Coaching Regression Output.pdf';
data coach;

infile 'coachingdata.txt';
input y X1-X4;

run;
proc reg data=coach;

RestrictedModel: model y = X1-X4 / NOINT;
restrict X1=X2, X3=X4;

UnRestricted: model y = X1-X4 / NOINT;
SameInterceptAndSlope: test X1=X2, X3=X4;

run;
ods _all_ close;
ods html;

SAS Program Listing 1.1: SAS statements for (i) reading the text data set produced from theMatlab
output generated by the code in Listing 1.7, and (ii) performing a regression analysis of the restricted
model and the unrestricted model, and, for the latter, conducting the F test for the restrictions in
(1.97). The output is a report, as an Adobe portable document format (pdf), including several useful
graphics.

Next, the code in SAS Listing 1.1 performs two regression analyses. The first is of the restricted
model, where the restrict statement is used to indicate (in terms of the variable names associated
with the X matrix, and not the 𝛽 coefficients). The second is unrestricted, and performs the F test
associated with the restriction we wish to test. Observe how the NOINT option is necessary to tell
SAS not to include an intercept term (a column of ones) in the regression, which it otherwise does
by default. The SAS output (not shown) for the test in (1.97) yields F = 2.73 with a p-value of 0.0787,
agreeing with the values obtained above using manual calculations in Matlab. ◾

A time-series regression is such that Yt and x′t correspond to time point t. For simplicity, assume
that the time points for which observations are observed are equally spaced, so that t = 1,… ,T . A
simple case is the model Yt = 𝛽1 + 𝛽2t + 𝜖t . Examples of dependent variables that could be modelled
as a time-series regression include:

1) Quarterly sales of a certain product, using regressors such as quarterly “dummy” variables, price,
and amount of advertising, as well as prices and amounts of advertising for similar products offered
from various market competitors.

2) Monthly rate of:
a) fatalities caused by car accidents, using as regressors monthly dummies and/or dummies for

particular days, such as weekend days or holidays
b) alcohol-related car accidents
c) homicides caused by guns.
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3) Blood pressure of a patient, measured at weekly intervals, with regressors such as weight, number
of cigarettes smoked, etc.

There are occasions in which the (linear) relationship describing a variable over time undergoes a
pronounced change, due perhaps to the occurrence of a relevant and major event at some time point
t0, 1 ⩽ t0 ⩽ T .8 In this case, the model is said to undergo a structural break at time t0. Referring to
the above dependent variables, examples of events that might cause a structural break include:

1) Discovery of a significant positive (or negative) side-effect from consuming the product.
2) Introduction of a new law for:

a) the mandatory wearing of seat belts,
b) the legal threshold of blood alcohol levels deemed acceptable to drive,
c) gun control.

3) Change in diet, medication, etc.

If a structural break occurs, then two coefficient vectors need to be estimated: the first, say 𝜷 [1], for
the sample of data corresponding to time points 1,… , t0, and the second, say 𝜷 [2], corresponding to
t0 + 1,… ,T . We assume that 𝜎2 in both segments of time is constant. Such a model is said to be a
piecewise (linear) regression if we constrain the two regression lines to touch at t0, i.e., if x′t0𝜷 [1] =
x′t0𝜷 [2] is imposed. Point t0 is said to be a knot or join point. The extension to more than one knot
should be clear.9

Example 1.13 Let Yt = a1 + a2t + et , t = 1,… , t0, and Yt = b1 + b2t + et , t = t0 + 1,… ,T , with
et

i.i.d.∼ N(0, 𝜎2), t = 1,… ,T .10 Then, for the regression function to be continuous over the whole range,
it must be the case that a1 + a2t0 = b1 + b2t0, or

a1 − b1 + a2t0 − b2t0 = 0. (1.98)

Another way of stating this model is

Y = a1x1 + b1x2 + a2x3 + b2x4 + e = X𝜷 + e,

where X = [x1 x2 x3 x4], with

x1 = (𝟏′t0 𝟎
′
T−t0

)′, x2 = (𝟎′t0 𝟏
′
T−t0

)′,

x3 = (1, 2,… , t0, 0,… , 0)′, x4 = (0,… , 0, t0 + 1,… ,T)′,

and parameter vector 𝜷 = (a1, b1, a2, b2)′ is subject to the constraint H𝜷 = 0 from (1.98), where H =
[1 −1 t0 −t0]. From (1.69), the restricted parameter vector is

�̂� =
(
I4 −

AH′H
HAH′

)
𝜷,

8 In fact, such a phenomenon can occur in any type of data for which the order of the observations is relevant. Another
example would be for spatial data, e.g., weather measurements taken simultaneously at different locations.
9 Less obvious, however, is how to proceed if the locations of the knots are not known. See, for example, Judge et al. (1985,
pp. 800-814) for discussion of this and other related issues.
10 If for t = t0 + 1,… ,T , we take Yt = b1 + b2(t − t0) + et , which is sometimes referred to as a locally disjoint broken trend
model, its first usage being from Perron and Zhu (2005); see also Deng and Perron (2006), Sobreira and Nunes (2016), Chang
and Perron (2016), and the references therein.
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Figure 1.4 True and fitted piecewise regression.

whereA = (X′X)−1 and 𝜷 is the unrestricted estimated parameter vector. It is worth emphasizing that
the value of the F test (1.88), and, hence, its p-value, depends only on H𝜷 and is otherwise invariant
to the choice of 𝜷 .
Figure 1.4 shows a simulated sample using T = 30, t0 = 21, 𝜎2 = 1 and parameter values a1 = 6,

a2 = 0.4, b2 = 0 and b1 = a1 + t0a2 − t0b2 = 14.4, so that (1.98) is satisfied.11 The p-value of the F test
for constraint (1.98) is 0.130, so that the null hypothesis of a knotwould not be rejected at conventional
testing levels. In addition, the hypothesis that only one regression line is needed, i.e., that a1 = a2 and
b1 = b2, was tested and resulted in a p-value of 0.0318.The data and plot were generated with the code
in Listing 1.8.
Finally, to test whether the slope changes at the knot, let the unrestricted model be Yt = 𝛼1 + 𝛼2t +

𝛼3(t − t0)Bt + 𝜖t , t = 1,… ,T , where 𝜖t
i.i.d.∼ N(0, 𝜎2) and Bt is a boolean (or dummy) variable that is one

if t ⩾ t0 and zero otherwise, i.e., Bt = 𝕀{t0,t0+1,…}(t). The null hypothesis is that 𝛼3 = 0, for which the
reduced column space is easy to express. For the data used, the p-value was 0.0310. As the true model
is piecewise, it comes as no surprise that this p-value is quite close to the p-value given above for
testing a1 = a2 and b1 = b2. ◾

1.4.7 Confidence Intervals

Recall from (1.88) and (1.90) that, under the null hypothesis thatH𝜷 = h,

(H𝜷 − h)′V−1(H𝜷 − h)
J �̂�2 ∼ FJ ,T−k ,

where V = H(X′X)−1H′. This implies that

Q =
(H𝜷 −H𝜷)′V−1(H𝜷 −H𝜷)

J �̂�2 ∼ FJ ,T−k (1.99)

11 The parameter values were chosen so that the data somewhat resemble actual data for rates of homicide in the USA,
measured quarterly from 1985 to 1994, as shown in the Morbidity and Mortality Weekly Report from the Centers for Disease
Control and Prevention (CDC), June 7, 1996, Vol. 45, No. 22, pp. 460–464. In their study, a piecewise linear regression was
used to model the data.
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1 function [pvalF1, pvalF2] = piecewise(seed,b2,doplot);
2 if nargin<2, b2=0.1; end, if nargin<3, doplot=1; end
3 t0=21; T=30; n=T-t0+1; x1=[ones(t0-1,1); zeros(n,1)]; x2=1-x1;
4 x3=[(1:t0-1)'; zeros(n,1)]; x4=[zeros(t0-1,1); (t0:T)']; X=[x1 x2 x3 x4];
5 a1=6; a2=0.4; b1=a1+a2*t0-b2*t0, beta=[a1 b1 a2 b2]'; sigma=1;
6 randn('state',seed); y=X*beta+sigma*randn(T,1); betahat=regress(y,X);
7 yfit=X*betahat; SSbeta=sum((y-yfit).ˆ2); sigsqr_hat = SSbeta / (T-4);
8 % test the piecewise regression
9 H=[1 -1 t0 -t0]; J=1; gamma=OLSrestrict(y,X,H); yfitH=X*gamma;

10 SSgam=sum((y-yfitH).ˆ2); F1 = (SSgam-SSbeta) / J / sigsqr_hat;
11 pvalF1 = 1-fcdf(F1,J,T-4);
12 if doplot==1
13 true=X*beta;
14 plot(1:T,true,'k-', 1:T,yfit,'g:', 1:T,yfitH,'r--', 1:T,y,'bo')
15 set(gca,'fontsize',16), legend('True','Uncon','Const',2)
16 ax=axis; h=line([t0 t0],[ax(3) ax(4)]); set(h,'linestyle','--')
17 end
18 % now test if both intercepts are equal and both slopes are equal
19 H=[1 -1 0 0; 0 0 1 -1]; J=2; gamma=OLSrestrict(y,X,H); yfitH=X*gamma;
20 SSgam=sum((y-yfitH).ˆ2); F2 = (SSgam-SSbeta) / J / sigsqr_hat;
21 pvalF2=1-fcdf(F2,J,T-4);

Program Listing 1.8: Simulates and estimates a piecewise simple regression.

is a pivotal quantity for H𝜷 . In particular, letting q = F−1
J ,T−k(1 − 𝛼) be the quantile such that Pr(Q ⩽

q) = 1 − 𝛼, the ellipsoid {H𝜷 ∶ Q ⩽ q} is a 100(1 − 𝛼)% confidence region for H𝜷 . If J = 1, then the
region is just an interval.
Take, for example, the i.i.d. model: Let Yi

i.i.d.∼ N(𝜇, 𝜎2), i = 1,… , n, i.e., X = 𝟏n and 𝜷 = 𝜇, so that
�̂� = Ȳ and Q = n(�̂� − 𝜇)2∕�̂�2 = (�̂� − 𝜇)2∕(S2∕n) ∼ F1,n−1. Then, as

√
F−1
1,n−1(1 − 𝛼) = t−1n−1(1 − 𝛼∕2),

and from the symmetry of the Student’s t distribution,

{𝜇 ∶ Q ⩽ q} = {𝜇 ∶ |�̂� − 𝜇| ⩽ √
qS∕

√
n} = (�̂� −

√
qS∕

√
n, �̂� +

√
qS∕

√
n)

is the usual confidence interval for 𝜇. Similarly, for the general linear model with J = 1, H𝜷 is a
single linear combination of the elements in 𝜷 , which we denote 𝓵′𝜷 for clarity, i.e., 𝓵 = H′. Then
V = 𝓵′(X′X)−1𝓵 is a scalar and, with A=(X′X)−1,{

𝓵′𝜷 ∶
(𝓵′𝜷 − 𝓵′𝜷)2

�̂�2 𝓵′A𝓵
⩽ q

}
= {𝓵′𝜷 ∶ |𝓵′𝜷 − 𝓵′𝜷| ⩽ q1∕2

√
�̂�2 𝓵′A𝓵} = 𝓵′𝜷 ± c

√
�̂�2 𝓵′A𝓵,

(1.100)

where c = t−1T−k(1 − 𝛼∕2). For J ⩾ 2, {H𝜷 ∶ Q ⩽ q} cannot be so easily “pivoted” to get intervals for the
rows ofH𝜷 , but, if J = 2 or J = 3, the region can be plotted.

Example 1.14 Let Yt = 𝛽1 + 𝛽2t + et , t = 1,… ,T , et
i.i.d.∼ N(0, 𝜎2) and take H = I2, so that the ellip-

soid provides a confidence region for 𝛽1 and 𝛽2. For a simulated vector Y with T = 10, 𝛽1 = 1, 𝛽2 = 2,
and 𝜎2 = 1, the regionwas computedwith the program in Listing 1.9 and is shown in Figure 1.5 for the
three common levels of significance 𝛼 = 0.01, 0.05, and 0.1. The relative size increase in going from
𝛼 = 0.05 to 0.01 is much larger than that from 0.1 to 0.05. ◾
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1 T=10; k=2; J=2; Y=1+2*(1:T)' + randn(T,1);
2 X=[ones(10,1),(1:10)'];
3 if 1==1, O=X; else O=orth(X); end
4 [betahat,BINT,R,RINT,STATS] = regress(Y,O,0.0001);
5 s2= sum(R.ˆ2)/(T-k);
6 q90=finv(0.90,J,T-k); q95=finv(0.95,J,T-k); q99=finv(0.99,J,T-k);
7 Vi=(O'*O); % H is the 2X2 identity matrix
8 figure, h=plot(betahat(1),betahat(2),'k.'), set(h,'MarkerSize',30), hold on
9 inc=0.05;

10 for b1=BINT(1,1):inc:BINT(1,2)
11 for b2=BINT(2,1):inc:BINT(2,2)
12 beta=[b1 b2]'; Q=(betahat-beta)' * Vi * (betahat-beta) / (J*s2);
13 if (Q <= q90), plot(b1,b2,'ro'), elseif (Q <= q95), plot(b1,b2,'gx')
14 elseif (Q <= q99), plot(b1,b2,'b+'), end
15 end
16 end, hold off

Program Listing 1.9: Generates ellipsoid for parameters of time-trend linear model. (Takes a rela-
tively long to run; adjust inc accordingly.)

−2 −1 0 1 2 3 4 5

1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4

Figure 1.5 Ellipsoid for intercept 𝛽1 (horizontal axis) and slope 𝛽2 (vertical axis) for the model in Example 1.14, for
𝛼 = 0.01 (plus signs), 𝛼 = 0.05 (crosses) and 𝛼 = 0.10 (circles). The black dot is 𝜷 .

For J = 3, a three-dimensional plot of the region will be of limited use, while for J ⩾ 4, the whole
region cannot be visualized as such, although one could plot it for two (or three) rows ofH𝜷 for fixed
values of the remaining rows. This is clearly quite cumbersome and is essentially never done in prac-
tice. Instead, methods are used that yield simultaneous confidence intervals for each row ofH𝜷 . One
obvious way is to use Bonferroni’s inequality as follows. Let ℏi denote the ith row of H, i = 1,… , J .
Then the confidence region for ℏi𝜷 is precisely that in (1.100) with ℏi instead of 𝓵′. For simultaneous
confidence intervals on the J values of ℏi𝜷 , the Bonferroni method just takes c = t−1T−k(1 − 𝛼∕(2J)).
The obvious disadvantage of this method is the inevitable large size of the intervals when J is large. An
approach thatmakes explicit use of the normality assumption (and results in shorter confidence inter-
vals) is based on the multivariate t distribution and referred to as maximum modulus t intervals;
see Graybill (1976, Sec. 6.6) for further details.
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We now consider another alternative to the Bonferroni intervals known as the S-method or
Scheffé’s method, from Scheffé (1953). We first need the following result: If V > 0 (i.e., positive
definite), and 𝓵 and b are conformable vectors such that 𝓵′b is a scalar, then

max
𝓵≠𝟎

(𝓵′b)2

𝓵′V𝓵
= b′V−1b. (1.101)

Proof : First observe that, as matrix V enters only via a quadratic form, it can be assumed symmetric
without loss of generality, and thus it makes sense to state that V > 0, as all its eigenvalues are real.
Take symmetric V1∕2 > 0 such that V1∕2V1∕2 = V and define u = V1∕2𝓵 and w = V−1∕2b, so that

(𝓵′b)2

𝓵′V𝓵
= (u′V−1∕2V1∕2w)2

u′V−1∕2VV−1∕2u
= (u′w)2

u′u
=

⟨u,w⟩2‖u‖2 .

From the Cauchy–Schwarz inequality (see Problem 1.7), ⟨u,w⟩2 ⩽ ‖u‖2‖w‖2, with equality when
u=w, i.e., V1∕2𝓵 = V−1∕2b or 𝓵 = V−1b. Thus, with 𝓵 = V−1b,⟨u,w⟩2‖u‖2 = ‖w‖2 = ‖V−1∕2b‖2 = b′V−1b,

which is (1.101). See Graybill (1976, pp. 224–225) for an alternative proof. ◾

Now, with V = H(X′X)−1H′, 𝜽 = H𝜷 and b = �̂� − 𝜽, (1.99) and (1.101) imply

1 − 𝛼 = Pr(Q ⩽ q) = Pr((�̂� − 𝜽)′V−1(�̂� − 𝜽) ⩽ Jq�̂�2)

= Pr

(
max
𝓵≠𝟎

(𝓵′(�̂� − 𝜽))2

𝓵′V𝓵
⩽ Jq�̂�2

)
= Pr(|𝓵′(�̂� − 𝜽)| ⩽ √

Jq�̂�2𝓵′V𝓵, ∀𝓵 ≠ 𝟎),

where, as before, q = F−1
J ,T−k(1 − 𝛼). That is, 𝓵′�̂� ±

√
Jq�̂�2𝓵′V𝓵 simultaneously covers 𝓵′𝜽 for an infi-

nite set of vectors 𝓵 ≠ 𝟎 with level of significance 1 − 𝛼. An alternative proof of this result using only
basic calculus is given in Klotz (1969) and Roussas (1997, Sec. 17.4).
As only a finite number of such intervals will ever be constructed for a particular data set, the

actual level exceeds 1 − 𝛼. In particular, with𝓵i = (0,… , 0, 1, 0… , 0)′ with the one in the ith position,
i = 1,… , J , 𝓵′

i�̂� = 𝓵′
iH𝜷 = ℏi𝜷 , so that the J intervals ℏi𝜷 ±

√
Jq�̂�2𝓵′

iV𝓵i have simultaneous level of
significance at least 1 − 𝛼. As

𝕍 (ℏi𝜷) = �̂�2ℏiAℏ′
i = �̂�2𝓵′

iH(X′X)−1H′𝓵i = �̂�2𝓵′
iV𝓵i,

these intervals are often written as ℏi𝜷 ±
√

Jq𝕍 (ℏi𝜷), i = 1,… , J .

Example 1.15 Consider the same setup as in Example 1.14, with

A = (X′X)−1 = 1
15

[ 7 −1
−1 2∕11

]
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and H= I2. Let 𝓵1 = (1, 0)′, 𝓵2 = (0, 1)′, a1 = 𝓵′
1A𝓵1 = 7∕15 and a2 = 𝓵′

2A𝓵2 = 2∕165. Then, with
J = 2, c = t−18 (1 − 0.05∕4) ≈ 2.7515, the simultaneous 95% Bonferroni confidence intervals for 𝛽1
and 𝛽2 are 𝛽i ± c�̂�

√
ai, i = 1, 2, with lengths 3.759�̂� and 0.6059�̂�, respectively. With J = k = 2 and

q = F−1
2,8(0.95) ≈ 4.459, the S-method confidence intervals are 𝛽i ± �̂�

√
2qai, i = 1, 2, with respec-

tive lengths 4.080�̂� and 0.6576�̂�. The latter are about 8.5% longer than Bonferroni confidence
intervals. ◾

Remark In the previous example, the S-method intervals were longer than those from Bonfer-
roni. To compare the lengths for other parameters, the top panel of Figure 1.6 plots the ratio of
t−1T−k(1 − 𝛼∕2J) to

√
JF−1

J ,T−k(1 − 𝛼) as a function of J , using T − k = 40 and three values of 𝛼. It would
appear that the S-method is virtually useless compared to Bonferroni. This picture is misleading,
however, because k or, more generally, the rank of H was not specified. In particular, with ℏi the
ith row of H, assume ℏ1,… , ℏR are independent, R ⩽ k, and the remaining rows, ℏR+1,… , ℏJ , are
linear combinations of ℏ1,… , ℏR. Let H∗ = (ℏ′

1,… , ℏ′
R)

′ be the upper R × k portion of H, so that
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Figure 1.6 Ratio of lengths of Bonferroni to Scheffé confidence intervals. The top panel does not adjust for rank of H,
while the bottom panel does adjust.
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rank(H) = rank(H∗) = R. Then, with 𝜃∗ = (𝜃∗1 ,… , 𝜃∗R)
′ = H∗𝜷 , the S-method implies that

1 − 𝛼 = Pr(|𝓵′(�̂�∗ − 𝜃∗)| ⩽ √
Rq�̂�2𝓵′V∗𝓵, ∀𝓵 ∈ ℝR \ 𝟎), (1.102)

where q = F−1
R,T−k(1 − 𝛼) and V∗ = H∗(X′X)−1H∗′. But, by construction, each row ℏi can be written

as 𝓵′
iH∗ for some 𝓵i ∈ ℝR \ 𝟎, so that (1.102) also includes the intervals for 𝜃R+1,… 𝜃J .12 To see the

effect this has, the right side of Figure 1.6 plots the ratio t−1T−k(1 − 𝛼∕2J) to
√

mF−1
m,T−k(1 − 𝛼) versus

J , where m = min(J , k), k = 5 and, as before, T − k = 40. In this case, H∗ = Ik . Indeed, if a relatively
large number of intervals are to be computed, the S-method can be superior. ◾

In most realistic cases, the S-method gives rise to the longest intervals. Their additional length is
the price to pay to be able to simultaneously construct infinitely many of them. In practice, their use
allows a certain extent of “data mining”, i.e., the researcher can keep computing intervals of interest
until something “significant” is found, and still claim validity of the procedure. Preferably, however,
one has a particular set of intervals in mind before the data are collected, to which the Bonferroni
method (or others) can be applied.
Further details on confidence intervals can be found in numerous books on regression, including

Ravishanker and Dey (2002, Sec. 7.3), Seber and Lee (2003, Ch. 5), and Khuri (2010, Ch. 7).

1.5 Alternative Residual Calculation

Recall from (1.60) that �̂� ∼ N(𝟎, 𝜎2M). Not only is M rank deficient, but the fact that the regression
residuals are dependent on the Xmatrix implies that the distribution of common test statistics based
on �̂�, often ratios of quadratic forms, cannot be tabulated.This has historically been quite an inconve-
nience, though it should not be an issue now with modern computing power and the computational
methods discussed in Section A.3. Perhaps the most popular example of a statistic whose use had
been hampered by this fact (in the 1950s and 1960s) is the Durbin–Watson test D for detecting serial
autocorrelation in the residuals; see Section 5.3.4. This was among the motivations for research on
regression residuals that are independent of the regressor matrix.
Before proceeding, a comment on the relevance of this material is perhaps in order. In addition

to being of historical importance for the reason just mentioned, we will also remark below that the
recursive residuals are a special case of the ubiquitous and highly important Kalman filter. Next, as a
theoretical curiosity, the derivation of the (below defined) BLUS and recursive residuals is instructive
and, while arguably straightforward (especially after one sees the answer), is a great example of statisti-
cal mathematical ingenuity. Their practical relevance in some 21st century applications is admittedly
less, such as in a machine-learning context and/or where large dimensional models are used, with
mean terms being simply “regressed off” as part of a larger paradigm (see Section 11.2.2 for one such

12 Linear combinations of vectors are usually expressed in column form when using matrices. In this case,

⎛⎜⎜⎝
∣
ℏ′
i
∣

⎞⎟⎟⎠ = 𝓁i1

⎛⎜⎜⎝
∣
ℏ′
1
∣

⎞⎟⎟⎠ + · · · + 𝓁iR

⎛⎜⎜⎝
∣
ℏ′
R
∣

⎞⎟⎟⎠ = H∗ ′
⎛⎜⎜⎝
𝓁i1
⋮
𝓁iR

⎞⎟⎟⎠ = H∗ ′𝓵i, i = 1,… , J ,

or, taking transposes, ℏi = 𝓵′
iH∗.
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example). As such, we illustrate the main concepts here, and place further details in Appendices 1.A
and 1.B as optional reading for those interested in the proverbial “full Monty”.
Several estimators of the regression residuals have been proposed, each sharing the three properties

of linearity, unbiasedness, and a scalar covariance matrix; these are typically abbreviated with the
acronym LUS. We denote such residuals by �̂�LUS = CY, where C is a nonstochastic matrix (it can
depend on X, but not on Y) satisfying CX=𝟎 and CC′ = I. Clearly, �̂�LUS = CY is linear in Y, and as

𝔼[�̂�LUS] = 𝔼[CY] = 𝔼[CX𝜷 + C𝝐] = CX𝜷,

we see that the requirement CX=𝟎 is necessary for unbiasedness. If CC′ = I, then

𝔼[�̂�LUS�̂�
′
LUS] = 𝔼[C𝝐𝝐′C′] = 𝜎2CC′ = 𝜎2I,

so that �̂�LUS has a scalar covariance matrix.
Observe that the requirementsCX=𝟎 andCC′ = I (which is full rank) together imply thatC cannot

be T × T , but rather (T − k) × T , so that CC′ = IT−k and �̂�LUS ∼ N(𝟎, 𝜎2IT−k). In particular, the rows
ofC are orthogonal to the columns ofX, i.e., they are contained in (X)⟂, which has dimension T − k.
Thus CC′ = I ⇐⇒ the rows of C are orthogonal to one another⇐⇒ there are at most T − k rows in C.
Thus, only T − k LUS residuals can be identified.
There are numerous matrices C that satisfy the LUS properties, and a “best” criteria was desired.

This was pursued byTheil (1965, 1968) and Koerts (1967), and detailed in the books fromTheil (1971)
and Koerts and Abrahamse (1969). Consider the partition of the model[

Y0
Y1

]
=

[
X0
X1

]
𝜷 +

[
𝝐0
𝝐1

]
=

[
X0
X1

]
𝜷LS +

[
e0
e1

]
, (1.103)

where the quantities indexedwith 0 have k rows and the quantities indexedwith 1 contain the remain-
ing T − k rows. The vector 𝝐0 contains the k errors not represented in the LUS estimator. Given this
partitioning, the best LUS, or BLUS residuals, denoted by �̂�BLUS, are defined as the vector of residu-
als among the class of LUS residuals that has the minimum expected sum of squared errors, i.e., the
vector that minimizes

𝔼[(�̂�LUS − 𝝐1)′(�̂�LUS − 𝝐1)].

Some work is required to show that the vector of BLUS residuals can be expressed in the computa-
tionally attractive form

�̂�BLUS = e1 − X1X−1
0

[ H∑
h=1

dh
1 + dh

qhq′
h

]
e0, (1.104)

where d2
1,… , d2

H are the eigenvalues of thematrixX0(X′X)−1X′
0 that are less than one,H ⩽ T − k, and

q1,… ,qH are the corresponding eigenvectors. A detailed derivation is given in Appendix 1.A.
Furthermore, the (T − k) × T matrix C in this case is given by the partitioned matrix C = [C0 C1]

where the (T − k) × k matrix C0 and the (T − k) × (T − k) matrix C1 are derived by the following
relationships:

C0 = −C1Z, C1 = PDP′,

where Z=X1X−1
0 , D is the (T − k) × (T − k) diagonal matrix whose first H successive diagonal ele-

ments are d1 ⩽ d2 ⩽ … ⩽ dH < 1 (the ds being the positive square roots of the d2
k defined in (1.104)),
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1 function C = blusmat(X)
2 [T,k]=size(X); X_0 = X(1:k,:); X_1 = X(k+1:end,:);
3 Z = X_1*inv(X_0); D = eig(X_0*inv(X'*X)*X_0');
4 index1 = find(D<1 & D>0); H = size(index1,1);
5 D = [D(index1);ones(T-k-H,1)]; D = sort(D); D = diag(D);
6 [P tempD] = eig(eye(T-k) + Z*Z');
7 tempD = diag(tempD); [tempD index2] = sortrows(tempD);
8 P = P(:,index2(end:-1:1)); C_1 = P*D*P'; C = [-C_1*Z C_1];

Program Listing 1.10: Constructs the BLUS residual matrix 𝐂.

and P is the (T − k) × (T − k) orthogonal matrix with columns given by the eigenvectors of I+ZZ′

corresponding to the eigenvalues 1∕d2
1,… , 1∕d2

H , 1,… , 1; see Appendix 1.A. The code in Listing 1.10
computes matrix C.
One particular LUS residual estimator, the so-called recursive residuals, introduced by Hedayat

and Robson (1970), Harvey and Phillips (1974), and Brown et al. (1975), is noteworthy. (Their use can
be traced back all the way to Gauss; see Plackett, 1950; Stigler, 1981; and Young, 2011.)The procedure
is computationally simple and turns out to be a special case of the Kalman filter; see the remarks in
Section 5.6.
Phillips and Harvey (1974) show that the corresponding C matrix such that V=CY and

V ∼ N(𝟎, 𝜎2IT−k) can be expressed as

C =

⎛⎜⎜⎜⎜⎜⎝

ak+1 d−1∕2
k+1 0 · · · 0

ak+2 d−1∕2
k+2 ⋮

⋮ ⋱
0

aT d−1∕2
T

⎞⎟⎟⎟⎟⎟⎠
, (1.105)

of size (T − k) × T , where, for j = k + 1,… ,T ,

aj = −d−1∕2
j x′j (X

′
j−1Xj−1)−1 X′

j−1, dj = 1 + x′j (X
′
j−1Xj−1)−1xj, (1.106)

and x′j is the jth row of X. Note that aj is a row vector with length j − 1.
Direct multiplication verifies that CX=𝟎 and CC′ = IT−k , and one may show (Theil, 1971, p. 209)

that C′C = M. Thus, in Theorem 1.3 above, one could take G to be C. The program in Listing 1.11
computes (1.105). Appendix 1.B provides details on the derivation of the recursive residuals.

1 function C = recmat(X)
2 [T,k]=size(X); C=zeros(T,T);
3 for j=(k+1):T
4 mid=inv (X(1:(j-1),:)' * X(1:(j-1),:));
5 d=sqrt (1+X(j,:) * mid * X(j,:)');
6 p2=mid * X(1:(j-1),:)'; v=-(X(j,:) * p2)/d;
7 C(j,1:(j-1))=v; C(j,j)=1/d;
8 end
9 C=C((k+1):T,:);

Program Listing 1.11: Constructs the recursive residual matrix 𝐂.
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Figure 1.7 Simulated relative percentage change between the recursive and BLUS residuals for a model with intercept
and time trend, and 20 observations.

Example 1.16 Wewish to compare themagnitudes of the sumof squared BLUS and recursive resid-
uals. Take themodel to beYj = 1 + 2j + ej, j = 1,… , 20,with ej

i.i.d.∼ N(0, 1), so that theXmatrix consists
of a constant and a time vector. By using the code in Listings 1.10 and 1.11, it is a very simple Matlab
exercise to simulate the model a large number of times and, for each, compute the relative percentage
change between the recursive and BLUS residuals (i.e., 100 ∗ (r − b)∕r, where r and b denote the sum
of squares of the recursive and BLUS residuals, respectively).
Doing this for 10,000 replications and plotting the resulting histogram results in Figure 1.7. Note

that, in every case, the sum of squared BLUS residuals is smaller than that for the recursive, as the
theory dictates. Based on the simulation, there is more than a 35% chance that the relative percentage
change will be more than 10%. ◾

Remarks
a) Statistical tests commonwith the linearmodel using the BLUS residuals do not necessarily possess

greater power than those using the “usual” o.l.s. residuals, or some otherC.The use of BLUS resid-
uals has faded considerably since the 1970s, although more recently Magnus and Sinha (2005)
conducted studies comparing the power of BLUS against the recursive residuals when testing
against heteroskedasticity (one of the original motivations for BLUS) and structural breaks (for
which the recursive residuals are intuitively appealing). The reported simulation results lend mild
support for the use of BLUS residuals over recursive residuals.

b) We will see later that the recursive residuals (or any LUS estimate) have other desirable properties
that make their use valuable. In particular, in the context of time-series analysis, Chapter 8 will
show that, for any Xmatrix, the coefficients of the sample autocorrelation function (SACF) based
on the recursive residuals always have zero expectation and are symmetric, a property not shared
by the SACF based on the usual o.l.s. residuals, even when X is only a column of ones. This is
important because, in practice, the SACF coefficients are compared to their limiting distribution,
which is normal (i.e., symmetric) with zero mean. For small samples and X matrices common in
econometric applications, this can be an important factor. ◾
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1.6 Further Topics

As it happens, the econometric modeling was done in the basement of the building and the
econometric theory courses were taught on the top floor (the third). I was perplexed by the fact
that the same language was used in both places. Evenmore amazing was the transmogrification
of particular individuals who wantonly sinned in the basement and metamorphosed into the
highest of high priests as they ascended to the third floor.

(Edward Leamer, 1978, p. vi)

With increasing interest in the stable distributions and their domains of attraction, the Cauchy
distribution is found to occupy a less isolated position; indeed the normal distribution is
extremal and rather special among stable distributions.

(E. J. Pitman and E. J. Williams, 1967, p. 916)

What the regression curve does is give a grand summary for the averages of the distributions
corresponding to the set of x’s. We could go further and compute several different regression
curves corresponding to the various percentage points of the distributions and thus get a more
complete picture of the set. Ordinarily this is not done, and so regression often gives a rather
incomplete picture. Just as the mean gives an incomplete picture of a single distribution, so the
regression curve gives a corresponding incomplete picture for a set of distributions.

(Frederick Mosteller and John W. Tukey, 1977, p. 266)

An important special case of the linear model is the so-called analysis of variance, or ANOVA,
for fixed and random effects, as introduced in Chapters 2 and 3, respectively. However, as these
chapters are aimed at the underlying distribution theory of the core linear regression model and the
ANOVA setting, numerous important topics associated with regression are regretfully not discussed.
Two obvious ones are its extension to a multivariate framework, such as MANOVA and discriminant
analysis (see, e.g., Huberty and Olejnik, 2006) and the use of Bayesian inferential methods (see, e.g.,
Christensen et al., 2011 and Gelman et al., 2013). Here, wemention several other omitted topics asso-
ciated with regression analysis, albeit without much detail, so that the reader is at least aware of them,
and provide useful references for further reading.

1) Forecasting.
Based on regressionmodel (1.3), interestmight center on predicting the random variable YT+1 for
a given xT+1 = (xT+1,1,… , xT+1,k)′, so that YT+1 = x′T+1𝜷 + 𝜖T+1, where 𝜖T+1 ∼ N(0, 𝜎2). As 𝜷 has
the smallest variance among all linear unbiased estimators for 𝜷 , theminimum variance unbiased
point estimator is ŶT+1 = x′T+1𝜷 , and, from (1.8),

𝕍 (ŶT+1 − YT+1) = 𝕍 (ŶT+1) + 𝕍 (YT+1) = 𝜎2x′T+1(X
′X)−1xT+1 + 𝜎2.

Thus, an exact 100(1 − 𝛼)% confidence interval for YT+1 is

ŶT+1 ± c�̂�
√

1 + x′T+1(X′X)−1xT+1, (1.107)
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where �̂�2 is given in (1.11), and c is the 𝛼∕2 quantile of a Student’s t random variable with T − k
degrees of freedom.
The reader is encouraged to set up the parametric and nonparametric bootstrap to generate

confidence intervals for YT+1 for both the Gaussian and non-Gaussian cases. Under the normal-
ity assumption, simulation can be used to confirm that the bootstrap results are comparable to
the analytic method in (1.107). For a non-Gaussian, leptokurtic, and asymmetric distributional
assumption, confidence intervals (hereafter c.i.s) based on (1.107) (i) will almost surely be such
that the actual and nominal coverage probabilities are not equal, and (ii) restricted to being incor-
rectly symmetric. Bootstrap c.i.s are expected to be be more accurate, particularly as the level of
non-Gaussianity increases.
Further details onmultiple prediction intervals making use of themethods in Section 1.4.7 can

be found in, e.g., Seber and Lee (2003, Sec. 5.3) and Rao et al. (2008, Ch. 6).
2) Multicollinearity.

Particularly in the social sciences, some regressors can be highly correlated with one another, and
give rise to what is called multicollinearity. With very high correlation, the resulting standard
errors on the coefficients are large, and thus the point estimates are rather imprecise. Several
ways of dealing with this issue exist, including use of shrinkage (recall Section III.5.4), empirical
Bayes estimators, ridge regression (which is related to the former two methods), and use of
(generalized) cross validation.
Further methods that also relate more generally to model specification and estimation are the

so-called garrote and LASSO estimators. The LASSO and ridge regression are generalized by
the so-called elastic net. These tools are important for dimension reduction, variable selection,
and improved predictive performance whenmodeling high-dimensional (big) data.Their respec-
tive Wikipedia entries are a good starting point and include original references, while further
information can be found in textbook presentations such as Seber and Lee (2003, Sec. 12.5), Mur-
phy (2012), Fahrmeir et al. (2013, Sec. 4.2), and Efron and Hastie (2016, Ch. 7, 12, 16). See also
Lansangan and Barrios (2017) and the references therein for an introduction, further methods,
and comparisons among them.

3) The choice of regressors, or, more generally,model specification.
Recall the reference to Leamer (1983) in Section 1.1, indicating the potentially severe implications
resulting from the choice of variables to include in a regression. The tidy, impressive analytic
results and distribution theory throughout this chapter are child’s play (and arguably of secondary
relevance) compared to themuch thornier issue ofmodel specificationwith real data, particularly
from the social sciences. The quote by Magnus (2017) at the beginning of Section 1.4 serves to
remind us that inspection of the “t-statistics” is not a viablemethod formodel selection (in general
agreement with the diatribe in Section III.2.8), and Magnus (2017, Sec. 2.14, 2.15) provides a
very readable presentation of the bias/variance tradeoff associated with including a particular
regressor into the model. The amusing quote by Leamer (1978) at the beginning of this section
might be a reflection of the state of affairs during what might now appear to be a primordial
age of econometrics, though it still contains more than just a grain of truth on the discrepancies
between theory and practice.
As mentioned, model selection is related to multicollinearity—it might be preferred to sim-

ply omit regressors that are highly correlated with others. The inherent difficulty in establishing
the “best” model is nicely stated in Seber and Lee (2003, p. 424): “The relative merits of ridge
regression versus least squares and subset selection have been endlessly debated.” Textbooks
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on regression analysis present many of the numerous ways that have been devised to select an
optimal set (in some sense) from an available pool of regressors. See, e.g., the relevant chapters in
Graybill and Iyer (1994), Ravishanker and Dey (2002), Seber and Lee (2003), Christensen (2011),
Montgomery et al. (2012), Chatterjee and Hadi (2012), and Harrell, Jr. (2015).
Those books also cover numerous additional topics associatedwith applied regression analysis,

and make use of real-data examples.
Particularly in econometrics, an influential body of work and methodology centers around

the influential David F. Hendry, sometimes referred to general-to-specific (GETS) modeling,
or the “LSE (London School of Economics) approach (to econometrics)” (see the same-titled
Wikipedia entry). Good starting points include Hendry (1995, 2009), Castle et al. (2011), Hendry
and Doornik (2014), and Castle et al. (2017).

4) Missing values.
It is not uncommon that one or more entries of the desired regressor matrix X are missing. A
good starting point for methods of dealing with this important issue in the context of regres-
sion is Rao et al. (2008, Ch. 8). In a more general setting, analysis of data with missing values
is addressed by so-calledmultiple imputation, often using simulation and, when applicable, an
expectation-maximization (hereafter EM) algorithm. An internet search for books along the lines
of “multiple imputation of missing data” will reveal numerous possible resources for addressing
this common and pernicious issue when dealing with real data.

5) Time-varying parameters, such that one or more of the regression coefficients varies
through time.
We deal with some aspects of this in Section 5.6. Consideration of such models leads naturally

to the more general class of so-called state space models; see the references in Section 5.6.
6) One ormore of the regression coefficients undergoes a structural break, i.e., a change in its value

at some unknown point in time.
Estimation and testing in this case has been considered by numerous authors; see, e.g., Bai and

Perron (1998, 2003), Qu and Perron (2007), Yamamoto and Perron (2013).13 Another method is
via impulse indicator saturation, as first investigated byHendry (1999). It provides a general test
for an unknown number of breaks, at unknown times, and is applicable in manymodel situations
besides the linear regression model, such as vector autoregressions; see, e.g., Ericsson (2012),
Castle et al. (2015), and the references therein for further development and application. It also has
applications to testing for parameter constancy; see, e.g., Johansen and Nielsen (2009), Hendry
and Doornik (2014), and the references therein. A package for R is available from Sucarrat et al.
(2017) for automated GETS modeling of the mean and variance of a regression, and indicator
saturation methods for detecting and testing for structural breaks in the mean.

7) Use of robust estimators.
In the presence of outliers, the least squares estimator is not optimal. Alternative estimation pro-
cedures have been developed to address this, e.g., Seber and Lee (2003, Sec. 3.13), Andersen
(2008), and Huber and Ronchetti (2009, Ch. 7), as well as the note below on quantile regression.

8) Partially adaptive estimation for regression amid non-Gaussian disturbances.
This is related to the previous issue of robustness, but in that setting the assumption is that the
disturbances are Gaussian, but such that one or more observations deviates substantially from

13 The authors conveniently provide Matlab codes for this last test, and others; see Perron’s web page: http://people.bu.edu/
perron/code.html.
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the main group. Here, the assumption is not the presence of outliers per se, but rather that the
underlying error distribution is non-Gaussian (and usually leptokurtic or heavy tailed, and pos-
sibly asymmetric), thus also giving rise to observations more extreme than the main cluster.
While general nonparametric methods are applicable in this setting, the method of partially

adaptive estimation is very straightforward and still within the paradigm of parametric infer-
ence. It involves replacing the normality assumption with a flexible non-Gaussian distribution
that embodies asymmetry and (semi-)heavy tails, and usually such that normality is a special or
limiting case. General optimization routines will be required for computing the m.l.e., and boot-
strap methods can be used for computing confidence intervals and other aspects of inference,
such as forecasting.
The use of the Student’s t distribution and its generalizations in regression analysis has been

considered by McDonald and Newey (1988), Lange et al. (1989), and Butler et al. (1990). A less
popular candidate, due to its historical complication regarding the evaluation of the p.d.f. (and
thus the likelihood) is the (asymmetric) stable Paretian, as discussed in detail in Chapter II.8, and
Sections III.9.4, III.9.5, and III.A.16. It also was the motivation for including the quote above by
Pitman and Williams (1967).
The reason for its appeal, as compared to, say, use of (asymmetric) Student t variations, is the

applicability of the generalized central limit theorem: One presumes that the standardized sum of
all the neglected factors in the model (yielding the error term) converges to a stable distribution,
ofwhich normality is a special case.Note, however, that the non-Gaussian stable distribution does
not possess a variance, and (as with any non-Gaussian distribution), the use of the bootstrap is
recommended for inference on parameter and forecast uncertainty.

9) Use of threshold regression.
This is a type of sample splitting model, leading to far more general structures, such as cluster
analysis and variousmultivariatemethods inmachine learning. As in Hansen (1999, 2000), under
the assumption of two groups (referred to as classes, or regimes, in Hansen, 2000),

Yt =
{

x′t𝜽1 + 𝜖t, if qt ⩽ 𝛾,

x′t𝜽2 + 𝜖t, if qt > 𝛾,
(1.108)

t = 1,… ,T , where xt is a known k × 1 vector; qt is exogenous (not involving anyYt) and is referred
to as the threshold variable; and 𝜖t

i.i.d.∼ N(0, 𝜎2). It can be an element of xt and, for the asymptotic
theory developed by Hansen (2000), is assumed to be continuous. Finally, 𝛾 is the threshold
parameter. Let, as usual, the regressor matrix be X = [x1,… , xT ]′, let q = [q1,… , qT ]′ and b =
𝕀{q ⩽ 𝛾}, both T × 1. Then, with 𝟏′k = [1, 1,… , 1] and selection matrix S = 𝟏′k ⊗ b, define X𝛾 =
S⊙ X, so that model (1.108) can be expressed as

Y = X𝜽 + X𝛾𝜹 + 𝝐 = Z𝜷 + 𝝐, (1.109)
where Y and 𝝐 are defined in the usual way, 𝜽 = 𝜽2, Z = [X, X𝛾 ] and 𝜷 = [𝜽′

, 𝜹′]′. Sample Mat-
lab code to generate X𝛾 is given in Listing 1.12. For a given threshold 𝛾 , the usual least squares
estimator (1.5) for 𝜷 is used, and is also the m.l.e. under the usual Gaussian assumption on 𝝐.

If 𝛾 were known, then the model reduces to the usual linear regression model, and the “signif-
icance” of 𝜹 is assessed in the usual way, from Section 1.4. Matters are less clear when 𝛾 is to be
elicited from the data. Let the concentrated sum of squares be given by (1.4), but as a function
of 𝛾 , i.e.,

S(𝛾) = S(𝛾;𝜷;Y ,Z) = Y′M𝛾Y, M𝛾 = IT − Z(Z′Z)−1Z′.
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1 T=10; k=2; X=[ones(T,1), (1:T)']; b=rand(T,1)<0.5;
2 S = kron(ones(1,k),b); Xg = S.* X;

Program Listing 1.12: Example code for generating 𝐗𝛾 in (1.109).

(This is similar in concept to the concentrated likelihood, as will be used later in Section 5.6.3.1.)
Assume 𝛾 ∈ [𝛾, �̄�], and let

�̂� = argmin
𝛾 ∈ G

S(𝛾)

be the least squares estimator of 𝛾 , where G = [𝛾, �̄�] ∩ {q1,… , qT}, noting that S(𝛾) takes on less
than T distinct values. Hansen (2000) derives the asymptotic theory associated with estimator �̂� ,
and approximate confidence intervals for 𝛾 based on a likelihood ratio statistic.
The case of model (1.108) with more than two groups is a straightforward generalization of this
two-group setup. Examples of its use in macroeconomics include Rousseau and Wachtel (2002),
Jude (2010), Stolbov (2013), Perri (2014), Pan et al. (2016), and the references therein.

10) Quantile regression.
The above quote by Mosteller and Tukey (1977) serves as a clear reminder of the limits of stan-
dard regression analysis and as one (of several) motivating factors for using quantile regression
(QR). In particular, some contemplation reveals that, perhaps more often than not, it is not the
mean that is of interest, but rather a particular quantile. For example, in income studies, interest
might center on how the various exogenous factors influence not the mean income, but rather
the lower 1, 5, and 10% quantiles, or their right-tail counterparts. Another benefit of QR com-
pared to standard linear regression is that the median could be used instead of the mean as a type
of robustified estimator, and/or its resulting implications (such as forecasts) compared to those
based on the traditional use of the mean. Furthermore, QR allows for heteroskedasticity of the
response function (recall the simple example in Figure 1.1) in a natural way, without requiring an
explicit model for the error term that allows the exogenous variables to influence the estimates of
𝜎t (see, e.g., Fahrmeir et al., 2013, Ch. 10, for such an example and comparison to the use of QR).
A—clearly no longer relevant—disadvantage of QR is that closed-form solutions of the esti-

mator no longer exist, and either linear programming techniques, or just general optimization
algorithms, are required. One of the earliest survey articles on the topic is Koenker and Hallock
(2001), while more detailed accounts can be found in the highly readable initial books of Koenker
(2005) and Hao and Naiman (2007), as well as the newer Davino et al. (2014), which also provides
code in R, SAS, and Stata.

11) Generalized Linear Models.
Above, we mentioned the use of robust estimators, or partially adaptive estimation, when
the Gaussianity assumption is not applicable. However, these techniques are suitable when the
unknown error distribution is “approximately Gaussian” in the sense of being unimodal, roughly
bell-shaped, and having support over the whole real line. If the dependent variable is strictly
positive and thus right-skewed, as occurs, for example, with lifetimes, waiting times, incomes,
dividend payments, insurance claims, etc., then these aforementioned techniques are less
applicable. Instead, one could model the expected value of a positive continuous random vari-
able, such as the gamma, Pareto, (generalized) inverse Gaussian, etc., and the fitted regression
coefficients would somehow need to be constrained such that x′t𝜷 is positive for all relevant xt .
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Yet more complicated situations arise if the dependent variable is discrete, say, Bernoulli, bino-
mial, multinomial, negative binomial, or Poisson.The above situation, as well as the discrete case,
can all be elegantly handled by the use of what is referred to as the generalized linear model, or
GLIM, whereby a transformation of the dependent variable is applied such that a regression can
be used for modeling its mean. The assumed distribution of the dependent variable is usually
taken to be a member of the exponential family, one example of which is the Gaussian, as studied
in this chapter, in which case no transformation is required.
We briefly illustrate the mechanics assuming a Bernoulli distribution (with support zero and

one) for the dependent variable Y . An example of this could be in so-called credit scoring, or
probability of defaultmodels, whereby the credit-worthiness of a bank client (no or yes, i.e., 0 or
1) for receiving a loan is to be assessed, based on several exogenous factors (there are numerous
books on this topic, e.g., Baesens et al. (2016) and Bluhm et al. (2010)). Let 𝜋i = Pr(Yi = 1) =
𝔼[Yi], and denote by 𝜂i the linear predictor 𝜂i = 𝛽1xi,1 + 𝛽2xi,2 + · · · + 𝛽kxi,k = x′i𝜷 , i = 1, 2,… , n,
as in (1.2). They are related via a response function h such that 𝜋i = h(𝜂i), where h is a strictly
monotone increasing function that maps to the interval (0, 1), such as the standard normal c.d.f.
Φ, and inverse function 𝜂i = g(𝜋i), where function g = h−1 is referred to as the link function.The
so-called logitmodel takes

𝜋i = h(𝜂i) =
exp{𝜂i}

1 + exp{𝜂i}
, g(𝜋i) = h−1(𝜋i) = log

(
𝜋i

1 − 𝜋i

)
= x′i𝜷,

while the probitmodel takes 𝜋i = h(𝜂i) = Φ(𝜂i).
Good introductory accounts of GLIM (with the benefit of having books that cover numerous
other aspects of linear and other models) can be found in Rao et al. (2008, Ch. 10), Khuri (2010,
Ch. 13), Fahrmeir et al. (2013, Ch. 5), and Greene (2017), while several highly detailed books
dedicated to the subject exist, such as Fahrmeir and Tutz (2001),Winkelmann (2008), andAgresti
(2015).

1.7 Problems

Problem 1.1 Consider the simple linear regression model Yt = 𝛽1 + 𝛽2Xt + 𝜖t , t = 1,… ,T .
a) By setting 𝜕S(𝜷)∕𝜕𝛽1 to zero, show that 𝛽1 = Ȳ − 𝛽2X̄. Using this with 0 = 𝜕S(𝜷)∕𝜕𝛽2, show that

𝛽2 = �̂�X,Y∕�̂�2
X , where �̂�X,Y denotes the sample covariance between X and Y ,

�̂�X,Y ∶= 1
T − 1

T∑
t=1

(Xt − X̄)(Yt − Ȳ ),

and �̂�2
X ∶= �̂�X,X .

b) Show that Ŷt − Ȳ = 𝛽2(Xt − X̄).
c) Define the standardized variables xt = (Xt − X̄)∕�̂�X and yt = (Yt − Ȳ )∕�̂�Y , and consider the

regression yt = 𝛼1 + 𝛼2xt + 𝜀t . Show that �̂�1 = 0 and �̂�2 = �̂�, where �̂� = �̂�X,Y is the sample
correlation between X and Y , with |�̂�| ⩽ 1. Thus, we can write

Ŷt = �̂�1 + �̂�2xt = �̂�xt ,

and squaring and summing both sides yields �̂�2 =
∑

Ŷ 2
t ∕

∑
x2t . Show that the R2 statistics for the

two regression models are the same, namely �̂�2.
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Problem 1.2 Show (1.12) directly (without use of Theorem 1.6) for the simple linear regression
model Yt = 𝛽1 + 𝛽2Xt + 𝜖t .

Problem 1.3 For nonsingular matrix A, its partitioned inverse A−1 is[ A11 A12

A21 A22

]−1
=

[ W−1 −W−1A12A−1
22

−A−1
22A21W−1 A−1

22 + A−1
22A21W−1A12A−1

22

]
(1.110)

=
[ A−1

11 + A−1
11A12Z−1A21A−1

11 −A−1
11A12Z−1

−Z−1A21A−1
11 Z

]
,

where W = A11 − A12A−1
22A21 and Z = A22 − A21A−1

11A12. This is a well-known result that can be
found in numerous books on matrix algebra, and confirmed by computing AA−1. Derive the
Frisch–Waugh–Lovell theorem by applying the partitioned inverse (1.110) expression to (1.5).

Problem 1.4 Prove that the projection matrix P in (1.42) is unique.
Hint: LetH = [h1 h2 … hk] be a different basis for . Justify that we canwriteH = TA for someA.

Problem 1.5 This is a less direct, but instructive,method for provingTheorem1.3. LetM = IT − P
with dim() = k, k ∈ {1, 2,… ,T − 1}. Via the spectral decomposition, let H be an orthogonal
matrix whose rows consist of the eigenvectors ofM. PartitionH as

H =
[
H1
H2

]
,

with “correct” sizes, and use Theorem 1.2 to write HMH′ as a block matrix. Show that MH′
2 = 𝟎

and H′
2 = PH′

2. This implies the rows of H2 are in  . Use this to show H1H′
2 = 𝟎 ⇐⇒ H1M = H1.

PostmultiplyH′H = IT byM to showH′
1H1 = M. Finally, show thatH1H′

1 = IT−k .

Problem 1.6 Prove that the restricted least squares estimator �̂� given in (1.69) satisfies
1. H�̂� = h and
2. ‖Y−X�̂�‖2 ⩽ ‖Y−Xb‖2 for all b ∈ ℝk such thatHb=h.
Hint: For 2, first show that, for every b ∈ ℝk such thatHb=h,

‖Y−Xb‖2 = ‖Y−X𝜷‖2 + ‖X𝜷 − Xb‖2,
and then argue it suffices to show that ‖X𝜷 − X�̂�‖2 ⩽ ‖X𝜷 − Xb‖2. Add and subtract �̂� to the latter
term, expand, and show the cross term is zero.

Problem 1.7 Let u, v ∈ ℝn. Prove the Cauchy–Schwarz inequality ⟨u, v⟩ ⩽ ‖u‖ ‖v‖ as follows.
1. Show that 0 ⩽ ⟨u − av,u − av⟩ for all a ∈ ℝ.
2. Expand ⟨u − av,u − av⟩ and let a = ⟨u, v⟩∕⟨v, v⟩.

Problem 1.8 Prove Theorem 1.2, i.e., if P is symmetric and idempotent with rank(P) = k, then (i)
k of the eigenvalues of P are unity and the remaining T − k are zero, and (ii) tr(P) = k.
Hint: For (i), continue with the relation 𝜆x=Px=PPx, and for (ii), let P=UDU′ and continue
with the relation k = rank(P) = tr(D).
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The converse of the result in Theorem 1.2 is, however, not true. For example, with A =
[
1 1
0 1

]
,

rank(A) = tr(A) = 2 and a standard computation shows that the eigenvalues of A are both one.
But A is neither symmetric nor idempotent.
Finally, there are related results without requiring symmetry. For example, the matrix

A =
⎡⎢⎢⎣

2 −1∕4 −1∕6
18 −7∕2 −3

−15 15∕4 7∕2

⎤⎥⎥⎦
is not symmetric, but it is idempotent, with rank two, eigenvalues 0, 1 and 1, and tr(A) = 2. In
general, if A is idempotent with k eigenvalues equal to one (and the rest zero), then rank(A) =
tr(A) = k; see, e.g., Magnus and Neudecker (2007, p. 22).

Problem 1.9 ProveTheorem 1.6.

Problem 1.10 Partition the linear regression model (1.3) as

Y =
(

X1 X2
)( 𝜷1

𝜷2

)
+ 𝝐 = X1𝜷1 + X2𝜷2 + 𝝐.

For convenience, let M1 = MX1
= I − PX1

. Part (b) of Theorem 1.6 implies that PX = PX1
+ PM1X2

.
Show this directly by using the projection and perpendicularity conditions (1.48) and (1.49).
Hint: Recall from the definition of column space (1.38) that, for an x ∈ (X), there exists a 𝜸 such
that x = X𝜸 = X1𝜸1 + X2𝜸2, where 𝜸 is appropriately partitioned into 𝜸1 and 𝜸2.

Problem 1.11 Because M in (1.53) is a projection matrix onto (X)⟂, it follows from Theorem 1.2
that rank(M) = T − k. Show this result using (B.67) and (B.68), i.e., if A and B are two matrices of
the same size, then

rank(A+B) ⩽ rank(A) + rank(B),

and if A and B are n × n and n × k matrices, respectively, k ⩾ 1, then

rank(AB) ⩾ rank(A) + rank(B) − n.

Problem 1.12 As in (1.66), let matrix H be of dimension J × k and full rank, with J ⩽ k. Show that
K = 𝜎2AH′(HAH′)−1HA is positive semi-definite for J < k, where A = (X′X)−1.
Hint: If you are not convinced of the following fact, then prove it first: If A is a real symmetric
matrix of size n with full rank n, then so is A−1.
What happens when J = k?

Problem 1.13 Numerically find the minimum number of observations T required in Example 1.11
to achieve a given power, using 𝛼 = 0.05.

Problem 1.14 We had derived the restricted least squares estimator �̂� for the model Y = X𝜷 + 𝝐

when the restrictionH𝜷 = h holds, whereH is J × k of full rank J ⩽ k.There is anotherway of doing
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this. It begins by expressing H𝜷 = h as 𝜷 = S𝜼 + s, where the parameter vector 𝜼 is of dimension
k − J . That is, Y = X𝜸 + 𝝐, where

X𝜸 ∈ H = {y ∶ y=X𝜷, 𝜷 = S𝜼 + s, 𝜼 ∈ ℝk−J}.

An extensive treatment of the relation between these parameterizations is provided by Hirschberg
and Slottje (1999).
For example, let 𝜷 = (𝛽1,… , 𝛽4)′ and consider the constraint 𝛽2 = 2𝛽3. Then we would take H =
[0 1 −2 0] and h = 0. Alternatively, this can be expressed by

𝜷 =
⎛⎜⎜⎜⎝
𝛽1
𝛽2
𝛽2∕2
𝛽4

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

1 0 0
0 1 0
0 1∕2 0
0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
𝛽1
𝛽2
𝛽4

⎞⎟⎟⎠ + 𝟎, i.e., S =
⎛⎜⎜⎜⎝

1 0 0
0 1 0
0 1∕2 0
0 0 1

⎞⎟⎟⎟⎠ ,
s = 𝟎 and 𝜂 = [𝛽1 𝛽2 𝛽4]′.
a) Let 𝜷 = (𝛽1,… , 𝛽4)′ but with the constraint that

∑4
i=2 𝛽i = 1. Give the appropriate values of H,

h, S, 𝜼 and s.
b) For some given values of S, 𝜼 and s, derive �̂�.

Hint: Plug in 𝜷 = S𝜼 + s into the regression model.
(Ruud, 2000, pp. 79–80)

c) Express X�̂� as PZY + (I−PZ)Xs, where PZ is a projection matrix.
d) Show that the constraintH𝜷 = h, whereH is J × k and rank(H) = J ⩽ k, can always be expressed

as 𝜷 = S𝜼 + s.
(Ruud, 2000, p. 94(4.14a))

Problem 1.15 Recall the form of the generalized likelihood ratio statistic. For testing H0 ∶ H𝜷 = h
in the linear model, it is given by

LR = LR(Y,X,H,h) =
max

𝜎2,𝜷∶H𝜷=h
(𝜷, 𝜎2;Y)

max
𝜎2,𝜷

(𝜷, 𝜎2;Y)
=

(�̂�, �̃�2
𝜸 ;Y)

(𝜷, �̃�2;Y)
,

where 𝜷 = (X′X)−1X′Y and �̃�2 = T−1S(𝜷) refer to the unrestricted m.l.e. and �̂� and �̃�2
𝜸 = T−1S(�̂�)

refer to the restricted ones, where �̂� is given in (1.69). Show that a test ofH0 involving LR is equiv-
alent to the F test given in (1.88).

Problem 1.16 This exercise will be of value in Section 2.5.2. Recall that, if G ∼ Gam(𝛼, 𝛽), 𝛼 > 0,
𝛽 > 0, its p.d.f. is

fG(x; 𝛼, 𝛽) =
𝛽𝛼

Γ(𝛼)
x𝛼−1 exp(−𝛽x)𝕀(x > 0),

where

Γ(a) = ∫
∞

0
xa−1e−x dx and ∫

∞

0
x𝛼−1 exp(−𝛽x) dx = Γ(𝛼)

𝛽𝛼
. (1.111)

Let Gi
ind∼ Gam(𝛼i, 1) and let R1 = G1∕G3 and R2 = G2∕G3. It is clear that, conditional on G3, R1

and R2 are independent. Show that without conditioning they are not, by confirming (omitting the
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obvious indicator functions)

fR1,R2
(r1, r2) =

Γ(𝛼1 + 𝛼2 + 𝛼3)
Γ(𝛼1)Γ(𝛼2)Γ(𝛼3)

r𝛼1−11 r𝛼2−12

(1 + r1 + r2)𝛼1+𝛼2+𝛼3
,

which does not factor as fR1
(r1) × fR2

(r2). Further confirm that fR1,R2
(r1, r2) integrates to one by using

the function dblquad in Matlab.

1.A Appendix: Derivation of the BLUS Residual Vector

This appendix derives the BLUS residual vector (1.104). It is a detailed amalgam of the various proofs
given inTheil (1965, 1968, 1971), Chow (1976), and Magnus and Sinha (2005), with the hope that the
development shown here (that becomes visible and straightforward once atop the proverbial shoul-
ders of giants, notably HenriTheil and JanMagnus) serves as a clear, complete, and perhaps definitive
derivation.14
Recall that we wish a residual estimator of the form �̂�LUS = CY, whereC is (T − k) × T , and that the

relevant minimization problem for the BLUS estimator is (writing just �̂� for �̂�LUS)

�̂�BLUS = arg min
�̂�

𝔼[(�̂� − 𝝐1)′(�̂� − 𝝐1)] subject to CX=𝟎, CC′ = I, (1.112)

where 𝝐1 is defined via the partition of the model in (1.103), repeated here as[
Y0
Y1

]
=

[
X0
X1

]
𝜷 +

[
𝝐0
𝝐1

]
=

[
X0
X1

]
𝜷LS +

[
e0
e1

]
, (1.113)

with 𝝐0 and e0 of size k × 1, and 𝝐1 and e1 of size (T − k) × 1.
We divide the derivation into several small parts.

Reduce the Two Constraints to One

The first part of the derivation consists in reducing the number of (matrix) constraints to one. The
partition C =

[
C0 C1

]
with e =

[
e0 e1

]′, where e is of size T × 1, yields

Ce = C0e0 + C1e1, (1.114)

whereC0 is (T − k) × k andC1 is (T − k) × (T − k). Observe that the symmetry ofC implies that ofC1.
Using CX=𝟎 and X′e=𝟎, we have

C0X0 + C1X1 = 𝟎, X′
0e0 + X′

1e1 = 𝟎,

so that with

Z = X1X−1
0 , (1.115)

we can write

e0 = −(X1X−1
0 )′e1 = −Z′e1, C0 = −C1(X1X−1

0 ) = −C1Z. (1.116)

14 The author is grateful to my brilliant master’s student Christian Frey for assembling this meticulous and detailed
derivation from the original papers.
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Further, using CC′ = I, (1.116) yields

CC′ = C0C′
0 + C1C′

1 = C1ZZ′C′
1 + C1C′

1 = C1[I + ZZ′]C′
1 = I, (1.117)

so that both constraints CX=𝟎 and CC′ = I are equivalent to (1.117). Moreover, by assumption
CX=𝟎, it follows that CY = C𝝐 = Ce. As CY = (X𝜷 + 𝝐) = C𝝐 and Ce = C(Y − 𝜷X) = CY,

�̂� = CY = C𝝐 = C0𝝐0 + C1𝝐1 = −C1Z𝝐0 + C1𝝐1,

and therefore

Cov[(�̂� − 𝝐1), (�̂� − 𝝐1)]
= Cov[(−C1Z𝝐0 + (C1 − I)𝝐1), (−C1Z𝝐0 + (C1 − I)𝝐1)]
= 𝜎2[C1(I + ZZ′)C′

1 + I − C1 − C′
1]. (1.118)

The minimization problem for the BLUS estimator is then reduced to

�̂�BLUS = arg min�̂�𝔼[(�̂� − 𝝐1)′(�̂� − 𝝐1)] subject to (1.117).

Solve with a Lagrangean Approach

Note that �̂� = CY = Ce, so that, with (1.118) and (1.117), the constrained minimization problem is
equivalent to the Lagrangean

L(C1,𝝀) = tr([C1(I + ZZ′)C′
1 + I − C1 − C′

1])
− tr(𝝀[C1(I + ZZ′)C′

1 − I]), (1.119)

where 𝝀 denotes the Lagrange multiplier matrix of dimension (T − k) × (T − k).
As 𝜕tr(AB)∕𝜕A = 𝜕tr(BA)∕𝜕A = B′, the first-order condition with respect to C1 is

𝜕L
𝜕C1

= 2C1(I+ZZ′) − 2I − 2𝝀C1(I + ZZ′) = 𝟎. (1.120)

Symmetry of C1 Gives a Spectral Decomposition

To solve (1.120) for the two unknowns C1 and 𝝀, postmultiply (1.120) by C′
1 and use (1.117) to get

𝝀 = I − C′
1 = I − C1, (1.121)

which is obviously symmetric from the symmetry of C1. Substituting (1.121) in (1.120) yields

C′
1C1(I + ZZ′) = I. (1.122)

Thus, (1.122) and a spectral decomposition yield

C2
1 = (I + ZZ′)−1 = PD2P′, (1.123)

where, from the symmetry of C1, D2 is the (T − k) × (T − k) diagonal matrix with entries d2
k and

P is the (T − k) × (T − k) orthogonal matrix (PP′ = I) with columns given by the eigenvectors of
(I + ZZ′)−1 corresponding to the eigenvalues d2

1,… , d2
T−k . It is worth emphasizing that the symmetry

of C1 ensures that the di are real.
Note that the notationD2 stands for the d2

k entries of matrixD2, just to avoid usage of the root sym-
bol, whileD is the diagonal matrix with entries dk restricted to the positive square roots.The solution
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for (1.123) is then, say, C∗
1 = (I + ZZ′)−1∕2 = PDP′. To simplify notation, we subsequently take C1 ≡

C∗
1.
It is useful to introduce the partition

M = I − X(X′X)−1X′ =
[
M00 M01
M10 M11

]
,

where M00 = I − X0(X′X)−1X′
0, M01 = −X0(X′X)−1X′

1, M10 = M′
01, and M11 = I − X1(X′X)−1X′

1,
though we will make use only ofM11. Direct multiplication shows thatM−1

11 = I + X1(X′
0X0)−1X′

1, i.e.,
using this latter claim,M11M

−1
11 is

[I − X1(X′X)−1X′
1][I + X1(X′

0X0)−1X′
1]

= I − X1(X′X)−1X′
1 + X1(X′

0X0)−1X′
1 − X1(X′X)−1X′

1X1(X′
0X0)−1X′

1

= I − X1(X′X)−1X′
1 + X1(X′

0X0)−1X′
1 − X1(X′X)−1(X′X − X′

0X0)(X′
0X0)−1X′

1

= I.

Thus, with Z = X1X−1
0 from (1.115),

M−1
11 = I+ZZ′, (1.124)

from which it follows that M11 = (I + ZZ′)−1. From (1.123) and (1.124), M−1
11 = (I + ZZ′) = (C2

1)
−1 =

C−2
1 so that, from (1.116),

�̂�BLUS = CY = Ce = C0e0 + C1e1 = (−C1Z)(−Z′e1) + C1e1
= C1(I+ZZ′)e1 = C1M−1

11 e1 = C−1
1 e1

= e1 + (C−1
1 − I)e1

= e1 +
T−k∑
k=1

(d−1
k − 1)pkp′

ke1, (1.125)

where pk are the eigenvectors and d2
k the eigenvalues ofM11.The last equality follows by the existence

of a spectral decomposition ofM11 = C2
1 = PD2P′, so that

M11pk = [I − X1(XX′)−1X′
1]pk = d2

kpk , k = 1,… ,T − k. (1.126)
Premultiplying both sides of (1.126) by X′

1 and using X′
1X1 = X′X − X′

0X0,
X′

1pk − (X′X − X′
0X0)(X′X)−1X′

1pk = d2
kX

′
1pk

X′
0X0(X′X)−1X′

1pk = d2
kX

′
1pk , k = 1,… ,T − k. (1.127)

Now premultiplying both sides of (1.127) by (X′
0)

−1, using Z = X1X−1
0 , and rearranging,

[X0(X′X)−1X′
0 − d2

kI]Z
′pk = 𝟎, k = 1,… ,T − k.

Use the Spectral Decomposition to Express the BLUS Estimator in terms of e0 and e1

Observe that d2
k is an eigenvalue of X0(X′X)−1X′

0. As the eigenvectors Z
′pk do not have unit length,

we normalize by a scalar to get, for dk < 1,

qk =
dk√
1 − d2

k

Z′pk , k = 1,… ,T − k, (1.128)
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so that q1,… ,qT−k have unit length and are pairwise orthogonal. As P is orthogonal,P−1 = P′, so that

ZZ′ = M−1
11 − I = (PD2P′)−1 − I = (PD−2P′) − I,

and observe that

ZZ′pk =
1 − d2

k

d2
k

pk , k = 1,… ,T − k.

Thus, q′
lqk = 1 if l = k and zero otherwise for k, l = 1,… ,T − k. From

1 − d2
k

d2
k

pk = Z(Z′pk) =

√
1 − d2

k

dk
Zqk ,

it follows that, if dk < 1, pk =
dk√
1−d2

k

Zqk , k = 1,…T − k, so that, with e0 = −Z′e1 andZ = X1X−1
0 , the

last line of (1.125) can be written as

�̂�BLUS = e1 +
T−k∑
k=1

(
1
dk

− 1
)
pkp′

ke1 (1.129)

= e1 + Z
T−k∑
k=1

(
1
dk

− 1
) d2

k

1 − d2
k

qkq′
kZ

′e1 (1.130)

= e1 + X1X−1
0

T−k∑
k=1

dk
1 + dk

qkq′
ke0, (1.131)

where in (1.129), the kth term in the sum is zero if dk = 1. Thus, we can restrict the summation in
(1.130) and (1.131) to k = 1,… ,H , where dk < 1, for all k = 1,… ,H , with H ⩽ T − k. The result is
sometimes expressed as a permutation of the elements dh, h = 1,… ,H , say d1 ⩽ d2 ⩽ … ⩽ dH < 1,
such that the dh are nondecreasing. This yields (1.104), i.e.,

�̂�BLUS = e1 + X1X−1
0

H∑
h=1

dh
1 + dh

qhq′
he0.

Observe that the BLUS estimator is represented as a deviation from the corresponding least squares
errors.

Verification of Second-order Condition

As in Theil (1965), to verify that C∗ or, equivalently, C∗
1 is indeed a minimum of (1.123), consider

an alternative estimator C̄Y = (C+R)Y =
[
C′

0 + R′
0 C′

1 + R′
1
]
Y, where C1 = PDP′ is the optimal

symmetric matrix C1 from the first-order condition (1.123) and, hence, C0 = −C1Z = −PDP′Z from
(1.116). Note that, as before, C1 ≡ C∗

1 and similarly C ≡ C∗. Recall thatD is restricted to contain only
positive diagonal entries (eigenvalues). We wish to show that C∗ ⩽ C̄ for all C̄.
From the assumption C̄X=𝟎, it follows thatR′

0X0 + R′
1X1 = 𝟎, so thatR′

0 = −R′
1Z, withZ = X1X−1

0 .
Thus, the assumption C̄ C̄′ = I, such that C̄ has a scalar covariance matrix, implies

(C+R)′(C+R) = (C0 + R0)′(C0 + R0) + (C1 + R1)′(C1 + R1)
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= (C1 + R1)′(I+ZZ′)(C1 + R1)
= (C1 + R1)′M−1

11 (C1 + R1) = I,

where the last equality follows from (1.124). From (1.124) and (1.123),M−1
11 = C−2

1 , and

(I + C−1
1 R1)′(I + C−1

1 R1) = I, (1.132)

implying that C−1
1 R1 + (C−1

1 R1)′ is negative semi-definite. Indeed, withN ∶= C−1
1 R1 and v′ ∈ ℝT−k an

arbitrary (real) nonzero row vector, premultiplying both sides of (1.132) with v′ and postmultiplying
by v gives

v′(I+N)′(I+N)v = v′v, (1.133)

implying

v′(N+N′)v = −v′N′Nv ⩽ 0, (1.134)

so that N+N′ is negative semi-definite.
Recall that the (unconstrained) objective function in (1.119) can be rewritten with C1C′

1 = I. Also
recall the properties of the trace operator, tr(C1) = tr(C′

1), tr(C1C′
1) = tr(C′

1C1) and tr(C1(ZZ′)C′
1) =

tr(C1C′
1(ZZ

′)). Then the expectation in (1.112) is

𝔼[(�̂� − 𝝐1)′(�̂� − 𝝐1)] = tr([C1(I + ZZ′)C′
1 + I − C1 − C′

1])
= tr(C1C′

1) + tr(C1(ZZ′)C′
1) + tr(I) − 2tr(C1)

= 2tr(I) + tr(I(ZZ′)) − 2tr(C1).

It follows that the unconstrained optimization problem as a function only of C1 is equal to

−min
C1

tr(C1) = max
C1

tr(C1) = max
C1

tr

(T−k∑
k=1

1
dk

pkp′
k

)
, (1.135)

where the last equality follows from the spectral decompositionC1 = PDP′; see (1.123).The objective
function of the maximization problem (1.135) applied to R1 is then given as

tr(R1) = tr(C1N) = tr

(T−k∑
k=1

1
dk

pkp′
kN

)
= tr

(T−k∑
k=1

1
dk

p′
kNpk

)

= 1
2
tr

(T−k∑
k=1

1
dk

p′
k(N +N′)pk

)
⩽ 0,

so that, by the negative semi-definiteness of (N +N′),N=𝟎, or, equivalently,R=𝟎, are corresponding
maxima of the objective function (1.135) given that the eigenvalues dk , k = 1,… ,T − k, are positive.
Therefore, C∗

1 is a minimum of (1.119) and hence C∗ is a minimum of (1.112).

1.B Appendix: The Recursive Residuals

Here we provide more detail on the recursive residuals in (1.105). Let 𝜷 j = (X′
jXj)−1X′

jYj be the o.l.s.
estimator obtained by using only the first j, j ⩾ k, observations, whereYj is the j × 1 vector of the first j
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elements ofY, andXj is the j × kmatrix of the first j rows ofX. As shown in Brown et al. (1975, p. 152),
the 𝜷 j, j = k + 1,… ,T , can be obtained recursively.
In particular, writing X′

jXj = X′
j−1Xj−1 + xjx′j , where x

′
j is the jth row of X, we can apply (1.70) with

A = X′
j−1Xj−1, B = xj and scalar D = 1, to get

(X′
jXj)−1 = (X′

j−1Xj−1)−1 −
(X′

j−1Xj−1)−1xjx′j (X
′
j−1Xj−1)−1

1 + x′j (X
′
j−1Xj−1)−1xj

. (1.136)

Postmultiplying (1.136) by xj and simplifying easily yields

(X′
jXj)−1xj =

(X′
j−1Xj−1)−1xj

1 + x′j (X
′
j−1Xj−1)−1xj

. (1.137)

Next, from (1.6) and that 𝜷 j−1 = (X′
j−1Xj−1)−1X′

j−1Yj−1, write

X′
jXj𝜷 j = X′

jYj = X′
j−1Yj−1 + xjYj = X′

j−1Xj−1𝜷 j−1 + xjYj

= (X′
j−1Xj−1 + xjx′j )𝜷 j−1 + xjYj − xjx′j𝜷 j−1

= X′
jXj𝜷 j−1 + xj(Yj − x′j𝜷 j−1),

premultiply with (X′
jXj)−1 and finally use (1.137) to get

𝜷 j = 𝜷 j−1 +
(X′

j−1Xj−1)−1xj(Yj − x′j𝜷 j−1)

1 + x′j (X
′
j−1Xj−1)−1xj

, j = k + 1,… ,T . (1.138)

The standardized quantities

Vj =
Yj − x′j𝜷 j−1√

1 + x′j (X
′
j−1Xj−1)−1xj

, j = k + 1,… ,T , (1.139)

are defined to be the recursive residuals.
LetV = (Vk+1,… ,VT )′. We wish to derive the distribution ofV. Clearly,𝔼[Vj] = 0. For the variance,

as Yj and 𝜷 j−1 are independent for j = k + 1,… ,T , and recalling (1.8),

𝕍 (Vj) =
1

1 + x′j (X
′
j−1Xj−1)−1xj

(𝕍 (Yj) + x′j𝕍 (𝜷 j−1)xj)

= 1
1 + x′j (X

′
j−1Xj−1)−1xj

(𝜎2 + 𝜎2x′j (X
′
j−1Xj−1)−1xj) = 𝜎2.

Vector V has a normal distribution, because 𝝐 ∼ N(0, 𝜎2I), and each Vj can be expressed as

Vj =
𝜖j − x′j (X

′
j−1Xj−1)−1

∑j−1
k=1 xk𝜖k√

1 + x′j (X
′
j−1Xj−1)−1xj

. (1.140)

To see this, note that X′
j−1(Yj−1 − Xj−1 𝜷) =

∑j−1
k=1 xk𝜖k and hence for the numerator of Vj

Yj − x′j𝜷 j−1 = 𝜖j − x′j𝜷 j−1 + x′j𝜷
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= 𝜖j − x′j (X
′
j−1Xj−1)−1X′

j−1(Yj−1 − Xj−1 𝜷)

= 𝜖j − x′j (X
′
j−1Xj−1)−1

j−1∑
k=1

xk𝜖k .

For the covariances of V, let Nj be the numerator in (1.140). For j < i, 𝔼[NjNi] is

𝔼(𝜖j𝜖i) − 𝔼

[
𝜖jx′i(X

′
i−1Xi−1)−1

i−1∑
k=1

xk𝜖k

]
− 𝔼

[
𝜖ix′j (X

′
j−1Xj−1)−1

j−1∑
k=1

xk𝜖k

]

+ 𝔼

[
x′j (X

′
j−1Xj−1)−1

( j−1∑
k=1

xk𝜖k

)
x′i(X

′
i−1Xi−1)−1

( i−1∑
k=1

xk𝜖k

)]
.

This, in turn, is

−𝜎2x′i(X
′
i−1Xi−1)−1xj + 𝜎2

j−1∑
k=1

[x′j (X
′
j−1Xj−1)−1xkx′i(X

′
i−1Xi−1)−1xk] (1.141)

= −𝜎2x′i(X
′
i−1Xi−1)−1xj + 𝜎2

j−1∑
k=1

[x′j (X
′
j−1Xj−1)−1xkx′k(X

′
i−1Xi−1)−1xi] (1.142)

= −𝜎2x′i(X
′
i−1Xi−1)−1xj + 𝜎2[x′j (X

′
j−1Xj−1)−1(X′

j−1Xj−1)(X′
i−1Xi−1)−1xi] = 0,

so that V ∼ N(𝟎, 𝜎2IT−k).

1.C Appendix: Solutions

1) For themodelYt = 𝛽1 + 𝛽2Xt + 𝜖t , t = 1,… ,T , with 𝜖t = Yt − 𝛽1 − 𝛽2Xt , setting 𝜕S(𝜷)∕𝜕𝛽1 to zero
gives 0 = −2

∑T
t=1 𝜖t or

𝛽1 = Ȳ − 𝛽2X̄. (1.143)

Using this in the equation 0 = 𝜕S(𝜷)∕𝜕𝛽2 = −2
∑T

t=1 Xt𝜖t and simplifying yields

𝛽2 =
∑T

t=1 XtYt − TX̄Ȳ∑T
t=1 X2

t − TX̄2
=

∑T
t=1(Xt − X̄)(Yt − Ȳ )∑T

t=1 (Xt − X̄)2
=
�̂�X,Y

�̂�2
X
, (1.144)

where �̂�X,Y denotes the sample covariance between X and Y ,

�̂�X,Y = 1
T − 1

T∑
t=1

(Xt − X̄)(Yt − Ȳ ),

and �̂�2
X = �̂�X,X . From the first derivative equations, it follows that

∑
𝜖t =

∑
Xt𝜖t = 0. Also, as Ŷt =

𝛽1 + 𝛽2Xt , it is easy to verify using (1.143) that

Ŷt − Ȳ = 𝛽2(Xt − X̄). (1.145)
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Define the standardized variables xt = (Xt − X̄)∕�̂�X and yt = (Yt − Ȳ )∕�̂�Y (so that x̄ = ȳ = 0, �̂�2
x =

�̂�2
y = 1 and

∑
x2t =

∑
y2t = T − 1) and consider the regression yt = 𝛼1 + 𝛼2xt + 𝜀t . Then (1.143)

implies �̂�1 = 0 and (1.144) implies

�̂�2 =
�̂�x,y

�̂�x�̂�y
= �̂�x,y =

1
T − 1

T∑
t=1

xtyt =
(T − 1)−1

�̂�X �̂�Y

T∑
t=1

(Xt − X̄)(Yt − Ȳ ) =
�̂�X,Y

�̂�X �̂�Y
= �̂�,

where �̂� = �̂�X,Y is the sample correlation between X and Y , with |�̂�| ⩽ 1. Thus, we can write

ŷt = �̂�1 + �̂�2xt = �̂�xt,

and squaring and summing both sides yields �̂�2 =
∑

ŷ2t ∕
∑

x2t . The R2 statistic is then

R2 = ESS
TSS

=
∑

(ŷt − ȳ)2∑
(yt − ȳ)2

=
�̂�2

∑
x2t∑

y2t
= �̂�2.

Using (1.145) and (1.144), R2 for the original model is

R2 = ESS
TSS

=
𝛽22

∑
(Xt − X̄)2∑

(Yt − Ȳ )2
= 𝛽22

�̂�2
X

�̂�2
Y
=

�̂�2
X,Y

�̂�2
X �̂�

2
Y
= �̂�2,

i.e., the same as for the regression with standardized components.
2) We need to show

T∑
t=1

(Yt − Ȳ )2 =
T∑
t=1

(Yt − Ŷt)2 +
T∑
t=1

(Ŷt − Ȳ )2.

From (1.143) and (1.145), we get

Ŷt = Ȳ +
�̂�X,Y

�̂�2
X
(Xt − X̄),

and using

�̂�X,Y = 1
T

T∑
t=1

(Xt − X̄)(Yt − Ȳ ) = 1
T

T∑
t=1

XtYt − X̄Ȳ ,

simple algebra shows that
T∑
t=1

(Yt − Ȳ )2 =
T∑
t=1

Y 2
t − TȲ 2,

T∑
t=1

(Yt − Ŷt)2 =
T∑
t=1

Y 2
t − TȲ 2 − T

�̂�2
X,Y

�̂�2
X
,

T∑
t=1

(Ŷt − Ȳ )2 = T
�̂�2
X,Y

�̂�2
X
,

proving the result.
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3) From the appropriate partition

(X′X) =
(
X′

1
X′

2

)(
X1 X2

)
=

(
X′

1X1 X′
1X2

X′
2X1 X′

2X2

)
,

(1.110) implies that, with U = (X′
1X1)−1 and V = (X′

2X2)−1,

(X′X)−1 =
(

W−1 −W−1X′
1X2V

−VX′
2X1W−1 V + VX′

2X1W−1X′
1X2V

)
withW = X′

1X1 − X′
1X2VX′

2X1 = X′
1M2X1, whereM2 = I − X2(X′

2X2)−1X′
2. Then

𝜷 = (X′X)−1
(
X′

1
X′

2

)
Y

gives

𝜷1 = (W−1X′
1 −W−1X′

1X2VX′
2)Y = (X′

1M2X1)−1X′
1M2Y,

as in (1.22), and

𝜷2 = (−VX′
2X1W−1X′

1 + (V + VX′
2X1W−1X′

1X2V)X′
2)Y

= (VX′
2 + VX′

2X1W−1X′
1(X2VX′

2 − I))Y
= VX′

2(Y − X1(X′
1M2X1)−1X′

1M2Y)
= (X′

2X2)−1X′
2(Y − X1𝜷1).

4) Observe that, as T = [w1, w2,… ,wk] in (1.42) is an orthonormal basis for  , all vectors in 
can be represented by linear combinations of thesewi. In particular, if [h1, h2,… ,hk] is a (differ-
ent) basis for  , then we can write H = TA, where H = [h1 h2 … hk] and A is a full rank k × k
matrix. AsT′T = I andH′H = I, we have I = H′H=A′T′TA=A′A, so thatA is orthogonal with
A′ = A−1. ThenHH′ =TAA′T′ =TT′, showing that P is unique. Matrix A can be computed as
(T′T)−1T′H. In Matlab, we can see this with the code in Listing 1.13.

5) LetM = IT − P with dim() = k, k ∈ {1, 2,… ,T − 1}. Via the spectral decomposition, letH be
an orthogonal matrix whose rows consist of the eigenvectors ofM. FromTheorem 1.2,H can be
partitioned as

H =
[
H1
H2

]
,

whereH1 andH2 are of sizes (T − k) × T and k × T , respectively, and such that

HMH′ =
(
H1
H2

)
M (H′

1 H′
2 ) =

(
H1MH′

1 H1MH′
2

H2MH′
1 H2MH′

2

)
=

(
IT−k 𝟎(T−k)×k
𝟎k×(T−k) 𝟎k×k

)
.

Then 𝟎=H2MH′
2 = H2M′MH′

2 = (MH′
2)′MH′

2 implies thatH2M = MH′
2 = 𝟎 or

𝟎 = (I − P )H′
2 ⇐⇒ H′

2 = PH′
2.

1 T=rand(4,2); T=orth(T); Q=[1,2;3,4]; H=T*Q; H=orth(H);
2 A=inv(T'*T)*T'*H; H-T*A, A'*A

Program Listing 1.13: Computes 𝐀 = (𝐓′𝐓)−1𝐓′𝐇.
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AsH′
2 is unchanged by projecting it onto  , the rows ofH2 are in  . From this, and the fact that

the rows ofH are orthogonal,

H1H′
2 = 𝟎⇐⇒H1Py = 𝟎 ∀ y ∈ ℝT

⇐⇒H1(Iy − Py) = H1y ∀ y ∈ ℝT

⇐⇒H1My = H1y ∀ y ∈ ℝT

⇐⇒H1M = H1.

PostmultiplyingH′H = IT byM givesH′
1H1M+H′

2H2M=M or, asH1M = H1 andH2M = 𝟎,

H′
1H1 = M. (1.146)

Recall that the rows ofH are orthonormal, so that

HH′ =
(
H1
H2

)
(H′

1 H′
2 ) =

(
H1H′

1 H1H′
2

H2H′
1 H2H′

2

)
= IT =

(
IT−k 𝟎(T−k)×k
𝟎k×(T−k) Ik×k

)
and, in particular,

H1H′
1 = IT−k . (1.147)

The result follows from (1.146) and (1.147).
6) Let A = (X′X)−1. Direct substitution gives

H�̂� = H[𝜷 + AH′[HAH′]−1(h−H𝜷)] = H𝜷 + h−H𝜷,

so that the first condition is satisfied. To see the second, note that, for every b ∈ ℝk such that
Hb=h, we can write‖Y−Xb‖2 = ‖Y−X𝜷 + X𝜷 − Xb‖2 = ‖Y−X𝜷‖2 + ‖X𝜷 − Xb‖2, (1.148)

because the cross term (Y−X𝜷)′(X𝜷 − Xb) = �̂�
′X(𝜷 − b) = 0 from (1.61). Because the first term

in (1.148) does not depend on b or �̂�, it suffices to show that‖X𝜷 − X�̂�‖2 ⩽ ‖X𝜷 − Xb‖2. (1.149)

First note that the cross term (X𝜷 − X�̂�)′(X�̂� − Xb) vanishes because, from (1.69),

(𝜷 − �̂�)′X′X(�̂� − b) = −(h−H𝜷)′[H(X′X)−1H′]−1H(X′X)−1X′X(�̂� − b)
= −(h−H𝜷)′[H(X′X)−1H′]−1(H�̂� −Hb) = 𝟎,

asH�̂� = h=Hb. Thus, the right-hand side of (1.149) is‖X(𝜷 − b)‖2 = ‖X(𝜷 − �̂� + �̂� − b)‖2 = ‖X𝜷 − X�̂�‖2 + ‖X�̂� − Xb‖2,
and, as ‖X�̂� − Xb‖2 is non-negative, (1.149) is true. Strict equality holds whenX�̂� equalsXb, but
as X is of full rank, this holds if and only if �̂� = b.

7) From the definition of ⟨⋅, ⋅⟩, for any v ∈ ℝn, ⟨v, v⟩ = ∑n
i=1 𝑣

2
i ⩾ 0. For the second part,

⟨u − av,u − av⟩ = n∑
i=1

(ui − a𝑣i)2 =
n∑
i=1

u2
i − 2a

n∑
i=1

ui𝑣i + a2
n∑
i=1

𝑣2i

= ⟨u,u⟩ − 2a⟨u, v⟩ + a2⟨v, v⟩,
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so that, with a = ⟨u, v⟩∕⟨v, v⟩,
0 ⩽ ⟨u,u⟩ − 2a⟨u, v⟩ + a2⟨v, v⟩ = ⟨u,u⟩ − 2

⟨u, v⟩2⟨v, v⟩ +
⟨u, v⟩2⟨v, v⟩ = ⟨u,u⟩ − ⟨u, v⟩2⟨v, v⟩ ,

or ⟨u, v⟩2 ⩽ ⟨u,u⟩⟨v, v⟩.
Asboth sides are positive, taking square roots gives the inequality ⟨u, v⟩ ⩽ ‖u‖ ‖v‖, where ‖u‖2 =⟨u,u⟩.

8) (Theorem 1.2)
From idempotency, for any eigenvalue 𝜆 and corresponding eigenvector x,

𝜆x=Px=PPx=P𝜆x= 𝜆Px= 𝜆2x,

which implies that𝜆 = 𝜆2, so that the only solutions are𝜆 = 0 or 1 (there are no complex solutions,
though note that, from the assumption of symmetry, all eigenvalues are real anyway). Also from
symmetry, the number of nonzero eigenvalues of P equals rank(P) = k, proving (i).
For (ii), form the spectral decomposition of P as UDU′, where U is an orthogonal matrix and D
is a diagonal matrix with k ones and T − k zeros. Using the fact that (for conformable matrices)
tr(AB) = tr(BA),

k = rank(P) = tr(D) = tr(UDU′) = tr(P).

9) (Theorem 1.6)
a) For convenience, we restate (1.50) from the proof in the text: Take as a basis forℝT the vectors

0 basis
⏞⏞⏞⏞⏞

r1,… , rr,

\0 basis
⏞⏞⏞⏞⏞⏞⏞⏞⏞

sr+1,… , ss
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

 basis

, zs+1,… , zT
⏟⏞⏞⏞⏟⏞⏞⏞⏟

⊥ basis

(1.150)

and let y= r+ s+ z, where r ∈ 0, s ∈ \0 and z ∈ ⟂ are orthogonal.
b) LetQ = P − P0

. FromTheorem 1.4, ifQ is symmetric and idempotent, then it is the projec-
tion matrix onto (Q), but it is clearly symmetric and, from the first part of the theorem,

QQ = PP − PP0
− P0

P + P0
P0

= P − P0
.

For (Q) = \0, it must be that, for s ∈ \0 and w ∈ (\0)⟂, Qs = s and Qw = 𝟎. As
\0 ⊂  , Ps = s and, as s ⟂ 0, P0

s = 𝟎, showing thatQs = s. Next, from (1.150),w can be
expressed as

w = c1r1 + · · · + crrr + cs+1zs+1 + · · · + cTzT
for some constants ci ∈ ℝ. As zi ⟂  (which implies zi ⟂ 0 ⊂ ), P0

w = Pw = c1r1 + · · · +
crrr so thatQw = 𝟎. Thus, (Q) = \0 and P\0

= Q = P − P0
. Note that this is a special

case of the earlier result

P⟂ = PℝT \ = PℝT − P = IT − P .
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c) As P\0
= P − P0

,‖P\0
y‖2 = ‖Py − P0

y‖2 = (Py − P0
y)′(Py − P0

y)
= y′PPy− y′P0

Py− y′PP0
y+ y′P0

P0
y

= ‖Py‖2 − ‖P0
y‖2

using the results from part (a).
d) By expressing (1.150) as

0

⏞⏞⏞⏞⏞

r1,… , rr,

⊥
0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

sr+1,… ss
⏟⏞⏞⏟⏞⏞⏟

⊥
0 \⊥

, zs+1,… zT
⏟⏞⏞⏟⏞⏞⏟

⊥
0 ∩⊥=⊥

,

it is clear that \0 = ⟂
0 \⟂. To verify the last equality,

P⟂
0
− P⟂ = (I − P0

) − (I − P ) = P − P0
= P\0

.

e) This follows easily from (1.150) because P\0
y ∈ (\0) ⊂  , so that P (P\0

y) remains
P\0

y. Transposing gives the other equality.
10) For the projection condition, let x ∈ (X). We need to show that (PX1

+ PM1X2
)x = x. From the

hint,

(PX1
+ PM1X2

)x = (PX1
+ PM1X2

)(X1𝜸1 + X2𝜸2)
= PX1

(X1𝜸1 + X2𝜸2) + PM1X2
(X1𝜸1 + X2𝜸2).

Clearly, PX1
X1𝜸1 = X1𝜸1, and as PM1X2

= M1X2(X′
2M1X2)−1X′

2M1, we have PM1X2
X1 = 𝟎 (as

M1X1 = 𝟎) and PM1X2
X2 = M1X2. Thus,

(PX1
+ PM1X2

)x = PX1
(X1𝜸1 + X2𝜸2) + PM1X2

(X1𝜸1 + X2𝜸2)
= X1𝜸1 + PX1

X2𝜸2 +M1X2𝜸2

= X1𝜸1 + (PX1
+M1)X2𝜸2

= X1𝜸1 + X2𝜸2

= X𝜸 = x,

asM1 = MX1
= I − PX1

.
For the perpendicularity condition, recall that the orthogonal complement of (X) is

(X)⟂ = {z ∈ ℝT ∶ X′z=𝟎}. (1.151)

Let u ∈ (X)⟂. We need to show that (PX1
+ PM1X2

)u = 𝟎. For the first term, note that, directly
from (1.151),(X)⟂ ⊂ (X1)⟂, i.e., ifu ∈ (X)⟂, thenu ∈ (X1)⟂, so thatPX1

u = 𝟎. For the second
term, first note that, as (X)⟂ ⊂ (X2)⟂, X′

2u = 𝟎. As

PM1X2
= M1X2(X′

2M1X2)−1X′
2M1 = M1X2(X′

2M1X2)−1X′
2(I − PX1

),
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the condition PM1X2
u = 𝟎 holds if both X′

2u = 𝟎 and PX1
u = 𝟎 hold, and we have just seen that

these are both true, and we are done.
11) Write I= I−P+P, and use Theorem B.67 to get T − rank(P) ⩽ rank(I−P). But, as P is idem-

potent, we have 𝟎 = (I−P)P, so from Theorem B.68, T − rank(P) ⩾ rank(I−P). Together, they
imply that rank(I−P) = T − rank(P) = k.

12) For the statement in the hint, to see that A−1 is symmetric,

I=AA−1 ⇐⇒ I′= I=A−1′A ⇐⇒ IA−1 = A−1′AA−1 ⇐⇒ A−1 = A−1′ .

As A is symmetric, all its eigenvalues are real, so that A has spectral decomposition A=UDU′

withU orthonormal andD = diag(d1,… , dn)with each di real and positive.ThenA−1 = UD−1U′

(confirmed by calculating AA−1) with D−1 = diag(d−1
1 ,… , d−1

n ) with each d−1
i > 0, implying that

A−1 is also full rank.
To show that K is positive semi-definite: Let x be a k × 1 real vector. We have to show

that x′Kx ⩾ 0 for all x or, with z = HAx and the fact that A = (X′X)−1 is symmetric, that
z′(HAH′)−1z ⩾ 0. But this is true because HAH′ (and, thus, (HAH′)−1) is symmetric and full
rank, i.e., q′HAH′q > 0 for all nonzero q.
Observe that K is not necessarily positive definite when J < k because z=HAx could be zero

even for nonzero x. This is the case, for example, with

H =
[
1 0 0
0 1 −1

]
, x = null(H) =

⎡⎢⎢⎣
0√
2∕2√
2∕2

⎤⎥⎥⎦ .
If J = k and, as always assumed,H is full rank, thenH is a square matrix with unique inverse, and
𝜷 is fully specified from the restrictions and the data have no influence on its estimate, i.e., the
restrictionH𝜷 = h implies that 𝜷 = H−1h and �̂� = H−1h, which is not stochastic and, thus, has a
zero covariance matrix. This agrees with the expression (1.77), because, with J = k,

K = 𝜎2AH′(HAH′)−1HA
= 𝜎2AH′ H′−1A−1H−1 HA = 𝜎2A = 𝜎2(X′X)−1 = Var(𝜷).

13) Using program ncf.m to compute the noncentral F c.d.f., the code in Listing 1.14 will do the job.

14) .
a) We takeH = [0 1 1 1] and h = 1.The constraint implies, for example, that 𝛽2 = 1 − 𝛽3 −

𝛽4, so that S, 𝜼 and s are given via

𝜷 =
⎛⎜⎜⎜⎝
𝛽1
1 − 𝛽3 − 𝛽4
𝛽3
𝛽4

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝

1 0 0
0 −1 −1
0 1 0
0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
𝛽1
𝛽3
𝛽4

⎞⎟⎟⎠ +
⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ .
b) Themodel isY = X𝜷 + 𝝐 = XS𝜼 + Xs + 𝝐 orY − Xs = XS𝜼 + 𝝐, so that, withY∗ = Y − Xs and

Z = XS,

�̂� = (Z′Z)−1Z′Y∗ = (S′X′XS)−1S′X′(Y − Xs).



The Linear Model 73

1 powneed=0.90; beta=[0 -5 3 5]'; H=[1 -1 0 0; 0 0 1 -1]; sig2=9;
2 notenough=1; a=5;
3 while notenough
4 a=a+1; n=4*a;
5 dum1=[ones(n,1); zeros(n,1)]; dum2=1-dum1;
6 time=kron((1:4)',ones(floor(n/4),1));
7 c3=kron([1,0]',time); c4=kron([0,1]',time);
8 X=[dum1 dum2 c3 c4]; A=inv(X'*X);
9 theta=beta'*H'*inv(H*A*H')*H*beta/sig2;

10 cutoff = finv(0.95,2,2*n-4); pow=1-ncf(cutoff,2,36,theta,0)
11 if pow>=powneed, notenough=0; end
12 end
13 T=2*n

ProgramListing 1.14: FindsminimumT for a given powerpowneed based on the setup in Example
1.11. Here, T = 2n, and n is incremented in steps of 4.

From the constraint 𝜷 = S𝜼 + s,

�̂� = S�̂� + s = S(S′X′XS)−1S′X′(Y − Xs) + s.

c) We have

X�̂� = XS(S′X′XS)−1S′X′(Y − Xs) + Xs = PZY + (I−PZ)Xs,

where PZ = Z(Z′Z)−1Z′ = XS(S′X′XS)−1S′X′ is clearly a projection matrix.
d) ChooseH and 𝜷 in such a way that the partition

H𝜷 =
(

H1 H2
)( 𝜷 [1]

𝜷 [2]

)
= H1𝜷 [1] +H2𝜷 [2] = h

can be formed for which H1 is J × J and nonsingular. (This is always possible because H is full
rank J .) Premultiplying byH−1

1 implies that 𝜷 [1] = H−1
1 h −H−1

1 H2𝜷 [2] and

𝜷 =
(
𝜷 [1]
𝜷 [2]

)
=

(
−H−1

1 H2
Ik−J

)
𝜷 [2] +

(
H−1

1 h
𝟎k−J

)
= S𝜼 + s.

15) From (1.9),

(𝜷, �̃�2;Y) = 1
(2𝜋)T∕2�̃�T exp

{
− 1
2�̃�2 (Y − X𝜷)′(Y − X𝜷)

}
= 1

(2𝜋)T∕2�̃�T exp

{
− 1
2T−1S(𝜷)

S(𝜷)

}
= e−T∕2

(2𝜋)T∕2�̃�T ,

and, similarly,

(�̂�, �̃�2
𝜸 ;Y) =

e−T∕2

(2𝜋)T∕2�̃�T
𝜸

,

so that

R =
(
�̃�𝜸

�̃�

)−T

=

(
�̃�2
𝜸

�̃�2

)−T∕2

.
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TheGLRT rejects for smallR, i.e., when �̃�2
𝜸∕�̃�2 is large. In terms of sums of squares,R rejects when

S(�̂�)∕S(𝜷) is large, or, equivalently, when

T − k
J

(
S(�̂�)
S(𝜷)

− 1

)
=

[S(�̂�) − S(𝜷)]∕J
S(𝜷)∕(T − k)

=
S(�̂�) − S(𝜷)

J �̂�2 = F

is large. Thus, the F test and the GLRT are the same.
16) With G = (G1,G2,G3), R3 ≡ G3, and R = (R1,R2,R3), the one-to-one transformation of

r = (r1, r2, r3) to g = (g1, g2, g3) is g1 = r1r3, g2 = r2r3, and g3 = r3. The Jacobian is

J =
⎡⎢⎢⎣
𝜕g1∕𝜕r1 𝜕g2∕𝜕r1 𝜕g3∕𝜕r1
𝜕g1∕𝜕r2 𝜕g2∕𝜕r2 𝜕g3∕𝜕r2
𝜕g1∕𝜕r3 𝜕g2∕𝜕r3 𝜕g3∕𝜕r3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
r3 0 0
0 r3 0
r1 r2 1

⎤⎥⎥⎦ , det(J) = r23 ,

and, as

fG(g) =
1

Γ(𝛼1)
1

Γ(𝛼2)
1

Γ(𝛼3)
𝕀(g1 > 0)𝕀(g2 > 0)𝕀(g3 > 0)

× g𝛼1−11 g𝛼2−12 g𝛼3−13 exp(−g1 − g2 − g3),

the joint density of R is

fR(r) = fG(g)|det(J)|
= 1

Γ(𝛼1)
1

Γ(𝛼2)
1

Γ(𝛼3)
r𝛼1+𝛼2+𝛼3−13 r𝛼1−11 r𝛼2−12 exp(−r3(1 + r1 + r2)).

As g3 = r3, the margin R3 ∼ Gam(𝛼3, 1), and

f(R1,R2)∣R3
(r1, r2 ∣ r3) =

fR(r)
fR3
(r3)

∝ r𝛼1−11 exp(−r3r1) × r𝛼2−12 exp(−r3r2) × r𝛼1+𝛼23 ,

so that, conditional on R3 = r3, the density of R1 and R2 factors, and R1 and R2 are conditionally
independent.

1 function I = gam3(a1,a2,a3)
2 up=20; I = dblquad(@RR,0,up,0,up);
3
4 function A=RR(r1,r2)
5 c = gamma(a1+a2+a3) / (gamma(a1)*gamma(a2)*gamma(a3));
6 num = r1.ˆ(a1-1).* r2.ˆ(a2-1);
7 den = (1+r1+r2).ˆ(a1+a2+a3);
8 A = c * num./den;
9 end

10
11 end

Program Listing 1.15: Computes the integral in (1.152), confirming it is 1.000. The integral upper
limit up would have to be chosen in a more intelligent manner to work for all values of input param-
eters a1, a2, and a3.
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For the joint density of R1 and R2, using (1.111), fR1,R2
(r1, r2) is

∫
∞

0
fR(r) dr3

= 1
Γ(𝛼1)

1
Γ(𝛼2)

1
Γ(𝛼3)

r𝛼1−11 r𝛼2−12 ∫
∞

0
r𝛼1+𝛼2+𝛼3−13 exp(−r3(1 + r1 + r2)) dr3

=
Γ(𝛼1 + 𝛼2 + 𝛼3)
Γ(𝛼1)Γ(𝛼2)Γ(𝛼3)

r𝛼1−11 r𝛼2−12

(1 + r1 + r2)𝛼1+𝛼2+𝛼3
. (1.152)

The program in Listing 1.15 shows how to use function dblquad within Matlab with what they
call nested functions to perform the integration.
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2

Fixed Effects ANOVAModels

Having established the basics of the linear model in Chapter 1, this chapter provides an introduction
to one of the most important workhorses of applied statistics, the analysis of variance, or ANOVA,
concentrating on the basics of fixed effects models. Section 2.1 explains the notions of fixed and ran-
dom effects. Section 2.2 illustrates the analysis in the case of two groups, resulting in the usual t-test
for significant differences between the means of two populations. This is extended in Section 2.3 to
the case with two groups and ignored block effects, which is a special case of the two-way ANOVA.
It also shows the relevance of the doubly noncentral F distribution and the usefulness of being able to
calculate its c.d.f. quickly via a saddlepoint approximation.
A core part of this chapter is Section 2.4, providing the details of the (always Gaussian) one-way

ANOVA model, and also the use of the SAS system for conducting the calculations with data.
Section 2.5 extends this to the two-way ANOVA, with emphasis on rigorous derivation of the
relevant distribution theory, and the use of (Matlab, but notably) SAS to perform the required
calculations.
This chapter, andChapter 3 on randomeffectsmodels, are far froma complete treatment ofANOVA

and designed experiments. References to textbooks that discuss higher-ordermodels and other issues
associated with ANOVA (such as the “messy” case for unbalanced designs, use of continuous covari-
ates, checkingmodel assumptions, and other practical issues with design of experiments and real data
analysis, etc.) are given throughout, such as at the end of Section 2.4.6, the end of Section 2.5.4, and
the beginning of Chapter 3.

2.1 Introduction: Fixed, Random, and Mixed Effects Models

In general, practicing statisticians have tended to treat the distinction between fixed and ran-
dom effects as an either-or affair, even while acknowledging that in many instances, the line
between the two can be rather subtle.

(W. W. Stroup and D. K. Mulitze, 1991, p. 195)

We begin by differentiating between so-called fixed effects and random effectsmodels. The notion
of fixed effects is nicely given by Searle et al. (1992, p. 3) as “the effects attributable to a finite set
of levels of a factor that occur in the data and which are there because we are interested in them.”
As examples of levels associated with fixed effects, “smoker” and “non-smoker” are the two levels

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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associated with the factor smoking; “male” and “female” are the two (common) levels of gender;
Austria, Belgium, Bulgaria, etc., are the 28 “levels” (member countries) of the European Union; and
aripiprazole, fluoxetine, olanzapine, and ziprasidone are four psychopharmacological treatments for
borderline personality disorder, etc.
Random effects can be described as those attributable to a very large or infinite set of levels of a

factor, of which only a random sample occur in the data. For example, a random set of a = 20 public
high schools are selected from a certain geographic area that contains hundreds of such schools. Inter-
est centers not on the peculiarities of each of the (randomly chosen) 20 schools, but rather treating
them as 20 random observations from a large population, in order to assess the variation attributable
to differences in the schools. From each of these schools, n = 15 pupils in the same grade are ran-
domly chosen to have their creative writing essays evaluated.This group of n, for each school, are the
“cell replications”, and are also random effects.
As another example, from a particular set of countries, say, the b = 10 countries in the Association

of Southeast Asian Nations (ASEAN), a random set of a = 20 public high schools are selected from
each country. Some countries will have thousands of such schools, and interest centers not on the
peculiarities of each of the (randomly chosen) 20 schools, but rather treating them as 20 random
observations from a large population. Within each of the 20 schools (in each of the countries), n = 15
pupils of the same age are chosen randomly. In this setting, school and pupil are random effects,
while country is (decided to be) a fixed effect, “because we are interested in them.” For each pupil,
one records the gender: This is also a fixed effect. In this case, we have a so-calledmixed model, as it
contains both fixed and random effects (and possibly their interactions). In a pure fixed effects model,
the observations in each cell are randomreplications (in our example, this is then = 15 pupils), but this
model is not referred to as a mixed model. Similarly, in a pure random effects model, there is (almost
always) a grand mean, say 𝜇, and this, being a fixed but unknown parameter, is a fixed effect, though
the model in this case is not referred to as mixed. A mixed model will have both fixed and random
factors besides the fixed grand mean and the random effect associated with the cell replications.
Further (usually continuous) variables that are known to have, or suspected of having, explanatory

power, will often be included. These are called covariates. In our school performance example, these
could include the parental income of each pupil and the Gini coefficient (for measuring economic
inequality) of each country. Note that the former is different for each pupil, while the latter pertains
only to the country. In this case, the analysis of such data is referred to as the analysis of covariance,
or ANCOVA, and can be for fixed, random, or mixed models.

2.2 Two Sample t-Tests for Differences in Means

Every basic statistics course discusses the classic t-test for the null of equality of the means of two
normal populations. This is done under the assumption of equal population variances, and usually
also without the equality assumption. In both cases, the test decision is the same as that delivered by
the binary result of zero being in or out of the corresponding confidence interval, the latter having
been detailed in Section III.8.3.
Arguments in favor of the use of confidence intervals and the study of effect sizes, as opposed to the

blind application of hypothesis tests, were discussed in Section III.2.8. There, it was also discussed
how hypothesis testing can have a useful role in inference, notably in randomized studies that are
repeatable. We now derive the distribution of the associated test statistic, under the equal variance
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assumption, using the linear model framework. This is an easy task, given the general results from
Chapter 1.
Let Y1j

i.i.d.∼ N(𝜇1, 𝜎
2), j = 1,… ,m, independent of Y2j

i.i.d.∼ N(𝜇2, 𝜎
2), j = 1,… , n, with 𝜎2 > 0.This can

be expressed as the linearmodelY = X𝜷 + 𝝐, where, in standard notation, 𝝐 ∼ N(𝟎, 𝜎2IN ),N = m + n,

X =
[

𝟏m 𝟎m
𝟎n 𝟏n

]
, 𝜷 =

[
𝜇1
𝜇2

]
, Y =

[
Y1
Y2

]
, (2.1)

and

𝜷 = (X′X)−1X′Y =
[

m 0
0 n

]−1 [ Y1•
Y2•

]
=
[
Ȳ1•
Ȳ2•

]
, (2.2)

where we define the notation

Y1• =
m∑
j=1

Y1j, Ȳ1• =
Y1•

m
, and likewise, Y2• =

n∑
j=1

Y2j, Ȳ2• =
Y2•

n
. (2.3)

The residual sum of squares, RSS = S(𝜷) = �̂�
′
�̂�, is immediately seen to be

S(𝜷) =
m∑
j=1

(Y1j − Ȳ1•)2 +
n∑
j=1

(Y2j − Ȳ2•)2 = (m − 1)S21 + (n − 1)S22, (2.4)

where S2i is the sample variance based on the data from group i, i = 1, 2. Thus, from (2.4) and (1.58),
an unbiased estimator of 𝜎2 is

�̂�2 = S(𝜷)∕(m + n − 2). (2.5)

In the case that m = n (as we will consider below, with a ⩾ 2 groups instead of just two, for the bal-
anced one-way fixed effects ANOVA model), (2.5) can be expressed as

(m = n), (a = 2), �̂�2 = 1
a(n − 1)

a∑
i=1

n∑
j=1

(Yij − Ȳi•)2. (2.6)

Remark (1.57) states that RSS = Y′(I − P)Y = ‖Y‖2 − ‖X𝜷‖2, where P is the usual projection
matrix P = X(X′X)−1X′. It is a useful exercise to confirm, in this simple setting, that this RSS formula
also leads to (2.4). For clarity, let Ȳ 2

1• = (Ȳ1•)2. We have, from the definition of X and 𝜷 in (2.2),

∥ Y∥2− ∥ X𝜷∥2 =
m∑
j=1

Y 2
1j +

n∑
j=1

Y 2
2j −mȲ 2

1• − nȲ 2
2•

=
m∑
j=1

(Y 2
1j − Ȳ 2

1•) +
n∑
j=1

(Y 2
2j − Ȳ 2

2•). (2.7)

But, as
m∑
j=1

(Y1j − Ȳ1•)2 =
m∑
j=1

Y 2
1j − 2

m∑
j=1

Y1jȲ1• +
m∑
j=1

Ȳ 2
1•
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=
m∑
j=1

Y 2
1j − 2mȲ 2

1• +mȲ 2
1• =

m∑
j=1

Y 2
1j −mȲ 2

1• (2.8)

=
m∑
j=1

(Y 2
1j − Ȳ 2

1•),

and likewise for the second group, (2.7) is equivalent to (2.4). ◾

The null hypothesis is that 𝜇1 = 𝜇2, and in the notation of Section 1.4, H𝜷 = b, with J = 1, H =
[1,−1] and scalar b = 0. From (1.90) withA = (X′X)−1, it follows thatHAH′ = m−1 + n−1.Thus, (1.87)
is painlessly seen to be

Y′(P − P)Y = S(�̂�) − S(𝜷) = (H𝜷)′(HAH′)−1H𝜷 =
(Ȳ1• − Ȳ2•)2

m−1 + n−1
. (2.9)

Remark As we did above for (2.4), it is instructive to derive (2.9) by brute force, directly evaluating
S(�̂�) − S(𝜷). Here, it will be convenient to let n1 = m and n2 = n, which would anyway be necessary in
the general unbalanced case with a ⩾ 2 groups. Under the reduced model, PY = X�̂� with

�̂� = Ȳ•• = N−1
2∑
i=1

ni∑
j=1

Yij = N−1Y••,

this being the mean of all the Yij, where N = n1 + n2. Then

S(�̂�) =
n1∑
j=1

(Y1j − Ȳ••)2 +
n2∑
j=1

(Y2j − Ȳ••)2

= (Y 2)1• − 2Ȳ••Y1• + n1(Ȳ••)2 + (Y 2)2• − 2Ȳ••Y2• + n2(Ȳ••)2

= (Y 2)1• + (Y 2)2• − N(Ȳ••)2,

which could have beenmore easily determined by realizing that, in this case, S(�̂�) = (Y 2)•• − N(Ȳ••)2,
and (Y 2)•• = (Y 2)1• + (Y 2)2•. Observe that

N(Ȳ••)2 = N−1(Y1• + Y2•)2

= N−1(Y1•)2 + N−1(Y2•)2 + 2N−1Y1•Y2•

= N−1n21Ȳ
2
1• + N−1n22Y

2
2• + 2N−1n1n2Ȳ1•Ȳ2•.

Next, from (2.4), and the latter expression in (2.8),

S(𝜷) =
n1∑
j=1

Y 2
1j − n1Ȳ 2

1• +
n2∑
j=1

Y 2
2j − n2Ȳ 2

2• = (Y 2)1• + (Y 2)2• − n1Ȳ 2
1• − n2Ȳ 2

2•,

so that

S(�̂�) − S(𝜷) = n1Ȳ 2
1•

(
1 −

n1
N

)
+ n2Ȳ 2

2•

(
1 −

n2
N

)
− 2

n1n2
N

Ȳ1•Ȳ2•

=
n1n2

n1 + n2
(Ȳ 2

1• + Ȳ 2
2• − 2Ȳ1•Ȳ2•)
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=
(Ȳ1• − Ȳ2•)2

n−11 + n−12
,

which is the same as (2.9). ◾

Based on (2.9), the F statistic (1.88) is

F =
(Ȳ1• − Ȳ2•)2∕(m−1 + n−1)

((m − 1)S21 + (n − 1)S22)∕(m + n − 2)
=

(Ȳ1• − Ȳ2•)2

S2p(m−1 + n−1)
∼ F1,m+n−2, (2.10)

a central F distribution with 1 andm + n − 2 degrees of freedom, where

S2p =
(m − 1)S21 + (n − 1)S22

m + n − 2
(2.11)

from (2.5) is referred to as the pooled variance estimator of 𝜎2. Observe that F = T2, where

T =
Ȳ1• − Ȳ2•

Sp
√
m−1 + n−1

∼ tm+n−2

is the usual “t statistic” associated with the test. Thus, a two-sided t-test of size 𝛼, 0 < 𝛼 < 1, would
reject the null if |T| > ct , where ct is the quantile such that Pr(T > ct) = 𝛼∕2, or, equivalently, if F > c,
where Pr(F > c) = 𝛼. Note that c = c2t .
Under the alternative, F ∼ F1,m+n−2(𝜃), where, from (1.82) with A = (X′X)−1,

𝜃 = 1
𝜎2 𝜷

′H′(HAH′)−1H𝜷 = 1
𝜎2

𝛿2

m−1 + n−1
, 𝛿 = 𝜇2 − 𝜇1. (2.12)

For a given value of 𝜃, the power of the test is Pr(F > c). To demonstrate, let m = n so that 𝜃 =
n𝛿2∕(2𝜎2). In Matlab, we could use

1 n = 10; delta = 0.3; sig2=6; theta = n *deltaˆ2 /2 /sig2;
2 c = finv(0.95,1,2*n-2); pow = 1 - spncf(c,1,2*n-2,theta);

where spncf refers to the saddlepoint c.d.f. approximation of the singly noncentral F distribution;
see Section II.10.2. As an illustration, Figure 2.1 plots the power curve of the two-sided t-test as a
function of 𝛿, using 𝜎2 = 1, 𝛼 = 0.05, and three values of n. As expected, for a given 𝛿, the power
increases with n, and for a given n, the power increases with 𝛿.
It is more useful, though not always possible, to first decide upon a size 𝛼 and a power 𝜌, for given

values of 𝜎2 and 𝛿, and then calculate n. That requires solving for the smallest integer n such that

Pr(F1,2n−2(0) > c) ⩽ 𝛼 and Pr(F1,2n−2(n𝛿2∕(2𝜎2)) > c) ⩾ 𝜌.

Equivalently, and numerically easier, we find the smallest n ∈ ℝ>0 such that

Pr(F1,2n−2(0) > c) = 𝛼 and Pr(F1,2n−2(n𝛿2∕(2𝜎2)) > c) = 𝜌, (2.13)

and then round up to the nearest integer. A program to accomplish this is given in Listing 2.1. (It uses
the saddlepoint approximation to the noncentral F distribution to save computing time.) This can
then be used to find the required sample size n∗ as a function of, say, 𝜎2. To illustrate, the top panel of
Figure 2.2 plots n∗ versus 𝜎2 for 𝛼 = 0.05, 𝜌 = 0.90, and three values of 𝛿. It appears that n∗ is linear
in 𝜎2, and this is now explained.
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Figure 2.1 Power of the F test, given in (2.10) and (2.12), as a function of 𝛿, using 𝛼 = 0.05 and 𝜎2 = 1.

Let X1,… ,Xn be an i.i.d. sample from a N(𝜇, 𝜎2) population with 𝜎2 known. We wish to know the
required sample size n for a one-sided hypothesis test of H0 ∶ 𝜇 = 𝜇0 versus Ha ∶ 𝜇 = 𝜇a, for 𝜇a >

𝜇0, with size 𝛼 ∈ (0, 1) and power 𝜌 ∈ (𝛼, 1). As X̄n ∼ N(𝜇0, 𝜎
2∕n) under the null, let Z =

√
n(X̄n −

𝜇0)∕𝜎 ∼ N(0, 1), so that the required test cutoff value, c𝛼 , is given by Pr(Z > c𝛼 ∣ H0) = 𝛼, or c𝛼 =
Φ−1(1 − 𝛼). The power is

𝜌 = Pr(Z > c𝛼 ∣ Ha) = Pr(X̄n > 𝜇0 + c𝛼
√
𝜎2∕n ∣ Ha)

= Pr

(
X̄n − 𝜇𝛼√

𝜎2∕n
>

𝜇0 − 𝜇𝛼 + c𝛼
√
𝜎2∕n√

𝜎2∕n

|||||| Ha

)
,

or, simplifying, with 𝛿 = 𝜇a − 𝜇0, the minimal sample size is ⌈n⌉, where ⌈⋅⌉ denotes the ceiling func-
tion, i.e., ⌈2.3⌉ = ⌈2.8⌉ = 3, and

n = 𝜎2

𝛿2
(Φ−1(1 − 𝛼) − Φ−1(1 − 𝜌))2

= 𝜎2

𝛿2
(Φ−1(1 − 𝛼) + Φ−1(𝜌))2, 𝜌 ∈ (𝛼, 1). (2.14)

Observe that (2.14) does not make sense for 𝜌 ∈ (0, 𝛼). This formula is derived in most introductory
statistics texts (see, e.g., Rosenkrantz, 1997, p. 299), and is easy because of the simplifying assumption
that 𝜎2 is known, so that the t distribution (or F) is not required.
For the two-sided test, again assuming 𝜎2 known, it is straightforward to show that n is given by the

solution to

Φ(−z − k) + Φ(−z + k) = 𝜌, where z = Φ−1(1 − 𝛼∕2) and k = 𝛿
√
n∕𝜎, (2.15)

(see, e.g., Tamhane and Dunlop, 2000, pp. 248–249), which needs to be solved numerically. However,
for 𝛿 > 0, the term Φ(−z − k) will be relatively small, so that

n ≈ 𝜎2

𝛿2

(
Φ−1

(
1 − 𝛼

2

)
+ Φ−1(𝜌)

)2
(2.16)

should be highly accurate.These formulae all refer to testing with a single i.i.d. sample (and 𝜎2 known).
These could, however, be applied to Di

i.i.d.∼ N(𝜇D, 𝜎
2
D), where Di = Xi − Yi are computed from paired
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1 function [n,c]=design1(delta,sigma2,alpha,power)
2 if nargin<4, power=0.90; end, if nargin<3, alpha=0.05; end
3 d2=deltaˆ2; perc0=1-alpha; M=2; n=2;
4 c=ncf2cdfx(perc0,1,2*n-2,0,0); theta1=n*d2/(2*sigma2);
5 F=spncf(c,1,2*n-2,theta1,0);
6 while ( 1-F < power )
7 n=n*M; c=ncf2cdfx(perc0,1,2*n-2,0,0); theta1=n*d2/(2*sigma2);
8 F=spncf(c,1,2*n-2,theta1,0);
9 end

10 hib=n; lob= n/M; % this should bound n
11 % now use bisection:
12 versuch = (lob+hib)/2; valid=0; TOL=1e-8;
13 while (valid==0)
14 z=betainv(alpha,(2*versuch-2)/2,1/2);
15 c=((2*versuch-2)/z - (2*versuch-2))/1;
16 theta1=versuch*d2/(2*sigma2); F=spncf(c,1,2*versuch-2,theta1,0);
17 check=F-(1-power); valid= (abs( check ) < TOL);
18 if (valid==0)
19 if check<0, hib=versuch; else lob= versuch; end
20 versuch= (lob+hib)/2;
21 else n=versuch;
22 end
23 end
24 n=ceil(n); z=betainv(alpha,(2*n-2)/2,1/2);
25 c=((2*n-2)/z - (2*n-2))/1;
26 % check the result
27 theta1=n*d2/(2*sigma2);
28 size_SPA=1-spncf(c,1,2*n-2,0,0) %#ok<NASGU,NOPRT>
29 size_exact=1-fcdf(c,1,2*n-2) %#ok<NASGU,NOPRT>
30 power_SPA = 1-spncf(c,1,2*n-2,theta1,0) %#ok<NASGU,NOPRT>
31 power_exact = 1-ncf(c,1,2*n-2,theta1,0) %#ok<NASGU,NOPRT>
32
33 end % function

Program Listing 2.1: Computes n⋆ (and cutoff value c) for the given values 𝛿, 𝜎2, 𝛼 and 𝜌. The last
part of the program takes into account that n is fractional. Round up n to get an integer and then
recompute the cutoff value such that the size is exactly 𝛼. Functions ncf2cdfx and spncf use the
saddlepoint approximation and are available in the set of programs associated with this book. The
former is given in Listing 2.2. The word “Versuch” is a noun in German meaning “attempt” or “try”,
the latter being a reserved word in Matlab.

observations from a bivariate normal population. If the Xi and Yi have the same variance 𝜎2 and the
correlation between them is zero, then (2.14) and (2.16) can be applied with 𝜎2

D = Var(Di) = 2𝜎2. In
particular, for the two-sided test,

n∗ ≈ 2𝜎
2

𝛿2

(
Φ−1

(
1 − 𝛼

2

)
+ Φ−1(𝜌)

)2
. (2.17)

Observe that (2.17) embodies two approximations: one is the nonzero term Φ(−z − k) in (2.15), the
other is that 𝜎2 is known. It explains the linearity of n∗ in Figure 2.2. To illustrate the accuracy, the
bottompanel of Figure 2.2 is the same as the top panel, but using (2.17).We see that the approximation
is excellent for the constellation of parameters under consideration.
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1 function ncf2cdfx=ncf2cdfx(alpha,n1,n2,theta1,theta2)
2 % cutoff value of the (possibly doubly noncentral) F distribution using the SPA.
3 % Compare to Matlab's built in ncfinv and finv.
4
5 if (theta1>0) && (theta2>0), xval = 1.5*theta1/theta2; else xval=1; end
6 multip=1; cdf=2;
7 while (cdf>alpha)
8 versuch= xval/multip;
9 cdf = spncf(versuch,n1,n2,theta1,theta2); multip= multip*2;

10 end
11 lob= versuch;
12
13 multip= 1; cdf=-1;
14 while (cdf<alpha)
15 versuch= xval*multip;
16 cdf= spncf(versuch,n1,n2,theta1,theta2); multip= multip*2;
17 end
18 hib= versuch;
19
20 if 1==1 % Matlab's routine for minimization when bounds are known
21 opt=optimset('TolX',1e-5,'Display','off');
22 ncf2cdfx=fminbnd(@(x) spncf_(x,n1,n2,theta1,theta2,alpha),lob,hib,opt);
23 else % use bisection
24 versuch = (lob+hib)/2; valid=0; TOL=1e-8;
25 while (valid~=1)
26 cdf= spncf(versuch,n1,n2,theta1,theta2);
27 valid= (abs(cdf-alpha)<TOL);
28 if (valid==1), ncf2cdfx= versuch;
29 else
30 if (cdf<alpha), lob= versuch; else hib= versuch; end
31 versuch= (lob+hib)/2;
32 end
33 end
34 end
35 end % function
36
37 function disc=spncf_(x,n1,n2,theta1,theta2,alpha)
38 disc=abs(spncf(x,n1,n2,theta1,theta2,2) - alpha);
39 end % function

Program Listing 2.2: Evaluation of the location-scale d-dimensional Student’s t density. Continued
from Listing 2.1.

2.3 The Two Sample t-Test with Ignored Block Effects

To consult the statistician after an experiment is finished is often merely to ask him to conduct
a post mortem examination. He can perhaps say what the experiment died of.

(Sir Ronald A. Fisher, 1938, p. 17)

The following extension of the two-sample model is a special case of a two-way analysis of variance.
We use it here to illustrate how easily the doubly noncentral F distribution can arise in an otherwise
simplemodel. It also serves as an example emphasizing why experiments should be correctly planned,
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Figure 2.2 Top:Minimum required sample size as a function of 𝜎2, based on (2.13), using 𝛼 = 0.05 and 𝜌 = 0.90.
Bottom:: Approximation to the sample size calculation computed using (2.17).

as emphasized in the above famous quote by Fisher: Particularly with modern statistical software,
“analyzing” a data set is trivial (possibly with incorrect conclusions due to ignored effects or other
problems, such as unaccounted for correlation, etc.), whereas designing an experiment often profits
from input from a professional statistician.
For the sake of clarity, let Y1j refer to a certain measurement of patient j when using treatment

A, while Y2j refers to use of treatment B. Under treatment A, the response to the treatment is 𝛿 on
average, while under treatment B, it is zero. This is, so far, precisely the model described in the previ-
ous section.
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Now suppose that the n values of Y1j actually come from two different populations, say male and
female. Assume there are equal numbers of each gender in the two treatment groups, i.e., let n = 2s,
with smales and s females using treatment A, and similarly for treatment B. Arrange the observations
with females first, i.e., Y1,1,… ,Y1,s refer to females, Y1,s+1,… ,Y1,n refer to males, Y2,1,… ,Y2,s refer to
females, and Y2,s+1,… ,Y2,n refer to males.
The effect of being male is assumed to be additive, with quantity 𝜂. That means that 𝔼[Y1j] = 𝛿,

j = 1,… , s, 𝔼[Y1j] = 𝛿 + 𝜂, j = s + 1,… , n, 𝔼[Y2j] = 0, j = 1,… , s, and 𝔼[Y2j] = 𝜂, j = s + 1,… , n. In
vector notation,

𝝁Y1
∶= 𝔼[Y1] =

(
𝛿𝟏s
(𝛿 + 𝜂)𝟏s

)
=∶

(
u1
u2

)
and 𝝁Y2

∶= 𝔼[Y2] =
(
0𝟏s
𝜂𝟏s

)
=∶

(
v1
v2

)
.

In the case that both 𝛿 and 𝜂 are not zero, the F statistic follows a doubly noncentral F distribution.
To see this, first note that 𝔼[Ȳ1•] = 𝛿 + 𝜂∕2 and 𝔼[Ȳ2•] = 𝜂∕2, implying

Ȳ1• − Ȳ2• ∼ N
(
𝛿,

2𝜎2

n

)
and

(Ȳ1• − Ȳ2•)2

2𝜎2∕n
∼ 𝜒2(1, 𝜃1), 𝜃1 =

n𝛿2
2𝜎2 ,

recalling the definition and basic properties of the noncentral 𝜒2 distribution (see, e.g.,
Section II.10.1).
Using the pooled variance estimator (2.11), express (2n − 2)S2p asY′

1MY1 + Y′
2MY2, whereM = In −

𝟏n𝟏′n∕n. FromTheoremA.1 and the additivity property of noncentral 𝜒2 random variables, (Y′
1MY1 +

Y′
2MY2)∕𝜎2 ∼ 𝜒2(2n − 2, 𝜃2), where, from (II.10.6), 𝜃2 is determined by

𝔼[(Y′
1MY1 + Y′

2MY2)∕𝜎2] = 2n − 2 + 𝜃2. (2.18)

But, from (A.6), 𝔼[Y′
1MY1] = tr(𝜎2M) + 𝝁′

Y1
M𝝁Y1

with tr(𝜎2M) = 𝜎2(n − 1) fromTheorem 1.2, and

𝝁′
Y1
M𝝁Y1

=
(

u′
1 u′

2
)( Is − 𝟏s𝟏′s∕n −𝟏s𝟏′s∕n

−𝟏s𝟏′s∕n Is − 𝟏s𝟏′s∕n

)(
u1
u2

)
= s

2
𝜂2,

after some simplification that the reader should confirm. As this does not depend on 𝛿, 𝔼[Y′
2MY2] =

𝔼[Y′
1MY1] because it is the same computation but with 𝛿 = 0. It now follows from (2.18) that 𝜃2 =

s𝜂2∕𝜎2. The F statistic in (2.10) with nonzero 𝛿 and 𝜂 is still the ratio of independent 𝜒2 random
variables, but both are noncentral, i.e., F ∼ F1,4s−2(𝜃1, 𝜃2) with 𝜃1 = s𝛿2∕𝜎2 and 𝜃2 = s𝜂2∕𝜎2.
Via (2.18), large values of 𝜂2 imply a large denominator of F , which makes it less likely to reject the

null for a given value of 𝜃1. Thus, increasing 𝜂2 will decrease the power of the test and also diminish
its size. To see by how much, take 𝛼 = 0.05, 𝜌 = 0.90 and 𝛿 = 𝜎 = 1, for which (2.13) yields n = 22,
i.e., s = 11. (Actually, the real value of n is 22.02, which should, technically speaking, be rounded up
to 23. Using 22, the power is “only” 0.8997, while with 23, it is 0.9125.)
Figure 2.3 plots the size Pr(F > c; 0, 𝜃2) (left axis) and power Pr(F > c; 𝜃1, 𝜃2) (right axis) of the test

versus a grid of 𝜂-values between zero and three. The calculations were done using the saddlepoint
approximation to the singly and doubly noncentral F distribution, as detailed in Butler and Paolella
(2002a) (see also Section II.10.2). Its use explains why the size is not precisely 0.05 when 𝜂 = 0. Use of
the exact method takes over 100 times longer, with no appreciable gain in accuracy.
Such a graph is useful when designing an experiment, particularly when different opinions exist

regarding 𝜂. Furthermore, the required sample size and cutoff value c can be computedwith a nonzero
𝜂-value by solving

Pr(F1,2n−2(0, 𝜃2) > c) = 𝛼 and Pr(F1,2n−2(𝜃1, 𝜃2) > c) = 𝜌,
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Figure 2.3 Size (solid, left axis) and power (dashed, right axis) for the two-way model ignoring the effect of gender,
with 𝛼 = 0.05, 𝜌 = 0.90 and 𝛿 = 𝜎 = 1.

instead of (2.13). This was done for 𝛼 = 0.05, 𝜌 = 0.90, 𝛿 = 𝜎 = 1 and a grid of 𝜂-values between zero
and one (using the saddlepoint approximation to save time). The sample size n∗ stays constant at 22,
while the cutoff value c smoothly drops from 4.01 down to 3.17. The reader is encouraged to confirm
this result.

2.4 One-Way ANOVAwith Fixed Effects

2.4.1 The Model

The one-way analysis of variance, or one-way ANOVA, extends the two-sample situation discussed
above to a ⩾ 2 groups. For example, in an agricultural setting,1 there might be a ⩾ 2 competing fer-
tilizer mixtures available, the best one of which (in terms of weight of crop yield) is not theoretically
obvious for a certain plant under certain conditions (soil, climate, amount of rain and sunshine, etc.).
To help determine the efficacy of each fertilizer mixture, which ones are statistically the same, and,
possibly, which one is best, an experiment could consist of forming na equally sized plots of land on
which the plant is grown, such that all external conditions are the same for each plot (sunshine, rainfall,
etc.), with n of the na plots, randomly chosen (to help account for any exogenous factor not con-
sidered), getting treated with the ith fertilizer mixture, i = 1,… , a. When the allocation of fertilizer
treatments to the plots is done randomly, the crop yield of the na plots can be treated as independent
realizations of random variables Yij, where i refers to the fertilizer used, i = 1,… , a, and j refers to
which replication, j = 1,… , n.
The usual assumption is that the Yij are normally distributed with equal variance 𝜎2 and possibly

different means 𝜇i, i = 1,… , a, so that the model is given by

Yij = 𝜇i + 𝜖ij, 𝜖ij
i.i.d.∼ N(0, 𝜎2). (2.19)

1 The techniques of ANOVA were actually founded for use in agriculture, which can be seen somewhat in the terminology
that persists, such as “treatments”, “plots”, “split-plots” and “blocks”. See Mahalanobis (1964) for a biography of Sir Ronald
Fisher and others who played a role in the development of ANOVA. See also Plackett (1960) for a discussion of the major
early developments in the field.



88 Linear Models and Time-Series Analysis

Observe that the normality assumption cannot be correct, as crop yield cannot be negative. However,
it can be an excellent approximation if the probability is very small of a crop yield being lower than
some small positive number, and is otherwise close to being Gaussian distributed.
The first, and often primary, question of interest is the extent towhich themodel can bemore simply

expressed as Yij = 𝜇 + 𝜖ij, i.e., all the 𝜇i are the same and equal 𝜇. Formally, we wish to test

H0 ∶ 𝜇1 = 𝜇2 = · · · = 𝜇a (= 𝜇) (2.20)

against the alternative that at least one pair of 𝜇i are different. It is worth emphasizing that, for a > 2,
the alternative is not that all 𝜇i are different. If a = 2, then the method in Section 2.2 can be used to
test H0. For a > 2, a more general model is required. In addition, new questions can be posed, most
notably: If we indeed can reject the equal-𝜇i hypothesis, then precisely which pairs of 𝜇i actually differ
from one another?
Instead of (2.19), it is sometimes convenient to work with the model parameterization given by

Yij = 𝜇 + 𝛼i + 𝜖ij, i = 1,… , a, j = 1,… , n. (2.21)

i.e., 𝜇i = 𝜇 + 𝛼i = 𝔼[Yij], which can be interpreted as an overall mean 𝜇 plus a factor 𝛼i for each of the
a treatments. The X matrix is then similar to that given in (2.1), but with a + 1 columns, the first of
which is a column of all ones, and thus such that X is rank deficient, with rank a.
In this form, we have a + 1 parameters for the a means, and the set of these a + 1 parameters is

not identified, and only some of their linear combinations are estimable, recalling the discussion in
Section 1.4.2. In this case, one linear restriction on the 𝛼i is necessary in order for them to be estimable.
A natural choice is

∑a
i=1 𝛼i = 0, so that the 𝛼i can be interpreted as deviations from the overall mean

𝜇. The null hypothesis (2.20) can also be writtenH0 ∶ 𝛼1 = · · · = 𝛼a = 0 versusHa: at least one 𝛼i ≠ 0.

2.4.2 Estimation and Testing

Based on themodel assumptions of independence and normality, we would expect that the parameter
estimators formodel formulation (2.19) are given by �̂�i = Ȳi•, i = 1,… , a, and, recalling the notation of
S2i in (2.4), �̂�

2 = (n − 1)
∑a

i=1 S2i ∕(na − a), the latter being a direct generalization of the pooled variance
estimator of 𝜎2 in the two-sample case. This is indeed the case, and to verify these we cast the model
in the general linear model framework by writing Y = X𝜷 + 𝝐, where

Y = (Y11,Y12,… ,Y1n, Y21,… ,Yan)′, X =
⎛⎜⎜⎜⎝

𝟏n 𝟎n · · · 𝟎n
𝟎n 𝟏n · · · ⋮
⋮ ⋮ ⋱
𝟎n 𝟎n · · · 𝟏n

⎞⎟⎟⎟⎠ = Ia ⊗ 𝟏n, (2.22)

𝜷 = (𝜇1,… , 𝜇a)′, and 𝝐 is similarly structured as Y. Note that this generalizes the setup in (2.1) (but
with the sample sizes in each group being the same) and is not the formulation in (2.21). Matrix X in
(2.22) has full rank a.
As X is na × a, there are T = na total observations and k = a regressors. The Kronecker product

notation allows the designmatrix to be expressed very compactly and is particularly helpful for repre-
senting X in more complicated models. It is, however, only possible when the number of replications
is the same per treatment, which we assume here for simplicity of presentation. In this case, themodel
is said to be balanced. More generally, the ith group has ni observations, i = 1,… , a, and if any two
of the ni are not equal, the model is unbalanced.
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Using the basic facts that, for conformable matrices,

(A⊗ B)′ = (A′ ⊗ B′) and (A⊗ B)(C⊗D) = (AC⊗ BD), (2.23)

it is easy to verify that

(X′X) = (Ia ⊗ 𝟏n)′(Ia ⊗ 𝟏n) = nIa and X′Y = ( Y1• Y2• · · · Ya• )′, (2.24)

yielding the least squares unbiased estimators

𝜷 = (Ȳ1•, Ȳ2•,… , Ȳa•)′, S(𝜷) =
a∑
i=1

n∑
j=1

(Yij − Ȳi•)2, �̂�2 =
S(𝜷)

a(n − 1)
, (2.25)

with �̂�2 generalizing that given in (2.6) for a = 2.
For the restricted model Y = X𝜸 + 𝝐, i.e., the model under the null hypothesis of no treatment (fer-

tilizer) effect, we could use (1.69) to compute �̂� with the J = a − 1 restrictions represented asH𝜷 = h
with, say,

H = [Ia−1,−𝟏a−1] and h = 𝟎. (2.26)

It should be clear for this model that

�̂� = �̂� = Ȳ•• and S(�̂�) =
a∑
i=1

n∑
j=1

(Yij − Ȳ••)2, (2.27)

so that the F statistic (1.88) associated with the null hypothesis (2.20) can be computed. Moreover,
the conditions in Example 1.8 are fulfilled, so that (1.55) (with Ŷ = Ȳi• and Ȳ = Ȳ••) implies

a∑
i=1

n∑
j=1

(Yij − Ȳ••)2 =
a∑
i=1

n∑
j=1

(Yij − Ȳi•)2 +
a∑
i=1

n∑
j=1

(Ȳi• − Ȳ••)2, (2.28)

and, in particular,

S(�̂�) − S(𝜷) =
a∑
i=1

n∑
j=1

(Ȳi• − Ȳ••)2 = n
a∑
i=1

(Ȳi• − Ȳ••)2.

Thus, (1.88) gives

F =
n
∑a

i=1 (Ȳi• − Ȳ••)2∕(a − 1)∑a
i=1

∑n
j=1 (Yij − Ȳi•)2∕(na − a)

∼ Fa−1,na−a, (2.29)

under H0 from (2.20), which, for a = 2, agrees with (2.10) withm = n.

Remark Thepitfalls associatedwith (and some alternatives to) the use of statistical tests for dichoto-
mous model selection were discussed in Section III.2.8, where numerous references can be found,
including recent ones such asMcShane andGal (2016) and Briggs (2016).We presume that the reader
has got the message and realizes the ludicrousness of a procedure as simple as “if p-value is less
than 0.05, the effect is significant”, and “if p-value is greater than 0.05, there is no effect”. We sub-
sequently suppress this discussion and present the usual test statistics associated with ANOVA, and
common to all statistical software, using the traditional language of “reject the null” and “not reject



90 Linear Models and Time-Series Analysis

the null”, hoping the reader understands that this nonfortuitous language is not a synonym for model
selection. ◾

A test of size 𝛼 “rejects”H0 if F > c, where c is such that Pr(F > c) = 𝛼. We will sometimes write this
as: The F test in (2.29) for H0 rejects if F > F𝛼

a−1,na−a, where F
𝛼

n,d is the 100(1 − 𝛼)th percent quantile
of the Fn,d distribution. As a bit of notational explanation to avoid any confusion, note how, as history
has it, 𝛼 is the standard notation for the significance level of a test, and how we use 𝛼i in (2.21), this
also being common notation for the fixed effects. Below, in (2.40), we will express F in matrix terms.
To determine the noncentrality parameter 𝜃 under the alternative hypothesis, we can use (1.82), i.e.,

𝜃 = 𝜷 ′H′(HAH′)−1H𝜷∕𝜎2, whereA = (X′X)−1. In particular, from (2.24) and (2.26),HAH′ = n−1HH′,
andHH′ = Ia−1 + 𝟏a−1𝟏′a−1. From (1.70), its inverse is

Ia−1 − 𝟏a−1(𝟏′a−1Ia−1𝟏a−1 + 1)−1𝟏′a−1 = Ia−1 − a−1𝟏a−1𝟏′a−1,

so that

𝜷 ′H′(n−1HH′)−1H𝜷 = n𝜷 ′H′H𝜷 − na−1𝜷 ′H′𝟏a−1𝟏′a−1H𝜷

= n
a−1∑
i=1

(𝜇i − 𝜇a)2 −
n
a

(a−1∑
i=1

(𝜇i − 𝜇a)

)2

.

Notice that, when a = 2, this becomes n times

(𝜇1 − 𝜇2)2 −
1
2
(𝜇1 − 𝜇2)2 =

1
2
(𝜇1 − 𝜇2)2,

so that 𝜃 = n(𝜇1 − 𝜇2)2∕(2𝜎2), which agrees with (2.12) form = n.
To simplify the expression for general a ⩾ 2, we switch to the alternative notation (2.21), i.e., 𝜇i =

𝜇 + 𝛼i and
∑a

i=1 𝛼i = 0. Then
a−1∑
i=1

(𝜇i − 𝜇a)2 =
a−1∑
i=1

(𝛼i − 𝛼a)2 =
a∑
i=1

(𝛼i − 𝛼a)2 =
a∑
i=1

𝛼2
i − 2𝛼a

a∑
i=1

𝛼i + a𝛼2
a =

a∑
i=1

𝛼2
i + a𝛼2

a

and

1
a

(a−1∑
i=1

(𝜇i − 𝜇a)

)2

= 1
a

(a−1∑
i=1

(𝛼i − 𝛼a)

)2

= 1
a
(0 − 𝛼a − (a − 1)𝛼a)2 = a𝛼2

a,

so that

𝜃 = n
𝜎2

a∑
i=1

𝛼2
i . (2.30)

Thus, with F ∼ Fa−1,na−a(𝜃), the power of the test is Pr(F > c), where c is determined from (2.29) for a
given probability 𝛼.

Remark Noncentrality parameter 𝜃 in (2.30) can be derived directly usingmodel formulation (2.21),
and the reader is encouraged to do so. Hint: We do so in the more general two-way ANOVA below;
see (2.64). ◾
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2.4.3 Determination of Sample Size

To determine n, the required number of replications in each of the a treatments, for a given signifi-
cance 𝛼, power 𝜌, and value of 𝜎2, we solve

Pr(Fa,an−a(0) > c) = 𝛼 and Pr(Fa,an−a(𝜃) > c) = 𝜌

for n and c, and then round up n to the nearest integer, giving, say, n∗. The program in Listing 2.1 is
easily modified to compute this.

Remark It is worth emphasizing the luxury we have with the availability of cheap modern com-
puting power. This makes such calculations virtually trivial. Use of the saddlepoint approximation to
the noncentral F speeds things up further, allowing “what if” scenarios and plots of n as a function
of various input variables to be made essentially instantaneously. To get an idea of how sample size
determination was previously done and the effort put into construction of tabulated values, see Sahai
and Ageel (2000, pp. 57–60). ◾

Also similar to the sample size calculation in the two-sample case, the value of 𝜎2 must be specified.
As 𝜎2 will almost always be unknown, an approximation needs to be used, for which there might be
several (based on prior knowledge resulting from, perhaps, a pilot experiment, or previous, related
experiments, or theoretical considerations, or,most likely, a combination of these). As n∗ is an increas-
ing function of 𝜎2, use of the largest “educated guess” for 𝜎2 would lead to a conservative choice of n∗.
Arguably even more complicated is the specification of

∑a
i=1 𝛼

2
i , for which n∗ is a decreasing function,

i.e., to be conservative we need to choose the smallest relevant
∑a

i=1 𝛼
2
i .

One way to make such a choice is to choose a value 𝛿 that represents the smallest practically sig-
nificant difference worth detecting between any two particular treatments, say 1 and 2. Then tak-
ing |𝛼1 − 𝛼2| = 𝛿 and 𝛼i = 0, i = 3,… , a, together with the constraint

∑a
i=1 𝛼i = 0 implies 𝛼1 = ±𝛿∕2,

𝛼2 = ∓𝛿∕2 and
∑a

i=1 𝛼
2
i = 𝛿2∕2. Specification of 𝛿 appears easier than

∑a
i=1 𝛼

2
i , although might lead to

unnecessarily high choices of n∗ if more specific information is available about the choice of the 𝛼i.
In certain cases, an experiment is conducted in which the treatments are actually levels of a partic-

ular “input”, the choice of which determines the amount of “output”, which, say, is to be maximized.
For example, the input might be the dosage of a drug, or the temperature of an industrial process,
or the percentage of a chemical in a fertilizer, etc. Depending on the circumstances, the researcher
might be free to choose the number of levels, a, as well as the replication number, n, but with the
constraint that na ⩽ N∗. The optimal choice of a and n will depend not only on N∗ and 𝜎2, but also
on the approximate functional form (linear, quadratic, etc.) relating the level to the output variable;
see, e.g., Montgomery (2000) for further details.
Alternatively, instead of different levels of someparticular treatment, the situationmight be compar-

ing the performance of several different treatments (brands, methods, chemicals, medicines, etc.). In
this case, there is often a control group that receives the “standard treatment”, which might mean no
treatment at all (or a placebo in medical studies involving humans), and interest centers on determin-
ingwhich, if any, treatments are better than the control, and, among those that are better, which is best.
Common sense would suggest including only those treatments in the experiment that might possibly
be better than the control. For example, imagine a study for comparing drugs that purport to increase
the rate at which the human liver can remove alcohol from the bloodstream.The control group would
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consist of those individuals receiving no treatment (or, possibly, a placebo), while treatment with caf-
feine would not be included, as its (unfortunate) ineffectiveness is well-known.

Example 2.1 To see the effect on the power of the F test when superfluous treatments are included,
let the first group correspond to the prevailing treatment and assume all other considered treatments
do not have an effect. In terms of model formulation (2.21) with the natural constraint

∑a
i=1 𝛼i = 0, we

take 𝛼1 = 𝛿 and 𝛼2 = 𝛼3 = · · · = 𝛼a = −𝛿∕(a − 1), so that
∑a

i=1 𝛼
2
i = 𝛿2a∕(a − 1). For 𝜎2 = 1, n = 22,

test size 𝛼 = 0.05, and 𝛿 = 0.5, the power is 0.90 for a = 2 and decreases as a increases. Figure 2.4
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Figure 2.4 Top: Power of the F test as a function of a, for fixed 𝛼, 𝛿, and 𝜎2, and three values of n. Bottom: Similar, but n
is fixed at 16, and three values of 𝛿 are used. The middle dashed line is the same in both graphics.
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plots the power, as a function of a, for various constellations of n and 𝛿. Observe how the total sample
size N∗ = na increases with n. This might not be realistic in practice, and instead N∗ might be fixed,
so that, as a increases, n decreases, and the power will drop far faster than shown in the plots. The
reader is encouraged to reproduce the plots in Figure 2.4, as well as considering the case when N∗

is fixed. ◾

2.4.4 The ANOVA Table

We endow the various sums of squares arising in this model with particular names that are common
(but not universal; see the Remark below) in the literature, as follows.

a∑
i=1

n∑
j=1

(Yij − Ȳ••)2 is called the total (corrected) sum of squares , abbreviated SST ;

a∑
i=1

n∑
j=1

(Yij − Ȳi•)2 is the within (group) sum of squares , abbreviated SSW ,

also referred to as the sum of squares due to error; and, recalling (2.25) and (2.27),

S(�̂�) − S(𝜷) is referred to as the between (group) sum of squares, or SSB.

That is, SST = SSW + SSB from (2.28).

Remark It is important to emphasize that this notation, while common, is not universal. For
example, in the two-way ANOVA in Section 2.5 below, there will be two factors, say A and B, and we
will use SSB to denote the latter. Likewise, in a three-factor model, the factors would be labeled A, B,
and C.
In the two-way ANOVA case, some authors refer to the “more interesting” factor A as the “treat-

ment”, and the second one as a block (block here not in the sense of “preventing”, but rather as “seg-
menting”), such as for “less interesting” things, such as gender, age group, smoker/non-smoker, etc.
As the word block coincidentally also starts with a b, its associated sum of squares is denoted SSB. ◾

Amore complete sum of squares decomposition is possible by starting with the uncorrected total
sum of squares,

a∑
i=1

n∑
j=1

Y 2
ij =

a∑
i=1

n∑
j=1

(Yij − Ȳi• + Ȳi• − Ȳ•• + Ȳ••)2

=
a∑
i=1

n∑
j=1

(Yij − Ȳi•)2 +
a∑
i=1

n∑
j=1

(Ȳi• − Ȳ••)2 +
a∑
i=1

n∑
j=1

Ȳ 2
••, (2.31)

and verifying that all the cross terms are zero. For that latter task, letPX be the projectionmatrix based
onX in (2.22) andP𝟏 the projectionmatrix based on a column of ones.Then the decomposition (2.31)
follows directly from the algebraic identity

Y′IY = Y′(I − PX)Y + Y′(PX − P𝟏)Y + Y′P𝟏Y, (2.32)

and the fact that

S(�̂�) − S(𝜷) = Y′(PX −P𝟏)Y, (2.33)
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from (1.87). Recall from Theorem 1.6 that, if 0 and  are subspaces of ℝT such that 0 ⊂  , then
PP0

= P0
= P0

P . Thus, from (1.80) and that 𝟏 ∈ (X), PX −P𝟏 is a projection matrix.

Remark Anticipating the discussion of the two-wayANOVA in Section 2.5 below, we rewrite (2.32),
expressing the single effect as A, and thus its projection matrix, as PA instead of PX:

Y′Y = Y′P𝟏Y + Y′(PA − P𝟏)Y + Y′(I − PA)Y, (2.34)

where the three terms on the right-hand side are, respectively, the sums of squares with respect to the
grand mean, the treatment effect, and the error term. Note that, in the latter term, 𝟏 ∈ (A) = (X)
(where A here refers to the columns of X associated with the factor A), and is why the term is not
Y′(I − PA − P𝟏)Y.
Further,moving the last term in (2.32), namelyY′P𝟏Y, to the left-hand side of (2.34) gives the decom-

position in terms of the corrected total sum of squares:

Y′(I − P𝟏)Y = Y′(PA − P𝟏)Y + Y′(I − PA)Y, (2.35)

this being more commonly used. ◾

Each of the sums of squares in (2.32) has an associated number of degrees of freedom that can be
determined fromTheorem A.1. In particular, for SST , rank(I−P𝟏) = na − 1, for SSW , rank(I−PX) =
na − a, and for SSB, as PX −P𝟏 is a projection matrix,

rank(PX −P𝟏) = tr(PX −P𝟏) = tr(PX) − tr(P𝟏) = rank(PX) − rank(P𝟏) = a − 1, (2.36)

from Theorem 1.2. Note also that PX = n−1XX′ = (Ia ⊗ Jn)∕n, with trace na∕n = a. Clearly, the sum
of squares for the mean, naȲ 2

••, and the uncorrected total sum of squares have one and na degrees of
freedom, respectively.
From (2.33), the expected between (or treatment) sum of squares is

𝔼[SSB] = 𝔼[Y′(PX − P𝟏)Y] = 𝜎2𝔼[(Y∕𝜎)′(PX − P𝟏)(Y∕𝜎)], (2.37)

so that, from (1.92), and recalling from (II.10.6) the expectation of a noncentral 𝜒2 random variable,
i.e., if Z ∼ 𝜒2(n, 𝜃), then 𝔼[Z] = n + 𝜃, we have, with J = a − 1 and 𝜃 defined in (2.30),

𝔼[SSB] = 𝜎2(J + 𝜷 ′X′(PX − P𝟏)X𝜷∕𝜎2) = 𝜎2(a − 1 + 𝜃)

= 𝜎2(a − 1) + n
a∑
i=1

𝛼2
i . (2.38)

Similarly, from (1.93), 𝔼[SSW ] = 𝜎2(na − a).

Remark It is a useful exercise to derive (2.38) using the basic quadratic form result in (A.6), which
states that, for Y = X′AX with X ∼ Nn(𝝁,𝚺), 𝔼[Y ] = tr(A𝚺) + 𝝁′A𝝁.
Before proceeding, the reader should confirm that, for T = an,

P𝟏 = T−1𝟏T𝟏
′
T = (na)−1Ja ⊗ Jn. (2.39)

This is somewhat interesting in its own right, for it says that P1,an = P1,a ⊗ P1,n, where P1,j denotes the
j × j projection matrix onto 𝟏j.
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From (2.33), we have

𝔼[SSB] = 𝔼[S(�̂�) − S(𝜷)] = 𝔼[Y′(PX − P𝟏)Y] = 𝔼[Y′PXY] − 𝔼[Y′P𝟏Y],

and, from (A.6) with

𝔼[Y] = 𝝁 = 𝜷 ⊗ 𝟏n and 𝜷 = (𝜇1,… , 𝜇a)′ = (𝜇 + 𝛼1,… , 𝜇 + 𝛼a)′,

we have

𝔼[Y′PXY] = 𝜎2 tr(PX) + 𝝁′PX𝝁

= a𝜎2 + n−1(𝜷 ′
⊗ 𝟏′n)(Ia ⊗ Jn)(𝜷 ⊗ 𝟏n)

= a𝜎2 + n−1(𝜷 ′Ia𝜷 ⊗ 𝟏′nJn𝟏n)
= a𝜎2 + n−1(𝜷 ′𝜷 ⊗ n2)

= a𝜎2 + n
a∑
i=1

𝜇2
i .

Similarly, with P𝟏 = T−1𝟏T𝟏
′
T = (na)−1Ja ⊗ Jn,

𝔼[Y′P𝟏Y] = 𝜎2 tr(P𝟏) + 𝝁′P𝟏𝝁 = 𝜎2 + (na)−1(𝜷 ′
⊗ 𝟏′n)(Ja ⊗ Jn)(𝜷 ⊗ 𝟏n)

= 𝜎2 + (na)−1(𝜷 ′Ja𝜷 ⊗ 𝟏′nJn𝟏n) = 𝜎2 + (na)−1
⎛⎜⎜⎝
( a∑

i=1
𝜇i

)2

⊗ n2
⎞⎟⎟⎠

= 𝜎2 + (na)−1n2(a𝜇)2 = 𝜎2 + na𝜇2.

Thus,

𝔼[Y′(PX − P𝟏)Y] = (a − 1)𝜎2 + n

( a∑
i=1

𝜇2
i − a𝜇2

)
,

but
a∑
i=1

𝜇2
i = a𝜇2 +

a∑
i=1

𝛼2
i + 2𝜇

a∑
i=1

𝛼i = a𝜇2 +
a∑
i=1

𝛼2
i ,

so that

𝔼[SSB] = 𝔼[Y′(PX − P𝟏)Y] = (a − 1)𝜎2 + n
a∑
i=1

𝛼2
i ,

as in (2.38). ◾

For conducting statistical inference, it is usually more convenient to work with themean squares,
denoted MS, which are just the sums of squares divided by their associated degrees of freedom. For
this model, the important ones are MSW = SSW∕(na − a) and MSB = SSB∕(a − 1). Notice, in partic-
ular, that the F statistic in (2.29) can be written as

F =
Y′(PX −P𝟏)Y∕rank(PX −P𝟏)
Y′(I−PX)Y∕rank(I−PX)

=
MSB
MSW

. (2.40)
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The expected mean squares 𝔼[MS] are commonly reported in the analysis of variance. For this
model, it follows from (2.36) and (2.38) that

𝔼[MSB] = 𝜎2 + n
a − 1

a∑
i=1

𝛼2
i = 𝜎2 + n𝜎2

a , (2.41)

where 𝜎2
a is defined to be

𝜎2
a ∶= (a − 1)−1

a∑
i=1

(𝜇i − �̄�•)2 = (a − 1)−1
a∑
i=1

(𝛼i − �̄�•)2 = (a − 1)−1
a∑
i=1

𝛼2
i , (2.42)

which follows because 𝛼• =
∑a

i=1 𝛼i = 0. Similarly, 𝔼[MSW ] = 𝜎2.
Higher order moments of the mean squares, while not usually reported in this context, are straight-

forward to compute using the results in Section II.10.1.2. In particular, for Z ∼ 𝜒2(n, 𝜃), along with
𝔼[Z] = n + 𝜃, we have 𝕍 (Z) = 2n + 4𝜃, and, most generally, for s ∈ ℝ with s > −n∕2,

𝔼[Zs] = 2s
e𝜃∕2

Γ(n∕2 + s)
Γ(n∕2) 1F1(n∕2 + s, n∕2; 𝜃∕2), s > −n∕2,

as shown in (II.10.9). More useful for integer moments is, for s ∈ ℕ,

𝔼[Zs] = 2sΓ
(
s + n

2

) s∑
i=0

( s
i

) (𝜃∕2)i

Γ(i + n∕2)
, s ∈ ℕ. (2.43)

The various quantities associated with the sums of squares decomposition are typically expressed in
tabular form, as shown in Table 2.1. Except for the expected mean squares, the output from statistical
software will include the table using the values computed from the data set under examination. The
last column contains the p-value pB, which is the probability that a central F-distributed random
variable with a − 1 and na − a degrees of freedom exceeds the value of the F statistic in (2.40). This
number is often used for determining if there are differences between the treatments. Traditionally, a

Table 2.1 The ANOVA table for the balanced one-way ANOVAmodel. Mean squares denote the sums of squares
divided by their associated degrees of freedom. Term 𝜎2

a in the expected mean square corresponding to the treatment
effect is defined in (2.42).

Source of Degrees of Sum of Mean Expected

variation freedom squares square mean square F statistic p-value

Between
(model) a − 1 SSB MSB 𝜎2 + n𝜎2

a MSB∕MSW pB
Within
(error) na − a SSW MSW 𝜎2

Total
(corrected) na − 1 SST
Overall mean 1 naȲ 2

••

Total na Y′Y
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value under 0.1 (0.05, 0.01) is said to provide “modest” (“significant”, “strong”) evidence for differences
in means, though recall the first Remark in Section 2.4.2, and the discussion in Section III.2.8.
If significant differences can be safely surmised, then the scientist would proceed with further

inferential methods for ascertaining precisely which treatments differ from one another, as discussed
below. Ideally, the experiment would be repeated several times, possibly with different designs
and larger sample sizes, in line with Fisher’s paradigm of using a “significant p-value” as (only)
an indication that the experiment is worthy of repetition (as opposed to immediately declaring
significance if pB is less than some common threshold such as 0.05).

2.4.5 Computing Confidence Intervals

Section 1.4.7 discussed the Bonferroni and Scheffémethods of constructing simultaneous confidence
intervals on linear combinations of the parameter vector 𝜷 . For the one-way ANOVAmodel, there are
usually two sets of intervals that are of primary interest.The first is useful when one of the treatments,
say the first, serves as a control, in which case interest centers on simultaneous c.i.s for 𝜇i − 𝜇1, i =
2,… , a. Whether or not one of the treatments is a control, the second set of simultaneous c.i.s is often
computed, namely for all a(a − 1)∕2 differences 𝜇i − 𝜇j.
For the comparisons against a control, the Bonferroni procedure uses the cutoff value c = t−1na−a(1 −

𝛼∕(2J)), where we use the notation t−1k (p) to denote the quantile of the Student’s t distribution with
k degrees of freedom, corresponding to probability p, 0 < p < 1. Likewise, the Scheffé method takes
q = F−1

J ,na−a(1 − 𝛼), where J = a − 1. For all pairwise differences, Bonferroni uses c = t−1na−a(1 − 𝛼∕(2D)),
D = a(a − 1)∕2, while the Scheffé cutoff value is still q = F−1

a−1,na−a(1 − 𝛼), recalling (1.102) and the fact
that only a − 1 of the a(a − 1)∕2 differences are linearly independent.

Remark Methods are also available for deciding which population has the largest mean, most
notably that from Bechhofer (1954). See also Bechhofer and Goldsman (1989), Fabian (2000),
and the references therein. Detailed accounts of these and other methods can be found in Miller
(1981), Hochberg and Tamhane (1987), and Hsu (1996). Miller (1985), Dudewicz and Mishra (1988,
Sec. 11.2), Tamhane and Dunlop (2000), and Sahai and Ageel (2000) provide good introductory
accounts. ◾

We illustrate the inferential consequences of the different intervals using simulated data.TheMatlab
function in Listing 2.3 generates data (based on a specified “seed” value) appropriate for a one-way
ANOVA, using n = 8, a = 5, 𝜇1 = 12, 𝜇2 = 11, 𝜇3 = 10, 𝜇4 = 10, 𝜇5 = 9 and 𝜎2 = 4. For seed value 1,
the program produces the text file anovadata.txtwith contents given in Listing 2.4 and which we
will use shortly. A subsequent call top=anova1(x) inMatlab yields the p-value 0.0017 and produces
the ANOVA table (as a graphic) and a box plot of the treatments, as shown in Figure 2.5. While the
p-value is indeed well under the harshest typical threshold of 0.01, the box plot shows that the true
means are not well reflected in this data set, nor does the data appear to have homogeneous variances
across treatments.
For computing the a(a − 1)∕2 = 10 simultaneous c.i.s of the differences of each pair of treatment

means using 𝛼 = 0.05, the cutoff values c = t−135 (1 − 0.05∕20) = 2.9960 and q = F−1
4,35(1 − 0.05) =

2.6415 for the Bonferroni and Scheffé methods, respectively, are required. The appropriate value
for the maximum modulus method is not readily computed, but could be obtained from tabulated
sources for the standard values of 𝛼 = 0.10, 0.05 and 0.01.
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1 function x=anovacreate(seed)
2 randn('state',seed); % this is now deprecated in Matlab,
3 % but still works in version R2010a
4 x=[]; n=8; sigma=2; mu=[12 11 10 10 9];
5 for i=1:5, x=[x sigma*randn(n,1)+mu(i)]; end
6 if exist('anovadata.txt'), delete('anovadata.txt'), end
7 pause(0.2), diary anovadata.txt
8 for i=1:5,
9 out=['T',num2str(i),' ',sprintf('%7.4f ',x(:,i))];

10 disp(out)
11 end
12 diary off

Program Listing 2.3: Matlab code to simulate data for one-way ANOVA, for a given seed value so
it can be replicated and the data saved to a file for reading by SAS.The use of diary is very easy, but
not ideal, as the output file will contain the Matlab lines of code at the beginning and end (and these
need to be manually deleted).The use of function fprintf can be used instead; see Listing 1.7. Note
that line 2 may not work in more recent versions of Matlab.

1 T1 13.7288 12.1884 10.2962 13.7470 11.1239 11.1407 9.7945 12.7925
2 T2 9.0701 11.3369 7.0693 9.5114 9.8954 9.3605 13.2183 9.7701
3 T3 9.4907 9.4603 6.6560 6.2479 11.1500 8.2677 5.7670 8.0711
4 T4 10.4255 10.9558 10.2013 10.5949 11.1403 6.7510 11.2869 11.3637
5 T5 9.0293 6.3969 6.4308 10.6244 10.6771 11.8406 7.0205 6.6335

Program Listing 2.4: Output from the program in Listing 2.3.

Instead of computing the various intervals “by hand” via Matlab (though that is not necessary; see
their multcompare function), we use the SAS system, with the relevant code given in Listing 2.1 and
output shown in several separate boxes below. (All the data processing commands used in Listing 2.1
are explained in Appendix D.)The same code can be used if the design is unbalanced.The SAS output
we show is textual, though inmore recent versions (as of this writing, version 9.4), the output is in very
attractive hypertext markup language (HTML) format (and includes boxplots similar to the Matlab
boxplot shown in Figure 2.5), and can easily be converted to both Adobe portable document format
(pdf) and rich text format (rtf ), the commands for which are illustrated in Listing 2.1.

ANOVA Table

Source SS df MS   F

Columns 69.98 4 17.5 5.417

Error 113.1 35 3.23

Total 183 39

1 2 3 4 5

6
7
8
9

10
11
12
13
14

Treatment

Figure 2.5 Matlab output for the ANOVA example.
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The SAS System
The ANOVA Procedure

Class Level Information
Class Levels Values
treat 5 T1 T2 T3 T4 T5

Number of observations 40

SAS Output 2.1: First part of the output from proc anova.

The SAS System
The ANOVA Procedure

Dependent Variable: yield

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 4 69.9846138 17.4961535 5.42 0.0017
Error 35 113.0527516 3.2300786
Corrected Total 39 183.0373654

R-Square Coeff Var Root MSE yield Mean
0.382352 18.40837 1.797242 9.763180

SAS Output 2.2: The ANOVA table is the second part of the output from proc anova.

SAS Outputs 2.1 and 2.2 accompany all calls to proc anova. The former, also in conjunction
with the log output from SAS (not shown), assures the researcher that SAS is computing what he
or she expects. The latter is, except for formatting (and that Matlab does not show the p-value in
its table), the same as the Matlab output in the left of Figure 2.5 but contains four more statistics of
potential interest. SAS Outputs 2.3, 2.4, and 2.5 show the simultaneous c.i.s using the three afore-
mentioned methods. Each begins with a note regarding if the intervals are simultaneous (denoted
as “controlling the experimentwise error rate” in SAS) or not, as well as information pertaining to
the intervals, including the significance level 𝛼, the error degrees of freedom an − a, and the critical
value.
We see that the Bonferroni intervals are considerably shorter than those using Scheffé, while the

maximummodulus intervals are just slightly shorter than Bonferroni. To save space, two of the three
outputs have been truncated, although for this data set each method yields the same conclusions
regarding which differences contain zero, i.e., which treatment effects could be deemed to be the
same, under the usual inferential paradigm of hypothesis testing (and thus subject to the same critique
as discussed above). A shorter way of just showing which treatments are different (according to the
computed 95% c.i.s) is graphically depicted by SAS and is shown in SAS Output 2.6.
There are several other methods of constructing simultaneous c.i.s for the a(a − 1)∕2 differences

in treatment means. The most common method requires evaluation of the so-called studentized
range distribution, which is not trivial, although critical values have been tabulated and, like the values
associated with the maximummodulus method, are built in to SAS.This method is referred to as the
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The SAS System

The ANOVA Procedure

Bonferroni (Dunn) t Tests for yield

NOTE: This test controls the Type I experimentwise error rate, but it
generally has a higher Type II error rate than Tukey's for all pairwise

comparisons.

Alpha 0.05
Error Degrees of Freedom 35
Error Mean Square 3.230079
Critical Value of t 2.99605
Minimum Significant Difference 2.6923

Comparisons significant at the 0.05 level are indicated by ***.
Difference

treat Between Simultaneous 95%
Comparison Means Confidence Limits

T1 - T4 1.5116 -1.1807 4.2039
T1 - T2 1.9475 -0.7448 4.6398
T1 - T5 3.2699 0.5776 5.9622 ***
T1 - T3 3.7127 1.0204 6.4050 ***
T4 - T1 -1.5116 -4.2039 1.1807
T4 - T2 0.4359 -2.2564 3.1282
T4 - T5 1.7583 -0.9340 4.4506
T4 - T3 2.2011 -0.4912 4.8934
T2 - T1 -1.9475 -4.6398 0.7448
T2 - T4 -0.4359 -3.1282 2.2564
T2 - T5 1.3224 -1.3699 4.0147
T2 - T3 1.7652 -0.9271 4.4575
T5 - T1 -3.2699 -5.9622 -0.5776 ***
T5 - T4 -1.7583 -4.4506 0.9340
T5 - T2 -1.3224 -4.0147 1.3699
T5 - T3 0.4428 -2.2495 3.1351
T3 - T1 -3.7127 -6.4050 -1.0204 ***
T3 - T4 -2.2011 -4.8934 0.4912
T3 - T2 -1.7652 -4.4575 0.9271
T3 - T5 -0.4428 -3.1351 2.2495

SAS Output 2.3: Bonferroni simultaneous c.i.s from proc anova with the BON and cldiff
options in the means statement. Notice the redundancy SAS provides by reporting the 10 intervals
in two ways.
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Scheffe's Test for yield

NOTE: This test controls the Type I experimentwise error rate, but it generally
has a higher Type II error rate than Tukey's for all pairwise comparisons.

Alpha 0.05
Error Degrees of Freedom 35
Error Mean Square 3.230079
Critical Value of F 2.64147
Minimum Significant Difference 2.921

Comparisons significant at the 0.05 level are indicated by ***.

Difference
treat Between Simultaneous 95%

Comparison Means Confidence Limits

T1 - T4 1.5116 -1.4094 4.4326
T1 - T2 1.9475 -0.9735 4.8685
T1 - T5 3.2699 0.3489 6.1908 ***
T1 - T3 3.7127 0.7917 6.6336 ***
T4 - T1 -1.5116 -4.4326 1.4094
(etc.)

SAS Output 2.4: Similar to SAS Output 2.3 but for Scheffé simultaneous c.i.s. Abbreviated output.

Studentized Maximum Modulus (GT2) Test for yield

NOTE: This test controls the Type I experimentwise error rate, but it generally
has a higher Type II error rate than Tukey's for all pairwise comparisons.

Alpha 0.05
Error Degrees of Freedom 35
Error Mean Square 3.230079
Critical Value of Studentized Maximum Modulus 2.97460
Minimum Significant Difference 2.673

Comparisons significant at the 0.05 level are indicated by ***.
Difference

treat Between 95% Confidence
Comparison Means Limits
T1 - T4 1.5116 -1.1615 4.1846
T1 - T2 1.9475 -0.7255 4.6205
T1 - T5 3.2699 0.5968 5.9429 ***
T1 - T3 3.7127 1.0396 6.3857 ***
T4 - T1 -1.5116 -4.1846 1.1615
(etc.)

SAS Output 2.5: Similar to SAS Output 2.3 but for simultaneous c.i.s constructed using the maxi-
mum modulus method.
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Means with the same letter are not significantly different.

Bon Grouping Mean N treat
A 11.8515 8 T1
A

B A 10.3399 8 T4
B A
B A 9.9040 8 T2
B
B 8.5816 8 T5
B
B 8.1388 8 T3

SAS Output 2.6: Depiction of which c.i.s contain zero using the Bonferroni method, as obtained
from proc anova with the BON and lines options in the means statement. For this data set, the
same grouping was obtained with Scheffé and maximum modulus.

Tukey's Studentized Range (HSD) Test for yield

NOTE: This test controls the Type I experimentwise error rate.

Alpha 0.05
Error Degrees of Freedom 35
Error Mean Square 3.230079
Critical Value of Studentized Range 4.06595
Minimum Significant Difference 2.5836

Comparisons significant at the 0.05 level are indicated by ***.

Difference
treat Between Simultaneous 95%

Comparison Means Confidence Limits
T1 - T4 1.5116 -1.0720 4.0952
T1 - T2 1.9475 -0.6361 4.5311
T1 - T5 3.2699 0.6863 5.8535 ***
T1 - T3 3.7127 1.1291 6.2963 ***
T4 - T1 -1.5116 -4.0952 1.0720
(etc.)

SAS Output 2.7: Similar to SAS Output 2.3 but for Tukey simultaneous c.i.s. Abbreviated output.

Tukey method, or just T-method. For a balanced design with the two main assumptions of normality
and equal treatment variances satisfied, the Tukey c.i.s are the shortest.

Remark It is worth mentioning that Scheffé’s method is more robust to violation of the latter two
assumptions and can still be used for unbalanced data. In addition, while the cutoff value q in Scheffé’s
method is readily computed, that for the Tukey method is not, so that only those 𝛼-levels can be used
for which its cutoff has been tabulated, namely 0.10, 0.05 and 0.01.
Scheffé (1959, Sec. 3.7) discusses further benefits of the S-method over the T-method; see also Sahai

and Ageel (2000, p. 77) for a summary. ◾
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Dunnett's t Tests for yield

NOTE: This test controls the Type I experimentwise error for comparisons
of all treatments against a control.

Alpha 0.05
Error Degrees of Freedom 35
Error Mean Square 3.230079
Critical Value of Dunnett's t 2.55790
Minimum Significant Difference 2.2986

Comparisons significant at the 0.05 level are indicated by ***.

Difference
treat Between Simultaneous 95%

Comparison Means Confidence Limits
T4 - T1 -1.5116 -3.8102 0.7870
T2 - T1 -1.9475 -4.2461 0.3511
T5 - T1 -3.2699 -5.5684 -0.9713 ***
T3 - T1 -3.7127 -6.0112 -1.4141 ***

SAS Output 2.8: Use of Dunnett’s method, obtained with means treat/DUNNETT(’T1’)
cldiff; in the proc anova statement.

SAS Output 2.7 shows the c.i.s using the T-method. They are indeed shorter than either the
Bonferroni and Scheffé ones, although, in this case at least, the same conclusions would be drawn
regarding which intervals contain zero or not.
If, in this experiment, one of the treatments is a control group, then simultaneous c.i.s can (and

should) be produced by methods specifically designed for this purpose, such as Dunnett’s method,
which is also i mplemented in SAS’s anova procedure. The output for the data set under study is
shown in SAS Output 2.8. The resulting a − 1 intervals are indeed even shorter than those produced
by the Tukey method. Again, however, inference regarding which treatments are different is the same
for this data set.
It is instructive to repeat the previous exercise for several simulated data sets (not to mention the

use of real data sets!) in order to get accustomed with the procedure. For example, running the pro-
gram in Listing 2.3 with seed value 6 produced the boxplot in Figure 2.6 and a p-value for the F test
of no treatment differences of 0.000467. The SAS program in Listing 2.1 was invoked again and pro-
duced the output that is abbreviated in SAS Output 2.9. Now we see quite a difference among the
simultaneous c.i. methods.

2.4.6 AWord onModel Assumptions

Preliminary tests of 𝜎2
1 = 𝜎2

2 seem to be a fruitless pastime.
(Rupert G. Miller Jr., 1997, p. 58)

Up to this point, no attention has been paid to the plausibility of themodel assumptions, methods of
testing their validity, and consequences of their violation. These important issues are an integral part
of the model-building process and cannot be overlooked in practice. The assumption of normality,
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Figure 2.6 Matlab output from calling the function in Listing 2.3 as x=anovacreate(6), and then running the
built-in Matlab function p=anova1(x).

options linesize=75 pagesize=65 nodate;
ods pdf file='ANOVA Output 1.pdf';
ods rtf file='ANOVA Output 1.rtf';

data test;
infile 'anovadata.txt' flowover;
retain treat; keep treat yield;
input s $ @@;
if substr(s,1,1) = 'T' then do;
treat=s; delete; return;

end;
yield = input(s,7.5); if yield>.;

run;

proc anova;
classes treat; model yield=treat;
means treat / BON SCHEFFE lines cldiff;

run;
ods _all_ close;
ods html;

SAS Program Listing 2.1: SAS code for reading the text file of data, computing the ANOVA table,
and constructing simultaneous c.i.s via the Bonferroni and Scheffé methods for the 10 pairs of mean
differences using the SAS default of 𝛼 = 0.05. The term ods refers to the SAS’ “Output Delivery Sys-
tem” and the commands here enable output to be generated as both pdf and rich text format files,
both of which are automatically viewed in SAS.

for example, is partly justified by appealing to the central limit theorem, but is also preferred because
of the tractability of the distribution of the F statistic under the null and alternative hypotheses. Cer-
tainly, not all real data will be from a normal population; an obvious example is lifetime data, which
cannot be negative and which could exhibit extreme asymmetry. Another typical violation is when
data exhibit more extreme observations than would be expected under normality.The distribution of
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Tukey Grouping Mean N treat
A 12.9585 8 T1
A

B A 11.1345 8 T2
B
B 10.5498 8 T3
B
B 10.3519 8 T4
B
B 8.8256 8 T5

Scheffe Grouping Bon Grouping SMM Grouping
A A A
A A A

B A B A B A
B A B A B A
B A B A B A
B A B B
B A B B
B B B
B B B

SAS Output 2.9: Partial results of proc anova for a different simulated data set. SMM refers to
the (Studentized) maximum modulus method.

theF statistic and,more generally, the optimalway of assessing treatment differenceswith non-normal
data are usually difficult to derive. Instead, nonparametric methods exist, and are often used if the
normality assumption is not justified.
To get an idea of the consequences of non-normality, we simulate 10,000 times the p-value of the F

test using i.i.d. Student’s t data with location zero, scale one, and 𝑣 degrees of freedom, a = 4 “treat-
ments”, and n observations per treatment. With normality, i.e., 𝑣 = ∞, the simulated p-values should
be uniformly distributed between zero and one. Figure 2.7 shows the resulting histograms for n = 5
and 𝑣 = 2 (top) and 𝑣 = 4 (bottom). We see that, for extreme data in which the variance does not
exist, the behavior of the p-value (and, thus, the distribution of the F test statistic) deviates markedly
from the behavior under normality, whereas for 𝑣 = 4, which still implies quite heavy-tailed data, the
behavior is not terribly far off. Table 2.2 shows the actual size of the F test with 𝛼 = 0.05, i.e., the
fraction of p-values that were equal to or less than 0.05, for several further parameter constellations.
Values less than 0.05 − 1.96

√
0.05 ⋅ 0.95∕10000 = 0.0457 are in bold face.

Similar calculations could be used to examine the (possibly size adjusted) power of the F test under
the alternative hypothesis, or the effect of skewness on the size and power. As a typical asymmet-
ric candidate, one could take Yij

i.i.d.∼ 𝜒2
𝑣 − 𝑣 + 𝜇i, i = 1,… , a. Asymmetric t distributions such as the

noncentral t might also be entertained; they are easy to simulate from and allow control over both
asymmetry and the thickness of the tails.
The other assumption that is often questioned is equal variances among the treatments. Graphical

methods as well as formal tests exist for accessing the extent to which this and the normality assump-
tion are violated. Textbooks dedicated to design of experiments, such asGardiner andGettinby (1998),
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Figure 2.7 Histogram of 10,000 simulated p-values of the one-way ANOVA F test with a = 4 and n = 5 under the null
hypothesis, but with i.i.d. Student’s t data with 2 (top) and 4 (bottom) degrees of freedom.

Table 2.2 Empirical size of F test with 𝛼 = 0.05.

n∖df 2 4 8 16 32 64 128

5 0.033 0.043 0.046 0.049 0.049 0.049 0.049
10 0.034 0.042 0.044 0.046 0.046 0.047 0.047
20 0.036 0.045 0.050 0.050 0.050 0.050 0.049
40 0.038 0.045 0.047 0.047 0.048 0.048 0.048

Dean and Voss (1999), andMontgomery (2000), provide ample discussion and examples of these and
further issues. See also the excellent presentations ofANOVAandmixedmodels in Searle et al. (1992),
MillerJr. (1997), Sahai and Ageel (2000), and Galwey (2014). For the analysis of covariance, as briefly
mentioned in Section 2.1, an indispensable resource is Milliken and Johnson (2001).
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2.5 Two-Way Balanced Fixed Effects ANOVA

The one-way fixed effects ANOVA model detailed in Section 2.4 is straightforwardly extended to
support more than one factor. Here we consider the distribution theory of the balanced model with
two factors. As a simple example to help visualize matters, consider again the agricultural example at
the beginning of Section 2.4.1, and imagine an experiment in a greenhouse inwhich interest centers on
a ⩾ 2 levels of a fertilizer and b ⩾ 2 levels of water. All ab combinations are set up, with n replications
(plants) for each.
Once the ideas for the two-way ANOVA are laid out, the basic pattern for higher-order fixed effects

ANOVAmodels with a balanced panel will be clear, and the reader should feel comfortable with con-
ducting a data analysis in, say, SAS, or other software, and understand the output and how conclusions
are (or should be) drawn.
After introducing themodel in Section 2.5.1, Sections 2.5.2 and 2.5.3 present the basic theory of the

cases without and with interaction, respectively, and the relevant ANOVA tables. Section 2.5.4 uses
a simulated data set as an example to show the relevant coding in both Matlab and SAS.

2.5.1 The Model and Use of the Interaction Terms

For the two-way model, denote the first factor as A, with a ⩾ 2 treatments, and the second factor as
B, with b ⩾ 2 treatments. The ordering of the two factors (i.e., which one is A and which one is B) is
irrelevant, though, as mentioned in the Remark in Section 2.4.4, often Awill refer to the factor associ-
ated with the scientific inquiry, while B is a block, accounting for differences in some attribute such as
(for human studies) gender, age group, political affiliation, educational level, geographic region, time
of day (see, e.g., Pope, 2016), etc., or, in industrial experiments, the factory line, etc.
The two-way fixed effect ANOVAmodel extends the forms in (2.19) and (2.21), and is expressed as

Yijk = 𝜇ij + 𝜖ijk , i = 1, 2,… , a, j = 1, 2,… , b, 𝜖ijk
i.i.d.∼ N(0, 𝜎2),

= 𝜇 + 𝛼i + 𝛽j + (𝛼𝛽)ij + 𝜖ijk , (2.44)

k = 1,… , n, subject to the constraints
a∑
i=1

𝛼i = 0,
b∑
j=1

𝛽j = 0,
a∑
i=1

(𝛼𝛽)ij = 0, ∀j,
b∑
j=1

(𝛼𝛽)ij = 0,∀i. (2.45)

Terms (𝛼𝛽)ij are referred to as the interaction factors (or effects, or terms). In general, the ijth group
has nij observations, i = 1,… , a, j = 1,… , b, and if any of the nij are not equal, the model is unbal-
anced.
The usual ANOVA table will be shown below. It has in its output three F tests and their associated

p-values, corresponding to the null hypotheses that
∑a

i=1 𝛼i = 0 (no factor A effect),
∑b

j=1 𝛽i = 0 (no
factor B effect), and

∑a
i=1

∑b
j=1 (𝛼𝛽)ij = 0 (no interaction effect). One first inspects the latter; if the

interaction effect can be deemed nonsignificant, then one proceeds to look at the former two. Violat-
ing our agreement in the Remark in Section 2.4.2 to subsequently suppress discussion of the dangers
of use of p-values for model selection, we mention that an inspection of some published research
studies, and even teaching notes on ANOVA, unfortunately use wording such as “As the p-value
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corresponding to the interaction effect is greater than 0.05, there is no interaction effect.” A better
choice of wording might be: “Based on the reported p-value, we will assume there is no significant
interaction effect; and the subsequent analysis is conducted conditional on such, with the caveat that
further experimental trials would be required to draw stronger conclusions on the presence of, and
notably relevance of, interaction.”
Observe that, if only the interaction factor is used (along with, of course, the grandmean), i.e., Yijk =

𝜇 + (𝛼𝛽)ij + 𝜖ijk , then this is equivalent to a one-way ANOVA with ab treatments. If the interaction
effect is deemed significant, then the value of including the 𝛼i and 𝛽j effects is lowered and, possibly,
rendered useless, depending on the nature of the interaction. In colloquial terms, one might describe
the interaction effect as the presence of synergy, or the idea that a system is more than the sum of its
parts.More specifically, assuming that the 𝛼i and 𝛽j are non-negative, the term synergywould be used
if, due to the nonzero interaction effect (𝛼𝛽)ij, 𝔼[Yijk] > 𝜇 + 𝛼i + 𝛽j, and the term antagonism would
be used if 𝔼[Yijk] < 𝜇 + 𝛼i + 𝛽j.
If there is no interaction effect (as one often hopes, as then nature is easier to describe), then the

model reduces to Yijk = 𝜇 + 𝛼i + 𝛽j + 𝜖ijk , and is such that the effect of the ith treatment from factor
A does not depend on which treatment from factor B is used, and vice versa. In this case, the model
is said to be additive (in the main effects). This means, for example, that if one graphically plots, for
a fixed j, �̂�ij = �̂� + �̂�i + 𝛽j + (̂𝛼𝛽)ij as a function of i, and overlays all j such plots, then the resulting
lines will be approximately parallel (and vice versa). Such graphics are often produced by the ANOVA
procedures in statistical software (see Figure 2.12 and, particularly, Figure 2.13 below) and typically
accompany an empirical analysis. It should be obvious that, if the interaction terms are taken to be
zero, then plots of �̂�ij = �̂� + �̂�i + 𝛽j will be, by construction, perfectly parallel.

2.5.2 Sums of Squares Decomposition Without Interaction

If one can assume there is no interaction effect, then the use of n = 1 is formally valid in (2.44), and
otherwise not, though naturally the larger the cell sample size n, the more accurate the inference. As
a concrete and simplified example to visualize things, imagine treatment A has three levels, referring
to the percentage reduction in daily consumed calories (say, 75%, 50%, and 25%) for a dietary study
measuring percentage weight loss. If factor B is gender (male or female), then one would not expect a
significant interaction effect. Similarly, if factor B entails three levels of exercise, onemight also expect
that factors A and B influence Yijk linearly, without an interaction, or synergy, effect.
Model (2.44) without interaction is given by Yijk = 𝜇 + 𝛼i + 𝛽j + 𝜖ijk , and when expressed as a linear

model in matrix terms, it is Y = X𝜷 + 𝝐, where

𝜷 = (𝜇, 𝛼1,… , 𝛼a, 𝛽1,… , 𝛽b)′. (2.46)

With T = abn, let Y be the T × 1 vector formed by stacking the Yijk such that the last index, k, “moves
quickest”, in the sense of it changes on every row, followed by index j, which changes whenever k
changes from n to 1, and finally index i changes slowest, whenever j changes from b to 1. The design
matrix is then expressed as

X = [X1 ∣ XA ∣ XB], (2.47)
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1 n=12; % n replications per cell
2 a=3; % a treatment groups in the first factor
3 b=2; % b treatment groups in the second factor
4 T=a*b*n; oa=ones(a,1); ob=ones(b,1); on=ones(n,1); obn=ones(b*n,1);
5 X1=ones(T,1); XA=kron(eye(a), obn); XB=kron( kron( oa, eye(b) ), on );
6 X=[X1, XA, XB];
7
8 % The three projection matrices
9 P1=X1*inv(X1'*X1)*X1'; PA=XA*inv(XA'*XA)*XA'; PB=XB*inv(XB'*XB)*XB'; %#ok<MINV>

10
11 % Claim: P1=PA*PB
12 diff = P1 - PA*PB; max(max(abs(diff)))
13 % Claim: PA-P1 is orthogonal to PB-P1
14 prod = (PA-P1)*(PB-P1); max(max(abs(prod)))

Program Listing 2.5: Generates the 𝐗matrix in (2.47) and (2.48).

where, denoting an n-length column of ones as 1n instead of 𝟏n to help distinguish it from the identity
matrix In,

X1 = 1a ⊗ 1b ⊗ 1n = 1T ,
XA = Ia ⊗ 1b ⊗ 1n = Ia ⊗ 1bn,
XB = 1a ⊗ Ib ⊗ 1n. (2.48)

This is equivalent to first forming the X matrix corresponding to n = 1 and then post-Kronecker
multiplying by 1n, i.e.,

X(1) = [1a ⊗ 1b ∣ Ia ⊗ 1b ∣ 1a ⊗ Ib], X = X(1) ⊗ 1n. (2.49)

It should be apparent thatX is not full rank.The constraints
∑a

i=1 𝛼i =
∑b

j=1 𝛽j = 0 need to be respected
in order to produce the usual least squares estimator of 𝜷 in (2.46).
Instead of using a whole page to write out an example of (2.47), the reader is encouraged to use

the (top half of the) code in Listing 2.5 to understand the kron function in Matlab, and confirm that
(2.47), (2.48), and (2.49) are correct.
Let P1, PA, and PB be the respective projection matrices of X1, XA, and XB. In particular, letting Jm

be them ×mmatrix of ones,

P1 = (1T )(1
′
T1T )

−1(1′T ) = T−1JT . (2.50)

Likewise, using the Kronecker product facts from (2.23),

PA = (Ia ⊗ 1bn)((Ia ⊗ 1′bn)(Ia ⊗ 1bn))
−1(Ia ⊗ 1′bn)

= (nb)−1(Ia ⊗ 1bn)(Ia ⊗ 1′bn) = (nb)−1(Ia ⊗ Jbn). (2.51)

Observe that PA is symmetric because of (2.23) and the symmetry of Ia and Jbn, and is idempotent
because

PAPA = (nb)−2(Ia ⊗ Jbn)(Ia ⊗ Jbn) = (nb)−2(Ia ⊗ bnJbn) = PA.
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Finally, for calculating PB, we need to extend the results in (2.23) to

(A⊗ B⊗ C)′ = ((A⊗ B)⊗ C)′ = ((A⊗ B)′ ⊗ C′) = A′ ⊗ B′ ⊗ C′

and

(A⊗ B⊗ C)(E⊗ F⊗G) = ((A⊗ B)⊗ C)((E⊗ F)⊗G)
= (A⊗ B)(E⊗ F)⊗ CG = (AE⊗ BF)⊗ CG
= AE⊗ BF⊗ CG.

Then

PB = (1a ⊗ Ib ⊗ 1n)((1
′
a ⊗ Ib ⊗ 1′n)(1a ⊗ Ib ⊗ 1n))

−1(1′a ⊗ Ib ⊗ 1′n)
= (1a ⊗ Ib ⊗ 1n)((1

′
a1a ⊗ Ib ⊗ 1′n1n))

−1(1′a ⊗ Ib ⊗ 1′n)
= (an)−1(1a ⊗ Ib ⊗ 1n)(1

′
a ⊗ Ib ⊗ 1′n) = (an)−1(Ja ⊗ Ib ⊗ Jn), (2.52)

which is also readily seen to be symmetric and idempotent.
Note that 1T ∈ (XA) and 1T ∈ (XB), and that the projection from P1 is “coarser” than that of PA

and PB, so that (and recalling that projection matrices are symmetric)

PAP1 = P1PA = P1, and PBP1 = P1PB = P1. (2.53)

In light of 1T ∈ (XA) and 1T ∈ (XB), and also by way of thinking how to extend (2.35) from the
one-way case, we are motivated to consider the matrices PA − P1 and PB − P1. From (2.53), it is triv-
ial to confirm that PA − P1 and PB − P1 are (obviously symmetric and) idempotent, so that they are
projection matrices. Thus,

P1(PA − P1) = 𝟎 = P1(PB − P1). (2.54)

Also, (PA − P1)(PB − P1) = PAPB − PAP1 − P1PB + P1P1 = PAPB − P1. The second half of Listing 2.5
numerically confirms that P1 = PAPB, from which it follows that

𝟎 = (PA − P1)(PB − P1), (2.55)

as also confirmed numerically. The idea here is to illustrate the use of “proof by Matlab”, which can
be useful in more complicated settings when the algebra looks daunting. Of course, in this case, alge-
braically proving that

P1 = PAPB = PBPA (2.56)

is very straightforward: Using (2.49) for simplicity, PAPB is

(Ia ⊗ 1b)[(Ia ⊗ 1b)
′(Ia ⊗ 1b)]

−1(Ia ⊗ 1b)
′ × (1a ⊗ Ib)[(1a ⊗ Ib)′(1a ⊗ Ib)]−1(1a ⊗ Ib)′

= (Ia ⊗ 1b)(Ia ⊗ b)−1(Ia ⊗ 1′b) × (1a ⊗ Ib)(a⊗ Ib)−1(1′a ⊗ Ib)
= b−1(Ia ⊗ 1b)(Ia ⊗ 1′b) × a−1(1a ⊗ Ib)(1′a ⊗ Ib)
= b−1(Ia ⊗ Jb) × a−1(Ja ⊗ Ib) = (ab)−1(Ja ⊗ Jb) = (ab)−1Jab,

which is P1 of size ab × ab. That PAPB = PBPA follows from taking transposes and recalling that PA
and PB are projection matrices and thus symmetric.
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With (2.34) from the one-way case, and the previous projection matrices P1, PA − P1, and PB − P1
in mind, it suggests itself to inspect the algebraic identity

I = P1 + (PA − P1) + (PB − P1) + (I − (PA + PB − P1)), (2.57)

where I = IT , and T = abn. The orthogonality results (2.54), (2.55), and, as is easily confirmed
using (2.56),

P1(I − (PA + PB − P1)) = P1 − P1PA − P1PB + P1P1 = 𝟎,
(PA − P1)(I − (PA + PB − P1)) = PA(I − (PA + PB − P1)) = 𝟎,
(PB − P1)(I − (PA + PB − P1)) = PB(I − (PA + PB − P1)) = 𝟎,

imply that the terms on the right-hand side of (2.57) are orthogonal. Thus, similar to the decomposi-
tion in (2.32) and (2.35) for the one-way ANOVA, the corrected total sum of squares for the two-way
ANOVA without interaction can be decomposed by subtracting P1 from both sides of (2.57) and
writing

Y′(I − P1)Y = Y′(PA − P1)Y + Y′(PB − P1)Y + Y′(I − (PA + PB − P1))Y. (2.58)

That is, SST = SSA + SSB + SSE, where SST refers to the corrected total sum of squares.
Recall Theorem 1.2, which states that, if P is symmetric and idempotent, then rank(P) = k ⇐⇒

tr(P) = k.This can be used precisely as in (2.36) above to determine the degrees of freedom associated
with the various sumof squares, and construct theANOVATable 2.3.One could easily guess, and then
confirm, that the degrees of freedom associated with SSA and SSB are a − 1 and b − 1, respectively,
and that for SSE is given by the (corrected) total abn − 1, minus those of SSA and SSB.
Next, recall:

1) Model (2.44) can be expressed as Y = X𝜷 + 𝝐, where 𝜷 is given in (2.46) and 𝝐 ∼ N(𝟎, 𝜎2IT ), T =
abn, so that Y ∼ N(X𝜷, 𝜎2IT ).

2) TheoremA.2, which states that, forY ∼ N(𝝁,𝚺),𝚺 > 0, the two quadratic formsY′A1Y andY′A2Y
are independent if A1𝚺A2 = A2𝚺A1 = 𝟎.

Table 2.3 The ANOVA table for the balanced two-way ANOVAmodel without interaction effect, where “error df” is
(abn − 1) − (a − 1) − (b − 1). Mean squares denote the sums of squares divided by their associated degrees of
freedom. Table 2.4 is for the case with interaction, and also gives the expected mean squares.

Source of Degrees of Sum of Mean

variation freedom squares square F statistic p-value

Overall mean 1 abnȲ2
••

Factor A a − 1 SSA MSA MSA∕MSE pA
Factor B b − 1 SSB MSB MSB∕MSE pB
Error Error df SSE MSE

Total (corrected) abn − 1 SST
Total abn Y′Y
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Thus, the orthogonality of the projection matrices in (2.58) andTheorem A.2 (with 𝚺 = 𝜎2I) imply
thatMSA,MSB, andMSE are all pairwise independent. As such, conditional onMSE, ratiosMSA∕MSE
andMSB∕MSE are independent, and so must be functions of them. This implies that

Conditional on MSE, p-values pA and pB in Table 2.3 are independent. (2.59)

Unconditionally, ratiosMSA∕MSE andMSB∕MSE, and thus their p-values, are not independent. This
is also confirmed in Problem 1.16.
In our case here, we are working with projection matrices, so we can do a bit better. In particular,

SSA = Y′(PA − P1)′(PA − P1)Y, and

LA ∶= (PA − P1)Y ∼ N((PA − P1)X𝜷, 𝜎2(PA − P1)).

Likewise defining LB and LE, and letting L = [L′
A,L

′
B,L

′
E]

′, basic normal distribution theory implies
that L follows a normal distribution with a block diagonal covariance matrix because of the orthogo-
nality of the three projection matrices. As zero covariance implies independence under normality, it
follows that LA, LB, and LE are completely independent, not just pairwise.
Thus, separate functions of LA, LB, and LE, such as their sums of squares, are also completely inde-

pendent, from which it follows that SSA, SSB, and SSE (and thusMSA,MSB, andMSE) are completely
independent. This result is well known, referred to as Cochran’s theorem, dating back to Cochran
(1934), and usually proven via use of characteristic or moment generating functions; see, e.g., Khuri
(2010, Sec. 5.5). Surveys of, and extensions to, Cochran’s theorem can be found inAnderson and Styan
(1982) and Semrl (1996). An admirable presentation in the context of elliptic distributions is given in
Gupta and Varga (1993, Sec. 5.1).
Throughout the rest of this section on two-way ANOVA we will use a particular simulated data

set for illustration, as detailed below, stored as variable y in Matlab. The point right now is just to
show the sums of squares in (2.58) computed in different ways. In particular, they are computed (i) via
SAS, (ii) via Matlab’s canned function, and (iii) “by hand”. The reason for the latter is to ensure a full
understanding of what is being computed, as, realistically, one will not do these calculationsmanually,
but just use canned routines in statistical software packages.
Based on our particular simulated data set introduced below, the SAS code for producing the

two-way ANOVA table is given (a few pages) in SAS Program Listing 2.2. There, it is shown for the
case when one wishes to include the interaction term. To omit the interaction term, as required now,
simply change the model line to model Happiness = Treatment Sport;. The resulting
ANOVA table is shown in SAS Output 2.10.
Matlab’s anovan function can also compute this, and will be discussed below.The code to do so is

given in Listing 2.10, using the first 25 lines, and changing line 25 to:

1 p=anovan(y,{fac1 fac2},'model','linear','varnames',{'Treatment A','Phy Act'})

The output is shown in Figure 2.8, and is the same as that from SAS.
Finally, to use Matlab for manually computing and confirming the output from the SAS proc

anova and Matlab anovan functions, apply lines 1–9 from Listing 2.5, and then those in
Listing 2.6, in conjunction with our simulated data set, to compute the sums of squares calculation
in (2.58).
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filename ein 'anova2prozac.txt';
ods pdf file='ANOVA Prozac Output.pdf';
ods rtf file='ANOVA Prozac Output.rtf';
data a;

infile ein stopover;
input Treatment $ Sport $ Happiness;

run;
proc anova;

classes Treatment Sport;
model Happiness = Treatment | Sport;
means Treatment | Sport / SCHEFFE lines cldiff;

run;
ods _all_ close;
ods html;

SAS Program Listing 2.2: Runs the ANOVA procedure in SAS for the same data set used through-
out this section. The notation Treatment | Sport is short for Treatment Sport Treat-
ment*Sport.

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 79.7993269 26.5997756 8.26 <.0001
Error 68 219.1019446 3.2220874
Corrected Total 71 298.9012715

Source DF Anova SS Mean Square F Value Pr > F
Treatment 2 53.33396806 26.66698403 8.28 0.0006
Sport 1 26.46535881 26.46535881 8.21 0.0055

SAS Output 2.10: Analysis of the simulated data set that we will use throughout, and such that the
model is Yijk = 𝜇 + 𝛼i + 𝛽j + 𝜖ijk , i.e., does not use the interaction term. The same output for the two
treatment effects sums of squares, and the error sums of squares, is given via Matlab in Figure 2.8.

2.5.3 Sums of Squares Decomposition With Interaction

We now develop the ANOVA table for the full model (2.44), with interaction. As mentioned above, in
practice one starts with the full model in order to inspect the strength of the interaction term, usually
hoping it is insignificant, as judged inevitably by comparing the p-value of the associated F test to the
usual values of 0.10, 0.05, and 0.01. If the researcher decides it is insignificant and wishes to proceed
without an interaction term, then, formally, all subsequent analysis, point estimates, and hypothesis
test results are conditional on this decision, and one is in a pre-test estimation and pre-test testing
framework.
If the interaction terms are strong enough, such that the model cannot be represented accurately

without them, then the full two-way ANOVA model (2.44) can be expressed as Y = X𝜷 + 𝝐, with

𝜷 = (𝜇, 𝛼1,… , 𝛼a, 𝛽1,… , 𝛽b, (𝛼𝛽)11, (𝛼𝛽)12,… , (𝛼𝛽)ab)′, (2.60)
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Source Sum Sq. d.f. Mean Sq. F Prob>F
---------------------------------------------------------

Treatment A 53.334 2 26.6669 8.28 0.0006
Phy Act 26.465 1 26.4652 8.21 0.0055
Error 219.102 68 3.2221
Total 298.901 71

Figure 2.8 Same as SAS Output 2.10, but having used Matlab’s function anovan. Note that in the fourth placed after
the decimal, the mean square for treatment B (“Phy Act” in Matlab; “Sport” in SAS) differs among the two outputs (by
one digit), presumably indicating that different numeric algorithms are used for their respective computations. This, in
turn, is most surely irrelevant given the overstated precision of the Y measurements (they are not accurate to all 14
digits maintained in the computer), and that the F statistics and corresponding p-values are the same to all digits
shown in the two tables.

1 % Decomposition using corrected total SS, for 2-way ANOVA, no interaction
2 SScT=y'*(eye(T)-P1)*y; SSA=y'*(PA-P1)*y;
3 SSB=y'*(PB-P1)*y; SSE=y'*(eye(T)-(PA+PB-P1))*y;
4 SSvec=[SScT, SSA, SSB, SSE]; disp(SSvec')
5 check=SScT-SSA-SSB-SSE; disp(check)

Program Listing 2.6: Computes the various sums of squares in (2.58), for the two-way ANOVA
model without interaction, assuming that the simulated data set we use throughout (denoted y) is in
memory (see below), and having executed lines 1–9 from Listing 2.5.

and

X = [X1 ∣ XA ∣ XB ∣ XAB], (2.61)

where the first three terms are as in (2.48), and

XAB =
⎛⎜⎜⎜⎝

1n 𝟎n · · · 𝟎n
𝟎n 1n · · · ⋮
⋮ ⋮ ⋱
𝟎n 𝟎n · · · 1n

⎞⎟⎟⎟⎠ = Ia ⊗ Ib ⊗ 1n = Iab ⊗ 1n. (2.62)

Note that (2.62) is the same as (2.22) for the one-way ANOVAmodel, but with ab different treatments
instead of a.
The sum of squares decomposition (corrected for the grand mean) with interaction term is

Y′(I − P1)Y = Y′(PA − P1)Y + Y′(PB − P1)Y
+ Y′(PAB − PA − PB + P1)Y + Y′(I − PAB)Y, (2.63)

or SST = SSA + SSB + SSAB + SSE. As with (2.58), all terms in the center of the quadratic forms are
orthogonal, e.g., recalling (2.56) and that otherwise the “more coarse” projection dominates,

(PA − P1)(PAB − PA − PB + P1)
= PA(PAB − PA − PB + P1) − P1(PAB − PA − PB + P1)
= PA − PA − P1 + P1 − (P1 − P1 − P1 + P1) = 𝟎.

The reader is invited to quickly confirm the other cases.
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It is of value to show (once) the sums of squares in (2.63) withoutmatrix notation and contrast them
with their analogous matrix expressions. As the reader should confirm,

SST =
n∑

k=1

a∑
i=1

b∑
j=1

Y 2
ijk − abnȲ 2

•••,

SSA = bn
a∑
i=1

(Ȳi•• − Ȳ•••)2, SSB = an
b∑
j=1

(Ȳ•j• − Ȳ•••)2,

SSAB = n
a∑
i=1

b∑
j=1

(Ȳij• − Ȳi•• − Ȳ•j• + Ȳ•••)2, SSE =
n∑

k=1

a∑
i=1

b∑
j=1

(Yijk − Ȳij•)2.

Observe that SSAB + SSE in (2.63) is precisely the SSE term in (2.58). The reader is encouraged to
construct code similar to that in Listings 2.5 and 2.6 to confirm the ANOVA sum of squares output
shown in Figure 2.11 below for the two-way ANOVA with interaction. The relevant ANOVA table is
given in Table 2.4.
From the facts that (i) MSA and MSE are independent and (ii) Theorem A.1 implies each is a 𝜒2

random variable divided by its respective degrees of freedom, we know that the distribution of FA ∶=
MSA∕MSE is noncentral F , with a − 1 numerator and ab(n − 1) denominator degrees of freedom, and
numerator noncentrality

𝜃A = bn
𝜎2

a∑
i=1

𝛼2
i , (2.64)

where (2.64) is a (correct) guess, based on the logical extension of (2.30), and subsequently derived.
We first use it to obtain the expectedmean square associated with treatment factor A. Again recalling
that, for Z ∼ 𝜒2(n, 𝜃), 𝔼[Z] = n + 𝜃, we have, similar to (2.41), and recalling how 𝜎2 gets factored out

Table 2.4 The ANOVA table for the balanced two-way ANOVAmodel with interaction effect. Mean squares denote the
sums of squares divided by their associated degrees of freedom. The expected mean squares are given in (2.65), (2.72),
and (2.74)

Source of Degrees of Sum of Mean Expected

variation freedom squares square mean square F statistic p-value

Overall mean 1 abnȲ2
•••

Factor A a − 1 SSA MSA 𝔼[MSA] MSA∕MSE pA
Factor B b − 1 SSB MSB 𝔼[MSA] MSB∕MSE pB
Factor A*B (a − 1)(b − 1) SSAB MSAB 𝔼[MSAB] MSAB∕MSE pAB
Error ab(n − 1) SSE MSE

Total (corrected) abn − 1 SST
Total abn Y′Y
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in front as in (2.37),

𝔼[MSA] = 𝜎2 (a − 1) + 𝜃A

a − 1
= 𝜎2 + bn

a − 1

a∑
i=1

𝛼2
i . (2.65)

Noncentrality term (2.64) can be formally derived by using (1.92), i.e.,
(Y∕𝜎)′(PA − P1)(Y∕𝜎) ∼ 𝜒2(a − 1, 𝜷 ′X′(PA − P1)X𝜷∕𝜎2), (2.66)

and confirming that

𝜷 ′X′(PA − P1)X𝜷 = 𝜷 ′X′(PA − P1)′ × (PA − P1)X𝜷 = bn
a∑
i=1

𝛼2
i . (2.67)

This would be very easy if, with 𝜶 = (𝛼1,… , 𝛼a)′, we can show
(PA − P1)X𝜷 = PAXA𝜶. (2.68)

If (2.68) is true, then note that, by the nature of projection, PAXA = XA, and XA𝜶 = 𝜶 ⊗ 1bn, and the
sum of the squares of the latter term is clearly bn

∑a
i=1 𝛼

2
i . To confirm (2.68), observe from (2.61) that

(PA − P1)X = (PA − P1)[X1 ∣ XA ∣ XB ∣ XAB]
= [𝟎T×1 ∣ (PA − P1)XA ∣ 𝟎T×b ∣ (PA − P1)XAB]. (2.69)

The latter term (PA − P1)XAB ≠ 𝟎, but if we first assume the interaction terms (𝛼𝛽)ij are all zero, then
(2.69) implies

(PA − P1)X𝜷 = (PA − P1)XA𝜶.

Now observe that P1XA = T−1JT (Ia ⊗ 1bn) = a−1JT ,a, where JT ,a is a T × a matrix of ones. This, and
the fact that

∑a
i=1 𝛼i = 0, implies P1XA𝜶 is zero, and (2.68), and thus (2.64), are shown.

In the case with nonzero interaction terms, with
𝜸 = ((𝛼𝛽)11, (𝛼𝛽)12,… , (𝛼𝛽)ab)′, (2.70)

we (cut corners and) confirm numerically that (PA − P1)XAB𝜸 = 𝟎 (a T-length column of zeros), pro-
vided that the constraints on the interaction terms in (2.45) are met. It is not enough that all ab terms
sum to zero. The reader is encouraged to also numerically confirm this, and, better, prove it alge-
braically.
Thus, FA ∼ Fa−1,ab(n−1)(𝜃A), and the power of the test is Pr(FA > cA), where cA is the cutoff value under

the null (central) distribution for a given test significance level 𝛼. Based on the values we use below
in an empirical example, namely n = 12, a = 3, b = 2, 𝜎 = 2, and

∑a
i=1 𝛼

2
i = 2∕3, (2.64) yields 𝜃A = 4,

so that the power of the test with significance level 𝛼 = 0.05 is 0.399, as computed with the code in
Listing 2.7.
Analogous to (2.64), the test statistic associated with effect B is FB ∼ Fb−1,ab(n−1)(𝜃B), where

𝜃B = an
𝜎2

b∑
j=1

𝛽2
j , (2.71)

which is 𝜃B = 81∕8 in our case, yielding a power of 0.880. Also analogously,

𝔼[MSB] = 𝜎2 (b − 1) + 𝜃B

b − 1
= 𝜎2 + an

b − 1

b∑
j=1

𝛽2
j . (2.72)
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1 n=12; a=3; b=2; sigma=2; dfA=a-1; dfB=b-1; dfErr=a*b*(n-1);
2 alpha=0.05; thetaA=4; thetaB=81/8;
3 cutA=finv(1-alpha,dfA,dfErr);
4 powerA = 1 - ncfcdf(cutA,dfA,dfErr,thetaA)
5 cutB=finv(1-alpha,dfB,dfErr);
6 powerB = 1 - ncfcdf(cutB,dfB,dfErr,thetaB)

Program Listing 2.7: Power calculations for the F tests in the two-way ANOVA with interaction.

Note that the distributions of the FA and FB tests in the case without interaction are similar, and use
the denominator degrees of freedom taken from the SSE in Table 2.3.
Now consider the interaction term. For convenience, let RAB = (PAB − PA − PB + P1), and observe

that RAB = R′
AB and RABRAB = RAB. From (2.63), and similar to (2.66) and (2.67), we would need to

prove that

𝜷 ′X′RABX𝜷 = n
a∑
i=1

b∑
j=1

(𝛼𝛽)2ij or RABX𝜷 = 𝜸 ⊗ 1n, (2.73)

where 𝜸 is defined in (2.70). It then follows from (2.73) that 𝜃AB = n𝜎−2 ∑a
i=1

∑b
j=1(𝛼𝛽)2ij, from which

𝔼[MSAB] = 𝜎2 + n
(a − 1)(b − 1)

a∑
i=1

b∑
j=1

(𝛼𝛽)2ij. (2.74)

To prove (2.73), we inspect RABX = (PAB − PA − PB + P1)[X1 ∣ XA ∣ XB ∣ XAB] and (as the reader is
also welcome to) confirm

1T = PABX1 = PAX1 = PBX1 = P1X1 ⇒ RABX1 = 𝟎T , (2.75)
Ia ⊗ 1bn = PABXA = PAXA, a−1JT ,a = PBXA = P1XA ⇒ RABXA = 𝟎T ,

1a ⊗ Ib ⊗ 1n = PABXB = PBXB, b−1JT ,b = PAXB = P1XB ⇒ RABXB = 𝟎T ,

so that

RABX𝜷 = RABXAB𝜸 = (PAB − PA − PB + P1)XAB𝜸. (2.76)

Observe how in (2.75) the four terms generated from RABX1 are all the same in magnitude (absolute
value). Thus, by the nature of having two positive and two negative terms in RAB, their sum cancels.
Increasing in complexity, for RABXA and RABXB, observe that two terms are equal in magnitude, but
have different signs, and the two other terms are equal in magnitude, but have different signs, and
their sum cancels.
As perhaps then expected, RABXAB in (2.76) is the most complicated case, such that the four prod-

ucts generated by RABXAB are all different and cancellation does not occur. Some algebraic effort and
practice with Kronecker products could then be invested to confirm that this indeed equals 𝜸 ⊗ 1n,
while a numerical confirmation is trivial in Matlab, and the reader is encouraged to at least do that.

2.5.4 Example and Codes

Imagine conducting an experiment to compare the effectiveness of various therapies for lowering
anxiety, mitigating depression, or, more generally, “increasing happiness”. For each patient, a progress
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measurement (say, some continuous measure such that zero implies no change from the initial state,
and such that the larger it is, the higher is the improvement) is taken, once, after a fixed amount
of time such that all treatments should have “kicked in”, and doing so for a reasonably well-defined
cohort, such as elderly people, people in a “mid-life crisis”, or students attending university (the latter
indeed being a high-risk group; see, e.g., Kitzrow, 2003). These example categories address the age of
the patient, though other categories are possible, such as people with chronic pain and/or a particular
disability or disease (e.g., Parkinson’s). Let factor A describe the type of treatment, say, cognitive ther-
apy (CT), meditation (MT), or use of Prozac (PZ), as discussed in Haidt (2006). (If multiple progress
measurements are made through time, this gives rise to a type of repeated measures ANOVA.)
So far, this is a one-way design, though other factors might play a role. One possibility is gender, and

another is if some form of physical activity is conducted that is reasonably appealing to the patient
(or, less optimistically, the least unenjoyable), such as jogging, circuit training, weight lifting, or yoga
(the latter having been investigated for its effectiveness; see, e.g., Kirkwood et al., 2005). Another
possible set of factors are the subject’s measurements associated with the so-called “big five (human)
personality traits”, namely openness to experience, conscientiousness, extraversion, agreeableness,
and neuroticism. Further ideas might include levels indicating the extent of the person’s religiosity,
and also whether or not the person is a practicing Buddhist (see, e.g., Wright, 2017).
Use of treatment factor A, along with, say, gender and physical activity, gives rise to a three-way

ANOVA. Omitting factors of relevance causes them to be “averaged over”, and, if they do play a signif-
icant role, then their omission will cause the error variance to be unnecessarily high, possibly masking
the differences in effects of themain factor under study.Worse, if there are ignored interaction effects,
the analysis can be biased and possibly useless. Recall, in particular, the analysis in Section 2.3 when
a block effect is erroneously ignored.
Let us assume for illustration that we use a balanced two-factor model, with therapy as factor A

(with the a = 3 different treatments as mentioned above) and physical activity as factor B, with b = 2
categories “PA-NO” and “PA-YES”.Thedata are fictitious, and not even loosely based on actual studies.
For the cell means, we take

𝜇11 = 6 + 0, 𝜇21 = 6 + 0, 𝜇31 = 7 + 0,
𝜇12 = 6 + 1.5, 𝜇22 = 6 + 1.5, 𝜇32 = 7 + 1.5,

and we need to figure out the values of 𝜇, 𝛼i, and 𝛽j, respecting the constraints
∑a

i=1 𝛼i =
∑b

j=1 𝛽j = 0.
This can be done by solving the over-determined system of equations Zc = m, where

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0
1 0 1 0 1 0
1 0 0 1 1 0
1 1 0 0 0 1
1 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, c =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜇

𝛼1
𝛼2
𝛼3
𝛽1
𝛽2

⎤⎥⎥⎥⎥⎥⎥⎦
, m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜇11
𝜇21
𝜇31
𝜇12
𝜇22
𝜇32
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.77)

using the above values for the 𝜇ij. This, in turn, can be solved with c = (Z′Z)−1Z′m.2 It results in
coefficients such that

∑a
i=1 𝛼

2
i = 2∕3 and

∑b
j=1 𝛽

2
j = 9∕8, these being needed for power calculations.

2 In Matlab, with Z andm in memory, c can be computed as c=Z\m, which is shorthand for mldivide(Z,m), and which,
in this case, is inv(Z’*Z)*Z’*m.
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1 n=12; % n replications per cell
2 a=3; % a treatment groups in the first factor
3 b=2; % b treatment groups in the second factor
4 sigma=2; % scale term of the errors
5
6 randn('state',1) % Deprecated in more recent versions of Matlab
7
8 % Put the data into a 3-dimensional array, as this seems the most logical
9 % structure for storing data corresponding to a balanced, 2-way model

10 data3=zeros(a,b,n);
11 for i=1:a, for j=1:b %#ok<ALIGN>
12 if i<=2, data3(i,j,:) = 6 + sigma*randn(n,1);
13 else data3(i,j,:) = 7 + sigma*randn(n,1);
14 end
15 if j==2, data3(i,j,:) = data3(i,j,:) + 1.5; end
16 % Use the following, with, say, n=2, a=4, b=3, to confirm that the
17 % conversion from data3 to data below is correct.
18 % data3(i,j,:)=10*i+100*j+0.1*randn(n,1);
19 end, end
20 % Now convert such that it can be read into Matlab's anova2 procedure
21 % See the Matlab help file on anova2 for an illustration of
22 % a data set and required format.
23 % Why they don't allow input as a 3D array?
24 % Their format, and this conversion, are a nuisance
25 tempa=zeros(n,b); data=[];
26 for i=1:a
27 for j=1:b, tempa(:,j)=data3(i,j,:); end
28 data=[data ; tempa]; %#ok<AGROW>
29 end
30 % In Matlab's anova2 procedure, "Rows" corresponds to the first level,
31 % and "Columns" corresponds to the second level.
32 showoutput='on'; pvalues=anova2(data,n,showoutput);

Program Listing 2.8: Simulates two-way balanced fixed effects ANOVA data without interaction,
and uses Matlab’s function anova2 to perform the analysis. Note from the help file on anova2 the
required data format. A different format is used with their more general function anovan, as used
below.

Source SS df MS F Prob>F
---------------------------------------------------------
Columns 26.465 1 26.4652 8.11 0.0059
Rows 53.334 2 26.6669 8.17 0.0007
Interaction 3.781 2 1.8903 0.58 0.5631
Error 215.321 66 3.2624
Total 298.901 71

Figure 2.9 ANOVA table output from the Matlab code in Listing 2.8. Here, Columns refers to factor B, which is also
clear because it has one degree of freedom, corresponding to use of b = 2. Similarly, Rows is for factor A, with a = 3
treatments (and, thus, two degrees of freedom).
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The setup in (2.77) is yet more interesting. In the balanced case, we can replace the first six elements
of the vectorm with the respective cell means for each i, j combination, and the solution then yields
the least squares estimates of the coefficients. We will verify this below in Listing 2.12. We can clearly
permute the rows as wewish: Doing so such thatm = [𝜇11, 𝜇12, 𝜇21, 𝜇22, 𝜇31, 𝜇32]′ instead, it should
come as no surprise that the first 1 + a + b rows (all of them, except the last two, which embody
the constraints) constitute precisely X(1) given in (2.49). This can then be used to easily construct a
program (inMatlab, etc.) to compute the least squares estimates in the balanced two-way case for any
a and b, as the reader is encouraged to do.
The program in Listing 2.8 simulates the data with the above parameter values, noting that there

is no interaction term (𝛼𝛽)ij (see lines 11–14), and uses Matlab’s function anova2 to perform the
analysis. This results in the Matlab output in Figure 2.9, indicating that, at all conventional levels of
significance (namely the smallest, 𝛼 = 0.01), the two main effects are significant, but the interaction
effect is not.

Remark As we are no longer going to useMatlab to explicitly perform the numeric matrix ANOVA
calculations, but rather calling their built-in functions anova2 and anovan, users of, say, R, should
instead determine how to conduct this in R, with the correct ANOVAprocedures, though still inspect
how SAS is used, as shown below.This is all themore warranted, asmost of theMatlab work in Listing
2.8 consists in putting the data into a suitable format for input into their anova2 function, and this
has nothing to do, per se, with science and statistical inference. ◾

This “data set” was obtained using a fixed seed value of one for the i.i.d. normal random errors,
and we conveniently obtained correct inferential results at the usual significance levels with respect
to the F tests for three factors. Repeating it with different seed values would surely sometimes result
in erroneous conclusions. To confirm this, the program in Listing 2.9 repeats this exercise 100,000
times, and protocols the p-values of the three F tests, resulting in Figure 2.10.
The real point of this exercise is that such a simulation can be used to calculate the powers associated

with the F tests in the ANOVA table, for a given (or several) value(s) of level of significance 𝛼, based

1 n=12; a=3; b=2; sigma=2;
2 sim=1e5; pvalA=zeros(sim,1); pvalB=pvalA; pvalAB=pvalA;
3 for rep=1:sim
4 % INCLUDE LINES 9-26 HERE
5 showoutput='off'; pvalues=anova2(data,n,showoutput);
6 pvalA(rep)=pvalues(2); pvalB(rep)=pvalues(1); pvalAB(rep)=pvalues(3);
7 end
8 corr(pvalA, pvalB)
9 boxes=50; figure, set(gca,'fontsize',16)

10 [histcount, histgrd] =hist(pvalA,boxes); h1=bar(histgrd,histcount);
11 set(h1,'facecolor',[0.94 0.94 0.94],'edgecolor',[0.9 0.7 1],'linewidth',1.8)
12 title('P-value of Effect A')
13 % ...similar for the other two graphics.

Program Listing 2.9: Performs a simulation of a balanced two-way ANOVA for assessing the distri-
bution of the p-values associated with the F tests. In line 4, this means using lines 9–26 from Listing
2.8. Line 8 lends numerical support to (2.59) (though is not checking independence, but only corre-
lation; note that the statistics pA and pB are not normally distributed).
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Figure 2.10 Histograms of p-values corresponding to the simulation from the code in Listing 2.9.

either on assumptions of the model parameters (as we do for convenience; see lines 11–14 in Listing
2.8) or, more practically, on an observed data set. In our setting here, with 𝛼 = 0.05, the empirical
power associated with factor A (the fraction of p-values less than 0.05) is 0.40, while those for factors
B and AB (the interaction) are 0.88 and 0.050, respectively. Note that those for factors A and B agree
with the theoretical ones determined via the calculations in Listing 2.7, while the latter matches the
level of significance 𝛼 because, in our simulated model, there is no interaction effect.
In reality, instead of using the assumedmodel parameters, the simulated value, say Y (s)

ijk , correspond-
ing to the sth simulation, s = 1,… , S, would be taken to be the mean of the n observations in the ijth
cell of the actual data (obtained from, say, a pilot study, i.e., a small-scale preliminary study), plus
an i.i.d. realization of an N(0, �̂�2) random variable, where �̂�2 is the estimate from the actual data.
More generally (and perhaps more usefully, when analytic power calculations become more tricky),
for an unbalanced design, the mean would be over the nij observations in the (ij)th cell, i = 1,… , a,
j = 1,… , b. Such simulation can then be used to also determine the minimal cell sample size n to
obtain the desired power of the F tests, so that a more accurate (and ideally balanced) subsequent
study could be conducted.
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We first show another way of performing the ANOVA calculations in Matlab that serves as a useful
segue to the use of SAS. Matlab sports the more general function anovan, which allows for a general
(not necessarily balanced) multi-way ANOVA.The input data also have a different structure than that
used for anova2 (which is restricted to balanced designs). The program in Listing 2.10 (i) generates
the same data set as in Listing 2.8, (ii) uses cell arrays to put the data into the format required for
input to function anovan, and (iii) writes the data to a text file. The output from anovan is shown
in Figure 2.11. It is, content-wise, the same as that in Figure 2.9, but now the factors can be endowed
with useful names, and also appear in the desired order.
The generated text fileanova2prozac.txt contains one line per observation, with the first being

CT PA-NO 7.7288. The code in SAS Listing 2.2 now easily reads this text file and feeds it to their
anova procedure. The corresponding ANOVA table output is the same as in Figure 2.11, just with

1 n=12; a=3; b=2; sigma=2; randn('state',1), data3=zeros(a,b,n);
2 for i=1:a, for j=1:b %#ok<ALIGN>
3 if i<=2, data3(i,j,:) = 6 + sigma*randn(n,1);
4 else data3(i,j,:) = 7 + sigma*randn(n,1);
5 end
6 if j==2, data3(i,j,:) = data3(i,j,:) + 1.5; end
7 end, end
8
9 % initialize the y-vector and the cell arrays, and fill them

10 T=a*b*n; y=zeros(T,1); fac1=cell(T,1); fac2=fac1;
11 for i=1:a, for j=1:b, for k=1:n %#ok<ALIGN>
12 ind= n*b*(i-1) + n*(j-1) + k; y(ind)=data3(i,j,k);
13 switch i
14 case 1, fac1(ind)={'CT'};
15 case 2, fac1(ind)={'MT'};
16 case 3, fac1(ind)={'PZ'};
17 end
18 switch j
19 case 1, fac2(ind)={'PA-NO'};
20 case 2, fac2(ind)={'PA-YES'};
21 end
22 end, end, end
23
24 % Use Matlab's most general ANOVA function, anovan
25 p=anovan(y,{fac1 fac2},'model','interaction', ...
26 'varnames',{'Treatment A','Phy Act'});
27
28 % now output the data to a text file that can be read by SAS
29 fname='anova2prozac.txt'; if exist(fname,'file'), delete(fname), end
30 fileID = fopen(fname,'w');
31 for i=1:a*b*n
32 str=[cell2mat(fac1(i)),' ',cell2mat(fac2(i)),' ',num2str(y(i),'%8.4f')];
33 fprintf(fileID,'%s\r\n',str);
34 end
35 fclose(fileID);

Program Listing 2.10: First generates the same data set as in Listing 2.8, then puts the data into the
format required for using function anovan (which involves cell arrays for the treatment names), and
finally writes the data to a text file that can be read in by, for example, SAS.
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Source Sum Sq. d.f. Mean Sq. F Prob>F
--------------------------------------------------------–-–-–-–--
Treatment A 53.334 2 26.6669 8.17 0.0007
Phy Act 26.465 1 26.4652 8.11 0.0059
Treatment A*Phy Act 3.781 2 1.8903 0.58 0.5631
Error 215.321 66 3.2624
Total 298.901 71

Figure 2.11 ANOVA table output from the Matlab code in Listing 2.10. Compare to Figure 2.9.
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Figure 2.12 The default graphical output corresponding to the interaction effect Treatment*Sport from using the
means statement in proc anova from SAS Listing 2.2.
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Figure 2.13 Default graphical output from SAS’ proc glm, showing the same data as in Figure 2.12.
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somewhat different formatting, and is omitted. Figure 2.12 is a set of boxplots for the ab treatments,
and results from use of the means statement.
Using the same code as in SAS Listing 2.2, but with different pdf and rtf file output names, and

changing the procedure call to proc glm; classes Treatment Sport; model Happi-
ness = Treatment | Sport; run; produces the same ANOVA table, but a different graphic
for the treatment means, as shown in Figure 2.13.

Remarks
a) SAS’sproc anova (likeMatlab’sanova2 function) requires balanced data. For unbalanced data,

and other extras such as adding continuous covariates, use of random effects ormixedmodels, etc.,

1 n=12; a=3; b=2; T=a*b*n;
2 oa=ones(a,1); ob=ones(b,1); on=ones(n,1); obn=ones(b*n,1);
3 X1=ones(T,1); XA=kron(eye(a), obn); XB=kron( kron( oa, eye(b) ), on );
4 X=[X1, XA, XB];
5 fname='prozacX.txt'; if exist(fname,'file'), delete(fname), end
6 fileID = fopen(fname,'w');
7 fprintf(fileID,'%4u %4u %4u %4u %4u %4u\r\n',X'); fclose(fileID);

Program Listing 2.11: Generates and writes the 𝐗 matrix associated with the Prozac happiness
experiment, for the case with no interaction.

filename Yein 'anova2prozac.txt';
filename Xein 'prozacX.txt';
data Yvec;

infile Yein stopover;
input Treatment $ Sport $ Happiness;

run;
data Xmat;

infile Xein stopover;
input Int A1-A3 B1-B2;

run;
data YX;

merge Yvec(keep=Happiness)
Xmat;

run;
proc print data=YX; run;
proc reg;

*model Happiness = Int A1-A3 B1-B2 / NOINT;
model Happiness = A1-A3 B1-B2;
restrict A1+A2+A3, B1+B2;

run;

SAS Program Listing 2.3: Reads in the ANOVA data, and also the relevant 𝐗 regressor matrix as
generated byMatlab fromListing 2.11, and runsproc reg to get the least squares coefficients. In the
restrict statement, the various desired restrictions are listed one after another, separated by com-
mas, and can specify to what they should be equal. In our setting, this is A1+A2+A3=0, B1+B2=0,
but without the equals term, SAS understands this to mean equal to zero.
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1 % First generate our usual data set used throughout
2 n=12; a=3; b=2; sigma=2; randn('state',1), data3=zeros(a,b,n);
3 for i=1:a, for j=1:b %#ok<ALIGN>
4 if i<=2, data3(i,j,:) = 6 + sigma*randn(n,1);
5 else data3(i,j,:) = 7 + sigma*randn(n,1);
6 end
7 if j==2, data3(i,j,:) = data3(i,j,:) + 1.5; end
8 end, end
9

10 % generate the Y vector
11 T=a*b*n; y=zeros(T,1);
12 for i=1:a, for j=1:b, for k=1:n %#ok<ALIGN>
13 ind= n*b*(i-1) + n*(j-1) + k; y(ind)=data3(i,j,k);
14 end, end, end
15
16 % Now get the 6 cell means
17 mu=zeros(a,b);
18 for i=1:a, for j=1:b %#ok<ALIGN>
19 mu(i,j)=mean(data3(i,j,:));
20 end, end
21
22 muvec=[mu(:) ; 0 ; 0]; % vectorize, and add the two zeros
23 Z=[1 1 0 0 1 0
24 1 0 1 0 1 0
25 1 0 0 1 1 0
26 1 1 0 0 0 1
27 1 0 1 0 0 1
28 1 0 0 1 0 1
29 0 1 1 1 0 0
30 0 0 0 0 1 1];
31 c=Z\muvec % The least squares estimates of the model parameters

Program Listing 2.12: After generating our usual data set, as done in the beginning of Listing 2.10,
use the over-identified system in (2.77) to generate the least squares estimates of the model parame-
ters. They are identical to those given in the regression output from SAS (not shown here), based on
the code in SAS Listing 2.3.

the SAS procedures proc glm and proc mixed are appropriate. These are their most general
procedures under theGaussianity assumption on the error term.While these could always be used,
SAS maintains proc anova because it is computationally very efficient for a pure fixed effects
ANOVA model with balanced data and, as mentioned in Appendix D, there was a time when one
paid according to resources (time and memory) used. Similarly, SAS has proc varcomp and
proc nested.The former supportsmixedmodels (and both support unbalanced data), and both
are computationally more efficient than use of their more advanced and subsuming proc mixed
for pure random effects models. See Chapter 3 for examples of their use.

b) The simplicity of the decomposition of the sums of squares in the balanced ANOVA case, along
with the elegance of using Kronecker products, is no longer available in the unbalanced case.
Instead, different ways of computing the sums of squares are available, each with different inter-
pretations. Conveniently at least, statistical software packages are set up to handle this case (such
as Matlab’s anovan function and SAS’s proc glm), and produce the different sums of squares
output and associated tests. The reader is encouraged to examine the output of these functions
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when using an unbalanced data set, as easily generated by modifying the above codes. Function
anovan and proc glm are both called in the same way as with balanced data.
A detailed presentation of the unbalanced fixed effects ANOVA case, alongwith relevant SAS codes

and discussion of output, is given in Khuri (2010, Ch. 10), while the highly regarded textbook by
Milliken and Johnson (2009) is dedicated to “messy data” and contains a wealth of information, along
with the use of SAS for conducting the analyses. ◾

We end this section by using (2.77) to obtain the least squares estimates of the model parameters.
The idea is to generate the relevantXmatrix, writeX (and the simulatedYdata from the code in Listing
2.8) to text files, read them into SAS, merge them, and use their proc reg with the restrict
statement to ensure

∑a
i=1 𝛼i =

∑b
j=1 𝛽j = 0 to produce the least squares estimates of 𝜷 in (2.46). The

Matlab code in Listing 2.11 generates the X matrix and writes it to a text file. SAS Listing 2.3 then
reads this in, merges it with the vector Y of happiness measurements, prints the data (as a check),
and then executes proc reg. Finally, theMatlab code in Listing 2.12 uses the over-identified system
in (2.77) to generate the least squares estimates of the model parameters. The reader (with access to
Matlab and SAS) can easily conduct this, and confirm that the parameter estimates given in the SAS
proc reg output (not shown here) are identical to those from the code in Listing 2.12.



127

3

Introduction to Random andMixed Effects Models

Section 2.1, in the previous chapter on fixed effects ANOVA models, provided some introductory
remarks on the distinction between fixed and random effects. This chapter is dedicated to random
effectsmodels, abbreviated as REMs, but also briefly touches on themixedmodel case. In fixed effects
ANOVA, interest is on least squares estimates associated with the treatments, testing their equality,
and assessing which ones are statistically different. For example, with a two-way ANOVA without
interaction, there are 2 + a + b parameters (the grand mean 𝜇, the error variance, and the a + b treat-
ment parameters), albeit with sum restrictions. With REMs, there are only (besides the grand mean)
variance components. For example, in a so-called two-way nested model with both effects random,
no matter how many levels of factors A and B, there are three variance components—the error vari-
ance 𝜎2

e , and the variances from the two factors, 𝜎2
a and 𝜎2

b—and thus only four model parameters to
estimate.1
In Chapter 2, we referred to the levels of a particular fixed effect factor as the levels, or treatments.

When using random effects, we will often use the term classes, this being common in the literature
and also the statement in the various SAS procedures to designate a factor as being random.
We mostly assume throughout, as in the fixed effects ANOVA analysis in Chapter 2, that all mod-

els are balanced. This of course will not correspond to reality in all cases. The reason is tractability:
With balance, the analysis is greatly simplified, allowing one to quickly get a handle on the majority
of models of practical interest without getting lost in the (at times nontrivial) issues that arise with
unbalanced data. We do address the unbalanced case from a heuristic/computational point of view
in Sections 3.1.6 and 3.3.1.2, building on the elegant and easily computable results from the balanced
case. This is not how the unbalanced case is usually handled (in fact, the author could not find any
similar such presentation—and perhaps for good reason), though it is very instructive, and possibly of
real use, replacing messy distribution theory with easy numerics such as simple optimization, simu-
lation, and methods similar to the double bootstrap.The other assumption used throughout, without
exception, is normality.
Substantially more detailed book-length compliments to this introductory chapter that we will fre-

quently refer to are Sahai and Ojeda (2004) (dedicated to the balanced case) and Searle et al. (1992).
Particularly for the unbalanced case, excellent resources, in addition to Searle et al. (1992), include

1 The term “components of variance” (nowadays variance components) seems to originate with Daniels (1939); see the
discussion in Searle et al. (1992, p. 29) and further writings by Shayle Searle on the history of REMs and variance components
analysis. It is an interesting coincidence that Henry Daniels pioneered the saddlepoint approximation, which is used in
several contexts in this book, including Chapter 2, notably for the singly and doubly noncentral F distribution, and mentioned
in this chapter, for confidence intervals for (functions of ) variance components.

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Khuri et al. (1998), Sahai and Ojeda (2005), and Milliken and Johnson (2009), along with the general
linear model presentations in Graybill (1976), Khuri (2010), and Searle and Gruber (2017).
For all the models subsequently introduced, we assume, as usual, that the random effects are

generated from mutually independent normally distributed random variables, and are denoted with
lower-case Roman letters, e.g., ai, bj and bij. While we almost always use upper case to denote ran-
dom variables, this convention appears more standard. Fixed effects, on the other hand, are, as in
Chapter 2, denoted by lower-case Greek letters (𝛼i, 𝛽j, etc.) and include the intercept 𝜇. Thus, all
unobserved quantities that have associated point and interval estimators are in Greek (fixed effects
and the variance components 𝜎2

a , 𝜎2
e , etc.) while sampled values, whether observed or not (e.g., Yij

and eij), are denoted with Roman letters. As such, to be consistent, we deviate from Chapters 1 and
2, and denote the linear model error term with an e, instead of 𝜖, with variance 𝜎2

e instead of 𝜎2
𝜖 .

3.1 One-Factor Balanced Random Effects Model

Theone-factor REM is the simplest case, and the obvious starting point. It is also an importantmodel,
serving to introduce the various concepts and procedures common to all REMs. As such, we go
through the development slowly, with much detail, and also address the unbalanced case (albeit only
partially, and in a non-conventional way). For the subsequent development of higher-order models,
the pace is sped up, with some derivations and computational exercises given in the end of chapter
exercises (answers are provided).
Recall the simple example mentioned in Section 2.1, where we sample A = 20 schools from a large

population of schools belonging to some well-defined cohort (e.g., public high schools in a particular
geographic area), and from each we sample n = 15 students in the same grade whose performance on
some standardized test is to be evaluated.This is an example of a one-way REM. Examples abound in
numerous fields of research: In agriculture (or forestry, animal studies, etc.), different plots of land can
form the classes; in manufacturing, the classes can be from the factory lines of production, and/or the
workers. In medicine, hospitals or clinics (or medical practitioners) can be the population of interest,
etc. Returning to the school example, the variation due to the evaluators of the test might be the
subject of interest.

3.1.1 Model and Maximum Likelihood Estimation

Let Yij denote the jth observation in the ith class, i = 1,… ,A, j = 1,… , n. As with the fixed effects
model, the n replications are random effects, but now the A values of the object under study (e.g.,
schools, hospitals, factory machines, sampled batches, segments of an ocean, galaxies, etc.) are also
considered to be random realizations from a large population. Under the normality assumption, the
model is represented as

Yij = 𝜇 + ai + eij, ai
i.i.d.∼ N(0, 𝜎2

a), eij
i.i.d.∼ N(0, 𝜎2

e ), (3.1)
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and such that ai and eij are independent for all i and j.The threemodel parameters, which are assumed
fixed but unknown, are 𝜇, 𝜎2

a , and 𝜎2
e . From (3.1), the first two moments are

𝔼[Yij] = 𝜇, Var(Yij) = 𝜎2
a + 𝜎2

e , (3.2)

and

Cov(Yij,Yij′ ) = 𝔼[(ai + eij)(ai + eij′ )] = 𝜎2
a , j′ ≠ j. (3.3)

(Notice here the use of the prime to denote “an alternative element”, as opposed to amatrix transpose,
or the first derivative.) In light of (3.3), 𝜎2

a is denoted the intra-class variance, and we will denote 𝜎2
e

as the error variance.
In order to express the model in matrix notation, we first stack the Yij in “lexicon order”, such that

index j changes the fastest, giving

Y = (Y11,Y12,… ,Y1n,Y21,Y22,… ,Y2n,… ,Y11,YA2,… ,YAn )′, (3.4)

and define vector e similarly.Then, with a = (a1,… , aA)′ and, similar to (2.22) using Kronecker prod-
uct notation,

Y = (1A ⊗ 1n)𝜇 + (IA ⊗ 1n)a + e
= X𝜷 + 𝝐,

(3.5)

where X = 1An, 𝜷 = 𝜇, and 𝝐 = (IA ⊗ 1n)a + e. We can thus express (3.1) and (3.5) as Y ∼ NAn(𝝁,𝚺),
where 𝝁 = 𝔼[Y] = X𝜷 and, with Jn an n × nmatrix of ones,

𝚺 = Var(Y) = Var(𝝐) = (IA ⊗ 1n)Var(a)(IA ⊗ 1n)
′ + Var(e)

= (IA ⊗ 1n)𝜎
2
aIA(IA ⊗ 1n)

′ + 𝜎2
e IAn = 𝜎2

a(IA ⊗ Jn) + 𝜎2
e (IA ⊗ In)

= IA ⊗ (𝜎2
aJn + 𝜎2

e In). (3.6)

Based on representation Y ∼ NAn(𝝁,𝚺) and (3.6), it is straightforward to express the likelihood and
numericallymaximize it to obtain them.l.e.The code for doing this is given in Listing 3.1.This exercise
is beneficial for learning to “do things oneself” using basic principles, though (i) we will see below
in Section 3.1.3 that there is a closed-form expression for the m.l.e., provided �̂�2

a,ML is positive, and
(ii) for this model and, particularly, for more complicated models (such as one with mixed fixed and
random effects, unbalanced data, continuous covariates, etc.), one would typically use canned reliable
statistical software packages for the computations, as shown in Section 3.1.5.
Simulation is the easiestway of determining the small-sample performance of them.l.e., and thiswas

done for the constellationA = 20, n = 15, 𝜇 = 5, 𝜎2
a = 0.4, and 𝜎2

e = 0.8, using S = 10,000 replications.
Code for one such replication is shown in Listing 3.2, from which the reader can generate code to
perform the simulation. (The code also computes the elements in the sums of squares decomposition
given in (3.8), which we will need for other point and interval estimators.)
The simulation results are shown in Figure 3.1. The top panels show histograms of the estimated

parameters, with the vertical dashed lines indicating the true parameters. (The m.l.e. is computed for
𝜇, 𝜎a, and 𝜎e, and recall the invariance property of the m.l.e., such that �̂�2

a is just the square of �̂�a.)
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1 function [param, stderr, loglik, iters,bfgsok] = REM1wayMLE(y,A,n)
2 % param = [mu siga sige], sig is sigma, not sigmaˆ2
3 ylen=length(y); if A*n ~= ylen, error('A and/or n wrong'), end
4 y=reshape(y,ylen,1); lo=1e-3; hi=2*std(y);
5 bound.lo= [-1 lo lo]'; % mu, siga, sige
6 bound.hi= [ 1 hi hi]';
7 bound.which=[ 0 1 1]';
8 initvec=[mean(y) std(y)/2 std(y)/2]';
9 opts=optimset('Display','None','TolX',1e-6,'MaxIter',200,...

10 'MaxFunEval',600,'LargeScale','off'); bfgsok=1;
11 try
12 [pout,fval,~,theoutput,~,hess]= fminunc(@(param) ...
13 REM1_(param,y,A,n,bound),einschrk(initvec,bound),opts);
14 catch %#ok<CTCH>
15 disp('switching to use of simplex algorithm (fminsearch)')
16 [pout,fval,~,theoutput]= fminsearch(@(param) ...
17 REM1_(param,y,A,n,bound),einschrk(initvec,bound),opts);
18 hess=eye(length(pout)); % just a place filler.
19 bfgsok=0;
20 end
21 V=inv(hess); [param,V]=einschrk(pout,bound,V); param=param';
22 stderr=sqrt(diag(V))'; iters=theoutput.iterations; loglik=-fval;
23
24 function loglik=REM1_(param,y,A,n,bound)
25 if nargin<5, bound=0; end
26 if isstruct(bound), param=einschrk(real(param),bound,999); end
27 mu=param(1); siga=param(2); sige=param(3);
28 sigma2a=sigaˆ2; sigma2e=sigeˆ2;
29 muv=ones(A*n,1)*mu; J=ones(n,n); tmp=sigma2a*J+sigma2e*eye(n);
30 Sigma=kron(eye(A),tmp); loglik=-log(mvnpdf(y,muv,Sigma));

Program Listing 3.1: Maximum likelihood estimation of the three parameters of the one-way REM.
Function einschrk is given in Listing III.4.7. An arbitrary positive lower bound is necessarily placed
on the variance components. It was found that, as this bound gets closer to zero, numeric issues
associated with the gradient/Hessian-based optimizationmethod using the so-called BFGS algorithm
(after the authors Charles George Broyden, Roger Fletcher, Donald Goldfarb, and David Shanno; see
Section III.4.3.1) inMatlab version 2010 sometimes occur. To resolve this, if this happens, the program
switches to use of the simplex method for optimization, which appears to never fail, though, for the
same requested accuracy, requires far more function evaluations and thus takes longer. For the two
constellations of parameters used in the simulations, and the imposed lower bound of 0.001 on 𝜎a and
𝜎e, the BFGS method never failed.

We see that, for this constellation, the m.l.e. appears close to unbiased and normally distributed, cer-
tainly for the fixed effect 𝜇, but notably for 𝜎2

e and reasonably so for 𝜎2
a .

The bottom panels show the histograms of the approximate standard errors (square roots of the
variances) output from the BFGS algorithm (see, e.g., Section III.4.3 for details), with the vertical
dashed lines being the best approximation of the truth: the sample standard error of the S m.l.e.
point estimates of 𝜇, �̂�a, and �̂�e, respectively. It thus appears that, for this constellation of parame-
ters, inference on 𝜇, 𝜎2

a , and 𝜎2
e can safely be made using the asymptotic normal distribution and the
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1 % desired parameters
2 A=20; n=15; mu=5; sigma2a=0.4; sigma2e=0.8;
3
4 % make Sigma matrix and generate a sample
5 muv=ones(A*n,1)*mu; J=ones(n,n); tmp=sigma2a*J+sigma2e*eye(n);
6 Sigma=kron(eye(A),tmp);
7 y=mvnrnd(muv,Sigma,1)'; % this is built into Matlab
8
9 % compute the various sums of squares

10 SST=sum(y'*y); Yddb=mean(y); SSu=A*n*Yddbˆ2; % Yddb is \bar{Y}_{dot dot}
11 H=kron(eye(A), ones(n,1)); Yidb=y'*H/n; % Yidb is \bar{Y}_{i dot}
12 SSa=n*sum( (Yidb-Yddb).ˆ2 ); m=kron(Yidb', ones(n,1)); SSe=sum( (y-m).ˆ2 );
13 check=SST-(SSu+SSa+SSe) % is zero
14
15 % MLE by brute force maximization
16 [param, stderr, loglik, iters,bfgsok] = REM1wayMLE(y,A,n);
17 AME=[param(1), param(2)ˆ2, param(3)ˆ2]
18
19 % MLE using closed form expression
20 mu_hat_MLE = mean(y); sigma2e_hat_MLE = SSe/A/(n-1);
21 sigma2a_hat_MLE = ( SSa/A - SSe/A/(n-1) )/n;
22 MLE = [mu_hat_MLE sigma2a_hat_MLE sigma2e_hat_MLE]

Program Listing 3.2: Generates a one-way REM data set, computes the sums of squares decompo-
sition given in (3.8), calls the m.l.e. program in Listing 3.1, and computes the closed-formm.l.e. given
in (3.21).

approximate standard errors output from use of the BFGS algorithm for computing them.l.e. Another
simple approximation to the standard errors is given in Section 3.1.3.
Figure 3.2 is similar to Figure 3.1, but based on A = 7 and n = 5. While the empirical distribution

of �̂�2
e is still close to Gaussian and the estimator appears virtually unbiased, its variance has increased

markedly due to the reduction of n = 15 to n = 5. Having reduced A = 20 to A = 7, not only has
the variation of �̂�2

a increased, but it is no longer Gaussian, so that Wald confidence intervals based
on the estimated standard error will not be particularly accurate. Below, we will discuss other
ways of generating confidence intervals for �̂�2

a that tend to be more accurate in such situations.
While that seems beneficial for small sample sizes, the resulting intervals, however accurate, will be
frustratingly wide.

3.1.2 Distribution Theory and ANOVA Table

In this and subsequent REMs, we will begin with the trivial “telescoping” identity

Yij = Ȳ•• + (Ȳi• − Ȳ••) + (Yij − Ȳi•). (3.7)

By squaring each term and summing, the reader is encouraged to confirm that the sums of all cross
terms vanish, so that, similar to (2.28),∑A

i=1
∑n

j=1 Y 2
ij = AnȲ 2

•• + n
∑A

i=1 (Ȳi• − Ȳ••)2 +
∑A

i=1
∑n

j=1 (Yij − Ȳi•)2

SST = SS𝜇 + SSa + SSe,
(3.8)
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Figure 3.1 Top: Histograms of the m.l.e. of the three parameters, from left to right, 𝜇, 𝜎2
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Figure 3.2 Same as Figure 3.1 but for A = 7 and n = 5.
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where SST denotes total (uncorrected) sum of squares, SS𝜇 is sum of squares for the mean, SSa is
sum of squares for effect A, and SSe is the error sum of squares. Thus, SST is partitioned into the SS
of the model factors.

Theorem 3.1 Independence The three terms on the right-hand side (r.h.s.) of (3.7) are indepen-
dent, in which case so are sums of their squares (or any functions of them), i.e., SS𝜇, SSa, and SSe are
independent.

Proof : Observe that each term on the r.h.s. of (3.7) is normally distributed, so that we only need to
verify that the covariance between each of them is zero to establish their independence.The first term,
Ȳ••, hasmean 𝜇, while the other two havemean zero.We thus need to show that the expected product
of each of the three pairs of terms is zero.
Before beginning, recall the notation from (2.3), and let

ei• =
n∑
j=1

eij, ēi• =
ei•
n
, e•• =

A∑
i=1

n∑
j=1

eij, ē•• =
e••
An

,

and similarly for Ȳi• and Ȳ••, so that

Ȳi• =
1
n

n∑
j=1

Yij =
n𝜇 + nai + ei•

n
= 𝜇 + ai + ēi•, (3.9)

and

Ȳ•• =
1
An

A∑
i=1

n∑
j=1

Yij =
An𝜇 + na• + e••

An
= 𝜇 + ā• + ē••.

Then, for the first pair,

𝔼[Ȳ••(Ȳi• − Ȳ••)] = 𝔼[(ā• + ē••)(ai − ā• + ēi• − ē••)]
= 𝔼[ā•(ai − ā•)] + 𝔼[ē••(ēi• − ē••)]

= 𝔼[ā•ai] − 𝔼[ā2•] + 𝔼[ē••ēi•] − 𝔼[ē2••] =
𝜎2
a

A
−

𝜎2
a

A
+

𝜎2
e

An
−

𝜎2
e

An
= 0,

as in Graybill (1976, p. 610). Likewise,

𝔼[Ȳ••(Yij − Ȳi•)] = 𝔼[(ā• + ē••)(ai − ai + eij − ēi•)]

= 𝔼[ē••eij] − 𝔼[ē••ēi•] =
𝜎2
e

An
−

n𝜎2
e

An2
= 0,

and

𝔼[(Ȳi• − Ȳ••)(Yij − Ȳi•)] = 𝔼[(ai − ā• + ēi• − ē••)(eij − ēi•)]
= 𝔼[ēi•eij] − 𝔼[ē2i•] − 𝔼[ē••eij] + 𝔼[ē••ēi•]

=
𝜎2
e

n
−

𝜎2
e

n
−

𝜎2
e

An
+

n𝜎2
e

An2
= 0,

confirming the result. ◾
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Theorem 3.2 Distribution
SS𝜇
𝛾a

∼ 𝜒2
1

(
An𝜇2

𝛾a

)
,

SSa
𝛾a

∼ 𝜒2
A−1,

SSe
𝜎2
e

∼ 𝜒2
A(n−1), (3.10)

where 𝛾a ∶= n𝜎2
a + 𝜎2

e .

Proof : It is not hard to show this directly (see, e.g., Graybill, 1976, p. 609), but a simple transformation
can speed things up and is of great use when working with higher-order models. As in Stuart et al.
(1999, p. 676), we define Hi ∶= ai + ēi• and then verify that

Yij = Ȳ•• + (Ȳi• − Ȳ••) + (Yij − Ȳi•)
= (𝜇 + H̄•) + (Hi − H̄•) + (eij − ēi•)
= 𝜇 + ai + eij.

(3.11)

Next, note that H̄• = ā• + ē•• and Hi
i.i.d.∼ N(0, 𝜎2

a + 𝜎2
e ∕n). Starting from the top right of (3.11), write

Yij − Ȳi• = (𝜇 + ai + eij) − (𝜇 + ai + ēi•) = eij − ēi•,

and, similarly,

Ȳi• − Ȳ•• = (𝜇 + ai + ēi•) − (𝜇 + ā• + ē••) = Hi − H̄•,

and Ȳ•• = 𝜇 + ā• + ē•• = 𝜇 + H̄•. Thus, for a given i, 𝜎−2
e

∑n
j=1 (eij − ēi•)2 ∼ 𝜒2

n−1 and

𝜎−2
e SSe = 𝜎−2

e

A∑
i=1

n∑
j=1

(eij − ēi•)2 ∼ 𝜒2
A(n−1), (3.12)

from the independence of the eij and the summability of independent chi-square random variables.
Similarly, 𝜎−2

Hi

∑A
i=1 (Hi − H̄•)2 ∼ 𝜒2

A−1. With 𝛾a ∶= n𝜎2
a + 𝜎2

e ,

SSa
𝛾a

=
n
∑A

i=1 (Hi − H̄•)2

n𝜎2
a + 𝜎2

e
= 𝜎−2

Hi

A∑
i=1

(Hi − H̄•)2 ∼ 𝜒2
A−1. (3.13)

Finally, (𝜇 + H̄•) ∼ N(𝜇, 𝜎2
a∕A + 𝜎2

e∕An) implies
√
An(𝜇 + H̄•) ∼ N(

√
An 𝜇, 𝛾a), so that

√
An∕𝛾a(𝜇 +

H̄•) ∼ N(
√
An∕𝛾a 𝜇, 1), which, in turn, implies

An
𝛾a

(𝜇 + H̄•)2 ∼ 𝜒2
1

(
An𝜇2

𝛾a

)
or SS𝜇

𝛾a
∼ 𝜒2

1

(
An𝜇2

𝛾a

)
,

completing the proof. ◾

Remark Theorem 3.1 showed that Ȳ••, Ȳi• − Ȳ•• and Yij − Ȳi• are independent for all i and j, from
which it follows that sums of their squares (or any functions of them) are independent, so that SS𝜇,
SSa, and SSe are independent. We can also see this in the following way.
For a given i, we know from the independence property of X̄ and S2X for normal samples (see, e.g.,

Section II.3.7) that ēi• ⟂
∑

(eij − ēi•)2. This is the case for any i, i.e., also ēi′• ⟂
∑

(eij − ēi•)2, so that,
from (3.12), ēi• ⟂ SSe. As SSa is a function only of Hi = ai + ēi•, and SSe is not a function of ai, we
have SSe ⟂ SSa (recalling ai ⟂ ēi•). The same applies to SS𝜇, being a function of H̄• and a fixed value
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Table 3.1 ANOVA table for the balanced one-factor REM. The second
column is specific to our model notation (3.1), and is not necessary, but
shown for further clarity.

Source Terms df SS EMS

Mean 𝜇 1 AnȲ 2
•• 𝜎2

e + n𝜎2
a + An𝜇2

A {ai} A − 1 n
∑A

i=1 (Ȳi• − Ȳ••)2 𝜎2
e + n𝜎2

a

Error {eij} A(n − 1)
∑A

i=1
∑n

j=1 (Yij − Ȳi•)2 𝜎2
e

Total {Yij} An
∑A

i=1
∑n

j=1 Y 2
ij

𝜇, i.e., SSe ⟂ SS𝜇. Finally, asHi are also normally distributed, H̄• ⟂ SSa and, as SS𝜇 is a function of H̄•
and a fixed value 𝜇, SS𝜇 ⟂ SSa. ◾

Dividing each SS term by its degrees of freedom and taking expected values yields the expected
mean squares, or EMS. This gives, with 𝛾a ∶= n𝜎2

a + 𝜎2
e ,

𝔼[MS𝜇] = 𝔼[SS𝜇] = 𝛾a𝔼
[
𝜒2
1

(
An𝜇2

𝛾a

)]
= 𝛾a

(
1 + An𝜇2

𝛾a

)
= 𝛾a + An𝜇2,

𝔼[MSa] = 𝔼
[ SSa
A − 1

]
=

𝛾a

A − 1
𝔼[𝜒2

A−1] = 𝛾a, (3.14)

and

𝔼[MSe] = 𝔼
[

SSe
A(n − 1)

]
=

𝜎2
e

A(n − 1)
𝔼[𝜒2

A(n−1)] = 𝜎2
e , (3.15)

recalling that 𝔼[𝜒2
𝛿
(𝜈)] = 𝛿 + 𝜈. These are summarized in the ANOVA table (Table 3.1).

Recall the discussion of sufficiency and completeness in, e.g., Chapter III.7.

Theorem 3.3 Complete, Minimal Sufficient Statistics The set of complete, minimally sufficient
statistics for 𝜇, 𝜎2

a , and 𝜎2
e is given by SS𝜇, SSa, and SSe.

Proof : Sufficiency follows by expressing Y ∼ NAn(𝝁,𝚺) with 𝚺 given in (3.6) as

fY(y;𝜇, 𝜎2
a , 𝜎

2
e ) =

exp
{
− 1

2

[
SSe
𝜎2
e
+ SSa

𝛾a
+ An

𝛾a
(Ȳ•• − 𝜇)

]}
(2𝜋)An∕2(𝜎2

e )A(n−1)∕2𝛾
A∕2
a

, (3.16)

(where 𝛾a ∶= n𝜎2
a + 𝜎2

e ), which the reader is encouraged to verify. The details are provided in, e.g.,
Searle et al. (1992, Sec. 3.7) and Sahai and Ojeda (2004, p. 26–27). For minimal sufficiency and com-
pleteness, see, e.g., Graybill (1976). ◾

The reader can confirm (3.16) by using it for the calculation of the log-likelihood in the program in
Listing (3.1). From this result, and recalling that the m.l.e. is a function of the sufficient statistics (see,
e.g., Section III.7.1.2), one might expect that the m.l.e. can be algebraically expressed in terms of SS𝜇,
SSa, and SSe, which is indeed the case, as given below.



Introduction to Random and Mixed Effects Models 137

3.1.3 Point Estimation, Interval Estimation, and Significance Testing

Observe that, from the values ofEMS inTable 3.1, comparing themagnitudes ofMSa andMSe appears
pertinent for assessing if 𝜎2

a > 0. From the independence of the SS, the distribution of their ratio is
tractable, and leads to

SSa
𝛾a

∕(A − 1)

SSe
𝜎2
e
∕A(n − 1)

∼ F(A−1),A(n−1) or Fa ∶=
MSa
MSe

∼
𝛾a

𝜎2
e
FA−1,A(n−1), (3.17)

a scaled central F distribution, where, again, 𝛾a ∶= n𝜎2
a + 𝜎2

e . If 𝜎2
a = 0, then 𝛾a = 𝜎2

e (and 𝛾a∕𝜎2
e = 1),

so that an 𝛼-level hypothesis test for 𝜎2
a = 0 versus 𝜎2

a > 0 rejects if Fa > F𝛼

A−1,A(n−1), where F
𝛼

n,d is the
100(1 − 𝛼)th percent quantile of the Fn,d distribution.
There are several useful point estimators of 𝜎2

e and 𝜎2
a , including themethod ofmaximum likelihood,

as shown in Section 3.1.1. Others include the “ANOVAmethod” (see below), restrictedm.l.e. (denoted
REML, the most recommended in practice and the default of software such as SAS), and Bayesian
methods. Discussions and comparisons of these methods can be found in, e.g., Searle et al. (1992),
Miller Jr. (1997), Sahai and Ojeda (2004), and Christensen (2011).
We demonstrate the easiest of these, which is also referred to as the “ANOVAmethod of estimation”

(Searle et al., 1992, p. 59) and amounts to equating observed and expected sums of squares. From
(3.15) and (3.14), 𝔼[MSe] = 𝜎2

e and 𝔼[MSa] = n𝜎2
a + 𝜎2

e , so that

�̂�2
e = MSe = SSe

A(n − 1)
, and �̂�2

a = 1
n
(MSa −MSe) = 1

n

(
SSa
A − 1

− SSe
A(n − 1)

)
(3.18)

yield unbiased estimators. Observe, however, that �̂�2
a in (3.18) can be negative. That (3.18) is not the

m.l.e. is then intuitively obvious because the likelihood is not defined for non-positive 𝜎2
a . We will see

below in (3.21) that �̂�2
e is indeed the m.l.e., and �̂�2

a is nearly so. To calculate the probability that �̂�2
a < 0,

use (3.17) to obtain

Pr(�̂�2
a < 0) = Pr(MSa < MSe) = Pr

(MSa
MSe

< 1
)
= Pr

(
FA−1,A(n−1) <

𝜎2
e

n𝜎2
a + 𝜎2

e

)
.

Searle et al. (1992, p. 66–69) and Lee and Khuri (2001) provide a detailed discussion of how the sam-
ple sizes and true values of the variance components influence Pr(�̂�2

a < 0). In practice, in the case
where �̂�2

a < 0, one typically reports that 𝜎2
a = 0, though formally the estimator +𝜎

2
a = max(0, �̂�2

a) is
biased—an annoying fact for hardcore frequentists. Realistically, it serves as an indication that the
model might be mis-specified, or a larger sample is required.
Note that, fromTheorem 3.2 and (3.18),

SSe
𝜎2
e

∼ 𝜒2
A(n−1) and �̂�2

e = MSe = SSe
A(n − 1)

,

from which it follows that

Var(�̂�2
e ) =

Var(SSe)
A2(n − 1)2

= 1
A2(n − 1)2

Var
(
𝜎2
e

𝜎2
e
SSe

)
= 2A(n − 1)

A2(n − 1)2
𝜎4
e =

2𝜎4
e

A(n − 1)
. (3.19)

Similarly, with 𝛾a = n𝜎2
a + 𝜎2

e , as
SSa
𝛾a

∼ 𝜒2
A−1 and �̂�2

a = MSa −MSe
n

= 1
n

(
SSa
A − 1

− SSe
A(n − 1)

)
,
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and the independence of SSa and SSe, we have

Var(�̂�2
a) =

1
n2

[
Var (SSa)
(A − 1)2

+ Var(SSe)
A2(n − 1)2

]
= 1

n2

[
𝛾2aVar(SSa∕𝛾a)

(A − 1)2
+

𝜎4
eVar(SSe∕𝜎2

e )
A2(n − 1)2

]
= 1

n2

[
𝛾2a2(A − 1)
(A − 1)2

+
𝜎4
e 2A(n − 1)
A2(n − 1)2

]
= 2

n2

[
(n𝜎2

a + 𝜎2
e )2

(A − 1)
+

𝜎4
e

A(n − 1)

]
. (3.20)

Replacing 𝜎2
a and 𝜎2

e by their point estimates and taking square roots, these expressions yield approx-
imations to the standard error of �̂�2

e and �̂�2
a , respectively (as were given in Scheffé, 1959, p. 228; see

also Searle et al., 1992, p. 85), and can be used to formWald confidence intervals for the parameters.
These could be compared to the numerically obtained standard errors based on maximum likelihood
estimation. The reader is invited to show that Cov(�̂�2

a , �̂�
2
e ) = −2𝜎4

e∕(An(n − 1)).
By equating the partial derivatives of the log-likelihood 𝓁(𝜇, 𝜎2

a , 𝜎
2
e ; y) = log fY(y;𝜇, 𝜎2

a , 𝜎
2
e ) given in

(3.16) to zero and solving, one obtains (see, e.g., Searle et al., 1992, p. 80; or Sahai and Ojeda, 2004,
p. 35–36)

�̂�ML = Ȳ••, �̂�2
e,ML =

SSe
A(n − 1)

= MSe, �̂�2
a,ML =

1
n

(
SSa
A

− SSe
A(n − 1)

)
, (3.21)

provided �̂�2
a,ML > 0. The reader is encouraged to numerically confirm this, which is very easy, using

the codes in Listings 3.1 and 3.2.
Comparing (3.21) to (3.18), we see that the ANOVA method and the m.l.e. agree for �̂�2

e , and are
nearly identical for �̂�2

a . The divisor of A in �̂�2
a,ML instead of A − 1 from the ANOVA method implies

a shrinkage towards zero. Recall in the i.i.d. setting for the estimators of variance 𝜎2, the m.l.e. has a
divisor of (sample size) n, while the unbiased version uses n − 1, and that the m.l.e. has a lower mean
squared error. This also holds in the one-way REM setting here, i.e., mse(�̂�2

a,ML) < mse(�̂�2
a); see, e.g.,

Sahai and Ojeda (2004, Sec. 2.7) and the references therein.
We now turn to confidence intervals. Besides theWald intervals, further interval estimators for the

variance components (and various functions of them) are available. Recall (from, e.g., Chapter III.8)
that a pivotal quantity, or pivot, is a function of the data and one or more (fixed but unknown
model) parameters, but such that its distribution does not depend on any unknown model param-
eters. From (3.10),

Q(Y, 𝜎2
e ) =

SSe
𝜎2
e

∼ 𝜒2
A(n−1)

is a pivot, so that a 100(1 − 𝛼)% confidence interval (c.i.) for the error variance 𝜎2
e is

Pr
(
l ⩽ SSe

𝜎2
e

⩽ u
)

= Pr
(SSe

u
⩽ 𝜎2

e ⩽ SSe
l

)
, (3.22)

where Pr(l ⩽ 𝜒2
A(n−1) ⩽ u) = 1 − 𝛼 and 𝛼 is a chosen tail probability, typically 0.05.

Likewise, from (3.17) with Fa = MSa∕MSe, (𝜎2
e∕(n𝜎2

a + 𝜎2
e ))Fa ∼ FA−1,A(n−1), so that

1 − 𝛼 = Pr
(

L
Fa

⩽
𝜎2
e

n𝜎2
a + 𝜎2

e
⩽ U

Fa

)
= Pr

(Fa
U

⩽ 1 + n
𝜎2
a

𝜎2
e
⩽

Fa
L

)
= Pr

(Fa∕U − 1
n

⩽
𝜎2
a

𝜎2
e
⩽

Fa∕L − 1
n

)
,

where L and U are given by Pr(L ⩽ FA−1,A(n−1) ⩽ U) = 1 − 𝛼.
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Of particular interest is a confidence interval for the intraclass correlation coefficient, given by
𝜎2
a∕(𝜎2

a + 𝜎2
e ). Taking reciprocals in the c.i. for 𝜎2

a∕𝜎2
e gives

Pr
(

n
Fa∕L − 1

⩽
𝜎2
e

𝜎2
a
⩽ n

Fa∕U − 1

)
= Pr

(
1 + n

Fa∕L − 1
⩽

𝜎2
a + 𝜎2

e

𝜎2
a

⩽ 1 + n
Fa∕U − 1

)
= Pr

(
1

1 + n
Fa∕U−1

⩽
𝜎2
a

𝜎2
a + 𝜎2

e
⩽ 1

1 + n
Fa∕L−1

)
= 1 − 𝛼,

or

1 − 𝛼 = Pr
( Fa∕U − 1
Fa∕U − 1 + n

⩽
𝜎2
a

𝜎2
a + 𝜎2

e
⩽

Fa∕L − 1
Fa∕L − 1 + n

)
, (3.23)

where Fa = MSa∕MSe and L and U are given by Pr(L ⩽ FA−1,A(n−1) ⩽ U) = 1 − 𝛼.
It turns out that a pivot and, thus, an exact confidence interval for the intra-class covariance 𝜎2

a is
not available. One obvious approximation is to replace 𝜎2

e with �̂�2
e in the c.i. for 𝜎2

a∕𝜎2
e to get

1 − 𝛼 ≈ Pr
(
�̂�2
e
Fa∕U − 1

n
⩽ 𝜎2

a ⩽ �̂�2
e
Fa∕L − 1

n

)
, (3.24)

which (perhaps obviously) performswell ifAn is large (Stapleton, 1995, p. 286), in which case �̂�2
e → 𝜎2

e .
We saw in Section 3.1.1 that, when A is large, theWald c.i. based on the m.l.e. will also be accurate. A
more popular approximation than (3.24) due to Williams (1962) is

1 − 2𝛼 ≈ Pr
(SSa(1 −U∕Fa)

nu∗ ⩽ 𝜎2
a ⩽

SSa(1 − L∕Fa)
nl∗

)
, (3.25)

where u∗ and l∗ are such that Pr(l∗ ⩽ 𝜒2
A−1 ⩽ u∗) = 1 − 𝛼. See also Graybill (1976, p. 618–620) for

derivation.
The reader is encouraged to compare the empirical coverage probabilities of these intervals to use

of their asymptotically valid Wald counterparts from use of the m.l.e. and recalling that, for function
𝝉(𝜽) = (𝜏1(𝜽),… , 𝜏m(𝜽))′ from ℝk → ℝm,

𝝉(�̂�ML)
asy∼ N(𝝉(𝜽), �̇�J−1�̇� ′), (3.26)

where �̇� = �̇�(𝜽) denotes the matrix with (i, j)th element 𝜕𝜏i(𝜃)∕𝜕𝜃j (see, e.g., Section III.3.1.4). In this
case, the c.i. is formed using an asymptotic pivot.
The test for 𝜎2

a > 0 is rather robust against leptokurtic or asymmetric alternatives, while the c.i.s
for the variance components and their ratios are, unfortunately, quite sensitive to departures from
normality. Miller Jr. (1997, p. 105–107) gives a discussion of the effects of non-normality on some of
the hypothesis tests and confidence intervals.

3.1.4 Satterthwaite’s Method

We have seen three ways of generating a c.i. for 𝜎2
a , namely via the generally applicable and asymp-

totically valid Wald interval based on the m.l.e. and its approximate standard error (resulting from
either the approximate Hessian matrix output from the BFGS algorithm or use of (3.19) and (3.20)),
and use of (3.24) and (3.25). A further approximate method makes use of a result due to Satterthwaite
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(1946), and can also be applied quite generally for hypothesis testing and c.i.s in higher-order random
and mixed models, often with better actual coverage probability than Wald. We now detail what is
commonly referred to as Satterthwaite’s method.
Throughout, we will let 𝛾i denote a weighted sum of variance components such thatmean squareMi

is an unbiased estimator of 𝛾i, i.e., 𝔼[Mi] = 𝛾i. Interest in general centers on deriving an approximate
c.i. for

𝛾 =
k∑
i=1

hi𝛾i, (3.27)

where the hi, i = 1,… , k, are a fixed set of coefficients. For the one-factor model of this section with
𝛾 = 𝜎2

a , and recalling (3.14) and (3.15), we let 𝛾1 ∶= 𝛾a = n𝜎2
a + 𝜎2

e and 𝛾2 ∶= 𝜎2
e , and we want a c.i. for

𝜎2
a = h1𝛾1 + h2𝛾2, with h1 = n−1 and h2 = −n−1.
Let {Si}, i = 1,… , k, denote a set of independent sum of squares values such that Si = diMi, where

di andMi are the corresponding degrees of freedom andmean squares, respectively.Then, with (3.13)
serving as an example case, with �̂�i ∶= Mi = Si∕di and 𝔼[�̂�i] = 𝛾i,

Si
𝛾i

=
diMi

𝛾i
=

di�̂�i
𝛾i

∼ 𝜒2
di
, i = 1,… , k.

The idea is that, as di�̂�i∕𝛾i ∼ 𝜒2
di
, perhaps there is a value d > 0 such that the distribution of the

weighted sum d�̂�∕𝛾 can be adequately approximated as 𝜒2
d , i.e.,

W ∶= d�̂�
𝛾

app∼ 𝜒2
d , where �̂� ∶=

k∑
i=1

hi�̂�i =
k∑
i=1

hiSi
di

. (3.28)

If the approximation is accurate, then, for l and u such that 1 − 𝛼 = Pr(l ⩽ 𝜒2
d ⩽ u),

1 − 𝛼 ≈ Pr(l ⩽ W ⩽ u) = Pr
(
d�̂�
u

⩽ 𝛾 ⩽ d�̂�
l

)
. (3.29)

The first moment does not give information about the choice of d: As 𝔼[�̂�i] = 𝛾i and recalling (3.27),
note that, for any d > 0,

𝔼[W ] = d
𝛾
𝔼[�̂�] = d

𝛾

k∑
i=1

𝔼[hi�̂�i] =
d
𝛾

k∑
i=1

hi𝛾i = d = 𝔼[𝜒2
d ].

Using second moments, Var(Si) = 2𝛾2i di and

Var(W ) = 2d
2

𝛾2

k∑
i=1

h2i 𝛾
2
i

di
,

so equating Var(𝜒2
d ) = 2d to Var(W ) and solving for d yields

d = 𝛾2∑k
i=1 h2i 𝛾

2
i ∕di

=

(∑k
i=1 hi𝛾i

)2

∑k
i=1 h2i 𝛾

2
i ∕di

, (3.30)
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which is clearly non-negative. To make (3.30) operational, one uses the observed mean square val-
ues, i.e.,

d̂ =

(∑k
i=1 hi�̂�i

)2

∑k
i=1 h2i �̂�

2
i ∕di

> 0. (3.31)

For the approximate c.i. on 𝜎2
a , if 𝛾1 ∶= 𝛾a = n𝜎2

a + 𝜎2
e and 𝛾2 ∶= 𝜎2

e , then �̂�1 = S1∕d1 = MSa and
�̂�2 = S2∕d2 = MSe, where S1 = SSa, d1 = A − 1, S2 = SSe, and d2 = A(n − 1). Notice that S1∕𝛾1 ∼ 𝜒2

A−1
independent of S2∕𝛾2 ∼ 𝜒2

A(n−1) from (3.10), so that we have the general setup above with k = 2 and
desire a c.i. for

𝛾 = 𝜎2
a = (𝛾a − 𝜎2

e )∕n = n−1𝛾1 − n−1𝛾2 =
2∑
i=1

hi𝛾i,

with h1 = n−1 and h2 = −n−1. Thus, from (3.29), replacing d with d̂ from (3.31) as

d̂ =
(h1�̂�1 + h2�̂�2)2

h21�̂�
2
1∕d1 + h22�̂�

2
2∕d2

=
(�̂�1 − �̂�2)2

�̂�21∕d1 + �̂�22∕d2
= (MSa −MSe)2

(MSa)2
A−1

+ (MSe)2
A(n−1)

=
n2�̂�4

a
(�̂�2

a+�̂�2
e )2

A−1
+ �̂�4

e

A(n−1)

,

an approximate 100(1 − 𝛼)% c.i. for 𝜎2
a is

d̂ (MSa −MSe)
n u

⩽ 𝜎2
a ⩽ d̂ (MSa −MSe)

n l
, (3.32)

and 1 − 𝛼 = Pr(l ⩽ 𝜒2
d̂
⩽ u). IfMSa ⩽ MSe, the suggested interval is clearly of no use.

Recalling (3.18) and multiplying the terms in (3.32) by n, (3.32) can be written as

d̂ (MSa −MSe)
u

⩽ 𝔼[MSa −MSe] ⩽ d̂ (MSa −MSe)
l

,

inspiring one to consider if, in general, withMi denoting a mean square, an approximate interval for∑k
i=1 hiMi might be given by

d̂
∑k

i=1 hiMi

u
⩽ 𝔼

[ k∑
i=1

hiMi

]
⩽ d̂

∑k
i=1 hiMi

l
, (3.33)

where l and u are given by 1 − 𝛼 = Pr(l ⩽ 𝜒2
d̂
⩽ u) and

d̂ =

(∑k
i=1 hiMi

)2

∑k
i=1 h2i M

2
i ∕di

. (3.34)

This is indeed the case when the Mi are mean squares such that SSi∕𝔼[MSi] = diMSi∕𝔼[MSi] ∼ 𝜒2
di
,

a central chi-square with di degrees of freedom, and the SSi are independent from one another. In
the one factor REM, this is satisfied because SSa∕𝔼[MSa] ∼ 𝜒2

da
, independent of SSe∕𝔼[MSe] ∼ 𝜒2

de
,

for da = A − 1 and de = A(N − 1). Under such conditions,
∑

hiSi∕di =
∑

hiMSi, a weighted sum of
independent mean squares, and 𝛾 =

∑
hi𝛾i =

∑
hi𝔼[MSi], so that (3.29) can be written as (3.33). For

d̂, as 𝔼[MSi] = 𝛾i and �̂�i = MSi, (3.31) and (3.34) are also equivalent.
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Finally, it can be shown that the conditions on the Mi are satisfied when they refer to the mean
squares of random effects in balanced models. In mixed models, the SSi corresponding to the fixed
effects (like SS𝜇 in the one-factor REM, for instance) are distributed as multiples of noncentral
chi-squares, while in unbalanced designs SSi is distributed as a weighted sum of chi-squares if the ith
variance component 𝜎i is nonzero.

Remark It is important to note that negative values of one or more of the weights hi imply that
Pr(W < 0) > 0 so that a chi-square (or any positive) approximation may be poor. Some of the
Satterthwaite approximate intervals arising in practice are such that one or more of the hi are, in fact,
negative. This issue was addressed in Butler and Paolella (2002b) using (i) single bootstrap-based
inference, (ii) a saddlepoint approximation to the relevant sums of 𝜒2 random variables arising in
(3.28) based on the methods in Appendix A, and (iii) combining those two approaches to form a
double bootstrap such that the inner bootstrap is replaced with the analytic (and thus far faster to
calculate) saddlepoint approximation. The methods are both elegant and generally applicable, and
can be compared to the variety of model-specific (and occasionally cumbersome) methods developed
in Burdick and Graybill (1992).
Using two model classes (the three-way crossed model of Section 3.2.2 and the two-way nested

model of Section 3.3.1.1) and a variety of parameter constellations, Butler and Paolella (2002b)
demonstrate that, for small sample sizes, all three proposed methods result in more accurate
actual confidence interval coverage of 𝜎2

a∕𝜎2
e compared to the use of Satterthwaite, with the double

bootstrap method being, unsurprisingly, the most accurate. ◾

3.1.5 Use of SAS

Listings 1.7, 2.3, 2.10, and 2.11 showed various ways to output data generated in Matlab to a text file
for subsequent reading into SAS. We do this again, building on the code in Listing 3.2, resulting in
Listing 3.3 (and note that SAS could equally be used to generate data, as the interested student should
pursue).
For one particular simulated data set, use of maximum likelihood via the code in Listing 3.1 yielded

�̂� = 4.8871, �̂�2
a = 0.38457, and �̂�2

e = 0.90377, and produced a log-likelihood of −430.5. This data was
then read into SAS and analyzed with their proc varcomp, as shown in SAS Listing 3.1. The out-
put (not shown here) yields the same m.l.e. values to all shown significant digits. Using the ANOVA
method of estimation (engaged in SASusingmethod=type1) yielded �̂�2

a = 0.40798, and (the same as
the m.l.e., as the theory suggests) �̂�2

e = 0.90377. Using this method, SAS can also generate confidence
intervals for the variance components with proc varcomp.

1 A=20; n=15; mu=5; sigma2a=0.4; sigma2e=0.8; muv=ones(A*n,1)*mu; J=ones(n,n);
2 tmp=sigma2a*J+sigma2e*eye(n); Sigma=kron(eye(A),tmp); y=mvnrnd(muv,Sigma,1);
3 school = kron( (1:A)' , ones(n,1) ); Out=[y' school];
4 fname='REM1A20n15.txt'; if exist(fname,'file'), delete(fname), end
5 fileID = fopen(fname,'w');
6 fprintf(fileID,'%8.5f %4u\r\n',Out'); fclose(fileID);

Program Listing 3.3: Generates and writes to a text file a one-way REM data set and the associated
class variable, for input into SAS.



Introduction to Random and Mixed Effects Models 143

ods html close; ods html;
/* clear and close output window, open new */
filename ein 'REM1A20n15.txt';
data school;

infile ein stopover; input Y school;
run;
title 'REM 1 Way Example with A=20, n=15';
proc varcomp method=ml;

class school; model Y=school;
run;
proc varcomp method=type1;

class school; model Y=school / cl;
run;

SAS ProgramListing 3.1: Reads in the data from the text file generated in Listing 3.3 and uses proc
varcomp with maximum likelihood and the ANOVA method of estimation, the latter allowing for
computation of confidence intervals.

proc mixed method=ml cl=wald nobound covtest;
class school;
model Y= / cl solution;
random school;

run;

SAS Program Listing 3.2: Similar to Listing 3.1 but uses proc mixed. In the model statement,
one lists only the fixed effects, and in this case there are none (besides the grand mean, which is used
by default), while the random statement indicates the random effects.

Listing 3.2 shows how to conduct the same analysis using the more advanced and subsuming proc
mixed. The latter also outputs (−2 times) the log-likelihood and the estimate of 𝜇, and these agree
with theMatlab outputmentioned above.The point estimates of 𝜎2

a and 𝜎2
e are the same as those given

above when using maximum likelihood and Wald confidence intervals are also output, ignoring the
lower bound of zero by specifying the optionnobound. In general, withmixedmodels (those contain-
ing both fixed and random effects besides the grand mean and the error term), proc mixed should
be used instead of proc glm in SAS. See, e.g., Yang (2010) and the references therein for a clear
discussion of the differences and the erroneous inference that could be obtained by using the latter.

3.1.6 Approximate Inference in the Unbalanced Case

With unbalanced data, the elegant model representation (3.5) and (3.6), and the subsequent simple
distribution theory and point estimators, confidence intervals, and test statistics, are no longer appli-
cable. To address this case, we take a simple, approximate approach, using “first principles” regarding
the likelihood in the case that the extent of the unbalance is not large, e.g., the experiment was planned
with balance, but a small number of cases could not be realized (exams got lost, test tubes broke, rats
escaped, etc.). Sections 3.1.6.1 and 3.1.6.2 address point and interval estimation, respectively.
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Our approximation (i) avoids having to construct the exact likelihood in the unbalanced case, (ii) is
direct and easy to implement and applicable to all random effectsmodels, (iii) leads to further insights,
and (iv) is in line with the goals and scope of this book, namely to encourage the reader to think on
his/her own, using existing first-principle skills. This is of course no replacement for a full, rigor-
ous study of the unbalanced case, and the interested reader is directed to the references given in the
introduction to this chapter for a detailed (but necessarily longer and more complicated) analysis.

3.1.6.1 Point Estimation in the Unbalanced Case
Notice that, whether balanced or not, the distribution of Y for any (Gaussian) random effects model
is still multivariate normal. For the one-way REM, this is determined by (3.2) and (3.3), so that con-
struction of 𝚺 is not unwieldy, and the reader is encouraged to express the likelihood and design a
program similar to that in Listing 3.1 to compute the m.l.e.
Our approach is to treat the missing observations as parameters to be estimated jointly with the

model parameters 𝜇, 𝜎2
a , and 𝜎2

e , and, when available, use the balanced-case closed-formm.l.e. expres-
sion of the latter. For the one-wayREMcase, the closed-formm.l.e. is given in (3.21).With closed-form
m.l.e. expressions available in the balanced case, the likelihood is concentrated, such that numerical
searching needs to take place only over themissing values.This procedure will not yield the truem.l.e.
of 𝜇, 𝜎2

a , and 𝜎2
e , as can easily be seen in a simpler case: Imagine data Xi

i.i.d.∼ N(𝜇, 𝜎2), i = 1,… , n, such
that Xi, i = 1,… , k, 1 ⩽ k < n, are missing, and one applies this estimation method to obtain �̂�, �̂�2,
and imputations {X̂i}ki=1. Clearly, the latter and �̂�will be equal to themean of the available data. Using
the closed-form m.l.e. solution to �̂�2 based on the data set augmented with the imputed values, not
only is the sample size overstated, but also the imputed values are all constant and equal to the mean
of the observed data, so that �̂�2 will be underestimated.
In the context of the one-way REM, we would thus expect that �̂�2

e using this method will be smaller
than the truem.l.e. Indeed, we will subsequently see that the estimates of 𝜇 and 𝜎2

a are nearly the same
as the truem.l.e. (often to four decimal places) in our experimentswithA = 20,while the estimate of𝜎2

e
is close to them.l.e. and appears to be off by a scaling factor greater than one that can be approximated
as a function of the cell sizes ni, i = 1,… ,A.
To generate the data, we start with a balanced panel and then replace some observations with

Matlab’s “not a number” designator NaN. Irrespective of where they are and how many there are, it
turns out that it is very easy and elegant in Matlab to perform the likelihood maximization, as shown
in the program in Listing 3.4. A simple and close starting value for all missing observations is the
mean over the available observations. Notice also that no bounds need to be imposed on the missing
values, making the code yet simpler. If more than one observation in a cell is missing (e.g., Y1,1 and
Y1,2), we find, unsurprisingly, that the m.l.e.s of the missing values in that cell are always the same,
but they do differ across cells. The m.l.e. is, unfortunately, not the simple mean of the observed cell
values. However, a simple, closed-form expression is indeed available for the m.l.e. point estimators
of the missing data, and is discussed and used below, but we first proceed naively, as often is the case
as research unfolds.
The code in Listing 3.5 generates an unbalanced data set (this being equivalent to a balanced panel

with missing values) and returns the point estimates of 𝜇, 𝜎2
a , and 𝜎2

e based on the approximate like-
lihood procedure. The code also writes the data to a text file, replacing NaN with a period, this being
the designator for a missing value in SAS. Alternatively, one could simply omit the data lines corre-
sponding tomissing values—the analysis is the same in SAS.The code in SAS Listing 3.3 reads the text
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1 function [param, V, stderr, loglik, iters] = REM1wayMLEMiss(y,A,n)
2 % param = {the set of missing data points}
3 ylen=length(y); if A*n ~= ylen, error('A and/or n wrong'), end
4 nmiss=sum(isnan(y)); inity=mean( y(~isnan(y)) );
5 initvec=ones(nmiss,1)*inity;
6 opts=optimset('Display','None','TolX',1e-5,'LargeScale','off');
7 [param,fval,~,theoutput,~,hess] = ...
8 fminunc(@(param) REM1Miss_(param,y,A,n),initvec,opts);
9 V=inv(hess); param=param'; stderr=sqrt(diag(V))';

10 iters=theoutput.iterations; loglik=-fval;
11
12 function loglik=REM1Miss_(param,y,A,n)
13 % first fill in the missing values
14 loc=isnan(y); y(loc)=param; % that was perhaps easier than expected
15 % now compute SS based on the filled-in sample
16 SST=sum(y'*y); Yddb=mean(y); SSu=A*n*Yddbˆ2;
17 H=kron(eye(A), ones(n,1)); Yidb=y'*H/n; SSa=n*sum( (Yidb-Yddb).ˆ2 );
18 m=kron(Yidb', ones(n,1)); SSe=sum((y-m).ˆ2);
19 % Compute the MLE based on the filled-in sample
20 mu = mean(y); sigma2e = SSe/A/(n-1); sigma2a=(SSa/A-SSe/A/(n-1))/n;
21 % Finally, compute the log-likelihood
22 muv=ones(A*n,1)*mu; J=ones(n,n); tmp=sigma2a*J+sigma2e*eye(n);
23 Sigma=kron(eye(A),tmp); loglik=-log(mvnpdf(y,muv,Sigma));

Program Listing 3.4: Maximum likelihood estimation of the missing values (denoted in Matlab as
NaN) causing the unbalance in a one-way REM, using the closed-form m.l.e. (3.21) of the model
parameters based on the sums of squares in the imputed balanced model. Assumes An × 1 vector 𝐲,
with entries for missing values as NaN, is in lexicon order (3.4). See Listing 3.5 for generating the data
and calling REM1wayMLEMiss.

data file and applies proc mixed using the option to estimate the parameters using the (true) m.l.e.
Observe how the SAS code is the same—no indication of balance or unbalance needs to be specified
by the user.
Doing so with three missing values (via lines 11–13 in Listing 3.5) shows that �̂� and �̂�2

a are the
same (to the digits shown by SAS), while the estimates for �̂�2

e based on our approximate likelihood
method, and SAS, differ slightly, with the latter being not only larger in all of runs attempted, but
such that the ratio of the SAS value to ours was always about 1.0107 ≈ An∕(An − 3) = 1.0101, noting
again that we use three missing values. Dividing n by the harmonic mean of the ni of each cell pro-
duces 15∕[20∕(18∕15 + 1∕14 + 1∕13)] = 1.0113, and taking averages of these two yields, interestingly,
1.0107.
Repeating the exercise with 10 missing values (two from cells i = 1 and i = 11, and one from cells

2, 4, 8, 12, 14, and 18) reveals a similar pattern: The estimates �̂� and �̂�2
a from the two methods are

the same, while that of �̂�2
e from SAS is always about a factor 1.0368 higher. Indeed, 15∕[20∕(12∕15 +

2∕13 + 6∕14)] = 1.0368. As closed-form expressions for the true m.l.e. of the model parameters 𝜎2
a

and 𝜎2
e are not available with unbalanced data (see, e.g., Searle et al., 1992, Ch. 6, for the general

likelihood expression and the need for numeric optimization), it is not clear how this proportionality
approximation can be justified or made rigorous. The interested reader is encouraged to investigate
its viability for various A, n, and number of missing values.
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1 % desired parameter constellation
2 A=20; n=15; mu=5; sigma2a=0.4; sigma2e=0.8;
3
4 % generate a balanced one-way REM
5 muv=ones(A*n,1)*mu; J=ones(n,n); tmp=sigma2a*J+sigma2e*eye(n);
6 Sigma=kron(eye(A),tmp); y=mvnrnd(muv,Sigma,1)';
7
8 % Now set some values to missing. The y vector is lexicon order.
9 Ymiss=[]; yoriginal=y; % save the original values if desired

10 % Take the following set of Y_{ij} entries as missing:
11 i=1; j=1; ind=n*(i-1)+j; Ymiss=[Ymiss y(ind)]; y(ind)=NaN;
12 i=1; j=2; ind=n*(i-1)+j; Ymiss=[Ymiss y(ind)]; y(ind)=NaN;
13 i=2; j=1; ind=n*(i-1)+j; Ymiss=[Ymiss y(ind)]; y(ind)=NaN;
14 % etc.
15 z=y; % keep the version with missing values
16
17 % estimate the missing values,
18 % using closed-form MLE for the model parameters
19 param = REM1wayMLEMiss(y,A,n);
20
21 % Replace the missing values by their imputed ones:
22 loc=isnan(y); y(loc)=param;
23
24 % compute the SS-values based on the imputed sample
25 SST=sum(y'*y); Yddb=mean(y); SSu=A*n*Yddbˆ2; % Yddb= \bar{Y}_{dot dot}
26 H=kron(eye(A), ones(n,1)); Yidb=y'*H/n; % Yidb= \bar{Y}_{i dot}
27 SSa=n*sum( (Yidb-Yddb).ˆ2 );
28 m=kron(Yidb', ones(n,1)); SSe=sum( (y-m).ˆ2 );
29
30 % compute the MLE based on the imputed sample
31 mu_hat_MLE = mean(y); sigma2e_hat_MLE = SSe/A/(n-1);
32 sigma2a_hat_MLE = ( SSa/A - SSe/A/(n-1) )/n;
33 MLE = [mu_hat_MLE sigma2a_hat_MLE sigma2e_hat_MLE]
34
35 % output the data to a text file for reading by SAS
36 school = kron( (1:A)' , ones(n,1) );
37 fname='REM1wayMissing.txt';
38 if exist(fname,'file'), delete(fname), end
39 fileID = fopen(fname,'w');
40 for i=1:A*n
41 yout=z(i); sout=school(i);
42 if isnan(yout), ystr='. '; % dot and 5 spaces
43 else ystr=num2str(yout,'%8.4f');
44 end
45 sstr=num2str(sout,'%3u');
46 str=[ystr,' ',sstr]; fprintf(fileID,'%s\r\n',str);
47 end
48 fclose(fileID);

Program Listing 3.5: First generates a one-way REM data set and sets some values to missing (NaN
in Matlab), recalling the lexicon ordering of the observation vector 𝐲 given in (3.4). Then, via the
program REM1wayMLEMiss in Listing 3.4, estimates the model, treating as unknown parameters
the missing values and the actual model parameters 𝜇, 𝜎2

a and 𝜎2
e . The concentrated likelihood is used

such that the latter set of parameters are algebraically given by the closed-formm.l.e. expression (3.21).
Note that lines 4–6 and 23–31 are the same as those in Listing 3.2. Finally, the data are written to a
text file using a “.” instead of NaN for missing values, as used by SAS.
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ods html close; ods html;
/* clear and close output window, open new */
filename ein 'REM1wayMissing.txt';
data school;

infile ein stopover; input Y school;
run;
title 'Unbalanced REM 1 Way Example';
proc mixed method=ml;

class school; model Y= / cl solution; random school;
run;

SAS Program Listing 3.3: Reads in the unbalanced data from the text file generated in Listing 3.5
and uses proc mixed with maximum likelihood.

Figure 3.3 shows the small sample distribution of the estimators based on the approximate m.l.e.
method, using A = 20, n = 15, 𝜎2

a = 0.4, 𝜎2
e = 0.8, and 10 missing values, and having applied the mul-

tiplicative factor 1.0368 to �̂�2
e , so that the histograms essentially reflect the distribution of the true

m.l.e. The plots can be compared to those in Figure 3.1, which were based on the full, balanced panel
for the same parameter constellation.
This approximate method could be applied to any random (or mixed) effects model such that the

m.l.e. is available in closed form in the balanced case. This is also the case for the two-factor nested
model discussed in Section 3.3.1. In the case that a closed-form expression for them.l.e. is not available
or unknown to the researcher, expressing the 𝚺matrix and the likelihood in the balanced case is very
straightforward, as was seen in (3.6) for the one-way model, and as will be demonstrated below for
crossed and nested models in Sections 3.2 and 3.3, respectively, so that one could easily numerically
maximize the likelihood with respect to the model parameters and the missing values, jointly. Observe
how, using the one-factor REM as an example, this just entails combining aspects of the programs in
Listings 3.1 and 3.4.We emphasize again that this does not result in them.l.e. of themodel parameters,
with at least that of 𝜎2

e being off, though possibly to first order by a simple scaling factor that is a
function of the cell sizes (ni in the one-way case, nij in the two-way case, etc.).
As alluded to above, it turns out that we can also forgo the numeric determination of the point

estimates of the missing values. From the definition of the model in (3.1) and using (3.9), for a given
i, ai ∼ N(0, 𝜎2

a), Ȳi• = 𝜇 + ai + ēi• ∼ N(𝜇, 𝜎2
a + 𝜎2

e∕n), Cov(ai, Ȳi•) = 𝜎2
a , and ai and Ȳi• are jointly nor-

mally distributed as[
ai
Ȳi•

]
∼ N

([
0
𝜇

]
,

[
𝜎2
a 𝜎2

a
𝜎2
a 𝜎2

a + 𝜎2
e∕n

])
.

Thus, conditionally (see, e.g., Section II.3.22),

(ai ∣ Ȳi• = ȳi•) ∼ N(R(ȳi• − 𝜇), 𝜎2
a(1 − R)), R ∶=

𝜎2
a

𝜎2
a + 𝜎2

e∕n
. (3.35)

For a particular j such that Yij is missing from the panel, a suggested predictor for Yij = 𝜇 + ai + eij is
then 𝔼[𝜇 + ai + eij ∣ ȳi•], or, replacing unknown parameters with estimators,

�̂� +
�̂�2
a

�̂�2
a + �̂�2

e∕n
(ȳi• − �̂�), (3.36)
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Figure 3.3 Similar to the top panels in Figure 3.1, namely histograms of the m.l.e. of the three parameters, from a) to
c), 𝜇, 𝜎2

a , and 𝜎2
e , of the one-way REM, based on A = 20, n = 15, and S = 10,000 replications, but such that 10

observations are missing, as shown in the code in Listing 3.5. These were obtained using the approximate m.l.e.
method, and such that the obtained estimates for �̂�2

e were multiplied by 1.0368. The vertical dashed line indicates the
true value of the parameter in each graph.

where ȳi• is computed over the available {yij} in the ith cell. This is referred to as the best linear
unbiased predictor, or BLUP, a highly detailed discussion of which can be found in Searle et al.
(1992, Ch. 7). When (3.35) is viewed as a likelihood, its maximum is at its expected value, explaining
why the numerically determined optimal missing values coincide with (3.36).
Given an unbalanced data set such that theAn × 1 observation vectorY is in lexicon order (3.4), and

the missing values causing the unbalance are indicated with NaN (such as simulated using lines 1–13
from Listing 3.5), code for computing the approximate m.l.e. of the one-way REM using BLUP for the
missing values is given in Listing 3.6. Observe how we iterate between computing the BLUP imputed
values and the parameter m.l.e. based on the balanced data, until convergence, and is thus similar
to an expectation-maximization (EM) algorithm. Convergence occurs very quickly for the parameter
constellations we used for demonstration, and is thus far faster than numeric optimization over the
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1 function param=REM1wayMissMLEBLUP(y,A,n)
2 z=y(~isnan(y)); inity=mean(z); vv=var(z)/2;
3 mu=inity; sigma2e=vv; sigma2a=vv;
4 z=y; conv=0; tol=1e-5; maxit=20; iter=0; nivec=zeros(A,1);
5 while (~conv) && (iter<maxit), iter=iter+1; % disp(iter)
6 for i=1:A % BLUP imputation
7 indx=n*(i-1); icell=y((indx+1):(indx+n)); % the ith cell
8 ii=~isnan(icell); cellbar=mean(icell(ii)); % ith cell mean
9 ni=sum(ii); nivec(i)=ni; % keep track of the unbalance for later

10 for j=1:n
11 indx=n*(i-1)+j;
12 blup = mu + (ni*sigma2a) / (sigma2e+ni*sigma2a) * (cellbar-mu);
13 if isnan(y(indx)), z(indx)=blup; end
14 end
15 end
16 % Update model parameters based on imputed vector z
17 oldsigma2e=sigma2e; oldsigma2a=sigma2a; mu=mean(z);
18 H=kron(eye(A), ones(n,1)); Yidb=z'*H/n; SSa=n*sum( (Yidb-mu).ˆ2 );
19 m=kron(Yidb', ones(n,1)); SSe=sum((z-m).ˆ2);
20 sigma2e = SSe/A/(n-1); sigma2a=(SSa/A-SSe/A/(n-1))/n;
21 if sigma2a<=1e-3, sigma2a=1e-3; end
22 conv=(abs(sigma2e-oldsigma2e)<tol) && (abs(sigma2a-oldsigma2a)<tol);
23 end
24 % apply harmonic adjustment factor to sigmaˆ2_e
25 harm = A / sum(1./nivec); adj=n/harm; sigma2e=sigma2e*adj;
26 param=[mu sigma2a sigma2e];

ProgramListing 3.6: Computes the approximatem.l.e. in the unbalanced case using the closed -orm
balanced-case m.l.e. (3.21) and the BLUP for the missing values. Also, the ad hoc adjustment via the
harmonic mean of the ni is applied to �̂�2

e .

missing values, particularly as their number grows. Nevertheless, as elegant as this approach is, we
repeat that it does not result in the true m.l.e.
Thus, this approximate method has some appeal, but unfortunately, even if the multiplicative

correction factor for �̂�2
e works for all sample size and parameter constellations, and also in other,

higher-order models of interest, without a theory that dictates what it is (at least to first order), one
requires the true m.l.e. to determine it (and determine if equality holds between the two estimation
methods for the other variance components). Of course, simulation, as we did for Figure 3.3, could
also be used, from which the multiplicative adjustment could be approximated based on minimizing
the estimator’s bias.
Realistically, in practice one uses canned statistical software packages that have them.l.e. (and,more

often used, the restricted m.l.e., or REML) reliably programmed for the general unbalanced case.
The point of discussing the approximate m.l.e. method was to (i) illustrate what one could do for
mildly unbalanced data with the availability of a closed-form m.l.e. for the balanced case, using basic
likelihood principles and basic optimization in Matlab, and (ii) introduce the BLUP, and how it is not
equal to simply the cell sample mean.
A good starting point for methods for confidence intervals of (functions of ) variance components

in REMss the book by Burdick and Graybill (1992), while Burch and Iyer (1997) and Lidong et al.
(2008) derived further methods for certain models. A general treatment in random and mixed linear
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Gaussian models, for unbalanced data, was developed in Cisewski and Hannig (2012). It is based on
so-called fiducial inference, a concept dating back to Ronald Fisher (see the citations in Cisewski
and Hannig, 2012), and such that a distribution on the parameter space is generated, as with Bayesian
inference, but without requiring specification of a prior distribution.

3.1.6.2 Interval Estimation in the Unbalanced Case
We now turn to another use of the approximate likelihood method. Recall the exact confidence inter-
val (3.23) for the intraclass correlation coefficient when the data are balanced.The codes in Listings 3.7
and 3.8 confirm that the actual coverage matches the nominal. In the unbalanced case, this no longer
holds, though the interval could be computed by replacing themissing values by theirm.l.e. estimates.
Using the imputed data overstates the actual number of observations available, and so the resulting
interval will tend to be too liberal, i.e., too short, having actual coverage less than the nominal. The
reader is invited to check this, using the same programs, but such that in Listing 3.7, after line 5, a set
of Yij values are set to NaN, say 20 of them, such that 0, 1, 2, 3, or 4 is removed from one of the A = 20
cells. With n = 10, this results in 10% missing values. Then, program REM1wayMLEMiss in Listing
3.4 can be used to estimate the missing values, say vector miss, and the y vector is then augmented
with the imputed values with loc=isnan(y); y(loc)=miss; as in line 21 of Listing 3.5. Doing
so with 10,000 replications and a nominal coverage of 0.90 resulted in an actual coverage of 0.860,
which is indeed less than the nominal of 0.90, though not by much. Note that it is highly significantly
below 0.90, based on the usual 95% Wald confidence interval for sums of Bernoulli trials. Repeating
the exercise, again with 10,000 replications, but using A = 10, n = 5, and 10 missing values (20%),
resulted in an actual coverage of only 0.762.
The method using the BLUP for imputation could also be used, and will be much faster. To do

so, the program in Listing 3.6 would simply need to be augmented to output the estimates of the
missing values. However, we chose to use the slower method of numerical searching for a reason: It
also outputs the (approximate) variance-covariance matrix of the imputed values, and as their joint
distribution is multivariate normal, the output fully describes their density. (The covariance matrix
could be analytically determined:The variances are already given in (3.35).The numericmethod saves
us this effort, and is also applicable to higher-ordermodels, where analytic calculations are less trivial.)
The idea is to simulate from this density, say sMiss = 1,000 sets ofmissing values, and for each, impute

the original data set to get a balanced panel, and compute the confidence interval with nominal cover-
age level 100(1 − 𝛼)%. This is very fast, as it just requires, for each of the sMiss replications, simulating

1 A=20; n=10; mu=5; sigma2a=0.4; sigma2e=0.8;
2 ICC=sigma2a/(sigma2a+sigma2e);
3 muv=ones(A*n,1)*mu; J=ones(n,n);
4 tmp=sigma2a*J+sigma2e*eye(n); Sigma=kron(eye(A),tmp);
5 sim=1e3; cover=zeros(sim,1);
6 for loop=1:sim
7 y=mvnrnd(muv,Sigma,1)';
8 [lo,hi] = REM1wayCIforICC(y,A,n);
9 cover(loop) = (lo<ICC) && (ICC<hi);

10 end
11 empcov=mean(cover)

Program Listing 3.7: Confirms via simulation the equality of the actual and nominal coverage of the
confidence interval (3.23) in the balanced case. Function REM1wayCIforICC is given in Listing 3.8.
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1 function [lo,hi] = REM1wayCIforICC(y,A,n,alpha)
2 if nargin<4, alpha=0.10; end % 90% CI
3 Yddb=mean(y); H=kron(eye(A), ones(n,1)); Yidb=y'*H/n;
4 SSa=n*sum( (Yidb-Yddb).ˆ2 ); m=kron(Yidb', ones(n,1)); SSe=sum((y-m).ˆ2);
5 MSa=SSa/(A-1); MSe=SSe/A/(n-1); Fa=MSa/MSe;
6 L=finv(alpha/2, A-1, A*(n-1)); U=finv(1-alpha/2, A-1, A*(n-1));
7 lo=(Fa/U-1)/(Fa/U-1+n); hi=(Fa/L-1)/(Fa/L-1+n);

Program Listing 3.8: Computes the 100(1 − 𝛼)% confidence interval (3.23) of the intraclass corre-
lation coefficient for the balanced one-way REMmodel.

from a multivariate normal distribution and computing the simple function in Listing 3.8. Note that,
if there were no missing values, then the resulting sMiss intervals would all be identical. With unbal-
ance, these intervals will all be different (and surely very close if the percentage of missing values is
very small), and an idea for delivering a 100(1 − 𝛼)% nominal c.i. is to take the q-quantile of the sMiss
lower confidence interval endpoints, and the 1 − q-quantile of the upper interval endpoints, where
0 < q < 1 is a tuning parameter.
An obvious first guess for q is q = 𝛼∕2, though this turns out to not be optimal. Instead, we com-

pute a multitude of confidence intervals using each value of q in a tight grid of q-values (this does
not cost any appreciable computational time compared to use of just one value of q), and then, via
simulation, can inspect the actual coverage as a function of q. Observe the similarity to the double
bootstrap described in Chapter III.1, though note that the inner loop does not involve resampling,
but just simple calibration. The code to perform the required calculations is surprisingly simple and
shown in Listing 3.9.
Using this “quantile calibration heuristic” with 10,000 simulated data sets, nominal coverage 90%,

and based onA = 20, n = 10, and 20missing values, resulted in actual coverage probabilities depicted
in the top panel of Figure 3.4, as a function of the quantile q. It thus appears that, for this choice of 𝛼,
sample sizes, and constellation of true parameters, a choice of q = 0.355 is optimal.
The bottom panel is similar, but having used n = 5, implying 20%missing values. As expected, with

a larger percentage ofmissing values, the slope of the line is larger: Recall that, if there were nomissing
values, then all the sMiss intervals would be identical and the line would be flat. Also, the optimal q is
different than the n = 10 case, being about 0.235.

Remark Observe how the same heuristic can be applied to any confidence interval computable in
the balanced case, such as the approximate one for 𝜎2

a in (3.32) based on the Satterthwaite method.
The reader is encouraged to design a program to use the above technique in the following way: Make
a function that inputs a one-way REM unbalanced data set, and values A and n, and computes the
parameter point estimates via the approximate m.l.e. method, with multiplicative adjustment for �̂�2

e .
Based on these point estimates, one then computes confidence intervals for the intraclass correla-

tion coefficient, as well as 𝜎2
a via the Satterthwaitemethod, using the abovemethod but as a bootstrap:

That is, a simulation based on, say, Boot = 1,000 parametric bootstrap replications of the data is per-
formed, and, for each, the inner calibration loop with sMiss = 1,000 replications is computed over a
grid of q-values to determine the optimal q. One could then simulate the performance of this method
for, say, sim replications of data, to determine its actual coverage, for a given A, n, number of missing
values, and constellation of true parameters.
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1 A=20; n=10; mu=5; sigma2a=0.4; sigma2e=0.8;
2 ICC=sigma2a/(sigma2a+sigma2e);
3 muv=ones(A*n,1)*mu; J=ones(n,n);
4 tmp=sigma2a*J+sigma2e*eye(n); Sigma=kron(eye(A),tmp);
5 sim=1e4; qvec=0.01:0.005:0.7; qlen=length(qvec); cover=zeros(sim,qlen);
6 simCI=1000; lovec=zeros(simCI,1); hivec=zeros(simCI,1);
7 for loop=1:sim , if mod(loop,100)==0, disp(loop), end
8 y=mvnrnd(muv,Sigma,1)';
9 i=1; j=1; ind=n*(i-1)+j; y(ind)=NaN;

10 % etc. We used 20 missing values.
11 loc=isnan(y); [mumiss,Vmiss] = REM1wayMLEMiss(y,A,n);
12 % Now simulate from the distribution of missings
13 for i=1:simCI
14 mis = mvnrnd(mumiss,Vmiss,1)'; y(loc)=mis;
15 [lo,hi] = REM1wayCIforICC(y,A,n);
16 lovec(i)=lo; hivec(i)=hi;
17 end
18 for qloop=1:qlen
19 quse=qvec(qloop); lo=quantile(lovec,quse);
20 hi=quantile(hivec,1-quse);
21 cover(loop,qloop) = (lo<ICC) && (ICC<hi);
22 end
23 end
24 empcov=mean(cover);
25 figure, plot(qvec,empcov,'r-','linewidth',2)

Program Listing 3.9: Via simulation, computes and plots the mapping between quantile q and
the actual coverage of the confidence interval for the intraclass correlation coefficient (ICC) with
unbalanced data, using the method of simulating the missing observations from their computed dis-
tribution, and computing the c.i. based on the imputed, balanced sample.

We will implement this technique below in Section 3.3.1.2 in the context of the two-way nested
REM. ◾

3.2 Crossed Random Effects Models

Once we move beyond one-factor models, each factor needs to be designated as either crossed (with
some other factor) or nested (within another factor).This section examines the former case, such that
all factors are crossed. In addition, with more than one factor, some could be fixed and some could
be random, giving rise to a mixed model. In this section, we will restrict ourselves to all factors being
random, and only mention that the two-factor crossed/mixed model is discussed in, e.g., Searle et al.
(1992, p. 122). We will briefly look at an example of a mixed model later in Section 3.3.1.3, within the
context of a nested model.
Recall Section 2.5 on the two-way ANOVA model with fixed effects. The setup in the two-factor

crossed REMmodel is the same, but the classes are now random instead of fixed. As in the fixed effects
case, the model can be additive in the two effects or include an interaction term. Continuing our high
school student writing evaluation example, imagine now, in addition to the A = 20 schools chosen



Introduction to Random and Mixed Effects Models 153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.75

0.8

0.85

0.9

0.95

1

Quantile q

Empirical CI coverage, n = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.75

0.8

0.85

0.9

0.95

1

Quantile q

Empirical CI coverage, n = 5

Figure 3.4 Top: Actual coverage probability as a function of tuning parameter q for the confidence interval of the
intraclass correlation coefficient for the one-way unbalanced REMwith A = 20, n = 10, 20 missing values, 𝜎2

a = 0.4, and
𝜎2
e = 0.8. Bottom: Same but having used n = 5.

randomly from a suitable population,B test evaluators are chosen randomly from a large population of
candidates (such as undergraduate university admissions staff) and for each of the AB combinations,
n = 10 high school pupils are randomly chosen. Observe how each class of factor A is crossed with
each class of factor B. Interest centers on the variance components arising from the different schools
(variance factor A), and the different evaluators (variance factor B), along with the error variance from
the different pupils.This two-factor model is addressed in Section 3.2.1, while Section 3.2.2 considers
the crossed model with three factors.
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3.2.1 Two Factors

For the two-way crossed REM, we observe the set {Yijk}, where Yijk is the kth observation correspond-
ing to the cross of the ith class from the first effect and the jth class of the second effect, i = 1,… ,A,
j = 1,… ,B, k = 1,… , n, thus yielding a total of ABn observations. With two factors (whether fixed,
random, or mixed), it is common to speak of the ith row and jth column.

3.2.1.1 With Interaction Term
This model with interaction is such that we assume Yijk can be represented as

Yijk = 𝜇 + ai + bj + cij + eijk , (3.37)

where the ai, bj, cij, and eijk are independent unobserved random variables with

ai
i.i.d.∼ N(0, 𝜎2

a), bj
i.i.d.∼ N(0, 𝜎2

b), cij
i.i.d.∼ N(0, 𝜎2

c ), eijk
i.i.d.∼ N(0, 𝜎2

e ). (3.38)

In other words, the particular observed A rows and B columns are independently drawn from a large
population of row and column effects, respectively. Some authors write factor cij as (ab)ij to emphasize
that it represents the interaction of ai and bj.
It follows from (3.37) and (3.38) that 𝔼[Yijk] = 𝜇,

Var(Yijk) = 𝜎2
Y = 𝜎2

a + 𝜎2
b + 𝜎2

c + 𝜎2
e ,

Cov(Yijk ,Yijk′ ) = 𝜎2
a + 𝜎2

b + 𝜎2
c , Cov(Yijk ,Yij′k′ ) = 𝜎2

a , and Cov(Yijk ,Yi′jk′ ) = 𝜎2
b , where, as in (3.3), i′ is

an element in {1, 2,… ,A}\i, etc. If 𝜎2
c = 0, then the model is additive, as discussed below in Section

3.2.1.2, otherwise, there are interaction effects between the two classes. Unlike in the two-way
fixed effects ANOVA, whereby inclusion of the interaction terms imply AB additional parameters
(albeit subject to constraints), for the two-way crossed REM only a single additional parameter, 𝜎2

c ,
is required. Nevertheless, precise estimation of variance components is not possible with typical
sample sizes (as seen from the often depressingly large width of confidence intervals), so that removal
of 𝜎2

c , if justified, is beneficial for estimation of the remaining variance components.
As with the two-way ANOVAwith fixed effects, we stack the Yijk in the ABn × 1 vector Y in lexicon

order such that index k changes fastest, followed by index j, and then index i, and similarly for the error
vector e. With a = (a1,… , aA)′, b = (b1,… , bB)′, and c = (c11, c12,… , cAB)′, and recalling thematrices
in the fixed effects case (2.48) and (2.62),

Y = (1A ⊗ 1B ⊗ 1n)𝜇
+ (IA ⊗ 1B ⊗ 1n)a
+ (1A ⊗ IB ⊗ 1n)b (3.39)
+ (IA ⊗ IB ⊗ 1n)c
+ (IA ⊗ IB ⊗ In)e,

from which the elegant structure reveals itself, and can be straightforwardly used to express Y for
higher-order crossed models. Of course, (3.39) simplifies somewhat for computational purposes as

Y = (1ABn)𝜇 + (IA ⊗ 1Bn)a + (1A ⊗ IB ⊗ 1n)b + (IAB ⊗ 1n)c + e (3.40)
= X𝜷 + 𝝐,
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where X = 1ABn, 𝜷 = 𝜇, and 𝝐 is the rest of (3.40). Thus, Y ∼ NABn(𝝁,𝚺), where 𝝁 = X𝜷 and, from
(3.40),

𝚺 = 𝕍 (Y) = 𝕍 (𝝐) = (IA ⊗ 1Bn)Var(a)(IA ⊗ 1Bn)
′ + · · · + Var(e)

= (IA ⊗ JB ⊗ Jn)𝜎2
a

+ (JA ⊗ IB ⊗ Jn)𝜎2
b (3.41)

+ (IA ⊗ IB ⊗ Jn)𝜎2
c

+ (IA ⊗ IB ⊗ In)𝜎2
e ,

after some simplification similar to that used to obtain (3.6). Observe also the predictable pattern in
(3.41), allowing for easy extension to higher-order (balanced, crossed, random effects) models.
Thus, the likelihood is easily expressed and, similar to theMatlab exercise in Section 3.1.1, the reader

is invited to develop the code to compute the m.l.e. and approximate parameter standard errors. Note
that (3.41) can be used for simulation, as was done in Listing 3.2, but it is perhaps easier to simulate
a, b, and c, and use (3.37) directly, with a triple for loop, outputting also the classes. The generated
data can be output to a text file and read in and analyzed by SAS, as in Section 3.1.5.
We now turn to the basic distribution theory associated with the model. As always, we start with

the identity

Yijk = Ȳ••• + (Ȳi•• − Ȳ•••) + (Ȳ•j• − Ȳ•••) + (Ȳij• − Ȳi•• − Ȳ•j• + Ȳ•••) + (Yijk − Ȳij•). (3.42)

Theorem 3.4 Independence and Distribution Squaring each term in (3.42) and summing over
all subscripts results in all cross terms being zero, so that

SST = SS𝜇 + SSa + SSb + SSc + SSe, (3.43)

where each SS term corresponds to its counterpart in (3.42) from left to right.
The r.h.s. SS values in (3.43) are mutually independent, and

SS𝜇
𝛾𝜇

∼ 𝜒2
1

(
ABn𝜇2

𝛾𝜇

)
,

SSa
𝛾a

∼ 𝜒2
A−1,

SSb
𝛾b

∼ 𝜒2
B−1,

SSc
𝛾c

∼ 𝜒2
(A−1)(B−1), (3.44)

and SSe∕𝜎2
e ∼ 𝜒2

AB(n−1), where

𝛾𝜇 = Bn𝜎2
a + An𝜎2

b + n𝜎2
c + 𝜎2

e , 𝛾a = Bn𝜎2
a + n𝜎2

c + 𝜎2
e ,

𝛾b = An𝜎2
b + n𝜎2

c + 𝜎2
e , 𝛾c = n𝜎2

c + 𝜎2
e .

The corresponding ANOVA table is given in Table 3.2, along with the EMS values.

Proof : See Problem 3.1. ◾

Inspecting EMS values in Table 3.2 immediately gives the ANOVA method point estimators

�̂�2
e = MSe, �̂�2

c = MSc −MSe
n

, �̂�2
b = MSb −MSc

An
, �̂�2

a = MSa −MSc
Bn

. (3.45)
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Table 3.2 ANOVA table for the balanced two-factor crossed REM.

Source df SS EMS

Mean 1 ABnȲ 2
••• 𝜎2

e + n𝜎2
c + An𝜎2

b + Bn𝜎2
a + ABn𝜇2

A A − 1 Bn
A∑
i=1

(Ȳi•• − Ȳ•••)2 𝜎2
e + n𝜎2

c + + Bn𝜎2
a

B B − 1 An
B∑
j=1

(Ȳ•j• − Ȳ•••)2 𝜎2
e + n𝜎2

c + An𝜎2
b

AB (A − 1)(B − 1) n
A∑
i=1

B∑
j=1

(
Ȳij• − Ȳi••

−Ȳ•j• + Ȳ•••

)2

𝜎2
e + n𝜎2

c

Error AB(n − 1)
A∑
i=1

B∑
j=1

n∑
k=1

(Yijk − Ȳij•)2 𝜎2
e

Total ABn
A∑
i=1

B∑
j=1

n∑
k=1

Y 2
ijk

Calculations similar to those in (3.19) and (3.20) lead to expressions for the sample variances as

Var(�̂�2
e ) =

2𝜎4
e

AB(n − 1)
, Var(�̂�2

c ) =
2
n2

[ (𝜎2
e + n𝜎2

c )2

(A − 1)(B − 1)
+

𝜎4
e

AB(n − 1)

]
,

Var(�̂�2
a) =

2
B2n2

[ (𝜎2
e + n𝜎2

c + Bn𝜎2
a)2

A − 1
+

(𝜎2
e + n𝜎2

c )2

(A − 1)(B − 1)

]
, (3.46)

Var(�̂�2
b) =

2
A2n2

[
(𝜎2

e + n𝜎2
c + An𝜎2

b)
2

B − 1
+

(𝜎2
e + n𝜎2

c )2

(A − 1)(B − 1)

]
,

which can be used to formWald confidence intervals for the variance components.
Unlike in the one-way case, this model is such that the m.l.e. does not have a closed-form solution

(see, e.g., Sahai and Ojeda, 2004, Sec. 4.4.2), except for �̂�2
e,ML, which is the same as in (3.45). No doubt

(3.45) will be close to them.l.e., and thus, if all estimates are positive, will serve as excellent starting val-
ues for numeric computation of them.l.e. One can correctly speculate that, in all higher-order crossed
models, the m.l.e. (or, more correctly, a solution to the set of log-likelihood derivative equations) is
not expressible in closed form.
Similar to the motivation for the F test in (3.17) pertaining to the one-way REM case, the EMS

values in Table 3.2, and the independence of the sums of squares, suggest the following F tests for 𝜎2
a ,

𝜎2
b , and 𝜎2

c , respectively, with P ∶= (A − 1)(B − 1):

Fa =
MSa
MSc

∼
𝛾a

𝛾c
FA−1,P, Fb =

MSb
MSc

∼
𝛾b

𝛾c
FB−1,P, Fc =

MSc
MSe

∼
𝛾c

𝜎2
e
FP,AB(n−1). (3.47)

As an example of an exact confidence interval, from Fc in (3.47),

1 − 𝛼 = Pr
(

L
Fc

<
𝜎2
e

n𝜎2
c + 𝜎2

e
<

U
Fc

)
= Pr

(Fc∕U − 1
n

<
𝜎2
c

𝜎2
e
<

Fc∕L − 1
n

)
= Pr

( Fc −U
nU + Fc −U

<
𝜎2
c

𝜎2
c + 𝜎2

e
<

Fc − L
nL + Fc − L

)
, (3.48)

where L and U are such that Pr(L ⩽ FP,AB(n−1) ⩽ U) = 1 − 𝛼.



Introduction to Random and Mixed Effects Models 157

Not having pivots, exact confidence intervals for the individual variance components do not exist,
though one can use asymptotic pivots via the Wald intervals formed from (3.46), as well as the easily
derived ones using the Satterthwaite method from Section 3.1.4. In particular, the latter are

1 − 𝛼 ≈ Pr
(
d̂ (MSc −MSe)

n u
⩽ 𝜎2

c ⩽ d̂ (MSc −MSe)
n l

)
, d̂ = (MSc −MSe)2(

(MSc)2
(A−1)(B−1)

+ (MSe)2
AB(n−1)

) ,
1 − 𝛼 ≈ Pr

(
d̂ (MSb −MSc)

An u
⩽ 𝜎2

b ⩽ d̂ (MSb −MSc)
An l

)
, d̂ = (MSb −MSc)2(

(MSb)2
B−1

+ (MSc)2
(A−1)(B−1)

) ,
and

1 − 𝛼 ≈ Pr
(
d̂ (MSa −MSc)

Bn u
⩽ 𝜎2

a ⩽ d̂ (MSa −MSc)
Bn l

)
, d̂ = (MSa −MSc)2(

(MSa)2
(A−1)

+ (MSc)2
(A−1)(B−1)

) ,
for u and l such that 1 − 𝛼 = Pr(l ⩽ 𝜒2

d̂
⩽ u).

3.2.1.2 Without Interaction Term
If the analyst decides that the magnitude of 𝜎2

c is negligible compared to the other variance compo-
nents (typically as a result of failure to reject the null hypothesis that 𝜎2

c = 0, based on the Fc test
in (3.47), using a conventional test significance level, though possibly also coupled with theoretical
knowledge of the process and/or results of previous, similar studies), then the model may be assumed
additive. In this case, (3.45) becomes

�̂�2
e = MSe, �̂�2

b = MSb −MSe
An

, �̂�2
a = MSa −MSe

Bn
. (3.49)

By squaring and summing identity (3.42) without the interaction term, i.e.,
Yijk = Ȳ••• + (Ȳi•• − Ȳ•••) + (Ȳ•j• − Ȳ•••) + (Yijk − Ȳi•• − Ȳ•j• + Ȳ•••), (3.50)

it is straightforward to verify that all cross terms are zero, so that
SST = SS𝜇 + SSa + SSb + SSe,

where, as before, the r.h.s. SS values are mutually independent (see Problem 3.2). This results in
ANOVA Table 3.3.
The distributions of SS𝜇∕𝛾𝜇 , SSa∕𝛾a, SSb∕𝛾b, and SSe∕𝜎2

e are the same as those in (3.44) but with 𝛾i
values such that 𝜎2

c = 0, i.e.,
𝛾𝜇 = Bn𝜎2

a + An𝜎2
b + 𝜎2

e , 𝛾a = Bn𝜎2
a + 𝜎2

e , and 𝛾b = An𝜎2
b + 𝜎2

e .

The first two F tests in (3.47) now become

Fa =
MSa
MSe

∼
𝛾a

𝜎2
e
FA−1,d, Fb =

MSb
MSe

∼
𝛾b

𝜎2
e
FB−1,d, (3.51)

where the denominator degrees of freedom in (3.51) is d = ABn − A − B + 1.

3.2.2 Three Factors

Now with three crossed factors, we observe Yijkl, the lth observation in the ith row, jth column, kth
“pipe”, i = 1,… ,A, j = 1,… ,B, k = 1,… ,C, l = 1,… , n, and assume that Yijkl can be represented as

Yijkl = 𝜇 + ai + bj + ck + dij + fik + gjk + hijk + eijkl, (3.52)
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Table 3.3 ANOVA table for the balanced two-factor crossed additive (no
interaction effect) random effects model, where the error degrees of freedom is
d = ABn − A − B + 1.

Source df SS EMS

Mean 1 ABnȲ 2
••• 𝜎2

e + An𝜎2
b + Bn𝜎2

a + ABn𝜇2

A A − 1 Bn
A∑
i=1

(Ȳi•• − Ȳ•••)2 𝜎2
e + + Bn𝜎2

a

B B − 1 An
B∑
j=1

(Ȳ•j• − Ȳ•••)2 𝜎2
e + An𝜎2

b

Error d
A∑
i=1

B∑
j=1

n∑
k=1

(
Yijk − Ȳi••

−Ȳ•j• + Ȳ•••

)2

𝜎2
e

Total ABn
A∑
i=1

B∑
j=1

n∑
k=1

Y 2
ijk

where the ai, bj, ck , dij, fik , gjk , hijk , and eijkl are independent unobserved random variables with
ai

i.i.d.∼ N(0, 𝜎2
a), …, eijkl

i.i.d.∼ N(0, 𝜎2
e ). As with the two-factor case, the particular observed A rows, B

columns, and C pipes are independently drawn from a large population of row, column, and pipe
effects, respectively. The model is additive if all interaction terms are zero.
As a logical extension of (3.42), the identity

Yijkl = Ȳ•••• + (Ȳi••• − Ȳ••••) + (Ȳ•j•• − Ȳ••••) + (Ȳ••k• − Ȳ••••) + (Ȳij•• − Ȳi••• − Ȳ•j•• + Ȳ••••)
+ (Ȳi•k• − Ȳi••• − Ȳ••k• + Ȳ••••) + (Ȳ•jk• − Ȳ•j•• − Ȳ••k• + Ȳ••••)
+ (Ȳijk• − Ȳij•• − Ȳi•k• − Ȳ•jk• + Ȳi••• + Ȳ•j•• + Ȳ••k• − Ȳ••••) + (Yijkl − Ȳijk•)

suggests itself as the correct one to use. Note how, omitting the Ȳ•••• term throughout, the bracketed
terms (except the last) are generated analogous to the structure of the inclusion-exclusion principle
(Poincaré’s theorem) in representing the union of events in basic probability. We will presume that,
upon squaring and summing, calculations similar to (and correspondingly more tedious than) those
of Problem 3.1 for the two-factor case give rise to the sums of squares decomposition

SST = SS𝜇 + SSa + SSb + SSc + SSd + SSf + SSg + SSh + SSe,

such that the r.h.s. SS values are mutually independent (see, e.g., Graybill, 1976, p. 641 for details).
These are shown in Table 3.4 along with their corresponding EMS. Furthermore, letting A′ = A − 1,
B′ = B − 1, and C′ = C − 1, we state their distributions without proof as

SS𝜇
𝛾𝜇

∼ 𝜒2
1

(
ABCn𝜇2

𝛾𝜇

)
,

SSa
𝛾a

∼ 𝜒2
A′ ,

SSb
𝛾b

∼ 𝜒2
B′ ,

SSc
𝛾c

∼ 𝜒2
C′ ,

SSd
𝛾d

∼ 𝜒2
A′B′ ,

SSf
𝛾f

∼ 𝜒2
A′C′ ,

SSg
𝛾g

∼ 𝜒2
B′C′ ,

SSh
𝛾h

∼ 𝜒2
A′B′C′ ,

and SSe∕𝜎2
e ∼ 𝜒2

ABC(n−1), where 𝛾𝜇 , 𝛾a, etc., are given in Table 3.4.



Table 3.4 ANOVA table for the balanced three-factor crossed REM.

EMS

Effect df SS e abc bc ac ab c b a 𝝁

𝜇 1 ABCnȲ 2
••• 𝛾

𝜇
= 𝜎2

e + n𝜎2
h + An𝜎2

g + Bn𝜎2
f + Cn𝜎2

d + ABn𝜎2
c + ACn𝜎2

b + BCn𝜎2
a + ABCn𝜇2

ai A − 1 BCn
∑

(Ȳi••• − Ȳ••••)2 𝛾a = 𝜎2
e + n𝜎2

h + Bn𝜎2
f + Cn𝜎2

d + BCn𝜎2
a

bj B − 1 ACn
∑

(Ȳ•j•• − Ȳ••••)2 𝛾b = 𝜎2
e + n𝜎2

h + An𝜎2
g + Cn𝜎2

d + ACn𝜎2
b

ck C − 1 ABn
∑

(Ȳ••k• − Ȳ••••)2 𝛾c = 𝜎2
e + n𝜎2

h + An𝜎2
g + Bn𝜎2

f + ABn𝜎2
c

dij (A − 1)(B − 1) Cn
∑∑(

Ȳij•• − Ȳi•••

−Ȳ•j•• + Ȳ••••

)2

𝛾d = 𝜎2
e + n𝜎2

h + Cn𝜎2
d

fik (A − 1)(C − 1) Bn
∑∑(

Ȳi•k• − Ȳi•••

−Ȳ••k• + Ȳ••••

)2

𝛾f = 𝜎2
e + n𝜎2

h + Bn𝜎2
f

gjk (B − 1)(C − 1) An
∑∑(

Ȳ•jk• − Ȳ•j••

−Ȳ••k• + Ȳ••••

)2

𝛾g = 𝜎2
e + n𝜎2

h + An𝜎2
g

hijk (A − 1)(B − 1)(C − 1) n
∑∑∑⎛⎜⎜⎜⎜⎝

Ȳijk• − Ȳij••

−Ȳi•k• − Ȳ•jk•

+Ȳi••• + Ȳ•j••

+Ȳ••k• − Ȳ••••

⎞⎟⎟⎟⎟⎠

2

𝛾h = 𝜎2
e + n𝜎2

h

eijkl ABC(n − 1)
∑∑∑∑

(Yijkl − Ȳijk•)2 𝜎2
e

Total ABCn
∑∑∑∑

Y 2
ijkl
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Some staring at the EMS values in Table 3.4 yields the ANOVA method point estimators

�̂�2
e = MSe, �̂�2

h = MSh −MSe
n

, (3.53)

and

�̂�2
g =

MSg −MSh
An

, �̂�2
f =

MSf −MSh
Bn

, �̂�2
d = MSd −MSh

Cn
. (3.54)

For 𝜎2
c , it appears that use of the set {𝛾c, 𝛾f , 𝛾g , 𝛾h} will be fruitful, with

𝛾c = 𝜎2
e + n𝜎2

h + An𝜎2
g + Bn𝜎2

f + ABn𝜎2
c ,

𝛾f = 𝜎2
e + n𝜎2

h + Bn𝜎2
f ,

𝛾g = 𝜎2
e + n𝜎2

h + An𝜎2
g ,

𝛾h = 𝜎2
e + n𝜎2

h ,

yielding

�̂�2
c =

MSc −MSf −MSg +MSh
ABn

, (3.55)

and, similarly,

�̂�2
b =

MSb −MSd −MSg +MSh
ACn

, �̂�2
a =

MSa −MSd −MSf +MSh
BCn

. (3.56)

Exact F tests for the second- and third-order interactions can be seen directly from the ANOVA
table to be, with P = A′B′C′,

Fd = MSd
MSh

∼
𝛾d

𝛾h
FA′B′,P, Ff =

MSf
MSh

∼
𝛾f

𝛾h
FA′C′ ,P,

Fg =
MSg
MSh

∼
𝛾g

𝛾h
FB′C′ ,P, Fh =

MSh
MSe

∼
𝛾h

𝜎2
e
FP,ABC(n−1).

As (3.55) and (3.56) suggest, from the EMS in Table 3.4, there does not exist exact F-ratios for
testing 𝜎2

a , 𝜎2
b , and 𝜎2

c . For, say, 𝜎2
a , this would require there being a single EMS that is exactly equal to

𝔼[MSa] − BCn𝜎2
a . Notice though, from �̂�2

a in (3.56), that

𝔼[MSd] + 𝔼[MSf ] − 𝔼[MSh] = 𝜎2
e + n𝜎2

h + Bn𝜎2
f + Cn𝜎2

d

= 𝔼[MSa] − BCn𝜎2
a , (3.57)

so that the ratio

F ′
a =

MSa
MSd +MSf −MSh

(3.58)

is a test statistic such that large values would reject the null of 𝜎2
a = 0, but it is not F distributed.

Its distribution could be approximated by applying the Satterthwaite method to the denominator. A
potentially problematic issue with F ′

a is that it can be negative, and is why the next option is favored.
Expressing (3.57) as

𝔼[MSa] + 𝔼[MSh] = BCn𝜎2
a + 𝔼[MSd] + 𝔼[MSf ] (3.59)
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yields the test statistic

Fa =
MSa +MSh
MSd +MSf

. (3.60)

As SSa∕𝔼[MSa] = SSa∕𝛾a ∼ 𝜒2
da
independent of SSh∕𝔼[MSh] = SSh∕𝛾h ∼ 𝜒2

dh
(for degrees of free-

dom da = A′ and dh = A′B′C′), (3.28) from the Satterthwaite method suggests for the numerator of
Fa that, for some constants h1 and h2,

W = d�̂�
𝛾

= d
h1(SSa∕da) + h2(SSh∕dh)
h1𝔼[MSa] + h2𝔼[MSh]

app∼ 𝜒2
d , (3.61)

where d is obtained from (3.34). But h1(SSa∕da) = h1MSa and h2(SSh∕dh) = h2MSh, so that (3.61)
implies

h1MSa + h2MSh app∼ (h1𝔼[MSa] + h2𝔼[MSh])𝜒2
d∕d,

and likewise for the denominator of (3.60),

h3MSd + h4MSf app∼ (h3𝔼[MSd] + h4𝔼[MSf ])𝜒2
d′∕d′,

for estimated degrees of freedom value d′. Dividing each of the above two expressions by the scale
term (and recalling that an F random variable is the ratio of two independent chi-squares divided by
their respective degrees of freedom), it follows that

Fa =
h1MSa + h2MSh
h3MSd + h4MSf

app∼
h1𝔼[MSa] + h2𝔼[MSh]
h3𝔼[MSd] + h4𝔼[MSf ]

Fd,d′ , (3.62)

a scaled F distribution with degrees of freedom d and d′. Furthermore, if

h1𝔼[MSa] + h2𝔼[MSh] = h3𝔼[MSd] + h4𝔼[MSf ],

then Fa
app∼ Fd,d′ . But, recalling (3.59), this is the case for h1 = h2 = h3 = h4 = 1 and 𝜎2

a = 0, so that,
under the null hypothesis of 𝜎2

a = 0, Fa
app∼ Fd,d′ , where, from (3.34),

d = (MSa +MSh)2

(MSa)2∕da + (MSh)2∕dh
and d′ =

(MSd +MSf )2

(MSd)2∕dd + (MSf )2∕df
,

for dd = A′B′, and df = A′C′. Under the alternative of 𝜎2
a > 0, the scale parameter in (3.62) is greater

than one, implying that an approximate 𝛼-level test rejects the null of 𝜎2
a = 0 for large Fa, i.e., Fa > F𝛼

d,d′ ,
where, as always throughout, F𝛼

d,d′ is the 100(1 − 𝛼)th percent quantile of the Fd,d′ distribution.
The same analysis applies to F ′

a, i.e.,MSa exact∼ 𝔼[MSa]𝜒2
da
∕da and, with the Satterthwaite approxima-

tion applied to the denominator,

F ′
a =

MSa
MSd +MSf −MSh

app∼ 𝔼[MSa]
𝔼[MSd] + 𝔼[MSf ] − 𝔼[MSh]

Fda,d′′

with

d′′ =
(MSd +MSf −MSh)2

(MSd)2∕dd + (MSf )2∕df + (MSh)2∕dh
.

The reader is encouraged to repeat this analysis to obtain approximate F tests for 𝜎2
b and 𝜎2

c .
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Various confidence intervals of interest can be derived from the Satterthwaitemethod. For example,
for 𝜎2

a∕𝜎2
e , Burdick and Graybill (1992, p. 136) show that (at the time of their writing), no proce-

dure other than Satterthwaite is available.This case was investigated using the general procedures for
the Satterthwaite class of ratios proposed in Butler and Paolella (2002b). For the three-way crossed
model and confidence intervals for 𝜎2

a∕𝜎2
e , the bootstrap/saddlepoint-basedmethod resulted in highly

accurate actual coverage, substantially more than use of the Satterthwaite method, as A and/or 𝜎2
a

decrease. For large A and 𝜎2
a , the Satterthwaite method also performs well.

3.3 Nested Random Effects Models

An REMwith two factors can be either crossed, as in Section 3.2.1, or nested, as studied now.Models
with three or more factors can have aspects of both. It turns out that we have already seen an example
of a nested REM: Recall the one-way model of Section 3.1 and observe how it can be envisioned
as a two-stage design, whereby first, the A units, or classes, are randomly chosen from the relevant
population and then, conditional on those chosen, from each a random sample of n units, or samples,
are chosen. The factor corresponding to the samples is nested within the levels, or classes, of the
treatment factor. While indeed a nested model, the adjective nested is typically used only when there
are two or more factors (besides the error term), such that one is nested in another.
To see this hierarchy in the two-factormodel, and how it differs from its crossed counterpart, let the

first factor be school, with A = 20 schools being chosen from a large population of such, and, for each
of the chosen schools, B = 8 teachers employed at the school are randomly chosen from the entire
cohort of teachers. This implies that the factor “evaluator” (the teacher doing the grading) is nested
within the factor “school”, and there are not B classes of evaluators, but rather AB, grouped according
to which school they are from. Each of the AB evaluators are asked to grade the writing assignment
from n randomly chosen students such that the jth teacher in the ith school receives n exams from
students in his or her school i, i = 1,… ,A, j = 1,… ,B.

3.3.1 Two Factors

For the two-way nested case, we will distinguish two cases. The first is such that both factors are
random, and the second is such that the first factor is fixed, giving rise to (our first example of ) a
mixed model.

3.3.1.1 Both Effects Random: Model and Parameter Estimation
In this setup, we observe Yijk , the kth observation in the jth subclass of the ith class, i = 1,… ,A,
j = 1,… ,B, k = 1,… , n, and assume that it can be represented as

Yijk = 𝜇 + ai + bij + eijk , (3.63)

with ai
i.i.d.∼ N(0, 𝜎2

a), bij
i.i.d.∼ N(0, 𝜎2

b), and eijk
i.i.d.∼ N(0, 𝜎2

e ). It is imperative to notice that there is no factor
bj: Recall that the nested factor has AB levels, and thus requires the double subscript. This can be
compared to model (3.37), where the term with the double subscript refers to the interaction term
resulting from crossing two factors. Some authors write factor bij as bj(i) to emphasize that the jth
subclass is nested in the ith class.
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From (3.63), it follows that

𝔼[Yijk] = 𝜇, Var(Yijk) = 𝜎2
a + 𝜎2

b + 𝜎2
e , Cov(Yijk ,Yij′k′ ) = 𝜎2

a , (3.64)

and

Cov(Yijk ,Yijk′ ) = 𝔼[(ai + bij + eijk)(ai + bij + eijk′ )] = 𝜎2
a + 𝜎2

b . (3.65)

For representing the likelihood, we stack the Yijk in the ABn × 1 vector Y in the usual lexicon order-
ing (and similar for the error vector e), and let a = (a1,… , aA)′ and b = (b11, b12,… , bAB)′. Then, as in
(3.39),

Y = (1A ⊗ 1B ⊗ 1n)𝜇 + (IA ⊗ 1B ⊗ 1n)a + (IA ⊗ IB ⊗ 1n)b + (IA ⊗ IB ⊗ In)e, (3.66)

or, similar to (3.40),

Y = (1ABn)𝜇 + (IA ⊗ 1Bn)a + (IAB ⊗ 1n)b + e (3.67)
= X𝜷 + 𝝐,

where X = 1ABn, 𝜷 = 𝜇, and 𝝐 is the rest of (3.67). As usual, we let 𝝁 = 𝔼[Y] = X𝜷 . Then, (3.63) and
(3.67) can be expressed as Y ∼ NABn(𝝁,𝚺), where, from (3.67),

𝚺 = 𝕍 (Y) = 𝕍 (𝝐)
= (IA ⊗ 1Bn)Var(a)(IA ⊗ 1Bn)

′ + (IAB ⊗ 1n)Var(b)(IAB ⊗ 1n)
′ + Var(e)

= (IA ⊗ JB ⊗ Jn)𝜎2
a + (IA ⊗ IB ⊗ Jn)𝜎2

b + (IA ⊗ IB ⊗ In)𝜎2
e .

= (IA ⊗ JBn)𝜎2
a + (IAB ⊗ Jn)𝜎2

b + IABn𝜎2
e . (3.68)

Simulating a vector Y for a given parameter constellation is easily done by first drawing a, b, and e,
and then computing (3.67).Maximum likelihood is also straightforwardly accomplished bymodifying
the program in Listing 3.1 to create, say, a Matlab function called REM2wayNestedMLE, which the
reader is encouraged to do. Similar to the code in Listing 3.3, Listing 3.10 generates a data set and
outputs it as a text file. This can be subsequently read into SAS and analyzed using several of their

1 A=10; B=6; n=8; mu=5; siga=1; sigb=0.4; sige=0.8;
2 a = siga*randn(A,1); b = sigb*randn(A*B,1); e = sige*randn(A*B*n,1);
3 y = ones(A*B*n,1)*mu ...
4 + kron(eye(A),ones(B*n,1))*a ...
5 + kron(eye(A*B),ones(n,1))*b + e;
6 school = kron( (1:A)' , ones(B*n,1) );
7 TeacherNestedInSchool = kron( (1:(A*B))' , ones(n,1) );
8 Out=[y school TeacherNestedInSchool];
9 fname='REM2nested.txt';

10 if exist(fname,'file'), delete(fname), end
11 fileID = fopen(fname,'w');
12 fprintf(fileID,'%8.5f %4u %4u\r\n',Out'); fclose(fileID);
13 % [param, stderr, loglik, iters, bfgsok] = REM2wayNestedMLE(y,A,B,n)

Program Listing 3.10: Generates and writes to a text file a two-way nested balanced REM data set,
and the associated class variables, based on the parameter constellation given in line 1, for input into
SAS. The last line, 9, if uncommented, calls the custom-made Matlab program to compute the m.l.e.,
though note that a closed-form solution exists; see (3.81).
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ods html close; ods html;
filename ein 'REM2nested.txt';
data school; infile ein stopover; input Y school Evaluator; run;
title 'REM 2-Way Nested Example';
proc varcomp method=ml;

class school Evaluator;
*model Y=school Evaluator;
model Y=school Evaluator(school);

run;
proc mixed method=ml cl ratio;

class school Evaluator;
model Y= / cl solution;
*random school Evaluator;
random school Evaluator(school);

run;
proc nested;

class school Evaluator;
var Y;

run;

SAS ProgramListing 3.4: Reads in the data from the text file generated in Listing 3.3 and uses proc
varcomp and proc mixed with maximum likelihood, and proc nested (which does not sup-
port maximum likelihood, and uses only the ANOVA method of estimation). proc nested does
not support use of mixed models, i.e., inclusion of fixed effects (besides the grand mean), and also
assumes the input data are sorted by the class variables, which is the case by virtue of how we gen-
erated and wrote the data. The model statements that are commented out in proc varcomp and
proc mixed can also be used and deliver the same output.

procedures, as shown in SAS Program Listing 3.4. The m.l.e. obtained for a particular generated data
set from Listing 3.10 and use of the custom Matlab function REM2wayNestedMLE was the same as
those output from both SAS procedures, as was the obtained log-likelihood, as shown in the output of
proc mixed. For this model, there is a closed-form expression for the m.l.e., provided the variance
component estimates are positive, obviating the need for numeric calculations; see (3.81).

Theorem 3.5 Independence and Distribution By squaring and summing the expression

Yijk = Ȳ••• + (Ȳi•• − Ȳ•••) + (Yij• − Ȳi••) + (Yijk − Ȳij•), (3.69)

and confirming that cross terms are zero, the SS decomposition is given by

SST = SS𝜇 + SSa + SSb + SSe, (3.70)

where SST =
∑A

i=1
∑B

j=1
∑n

j=1 Y 2
ijk , and

SS𝜇 = ABnȲ 2
•••, SSa = Bn

∑A
i=1 (Ȳi•• − Ȳ•••)2,

SSb = n
∑A

i=1
∑B

j=1 (Ȳij• − Ȳi••)2, SSe =
∑A

i=1
∑B

j=1
∑n

j=1 (Yijk − Ȳij•)2.
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Proof : We wish show that SS𝜇, SSa, SSb, and SSe are independent, and derive their distributions.
Instead of directly showing the zero correlation between the

(
4
2

)
= 6 quantities, we generalize the

method used in Section 3.1.2 by defining

Gij = bij + ēij• and Hi = ai + b̄i• + ēi•• = ai + Ḡi• .

Now write
Yijk = Ȳ••• + (Ȳi•• − Ȳ•••) + (Yij• − Ȳi••) + (Yijk − Ȳij•)

= (𝜇 + H̄•) + (Hi − H̄•) + (Gij − Ḡi•) + (eijk − ēij•)
= 𝜇 + ai + Ḡi• + (Gij − Ḡi•) + (eijk − ēij•)
= 𝜇 + ai + bij + ēij• + (eijk − ēij•)
= 𝜇 + ai + bij + eijk ,

(3.71)

where the second row follows because, working from right to left,

Yijk − Ȳij• = (𝜇 + ai + bij + eijk) − (𝜇 + ai + bij + ēij•) = eijk − ēij•,
Yij• − Ȳi•• = (𝜇 + ai + bij + ēij•) − (𝜇 + ai + bi• + ēi••)

= bij − bi• + ēij• − ēi•• = Gij − Ḡi•,

Ȳi•• − Ȳ••• = (𝜇 + ai + bi• + ēi••) − (𝜇 + ā• + b•• + ē•••)
= ai − ā• + bi• − b•• + ēi•• − ē••• = Hi − H̄•,

and Ȳ••• = 𝜇 + ā• + b•• + ē••• = 𝜇 + H̄•.
Next observe that SSe =

∑∑∑
(eijk − ēij•)2, and

SSb = n
∑∑

(Gij − Ḡi•)2, SSa = Bn
∑

(Hi − H̄•)2, SS𝜇 = ABn(𝜇 + H̄•)2.

From the independence of X̄ and S2X for normal samples, SSe ⟂ ēij•. As SSe is a function of only ēij•,
and Gij, Hi and H̄• are functions of ēij• and other random variables independent of ēij•, SSe ⟂ SSb,
SSe ⟂ SSa, and SSe ⟂ SS𝜇.
Similarly, SSb ⟂ Ḡi• and, because SSb does not involve ai, it is independent of functions of ai and

Ḡi•, i.e., of Hi, so that SSb ⟂ SSa and SSb ⟂ SS𝜇. Finally, SSa ⟂ H̄•, so SSa ⟂ SS𝜇.
For the distribution of SSe, as, for each given i, j pair, 𝜎−2

e
∑n

k=1 (eijk − ēij•)2 ∼ 𝜒2
n−1, and, from the

independence of all the eijk , 𝜎−2
e SSe ∼ 𝜒2

AB(n−1).
Next, Gij ∼ N(0, 𝜎2

b + 𝜎2
e∕n) or

√
nGij ∼ N(0, 𝛾b), where 𝛾b = n𝜎2

b + 𝜎2
e , and SSb∕𝛾b ∼ 𝜒2

A(B−1). Simi-
larly, Hi ∼ N(0, 𝜎2

a + 𝜎2
b∕B + 𝜎2

e∕Bn) or
√
BnHi ∼ N(0, 𝛾a), where 𝛾a = Bn𝜎2

a + n𝜎2
b + 𝜎2

e , so that

SSa
𝛾a

= Bn
Bn

∑A
i=1 Bn(Hi − H̄•)2

𝛾a
=

∑A
i=1 (

√
BnHi −

√
BnH̄•)2

𝛾a
∼ 𝜒2

A−1. (3.72)

Lastly, H̄• + 𝜇 ∼ N(𝜇, 𝜎2
a∕A + 𝜎2

b∕AB + 𝜎2
e∕ABn) or

√
ABn(H̄• + 𝜇) ∼ N(

√
ABn𝜇, 𝛾a), so that dividing

by
√
𝛾a and squaring gives (SS𝜇∕𝛾a) ∼ 𝜒2

1 (ABn𝜇
2∕𝛾a). ◾

Summarizing, SS𝜇, SSa, SSb, and SSe are independent, and

SS𝜇
𝛾a

∼ 𝜒2
1

(
ABn𝜇2

𝛾a

)
,

SSa
𝛾a

∼ 𝜒2
A−1,

SSb
𝛾b

∼ 𝜒2
A(B−1),

SSe
𝜎2
e

∼ 𝜒2
AB(n−1), (3.73)
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where 𝛾a = Bn𝜎2
a + n𝜎2

b + 𝜎2
e and 𝛾b = n𝜎2

b + 𝜎2
e .

The EMS are given by

𝔼[MS𝜇] = 𝛾a𝔼
[
𝜒2
1

(
ABn𝜇2

𝛾a

)]
= 𝛾a

(
1 + ABn𝜇2

𝛾a

)
= 𝛾a + ABn𝜇2, (3.74)

𝔼[MSa] =
𝛾a

A − 1
𝔼[𝜒2

A−1] = 𝛾a, 𝔼[MSb] =
𝛾b

A(B − 1)
𝔼[𝜒2

A(B−1)] = 𝛾b, (3.75)

and

𝔼[MSe] =
𝜎2
e

AB(n − 1)
𝔼[𝜒2

AB(n−1)] = 𝜎2
e . (3.76)

These results are summarized in their standard fashion in Table 3.5.
It is valuable to explicitly consider how the sums of squares are computed, for an ABn × 1 vector

Y in the lexicon ordering (3.66), generated, say, from lines 1–3 in Listing 3.10. The key is to use the
matrices in (3.67), as shown in lines 2 and 4, in the code given in Listing 3.11, which also computes
the closed-form m.l.e. solution (3.81).

Table 3.5 ANOVA table for the balanced two-factor nested REM. Notation B(A) is
short for “B within A”, indicating the hierarchy of the nested factor.

Source df SS EMS

Mean 1 ABnȲ 2
••• 𝜎2

e + n𝜎2
b + Bn𝜎2

a + ABn𝜇2

A A − 1 Bn
∑A

i=1 (Ȳi•• − Ȳ•••)2 𝜎2
e + n𝜎2

b + Bn𝜎2
a

B(A) A(B − 1) n
∑A

i=1
∑B

j=1 (Ȳij• − Ȳi••)2 𝜎2
e + n𝜎2

b

Error AB(n − 1)
∑A

i=1
∑B

j=1
∑n

k=1 (Yijk − Ȳij•)2 𝜎2
e

Total ABn
∑A

i=1
∑B

j=1
∑n

k=1 Y 2
ijk

1 SST=sum(y'*y); Ydddb=mean(y); SSu=A*B*n*Ydddbˆ2; % Yddb= \bar{Y}_{dot dot dot}
2 H=kron(eye(A), ones(B*n,1)); Yiddb=y'*H/(B*n); % Yiddb= \bar{Y}_{i dot dot}
3 SSa=B*n*sum( (Yiddb-Ydddb).ˆ2 );
4 H=kron(eye(A*B), ones(n,1)); Yijdb=y'*H/n; % Yijdb= \bar{Y}_{i j dot}
5 m = kron(Yiddb,ones(1,B)); SSb=n*sum( (Yijdb-m).ˆ2 );
6 m=kron(Yijdb', ones(n,1)); SSe=sum( (y-m).ˆ2 );
7 check=SST-(SSu+SSa+SSb+SSe) % is zero
8 % Now the MLE, if the MLE variance components are positive
9 MSe=SSe/A/B/(n-1); MSb=SSb/A/(B-1); MSa=SSa/(A-1);

10 sigma2eMLE=MSe; sigma2bMLE=(MSb-MSe)/n;
11 sigma2aMLE = ( (1-1/A)*MSa - MSb )/B/n;
12 muMLE=Ydddb; MLE=[muMLE sigma2aMLE sigma2bMLE sigma2eMLE]

Program Listing 3.11: Computes the SS values in (3.70) for a given vector 𝐘 in lexicon order, cor-
responding to a two-way nested, both factors random, balanced REM, and the closed-form m.l.e.
solution (3.81).



Introduction to Random and Mixed Effects Models 167

With respect to hypothesis test statistics, a test for 𝜎2
a > 0 will be based onMSa divided not byMSe

(which would otherwise test 𝜎2
a = 𝜎2

b = 0) butMSa divided byMSb, i.e.,
SSa
𝛾a

∕(A − 1)

SSb
𝛾b

∕A(B − 1)
∼ F(A−1),A(B−1) or Fa =

MSa
MSb

∼
𝛾a

𝛾b
FA−1,A(B−1), (3.77)

a scaled central F distribution. If 𝜎2
a = 0, then 𝛾a = 𝛾b, so that an 𝛼-level test for 𝜎2

a = 0 versus 𝜎2
a > 0

rejects if Fa > F𝛼

A−1,A(B−1), where F
𝛼

n,d is the 100(1 − 𝛼)th percent quantile of the Fn,d distribution. Like-
wise,

SSb
𝛾b

∕A(B − 1)

SSe
𝜎2
e
∕AB(n − 1)

∼ FA(B−1),AB(n−1) or Fb =
MSb
MSe

∼
𝛾b

𝜎2
e
FA(B−1),AB(n−1) (3.78)

is a scaled F distribution. For 𝜎2
b = 0, 𝛾b = 𝜎2

e , so that an 𝛼-level test for 𝜎2
b = 0 versus 𝜎2

b > 0 rejects if
Fb > F𝛼

A(B−1),AB(n−1).
Now turning to point estimators, from (3.75) and (3.76), 𝔼[MSe] = 𝜎2

e , 𝔼[MSb] = n𝜎2
b + 𝜎2

e , and
𝔼[MSa] = Bn𝜎2

a + n𝜎2
b + 𝜎2

e , so that

�̂�2
e = MSe, �̂�2

b = (MSb −MSe)∕n, and �̂�2
a = (MSa −MSb)∕Bn (3.79)

yield unbiased estimators using the ANOVAmethod of estimation. A closed-form solution to the set
of equations that equate zero to the first derivatives of the log-likelihood is available, and is the m.l.e.
if all variance component estimates are positive. For 𝜇, the m.l.e. is

�̂�ML = Ȳ•••, (3.80)

which turns out to be true for all pure random effectsmodels, balanced or unbalanced; see, e.g., Searle
et al. (1992, p. 146). For the variance components, if they are positive,

�̂�2
e,ML = MSe, �̂�2

b,ML = (MSb −MSe)∕n, �̂�2
a,ML = ((1 − A−1)MSa −MSb)∕Bn; (3.81)

see, e.g., Searle et al. (1992, p. 148). Point estimators of other quantities of interest can be determined
from the invariance property of the m.l.e. For example, the m.l.e. of 𝜌 ∶= 𝜎2

a∕𝜎2
e is, comparing (3.79)

and (3.81),

�̂�ML =
�̂�2
a,ML

�̂�2
e,ML

≈
�̂�2
a

�̂�2
e
= MSa −MSb

Bn MSe
=∶ �̂�. (3.82)

3.3.1.2 Both Effects Random: Exact and Approximate Confidence Intervals
For confidence intervals, the easiest (and usually of least relevance) is for the error variance. Similar to
(3.22) for the one-factor case, from (3.73), SSe∕𝜎2

e is a pivot, so that a 100(1 − 𝛼)% confidence interval
for 𝜎2

e is given by (SSe∕u, SSe∕l) because

1 − 𝛼 = Pr
(
l ⩽ SSe

𝜎2
e

⩽ u
)

= Pr
(SSe

u
⩽ 𝜎2

e ⩽ SSe
l

)
, (3.83)

where l and u are given by Pr(l ⩽ 𝜒2
AB(n−1) ⩽ u) = 1 − 𝛼, and 0 < 𝛼 < 1 is a chosen tail probability,

typically 0.05.
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Exact intervals for some variance ratios of interest are available. From (3.78),
𝜎2
e

𝛾b
Fb =

𝜎2
e

n𝜎2
b + 𝜎2

e
Fb ∼ FA(B−1),AB(n−1)

is a pivot, and, using similar manipulations as in the one-factor case, we obtain the intervals

1 − 𝛼 = Pr

(
L
Fb

<
𝜎2
e

n𝜎2
b + 𝜎2

e
<

U
Fb

)
= Pr

(
Fb∕U − 1

n
<

𝜎2
b

𝜎2
e
<

Fb∕L − 1
n

)

= Pr

(
Fb −U

nU + Fb −U
<

𝜎2
b

𝜎2
e + 𝜎2

b

<
Fb − L

nL + Fb − L

)
, (3.84)

where Pr(L ⩽ FA(B−1),AB(n−1) ⩽ U) = 1 − 𝛼.
Wald-based approximate confidence intervals for 𝜎2

a and 𝜎2
b can be computed in the usual way,

and the Satterthwaite approximation is also available. In particular, for 𝜎2
a = (𝛾a − 𝛾b)∕(Bn), where

𝛾a = Bn𝜎2
a + n𝜎2

b + 𝜎2
e and 𝛾b = n𝜎2

b + 𝜎2
e , with h1 = −h2 = (Bn)−1 and d1 = A − 1, d2 = A(B − 1), then

either from (3.29) and (3.31), or (3.33) and (3.34),

d̂ =
(h1�̂�a + h2�̂�b)2

(h21�̂�
2
a∕d1 + h22�̂�

2
b∕d2)

=
(�̂�a − �̂�b)2

�̂�2a∕(A − 1) + �̂�2b∕A(B − 1)
= (MSa −MSb)2

(MSa)2
A−1

+ (MSb)2
A(B−1)

, (3.85)

and, for 1 − 𝛼 = Pr(l ⩽ 𝜒2
d̂
⩽ u),

1 − 𝛼 ≈ Pr
(
d̂ (MSa −MSb)

Bn u
⩽ 𝜎2

a ⩽ d̂ (MSa −MSb)
Bn l

)
.

Similarly, for 𝜎2
b = (𝛾b − 𝜎2

e )∕n = n−1(𝔼[MSb] − 𝔼[MSe]),

d̂ = (MSb −MSe)2
(MSb)2
A(B−1)

+ (MSe)2
AB(n−1)

, (3.86)

and

1 − 𝛼 ≈ Pr
(
d̂ (MSb −MSe)

n u
⩽ 𝜎2

b ⩽ d̂ (MSb −MSe)
n l

)
, (3.87)

for u and l such that 1 − 𝛼 = Pr(l ⩽ 𝜒2
d̂
⩽ u).

As is clear from (3.82), an exact interval for 𝜌 = 𝜎2
a∕𝜎2

e is not available because there is no exact
pivot, but applying the Satterthwaite approximation using (3.85) results in

�̂�

𝜌
=

(MSa −MSb)∕𝜎2
a

Bn MSe∕𝜎2
e

app∼ Fd̂,AB(n−1)

being an approximate one. Thus, with L and U given by Pr(L ⩽ Fd̂,AB(n−1) ⩽ U) = 1 − 𝛼 for 0 < 𝛼 < 1,
an approximate c.i. for 𝜌 is

1 − 𝛼 ≈ Pr
(

�̂�

U
< 𝜌 <

�̂�

L

)
, �̂� = MSa −MSb

Bn MSe
. (3.88)
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The bootstrap/saddlepoint-based method of Butler and Paolella (2002b) is also applicable in this
case and yields higher accuracy for small sample sizes.
Letting V = 𝜎2

a + 𝜎2
b + 𝜎2

e be the total variance, other ratios, such as 𝜎2
a∕V , 𝜎2

b∕V , and (𝜎2
a + 𝜎2

b)∕V ,
are also of potential interest, as well as 𝜎2

a∕(𝜎2
a + 𝜎2

b) and 𝜎2
b∕(𝜎

2
a + 𝜎2

b). In the balanced setting, if
exact intervals are not available, the Satterthwaite method and/or the bootstrap/saddlepoint-based
method can be invoked. These could then, in turn, be used for the unbalanced case by the
bootstrap/q-calibration exercise.
Similar to the idea in the remark at the end of Section 3.1.6.2, it is highly instructional (and

potentially useful) to make a program that inputs an unbalanced panel for a two-way nested
REM, and outputs (among other things, such as the approximate m.l.e. based on the method
discussed in Section 3.1.6.1) a confidence interval for, say, 𝜌 = 𝜎2

a∕𝜎2
e , based on (3.88) using the

bootstrap/q-calibration exercise described in Section 3.1.6.2. Naturally, other confidence intervals,
such as for the individual variance components or other ratios of interest, could also be incorporated.
In doing so, the first orders of business are to (i) write a program to compute the estimates of the

missing values (via optimization to get also the approximate covariancematrix), using the closed-form
expression for the m.l.e. of the model parameters 𝜇, 𝜎2

a , 𝜎2
b , and 𝜎2

e , and (ii) confirm that the approxi-
mate m.l.e. for 𝜇, 𝜎2

a , and 𝜎2
b are essentially equal to the true m.l.e. (as computed, say, by SAS), and that

of 𝜎2
e is off by a multiplicative factor of 1.0735 for the constellation of parameters and number of (and

constellation of) missing values used, namely A = 10, B = 6, n = 8, 𝜇 = 5, 𝜎a = 1, 𝜎b = 0.4, 𝜎e = 0.8,
and 30 missing observations.
The precise constellation of missing values we chose that gave rise to this multiplicative factor of

1.0735 is shown in Listing 3.12. This correction factor needs to be applied because otherwise, the
bootstrap inference will be jeopardized. At this point, the reader might protest: How can this be done
without access to the truem.l.e., in particular, without, say, SAS?Asmentioned in Section 3.1.6.1 in the
context of the one-way model, one could use simulation (and only Matlab), taking the multiplicative
adjustment to be that value such that the estimator’s (mean, or possibly median) bias is minimized.
Program REM2wayNestedUnbalancedSatterforrho (not shown, leaving it as a wonderful

exercise for the reader) accomplishes this. Reasonably reliable assessment of the actual coveragewould
require use of at least s = 1,000 simulated data sets, in which case, with s = 1,000, a simple 95%
binomial confidence interval of the actual coverage probability (assuming the true coverage, and the
observed actual, is p = 0.90) is, to two digits, 0.90 ± 1.96

√
p(1 − p)∕s = (0.88, 0.92).

Use ofBoot = 250 bootstrap replications (and, for each, sMiss = 250 replications of themissing data
and computation of the balanced-case interval (3.88)) takes, for a single simulated data set, about 30 to
60minutes on a typical PC at the time of writing (and use of one core only) to produce the confidence
interval of 𝜌. Such a simulation with s = 1,000 was done (with 24 cores and 21 hours), and resulted
in an actual coverage of 0.927, suggesting that the actual coverage might be slightly larger than the
nominal. Use ofBoot = sMiss = 1,000 takes correspondingly longer and resulted in an actual coverage
of 0.926, suggesting that use of 250 is adequate and such that the larger nominal coverage does not
stem from too small a choice of Boot or sMiss.
A histogram of the interval lengths (not shown) reveals that it is roughly Gaussian, with an elon-

gated right tail. The average interval length was 4.0 and the sample standard deviation of the lengths
was 1.9, indicating how much uncertainly is inherent in confidence intervals for (ratios of ) variance
components, even with a respectable sample size.
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1 A=10; B=6; n=8; mu=5; siga=1; sigb=0.4; sige=0.8; bad=1;
2 while bad
3 a=siga*randn(A,1); b=sigb*randn(A*B,1); e=sige*randn(A*B*n,1);
4 y=ones(A*B*n,1)*mu ...
5 + kron(eye(A),ones(B*n,1))*a ...
6 + kron(eye(A*B),ones(n,1))*b + e;
7 iset=1:2:9; % set some values to missing, here 30 of them
8 for iloop=1:length(iset)
9 i=iset(iloop);

10 j=1; k=1; ind=B*n*(i-1)+n*(j-1)+k; y(ind)=NaN;
11 j=1; k=2; ind=B*n*(i-1)+n*(j-1)+k; y(ind)=NaN;
12 j=3; k=1; ind=B*n*(i-1)+n*(j-1)+k; y(ind)=NaN;
13 j=5; k=1; ind=B*n*(i-1)+n*(j-1)+k; y(ind)=NaN;
14 j=6; k=1; ind=B*n*(i-1)+n*(j-1)+k; y(ind)=NaN;
15 j=6; k=2; ind=B*n*(i-1)+n*(j-1)+k; y(ind)=NaN;
16 end
17 try
18 [mu_miss, V_miss]=REM2wayNestedMLEMiss(y,A,B,n);
19 bad=min(eig(V_miss)) < 0.1;
20 catch %#ok<CTCH>
21 bad=1;
22 end
23 end

Program Listing 3.12: Simulates a two-way nested, both factors random, balanced REM, with the
indicated constellation of parameters, and then sets 30 of the values to missing, as indicated. The use
of while bad is to ensure that the data set results in a valid approximate covariance matrix for
the estimated missing values. It is very rare that this is problematic, but it is necessary when using
the bootstrap procedure for approximate confidence intervals with unbalanced data. The use of try
and catch is because, also rarely but possibly, the BFGS optimization algorithm, as used in pro-
gram REM2wayNestedMLEMiss and based onMatlab version 2010, can fail. It is important to note
that both of these selectionmechanisms can induce a sample selection bias, and could affect the small
sample properties of the point and interval estimators.We ignore this issue because, first, bothmech-
anisms are rarely engaged, and, second, because interest here centers on development of concepts and
teaching. A more rigorous analysis would have to address and resolve both issues.

Figure 3.5 shows the resulting point estimates of the variance components based on the approximate
m.l.e. with multiplicative factor adjustment for �̂�2

e .

3.3.1.3 Mixed Model Case
Recall from Section 2.1 that a mixed effects model is one that contains both fixed and random effects,
outside of the grand mean and the error term. We now describe the two-way nested mixed model,
such that the first factor, A, is fixed, and the second factor, B, is nested in A, and is random. Using
our perpetual example with schools and writing evaluations from the beginning of Section 3.3, the
model is now similar to that of Section 3.3.1.1, where both factors are random, but now the schools
are considered fixed (“because we are interested in them”).
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Figure 3.5 Point estimates of the three variance components for the two-way nested REM, based on the approximate
m.l.e. with multiplicative factor adjustment for �̂�2

e and use of 1,000 replications. True model parameters are those given
in Listing 3.12, namely 𝜎2

a = 12, 𝜎2
b = (0.4)2, 𝜎2

e = (0.8)2.

Exactly as in the case where both factors are assumed random, we observe Yijk , the kth observation
in the jth subclass of the ith class, i = 1,… ,A, j = 1,… ,B, k = 1,… , n, but now assume that

Yijk = 𝜇 + 𝛼i + bij + eijk ,
A∑
i=1

𝛼i = 0, bij
i.i.d.∼ N(0, 𝜎2

b), eijk
i.i.d.∼ N(0, 𝜎2

e ), (3.89)

where theA classes are fixed levels of particular interest and, for each i, the B subclasses are randomly
chosen. Differing from (3.65) and (3.65), first and second moments are

𝔼[Yijk] = 𝜇 + 𝛼i, Var(Yijk) = 𝜎2
b + 𝜎2

e , Cov(Yijk ,Yijk′ ) = 𝜎2
b , Cov(Yijk ,Yij′k′ ) = 0. (3.90)

From expression (3.69), we again get decomposition (3.70).
VectorY is expressed exactly the same as in (3.67), but using𝜶 = (𝛼1, 𝛼2,… , 𝛼A)′ instead of a, namely

Y = (1ABn)𝜇 + (IA ⊗ 1Bn)𝜶 + (IAB ⊗ 1n)b + e
= X𝜷 + 𝝐,

(3.91)
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where 𝜷 = [𝜇, 𝜶′]′, X consists of the column 1ABn followed by those of IA ⊗ 1Bn, and 𝝐 = (IAB ⊗
1n)b + e. As always, let 𝝁 ∶= 𝔼[Y] = X𝜷 . We can then express (3.89) and (3.91) as Y ∼ NABn(𝝁,𝚺),
where, similar to (3.68) but without component 𝜎2

a ,

𝚺 = (IAB ⊗ Jn)𝜎2
b + IABn𝜎2

e . (3.92)

With the likelihood expressible, one could useMatlab’s constrained optimizationmethods (to respect∑A
i=1 𝛼i = 0, and the positiveness of the two variance components), thoughmuchmore efficientmeth-

ods exist (see, e.g., the references given at the beginning of the chapter, as well as Galwey, 2014, and
West et al., 2015) and are built into statistical software packages (along with the availability of the
more popular restricted m.l.e., or REML). In particular, the m.l.e. of 𝜷 is, from (i) model structure
(3.91) and (3.92), (ii) the Gaussianity assumption on 𝝐, and (iii) results in Chapter 1, equal to the gen-
eralized least squares estimator, and for balanced data, this turns out to be equal to the ordinary least
squares estimator; see, e.g., Searle et al. (1992, Sec. 4.9) for a detailed explanation.
Recall (2.77) for computing the coefficient estimates in the two-way fixed effects ANOVA. Similarly,

with 𝟏A an A-length column of ones, andmi denoting the mean of the Bn elements corresponding to
the ith class of the first factor, i = 1,… ,A, the least squares estimator 𝜷 of 𝜷 in (3.91) is given by the
solution to the over-identified system of equations Zc = m, where

Z =
[
𝟏A IA
0 𝟏′A

]
, c =

⎡⎢⎢⎢⎢⎣
𝜇

𝛼1
𝛼2
⋮
𝛼A

⎤⎥⎥⎥⎥⎦
, m =

⎡⎢⎢⎢⎢⎣
m1
m2
⋮
mA
0

⎤⎥⎥⎥⎥⎦
, (3.93)

The solution is c = (Z′Z)−1Z′m, with code given in Listing 3.13, assuming the relevant variables are
in computer memory, e.g., as constructed by lines 1–3 in Listing 3.10.This estimator is different than
what is delivered by SAS’ proc mixed, which sets �̂�A = 0 as the constraint. However, one can con-
firm that the estimates of the estimable functions �̂� + �̂�i agree between SAS and use of (3.93).
Maximum likelihood estimates of the remaining parameters of the model, 𝜎2

b and 𝜎2
e , can be

obtained by numerically maximizing the log-likelihood of (Y − X𝜷) ∼ NABn(𝟎,𝚺), where 𝚺 is given
in (3.92). The reader is encouraged to construct a program, say REM2wayNestedMixedMLE, to
accomplish this, and confirm that the point estimates of the two variance components are the same
as those delivered by SAS. Regarding SAS code, first note that we can use the same data set as was
generated by the code in Listing 3.10 for analysis in SAS, just treating the classes of factor A as fixed.
The code in SAS Listing 3.5 then shows how the two-way mixed model is estimated with maximum
likelihood.
As with previous models, we wish to show that SS𝜇, SS𝛼, SSb, and SSe are independent, and derive

their distributions and the corresponding EMS values. The independence of the SS follows the same

1 X=kron(eye(A),ones(B*n,1));
2 v=X*inv(X'*X)*X'*y; v=reshape(v,B*n,A)';
3 m=[v(:,1) ; 0]; Z=[ones(A,1), eye(A) ; 0 , ones(1,A)];
4 c=inv(Z'*Z)*Z'*m;

Program Listing 3.13: Computes the solution to (3.93).
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ods html close; ods html;
/* close previous and open new */
filename ein 'REM2nested.txt';
data school;

infile ein stopover;
input Y school Evaluator;

run;
title 'Mixed REM 2-Way Nested Example';
proc varcomp method=ml;

class school Evaluator;
model Y=school Evaluator(school) / fixed=1;

run;
proc mixed method=ml cl=wald nobound covtest;

class school Evaluator;
model Y=school / cl solution;
random Evaluator(school);

run;

SAS Program Listing 3.5: Reads in the data from the text file generated in Listing 3.3, treats the
factor school as fixed, and uses proc varcomp and proc mixed with maximum likelihood.

argument as that for the two-factor nested REM with both effects random, in Section 3.3. The distri-
butions of SSe∕𝜎2

e , SSb∕𝛾 , and SS𝜇∕𝛾 (noting H̄• = Ḡ•• because
∑

ai = 0) do not change, but where
𝛾 = n𝜎2

b + 𝜎2
e . Now, however, Hi = (ai + b̄i• + ēi••) ∼ N(ai, 𝜎2

b∕B + 𝜎2
e∕Bn) or

√
BnHi ∼ N(

√
Bnai, 𝛾)

or
√
Bn∕𝛾Hi ∼ N(𝜅i, 1), 𝜅i =

√
Bn∕𝛾ai, and SSa∕𝛾 ∼ 𝜒2

A−1(𝜈a), where 𝜈a =
∑

𝜅2
i = (Bn∕𝛾)

∑
a2i .

Summarizing, with 𝛾b = n𝜎2
b + 𝜎2

e ,

SS𝜇
𝛾b

∼ 𝜒2
1

(
ABn
𝛾b

𝜇2
)
,

SS𝛼
𝛾b

∼ 𝜒2
A−1

(
Bn
𝛾b

∑
𝛼2
i

)
,

SSb
𝛾b

∼ 𝜒2
A(B−1),

SSe
𝜎2
e

∼ 𝜒2
AB(n−1)

are independent.
The EMS are derived just as in (3.74), (3.75), and (3.76) (but with 𝜎2

a = 0), except for 𝔼[EM𝛼],
given by

𝔼[EM𝛼] =
𝛾b

A − 1
𝔼[𝜒2

A−1(𝜈a)] =
𝛾b

A − 1
(A − 1 + 𝜈a) = 𝛾b +

Bn
A − 1

∑
a2i .

The results are organized in the ANOVA table (Table 3.6).
Inspection of the EMS in Table 3.6 shows that

F𝛼 =

SS𝛼
𝛾b

∕(A − 1)

SSb
𝛾b

∕A(B − 1)
= MS𝛼

MSb
∼ F(A−1),A(B−1)

(
Bn
𝛾b

∑
𝛼2
i

)
,

this being a (singly) noncentral F distribution. Under the null of no class effects (i.e., 𝛼i = 0 ∀i), an
𝛼-level test rejects the null of no class effects if F𝛼 > F𝛼

A−1,A(B−1), where F
𝛼

n,d is the 100(1 − 𝛼)th percent
quantile of the Fn,d distribution. The test for the subclass random effect is the same as that in (3.78).
The ANOVA method estimators for the two variance components are the same as those for the

all-random two-factor nested REM, namely �̂�2
e = MSe and �̂�2

b = (MSb −MSe)∕n. These calculations



174 Linear Models and Time-Series Analysis

Table 3.6 ANOVA table for balanced two-factor mixed nested REM.

Effect df SS EMS

𝜇 1 ABnȲ 2
••• 𝜎2

e + n𝜎2
b + ABn𝜇2

𝛼i A − 1 Bn
∑

(Ȳi•• − Ȳ•••)2 𝜎2
e + n𝜎2

b +
Bn
A−1

∑
𝛼2
i

bij A(B − 1) n
∑∑

(Ȳij• − Ȳi••)2 𝜎2
e + n𝜎2

b

eijk AB(n − 1)
∑∑∑

(Yijk − Ȳij•)2 𝜎2
e

Total ABn
∑∑∑

Y 2
ijk

can be done with the code in Listing 3.11 (and of course noting that they are not the m.l.e., as labeled
there for the all-random two-factor nested model, and also ignoring the entry for sigma2aMLE). In
SAS’ proc mixed, one would change method=ml to method=type1 in Listing 3.5 to produce
the ANOVA method estimators. The estimates of the fixed effects are not affected by this choice.
The exact confidence interval for 𝜎2

b∕(𝜎
2
b + 𝜎2

e ) is the same as that given in (3.84), while the approx-
imate one for 𝜎2

b is given by (3.86) and (3.87).

3.3.2 Three Factors

We briefly outline now the three-factor nested case, along with the two mixed-model alternatives.
The analysis follows the same general pattern as that in the two-factor case, so that even higher order
models are straightforward to derive. Such models occur, not surprisingly, with far less frequency in
practice. The ANOVA table and ANOVA point estimates for the four-factor nested REM can never-
theless be found in Graybill (1976, p. 639–640).

3.3.2.1 All Effects Random
We observe Yijkl, the lth observation in the kth subsubclass of the jth subclass of the ith class,
i = 1,… ,A, j = 1,… ,B, k = 1,… ,C, l = 1,… , n, and assume that it can be represented as

Yijkl = 𝜇 + ai + bij + cijk + eijkl, (3.94)

where ai
i.i.d.∼ N(0, 𝜎2

a), bij
i.i.d.∼ N(0, 𝜎2

b), cijk
i.i.d.∼ N(0, 𝜎2

c ), and eijkl
i.i.d.∼ N(0, 𝜎2

e ).

Theorem 3.6 Independence and Distribution By squaring and summing the expression

Yijkl = Ȳ•••• + (Ȳi••• − Ȳ••••) + (Yij•• − Ȳi•••) + (Yijk• − Ȳij••) + (Yijkl − Ȳijk•), (3.95)

and confirming that cross terms are zero, the SS decomposition is given by

SST = SS𝜇 + SSa + SSb + SSc + SSe, (3.96)

where each SS term corresponds to its counterpart in (3.95) from left to right.The values on the r.h.s.
of (3.96) are independent, and

SS𝜇
𝛾a

∼ 𝜒2
1

(
ABCn𝜇2

𝛾a

)
,

SSa
𝛾a

∼ 𝜒2
A−1,

SSb
𝛾b

∼ 𝜒2
A(B−1),
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Table 3.7 ANOVA table for the balanced three-factor nested REM.

Effect df SS EMS

𝜇 1 ABCnȲ 2
•••• 𝜎2

e + n𝜎2
c + Cn𝜎2

b + BCn𝜎2
a + ABCn𝜇2

ai A − 1 BCn
∑

(Ȳi••• − Ȳ••••)2 𝜎2
e + n𝜎2

c + Cn𝜎2
b + BCn𝜎2

a

bij A(B − 1) Cn
∑∑

(Ȳij•• − Ȳi•••)2 𝜎2
e + n𝜎2

c + Cn𝜎2
b

cijk AB(C − 1) n
∑∑∑

(Ȳijk• − Ȳij••)2 𝜎2
e + n𝜎2

c

eijkl ABC(n − 1)
∑∑∑∑

(Yijkl − Ȳijk•)2 𝜎2
e

Total ABCn
∑∑∑∑

Y 2
ijkl

and
SSc
𝛾c

∼ 𝜒2
AB(C−1),

SSe
𝜎2
e

∼ 𝜒2
ABC(n−1),

where 𝛾a = BCn𝜎2
a + Cn𝜎2

b + n𝜎2
c + 𝜎2

e , 𝛾b = Cn𝜎2
b + n𝜎2

c + 𝜎2
e , and 𝛾c = n𝜎2

c + 𝜎2
e .

Proof : See Problem 3.3. ◾

The EMS are given in Table 3.7.
From Table 3.7, let

Fa =
MSa
MSb

∼
𝛾a

𝛾b
FA−1,A(B−1), Fb =

MSb
MSc

∼
𝛾b

𝛾c
FA(B−1),AB(C−1),

and

Fc =
MSc
MSe

∼
𝛾c

𝜎2
e
FAB(C−1),ABC(n−1).

Thus, if 𝜎2
a = 0, then 𝛾a = 𝛾b, and an 𝛼-level test for 𝜎2

a = 0 versus 𝜎2
a > 0 rejects if Fa > F𝛼

A−1,A(B−1).
If 𝜎2

b = 0, then 𝛾b = 𝛾c, and an 𝛼-level test for 𝜎2
b = 0 versus 𝜎2

b > 0 rejects if Fb > F𝛼

A(B−1),AB(C−1). If
𝜎2
c = 0, then 𝛾c = 𝜎2

e , so that an 𝛼-level test for 𝜎2
c = 0 versus 𝜎2

c > 0 rejects if Fc > F𝛼

AB(C−1),ABC(n−1).
From Table 3.7, the ANOVA method point estimators are

�̂�2
e = MSe, �̂�2

c = MSc −MSe
n

, �̂�2
b = MSb −MSc

Cn
, �̂�2

a = MSa −MSb
BCn

. (3.97)

It is easy to generalize the Satterthwaite confidence intervals in the two-factor case to give

1 − 𝛼 ≈ Pr
(
d̂ (MSc −MSe)

n u
⩽ 𝜎2

c ⩽ d̂ (MSc −MSe)
n l

)
, d̂ = (MSc −MSe)2(

(MSc)2
AB(C−1)

+ (MSe)2
ABC(n−1)

) ,
1 − 𝛼 ≈ Pr

(
d̂ (MSb −MSc)

Cn u
⩽ 𝜎2

b ⩽ d̂ (MSb −MSc)
Cn l

)
, d̂ = (MSb −MSc)2(

(MSb)2
A(B−1)

+ (MSc)2
AB(C−1)

)
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and

1 − 𝛼 ≈ Pr
(
d̂ (MSa −MSb)

BCn u
⩽ 𝜎2

a ⩽ d̂ (MSa −MSb)
BCn l

)
, d̂ = (MSa −MSb)2(

(MSa)2
(A−1)

+ (MSb)2
A(B−1)

) ,
for u and l such that 1 − 𝛼 = Pr(l ⩽ 𝜒2

d̂
⩽ u).

3.3.2.2 Mixed: Classes Fixed
We observe Yijkl, the lth observation in the kth subsubclass of the jth subclass of the ith class,
i = 1,… ,A, j = 1,… ,B, k = 1,… ,C, l = 1,… , n, and assume

Yijkl = 𝜇 + 𝛼i + bij + cijk + eijkl,
A∑
i=1

𝛼i = 0, bij
i.i.d.∼ N(0, 𝜎2

b), cijk
i.i.d.∼ N(0, 𝜎2

c )

and eijkl
i.i.d.∼ N(0, 𝜎2

e ). Problem 3.4 shows that

SS𝜇
𝛾b

∼ 𝜒2
1

(
ABCn𝜇2

𝛾b

)
,

SS𝛼
𝛾b

∼ 𝜒2
A−1

(
BCn
𝛾b

∑
𝛼2
i

)
,

SSb
𝛾b

∼ 𝜒2
A(B−1),

and, as in the all-random case, SSc∕𝛾c ∼ 𝜒2
AB(C−1) and SSe∕𝜎

2
e ∼ 𝜒2

ABC(n−1), where 𝛾b = Cn𝜎2
b + n𝜎2

c + 𝜎2
e

and 𝛾c = n𝜎2
c + 𝜎2

e . The EMS are given in Table 3.8.
From Table 3.8,

F𝛼 =

SS𝛼
𝛾b

∕(A − 1)

SSb
𝛾b

∕A(B − 1)
= MS𝛼

MSb
∼ F(A−1),A(B−1)

(
BCn
𝛾b

∑
𝛼2
i

)

follows a (singly) noncentral F distribution. Under the null of no class effects, an 𝛼-level test rejects
the null of no class effects if F𝛼 > F𝛼

A−1,A(B−1). The tests for subclass and subsubclass randoms effects
are identical to those in the all-random three-way effects model.
Point estimates for 𝜎2

e , 𝜎2
c , and 𝜎2

b are given in (3.97), while approximate confidence intervals for 𝜎2
c

and 𝜎2
b are the same as those in the all-random case.

Table 3.8 ANOVA table for the balanced three-factor mixed nested REM: Classes are
fixed, sub- and subsubclasses are random.

Effect df SS EMS

𝜇 1 ABCnȲ 2
•••• 𝜎2

e + n𝜎2
c + Cn𝜎2

b + ABCn𝜇2

𝛼i A − 1 BCn
∑

(Ȳi••• − Ȳ••••)2 𝜎2
e + n𝜎2

c + Cn𝜎2
b +

BCn
A−1

∑
𝛼2
i

bij A(B − 1) Cn
∑∑

(Ȳij•• − Ȳi•••)2 𝜎2
e + n𝜎2

c + Cn𝜎2
b

cijk AB(C − 1) n
∑∑∑

(Ȳijk• − Ȳij••)2 𝜎2
e + n𝜎2

c

eijkl ABC(n − 1)
∑∑∑∑

(Yijkl − Ȳijk•)2 𝜎2
e

Total ABCn
∑∑∑∑

Y 2
ijkl
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Table 3.9 ANOVA table for the balanced three-factor mixed nested REM: Classes and
subclasses are fixed, subsubclasses are random.

Effect df SS EMS

𝜇 1 ABCnȲ 2
•••• 𝜎2

e + n𝜎2
c + ABCn𝜇2

𝛼i A − 1 BCn
∑

(Ȳi••• − Ȳ••••)2 𝜎2
e + n𝜎2

c +
BCn
A−1

∑
𝛼2
i

𝛽ij A(B − 1) Cn
∑∑

(Ȳij•• − Ȳi•••)2 𝜎2
e + n𝜎2

c +
Cn

A(B−1)

∑∑
𝛽2
ij

cijk AB(C − 1) n
∑∑∑

(Ȳijk• − Ȳij••)2 𝜎2
e + n𝜎2

c

eijkl ABC(n − 1)
∑∑∑∑

(Yijkl − Ȳijk•)2 𝜎2
e

Total ABCn
∑∑∑∑

Y 2
ijkl

3.3.2.3 Mixed: Classes and Subclasses Fixed
This is similar to the previous case but now Yijkl = 𝜇 + 𝛼i + 𝛽ij + cijk + eijkl, with

A∑
i=1

𝛼i = 0,
B∑
j=1

𝛽ij = 0, cijk
i.i.d.∼ N(0, 𝜎2

c ), eijkl
i.i.d.∼ N(0, 𝜎2

e ),

i.e., both the 𝛼i and the 𝛽ij are fixed levels of particular interest and the 𝛽ij are nested within the 𝛼i (so
that 𝛽ij and 𝛽i′j are not related). Then, as shown in Problem 3.4,

SS𝜇
𝛾c

∼ 𝜒2
1 (𝜈𝜇),

SS𝛼
𝛾c

∼ 𝜒2
A−1(𝜈𝛼),

SS𝛽
𝛾c

∼ 𝜒2
A(B−1)(𝜈𝛽),

SSc
𝛾c

∼ 𝜒2
AB(C−1), and SSe

𝜎2
e

∼ 𝜒2
ABC(n−1),

where

𝜈𝜇 = ABCn𝜇2

𝛾c
, 𝜈𝛼 =

BCn
𝛾c

A∑
i=1

𝛼2
i , 𝜈𝛽 =

Cn
𝛾c

A∑
i=1

B∑
j=1

𝛽2
ij ,

and 𝛾c = n𝜎2
c + 𝜎2

e . The EMS are given in Table 3.9.
The test Fc for 𝜎2

c > 0 is the same as before, while for testing class and subclass effects, respectively,
the test statistics

F𝛼 =
MS𝛼
MSc

∼ F(A−1),AB(C−1)(𝜈𝛼), F𝛽 =
MSb
MSc

∼ FA(B−1),AB(C−1)(𝜈𝛽),

should be used. Point estimates for 𝜎2
e and 𝜎2

c are given in (3.97). An approximate confidence interval
for 𝜎2

c is the same as in the all-random case.

3.4 Problems

Problem 3.1 For the two-factor crossed REM with interaction of Section 3.2.1, verify that (i) the
cross terms from squaring and summing (3.42) indeed vanish, (ii) the r.h.s. terms in (3.43) are
mutually independent, and (iii) the r.h.s. terms follow the stated distributions.
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Problem 3.2 Similar to Problem 3.1 but now for the two-factor additive crossed REM of Section
3.2.1, verify the distributions and independence of the SS, along with the E SS values given in
Table 3.3.

Problem 3.3 Extend the method used in Section 3.3.1.1 to the three-factor all-randommodel (3.94)
in Section 3.3.2.1 to derive the distributions of SS𝜇, SSa, SSb, SSc and SSe that lead to the ANOVA
table (Table 3.7).

Problem 3.4 For both cases of the three-factor mixed nested REM, derive the distributions of the
SS and the compute the EMS values.

Problem 3.5 Verify directly using basic principles that, for Gij
i.i.d.∼ N(0, 1),

2∑
i=1

2∑
j=1

(Gij − Ḡi• − Ḡ•j + Ḡ••)2 ∼ 𝜒2
(2−1)(2−1).

Try to extend this, also using only rudimentary distribution theory, to the more general case
A∑
i=1

B∑
j=1

(Gij − Ḡi• − Ḡ•j + Ḡ••)2 ∼ 𝜒2
(A−1)(B−1),

with A,B ∈ {2, 3,…}. Whether possible or not using basic principles, prove the latter using pro-
jection matrix results.

3.A Appendix: Solutions

1) . i) Denote the five r.h.s. terms of (3.42) as [1] = Ȳ•••, [2] = Ȳi•• − Ȳ•••, [3] = Ȳ•j• − Ȳ•••, [4] =
Ȳij• − Ȳi•• − Ȳ•j• + Ȳ••• and [5] = Yijk − Ȳij•and note that there are 10 cross terms. First observe
that

∑
i[4] =

∑
j[4] = 0. It is easy to see that

[1]
∑
i
[2] = [1]

∑
j
[3] = [1]

∑
k
[5] = [1]

∑
i
[4] = 0.

Likewise,

[2]
∑
j
[3] = 0, [2]

∑
j
[4] = 0, [2]

∑
k
[5] = 0

while

[3]
∑
i
[4] = 0, [3]

∑
k
[5] = 0, [4]

∑
k
[5] = 0.

ii) As each term in (3.42) is normally distributed, independence of the SS can be directly shown
by verifying that Cov([1], [2]) = · · · = Cov([4], [5]) = 0 for each of the 10 pairs and all possible
subscripts (Graybill, 1976, p. 630). For example, Cov([1], [4]) is given by

𝔼
[
(ā• + b̄• + c̄•• + ē•••) ×

(
(ai + bj + cij + ēij•) − (ai + b̄• + c̄i• + ēi••)

−(ā• + bj + c̄•j + ē•j•) + (ā• + b̄• + c̄•• + ē•••)

)]
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= 𝔼[(c̄•• + ē•••) × (cij − c̄i• − c̄•j + c̄•• + ēij• − ēi•• − ē•j• + ē•••)]
= 𝔼[(c̄••)(cij − c̄i• − c̄•j + c̄••)] + 𝔼[ē•••(ēij• − ēi•• − ē•j• + ē•••)]

=
𝜎2
c

AB
−

B𝜎2
c

AB2 −
A𝜎2

c

A2B
+

𝜎2
c

AB
+ (similar pattern) = 0.

Alternatively, as with the nested models, a judiciously defined set of variables can simplify
matters considerably. As in Stuart et al. (1999, p. 686), let

Gij =
√
n(cij + ēij•)

iid∼N(0, 𝛾c)

Hi =
√
Bn(ai + c̄i• + ēi••) =

√
Bnai +

√
BḠi•

Kj =
√
An(bj + c̄•j + ē•j•) =

√
Anbj +

√
AḠ•j

L =
√
ABn(𝜇 + ā• + b̄• + c̄•• + ē•••)

=
√
ABn(𝜇 + b̄•) +

√
AH̄•

=
√
ABn(𝜇 + ā•) +

√
BK̄•,

so that
SS𝜇 = ABnȲ 2

••• = L2

SSa = Bn
∑

(Ȳi•• − Ȳ•••)2 =
∑

(Hi − H̄•)2
SSb = An

∑
(Ȳ•j• − Ȳ•••)2 =

∑
(Ki − K̄•)2

SSc = n
∑∑

(Ȳij• − Ȳi•• − Ȳ•j• + Ȳ•••)2 =
∑∑

(Gij − Ḡi• − Ḡ•j + Ḡ••)2
SSe =

∑∑∑
(Yijk − Ȳij•)2 =

∑∑∑
(eijk − ēij•)2.

Then ēij• ⟂ SSe and, as the other SS are functions of ēij• (via Gij, etc.) and random variables
that do not arise in SSe (and are independent of ēij•), it follows that SSe is independent of the
other SS.
As

Cov(Ḡi•, Gij − Ḡi• − Ḡ•j + Ḡ••) = 𝔼[Ḡi•(Gij − Ḡi• − Ḡ•j + Ḡ••)]
= 𝔼[Ḡi• Gij] − 𝔼[Ḡi• Ḡi•] − 𝔼[Ḡi• Ḡ•j] + 𝔼[Ḡi• Ḡ••]

=
𝛾c

B
−

B𝛾c
B2 −

𝛾c

AB
+

B𝛾c
AB2 = 0,

Ḡi• ⟂ SSc and, as Hi is a function of Ḡi• (and ai), Hi is independent of SSc (SSc does not
involve ai) and thus SSc ⟂ SSa. Likewise, SSc ⟂ SS𝜇 (as was also directly demonstrated above).
From symmetry, Cov(Ḡ•j, Gij − Ḡi• − Ḡ•j + Ḡ••) = 0 so that Ḡ•j ⟂ SSc and, using the previous
argument applied to the Kj, SSc ⟂ SSb.
For the remaining pairs,

Cov(L, Hi − H̄•) = Cov((ā• + b̄• + c̄•• + ē•••), (ai + c̄i• + ēi••) − (ā• + c̄•• + ē•••))
= 𝔼[ā•( ai − ā•)] + 𝔼[c̄••(c̄i• − c̄••)] + 𝔼[ē•••(ēi•• − ē•••)]

=
𝜎2
a

A
−

𝜎2
a

A
+

B𝜎2
c

AB2 −
𝜎2
c

AB
+

Bn𝜎2
e

AB2n2
−

𝜎2
e

ABn
= 0

so that SS𝜇 ⟂ SSa:
Cov(L, Ki − K̄•) = Cov((ā• + b̄• + c̄•• + ē•••), (bj + c̄•j + ē•j•) − (b̄• + c̄•• + ē•••))

= 𝔼[b̄•(bj − b̄•)] + 𝔼[c̄••(c̄•j − c̄••)] + 𝔼[ē•••(ē•j• − ē•••)]
= 0 (from symmetry with above calculation)
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so that SS𝜇 ⟂ SSb; and Cov(Hi − H̄•, Ki − K̄•) is

Cov((ai + c̄i• + ēi••) − (ā• + c̄•• + ē•••), (bj + c̄•j + ē•j•) − (b• + c̄•• + ē•••))
= 𝔼[(c̄i• − c̄••)(c̄•j − c̄••)] + 𝔼[(ēi•• − ē•••)(ē•j• − ē•••)]
= 𝔼[c̄i•(c̄•j − c̄••)] + 𝔼[ēi••(ē•j• − ē•••)] (from the previous calculations)

=
𝜎2
c

AB
−

B𝜎2
c

AB2 +
n𝜎2

e

BnAn
−

Bn𝜎2
e

AB2n2
= 0,

showing that SSa ⟂ SSb.
iii) Recalling

𝛾𝜇 = Bn𝜎2
a + An𝜎2

b + n𝜎2
c + 𝜎2

e , 𝛾a = Bn𝜎2
a + n𝜎2

c + 𝜎2
e ,

𝛾b = An𝜎2
b + n𝜎2

c + 𝜎2
e , 𝛾c = n𝜎2

c + 𝜎2
e ,

and observing

Hi =
√
Bn(ai + c̄i• + ēi••)

iid∼N(0, 𝛾a),

Kj =
√
An(bj + c̄•j + ē•j•)

iid∼N(0, 𝛾b),

L =
√
ABn(𝜇 + ā• + b̄• + c̄•• + ē•••) ∼ N(

√
ABn𝜇, 𝛾𝜇),

the distributions of SS𝜇∕𝛾𝜇 , SSa∕𝛾a, SSb∕𝛾b and SSe∕𝛾e are easily verified using the same
derivation as in the one-way REMmodel.
A bit more work is required to confirm that SSc∕𝛾c ∼ 𝜒2

(A−1)(B−1) or, for Gij
iid∼N(0, 𝛾c),

𝛾−1c

∑
i

∑
j
(Gij − Ḡi• − Ḡ•j + Ḡ••)2 ∼ 𝜒2

(A−1)(B−1),

though the result is intuitive, based on the two-factor fixed effects ANOVA model.
2) The independence and distributions of SS𝜇∕𝛾𝜇 , SSa∕𝛾a and SSb∕𝛾b follow directly from the proof

in the non-additive case (with 𝜎2
c = 0). For the error term

(Yijk − Ȳi•• − Ȳ•j• + Ȳ•••) = eijk − ēi•• − ē•j• + ē•••,

its covariance with Ȳ••• = 𝜇 + ā• + b̄• + ē••• is

Cov(ē•••, eijk − ēi•• − ē•j• + ē•••)
= 𝔼[ē••• eijk] − 𝔼[ē••• ēi••] − 𝔼[ē••• ē•j•] + 𝔼[ē2•••]

=
𝜎2
e

ABn
−

Bn𝜎2
e

ABn Bn
−

An𝜎2
e

ABn An
+

𝜎2
e

ABn
= 0.

Its covariance with Ȳi•• − Ȳ••• = ai − ā• + ēi•• − ē••• is, using the previous result,

Cov(ēi••, eijk − ēi•• − ē•j• + ē•••)
= 𝔼[ēi•• eijk] − 𝔼[ēi•• ēi••] − 𝔼[ēi•• ē•j•] + 𝔼[ēi•• ē•••]

=
𝜎2
e

Bn
−

Bn𝜎2
e

Bn Bn
−

n𝜎2
e

Bn An
+

Bn𝜎2
e

Bn ABn
= 0,

and similarly for Ȳ•j• − Ȳ•••, verifying independence of all SS terms.
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3) Write
Yijkl = Ȳ•••• + (Ȳi••• − Ȳ••••) + (Yij•• − Ȳi•••) + (Yijk• − Ȳij••) + (Yijkl − Ȳijk•)

= (𝜇 + Ī•) + (Ii − Ī•) + (Hij − H̄i•) + (Gijk − Ḡij•) + (eijkl − ēijk•)
⋮

= 𝜇 + ai + bij + cijk + eijkl,
where

Gijk = cijk + ēijk•, Ḡij• = c̄ij• + ēij••,
Hij = bij + Ḡij•, H̄i• = b̄i• + Ḡi••,

Ii = ai + H̄i•, Ī• = ā• + H̄••,

so that
SSe =

∑∑∑∑
(eijkl − ēijk•)2, SSc = n

∑∑∑
(Gijk − Ḡij•)2,

SSb = Cn
∑∑

(Hij − H̄i•)2, SSa = BCn
∑

(Ii − Ī•)2, SS𝜇 = ABCn(𝜇 + Ī•)2.
As in the lower order models,

SSe ⟂ ēijk• ⇒ SSe ⟂ SSc, SSe ⟂ SSb, SSe ⟂ SSa, SSe ⟂ SS𝜇;
SSc ⟂ Ḡij• ⇒ SSc ⟂ SSb, SSc ⟂ SSa, SSc ⟂ SS𝜇;
SSb ⟂ H̄i• ⇒ SSb ⟂ SSa, SSb ⟂ SS𝜇;
SSa ⟂ Ī• ⇒ SSa ⟂ SS𝜇.

For the distributions,
SSe
𝜎2
e

∼ 𝜒2
ABC(n−1)

Gijk ∼ N
(
0, 𝜎2

c +
𝜎2
e

n

)
⇒

SSc
𝛾c

∼ 𝜒2
AB(C−1), 𝛾c = n𝜎2

c + 𝜎2
e

Hij ∼ N
(
0, 𝜎2

b +
𝜎2
c

C
+

𝜎2
e

Cn

)
⇒

SSb
𝛾b

∼ 𝜒2
A(B−1), 𝛾b = Cn𝜎2

b + n𝜎2
c + 𝜎2

e

Ii ∼ N

(
0, 𝜎2

a +
𝜎2
b

B
+

𝜎2
c

BC
+

𝜎2
e

BCn

)
⇒

SSa
𝛾a

∼ 𝜒2
A−1, 𝛾a = BCn𝜎2

a + Cn𝜎2
b + n𝜎2

c + 𝜎2
e .

Finally,
(𝜇 + Ī•) ∼ N(𝜇, 𝜎2

a∕A + 𝜎2
b∕AB + 𝜎2

c ∕ABC + 𝜎2
e∕ABCn),

so that√
ABCn(𝜇 + Ī•) ∼ N(𝜇

√
ABCn, 𝛾a), or SS𝜇

𝛾a
∼ 𝜒2

1

(
ABCn𝜇2

𝛾a

)
.

4) Recall the solution to Problem 3.3 in which
SSe =

∑∑∑
(eijk − ēij•)2, SSb = n

∑∑
(Gij − Ḡi•)2,

SSa = Bn
∑

(Hi − H̄•)2, SS𝜇 = ABn(𝜇 + H̄•)2.
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The same argument shows that, in both mixed cases considered here, all the SS are independent
and give rise to the same distributions for SS∕𝜎2

e and SSc∕𝛾c. This also holds for SSb∕𝛾b in the
first case.
Consider the first situation in which only the classes are fixed. For SS𝛼, observe that

Ii = (𝛼i + H̄i•) ∼ N(𝛼i, 𝜎2
b∕B + 𝜎2

c ∕BC + 𝜎2
e∕BCn),

so that
√
BCnIi ∼ N(

√
BCn𝛼i, 𝛾b), or

√
BCn∕𝛾bIi ∼ N(𝜅i, 1), for 𝜅i = 𝛼i

√
BCn∕𝛾b and SS𝛼∕𝛾b ∼

𝜒2
A−1(𝜈a), 𝜈a =

∑
𝜅2
i = (BCn∕𝛾b)

∑
𝛼2
i .

Similarly, as
∑

𝛼i = 0, Ī• = H̄••, and (𝜇 + Ī•) ∼ N(𝜇, 𝜎2
b∕AB + 𝜎2

c ∕ABC + 𝜎2
e∕ABCn),

or
√
ABCn(𝜇 + Ī•) ∼ N(𝜅𝜇, 𝛾b), where 𝜅𝜇 = 𝜇

√
ABCn and 𝛾b = Cn𝜎2

b + n𝜎2
c + 𝜎2

e . Then
SS𝜇∕𝛾b ∼ 𝜒2

1 (𝜈𝜇), for 𝜈𝜇 = 𝜇2ABCn∕𝛾b. The EMS for bij and cijk do not change from the
all-random model, while

𝔼[EM𝜇] = 𝛾b

(
1 + ABCn

𝛾b
𝜇2
)

= 𝛾b + ABCn𝜇2,

𝔼[EM𝛼] =
𝛾b

A − 1

(
A − 1 + BCn

𝛾b

∑
a2i

)
= 𝛾b +

BCn
A − 1

∑
a2i .

Turning to the second case in which the classes and subclasses are fixed, Hij = (𝛽ij + Ḡij•) ∼
N(𝛽ij, 𝜎2

c ∕C + 𝜎2
e∕Cn) ⇒

√
Cn∕𝛾c ∼ N(𝜅ij, 1) leads to SS𝛽∕𝛾c ∼ 𝜒2

A(B−1)(𝜈𝛽), 𝜈𝛽 =
∑

i
∑

j𝜅
2
ij =

(Cn∕𝛾c)
∑

i
∑

j𝛽
2
ij .

For SS𝛼, condition
∑

j𝛽ij = 0 yields

Ii = (𝛼i + H̄i•) = (𝛼i + Ḡi••) = (𝛼i + c̄i•• + ēi•••) ∼ N(𝛼i, 𝜎2
c ∕BC + 𝜎2

e∕BCn),

or SS𝛼∕𝛾c ∼ 𝜒2
A−1(𝜈𝛼), but where 𝜈𝛼 = (BCn∕𝛾c)

∑
𝛼2
i . Note that this is the same as in the first case

above, except that 𝛾c replaces 𝛾b. Similarly, SS𝜇∕𝛾c ∼ 𝜒2
1 (𝜈𝜇), with now 𝜈𝜇 = 𝜇2ABCn∕𝛾c. The EMS

values follow the same calculation as above.
5) Let G11,G12,G21,G22 be i.i.d. N(0, 1). Then, with A = B = 2,

Ḡi• = B−1(Gi1 + · · ·GiB) = (1∕2)(Gi1 + Gi2) ∼ N(0, 1∕B) = N(0, 1∕2),

similar for Ḡ•j, and Ḡ•• = (1∕4)(G11 + G12 + G21 + G22),

S =
A∑
i=1

B∑
j=1

(Gij − Ḡi• − Ḡ•j + Ḡ••)2

= (G11 − Ḡ1• − Ḡ•1 + Ḡ••)2 + (G12 − Ḡ1• − Ḡ•2 + Ḡ••)2

+ (G21 − Ḡ2• − Ḡ•1 + Ḡ••)2 + (G22 − Ḡ2• − Ḡ•2 + Ḡ••)2

= (G11 − (1∕2)(G11 + G12) − (1∕2)(G11 + G21) + (1∕4)(G11 + G12 + G21 + G22))2

+ (G12 − (1∕2)(G11 + G12) − (1∕2)(G12 + G22) + (1∕4)(G11 + G12 + G21 + G22))2

+ (G21 − (1∕2)(G21 + G22) − (1∕2)(G11 + G21) + (1∕4)(G11 + G12 + G21 + G22))2

+ (G22 − (1∕2)(G21 + G22) − (1∕2)(G12 + G22) + (1∕4)(G11 + G12 + G21 + G22))2.
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Using Maple, this reduces to 1∕16 times

(G12 − G11 + G21 − G22)2 + (G12 − G11 + G21 − G22)2

+(G12 − G11 + G21 − G22)2 + (G12 − G11 + G21 − G22)2

or, with C ∼ N(0, 4),

S = 1
4
(G11 − G12 − G21 + G22)2 ∼

1
4
C2 ∼

(C
2

)2
∼ 𝜒2

1 = 𝜒2
(2−1)(2−1),

as was to be shown.
For the general case, the reader can try a proof by induction: Assume it holds for A ⩾ 2 and B ⩾ 2,
and then attempt to confirm that it holds for A + 1 and B. (The proof then for increasing B is
obviously symmetric with the case for increasing A).
Alternatively, one could proceed as follows. From

Gij − Ḡi• − Ḡ•j + Ḡ•• = (Gij − Ḡ••) − (Ḡi• − Ḡ••) − (Ḡ•j − Ḡ••)

and ∑
i

∑
j
(Ḡi• − Ḡ••)2 = B

∑
i
(Ḡi• − Ḡ••)2,∑

i

∑
j
(Ḡ•j − Ḡ••)2 = A

∑
j
(Ḡ•j − Ḡ••)2,

and the three cross terms∑
i
(Ḡi• − Ḡ••)

∑
j
(Gij − Ḡ••) = B

∑
i
(Ḡi• − Ḡ••)2∑

j
(Ḡ•j − Ḡ••)

∑
i
(Gij − Ḡ••) = A

∑
j
(Ḡ•j − Ḡ••)2∑

i
(Ḡi• − Ḡ••)

∑
j
(Ḡ•j − Ḡ••) = 0,

we have
∑

i
∑

j(Gij − Ḡi• − Ḡ•j + Ḡ••)2

=
∑
i

∑
j
(Gij − Ḡ••)2 − B

∑
i
(Ḡi• − Ḡ••)2 − A

∑
j
(Ḡ•j − Ḡ••)2.

From basic normal theory results (see, e.g., (III.A.206)), the first term is clearly 𝜒2
AB−1. The second

term is
∑

i(
√
BḠi• −

√
BḠ••)2 and

√
BḠi• ∼ N(0, 1), so that it is 𝜒2

A−1. Likewise, the third term
is 𝜒2

B−1. Thus, if the three terms are independent, then their sum is 𝜒2 with (AB − 1) − (A − 1) −
(B − 1) = (A − 1)(B − 1).



185

Part II

Time Series Analysis: ARMAX Processes
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4

The AR(1) Model

The auto-regressive assumption is often justified by the argument that omitted variables are
subject to an auto-regressive process. This argument holds, however, only if all omitted factors
contributing to the additive disturbance are subject to auto-regressive processes with the same
parameter. The widespread use of the auto-regressive correction in econometrics is explained
by the fact that it accounts for serial correlation and is computationally efficient. The adaptive
regression also explains serial correlation, is computationally efficient, and assumes an error
structure which, in many situations, provides a better approximation of reality.

(Thomas F. Cooley and Edward C. Prescott, 1973, p. 364)

In essentially all complex systems, whether in biology, economics, finance, medicine, meteorology,
political science, sociology, etc., the actual mechanism that gives rise to the observed data is highly
complicated and quite possibly changing over time. Moreover, it often involves a large number of
(possibly interacting) factors, many of which will be difficult to measure and/or properly account for
in a succinct model. As a result, it is of value to find simple approximations to reality that nevertheless
capture some of the primary aspects of the process under study. This is the notion addressed in the
above quote by Cooley and Prescott (1973), and for which allowing time-varying parameters might
offer a better solution, as discussed in Section 5.6.
In this and subsequent chapters, interest centers on a finite set of univariate observations that form

a time series, denoted {Yt}, that are observed at equally spaced intervals of time, t = 0,… ,T , and such
that they are based on an underlying, unobserved, i.i.d. sequence of Gaussian random variables. The
convention that time starts at zero (instead of one) is convenient when discussing the least squares
estimator of the autoregressive parameter of an AR(1) model, and is often used (see, e.g., Hayashi,
2000, p. 573). Before proceeding, it is worth emphasizing the rather limited nature of our scope:There
are oftenmultiple time series of interest instead of just one, giving rise tomultivariate time-series anal-
ysis (see, e.g., Hamilton, 1994, Lütkepohl, 2005, and Tsay, 2014), the data may not be equally spaced,
and the Gaussianity assumption can be relaxed, not just to, say, continuous distributions exhibiting
asymmetry and leptokurtosis, but also to discrete distributions (see, e.g., the numerous contributions
in Davis et al., 2015, and the references therein).
Many processes that are observed through time exhibit autocorrelation, or the tendency for the

observation in the current time period to be related, or correlated, to previous observations, usu-
ally in its very recent past. To explicitly capture this behavior, an autoregressive process can be used.

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Thesimplest suchmodel is thefirst-order autoregressive, or AR(1), process. Time series {Yt} follows
a Gaussian AR(1) process if, for all t,

Yt = aYt−1 + c +Ut , with Ut
i.i.d.∼ N(0, 𝜎2), (4.1)

and a, c ∈ ℝ. The same argument for using i.i.d. normal random variables for capturing the stochastic
part of the linear model, namely an appeal to the central limit theorem, is applicable here as well. The
Ut , provided they are i.i.d. but not necessarily Gaussian, are sometimes referred to as white noise, or
the innovation sequence that “drives” the process.
Process (4.1) is a special case of the more general ARMA class of time-series models that will be

considered in subsequent chapters. Nevertheless, (4.1) is quite useful in practice, and its properties
are easier to derive than those of the more general ARMA process. As such, we dedicate a whole
chapter to the AR(1) model.

4.1 Moments and Stationarity

We first derive the mean, variance, and covariances of the Yt . Then, the concept of stationarity is
introduced. With respect to a particular assumed data generating process, moments and stationarity
conditions apply to {Yt}, for all t ∈ ℤ. Applications necessarily involve a finite amount of data, and,
as mentioned above, we assume that the observed process starts at time t = 0.
By applying repeated substitution to (4.1), one can write, for any 0 < s ⩽ t,

Yt = asYt−s + c
s−1∑
i=0

ai +
s−1∑
i=0

aiUt−i. (4.2)

With s = t,

Yt = atY0 + c
t−1∑
i=0

ai +
t−1∑
i=0

aiUt−i, (4.3)

so that, conditional on Y0, Yt is a weighted sum of i.i.d. normal random variables and a constant and
is, hence, also normally distributed. Considering only the two interesting cases of a = 1 and |a| < 1,
as 𝔼[Ut] = 0, its conditional mean is easily seen to be

𝔼[Yt ∣ Y0] =
⎧⎪⎨⎪⎩

ct + Y0, if a = 1,

c
(
1 − at
1 − a

)
+ atY0, if |a| < 1. (4.4)

Remark l’Hôpital’s rule is often useful for evaluating indeterminate forms or ratios: Let f and g, and
their first derivatives, be continuous functions on (a, b). If

lim
x→a+

f (x) = lim
x→a+

g(x) = 0 and lim
x→a+

f ′(x)∕g′(x) = L,

then limx→a+ f (x)∕g(x) = L. The result also holds for the limit as x → b−. Rigorous proofs can be found
in virtually all real analysis textbooks. Most students remember this very handy result, but few can
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intuitively justify it. This can be done as follows: Assume f and g are continuous at a, so that f (a) =
g(a) = 0. Recall that, for small h > 0,

f ′(x) ≈
f (x + h) − f (x)

h
or f (x + h) ≈ f (x) + hf ′(x).

Using this gives

lim
x→a+

f (x)
g(x)

= lim
h→0

f (a + h)
g(a + h)

≈ lim
h→0

f (a) + hf ′(a)
g(a) + hg′(a)

=
f ′(a)
g′(a)

= lim
x→a+

f ′(x)
g′(x)

,

which is the desired result. ◾

Notice that, from l’Hôpital’s rule,

lim
a→1

(
1 − at
1 − a

)
= lim

a→1

(
−tat−1
−1

)
= t, (4.5)

as would be expected from (4.4). Without l’Hôpital’s rule, (4.5) can be seen directly as follows:

lim
a→1

(
1 − at
1 − a

)
= lim

a→1

(
1

1 − a
− at

1 − a

)
= lim

a→1
[1 + a + a2 + a3 + · · · − (at + at+1 + at+2 + at+3 + · · · )]

= lim
a→1

(1 + a + a2 + a3 + · · · + at−1) = t.

If c = 0, then 𝔼[Yt ∣ Y0] = atY0.
Using (4.3), the conditional variance of Yt is 𝕍 (Yt ∣ Y0) = 𝔼[(Yt − 𝔼[Yt ∣ Y0])2 ∣ Y0], or

𝔼[(Ut + aUt−1 + · · · + at−1U1)2] = 𝜎2(1 + a2 + a4 + · · · + a2t−2),

i.e., for t ⩾ 0,

𝕍 (Yt ∣ Y0) =
⎧⎪⎨⎪⎩

𝜎2t, if |a| = 1,

𝜎2
(
1 − a2t
1 − a2

)
, if |a| < 1, (4.6)

as in Priestley (1981, p. 118). If |a| < 1, then 𝕍 (Yt) is finite in the limit as t → ∞, and infinite otherwise.
Furthermore, when |a| < 1, we define

𝜇 ∶= lim
t→∞

𝔼[Yt] =
c

1 − a
, (4.7)

and

𝛾0 ∶= lim
t→∞

𝕍 (Yt) =
𝜎2

1 − a2
. (4.8)

These are referred to as theunconditional expected value andunconditional variance ofYt , respec-
tively.
It is a very simple exercise for the reader to confirm that the model can be expressed as

Yt − 𝜇 = a(Yt−1 − 𝜇) +Ut , |a| < 1, (4.9)
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which, upon rearranging, gives

Yt = 𝜇(1 − a) + aYt−1 +Ut , |a| < 1, (4.10)

(and noting that c = 𝜇(1 − a)) showing that Yt is a weighted average of its unconditional expectation,
𝜇, and the previous period’s value, Yt−1, such that the weights sum to one, plus a Gaussian error term.
Figure 4.1 shows a simulatedGaussianAR(1) process with a = 0.9, c = 0, and 𝜎2 = 1.Thefirst obser-

vation, Y0, is drawn from the unconditional distribution N(𝜇, 𝛾0), while the remaining are constructed
via (4.1). The two dashed lines are Y0at ± 1.96V 1∕2

t , where Vt = 𝕍 (Yt ∣ Y0) from (4.6), and so provide
95% error bounds, individual for each Yt , t ⩾ 0. One would thus expect about 5% of the observations
to lie outside these bounds; for this series, 27 of the 500 are outside, which is indeed very close to 5%.
Observe how it is only after about the 30th observation that the conditional distribution coincides
with the unconditional N(𝜇, 𝛾0) distribution. The rate at which this occurs depends on a; for a = 0,
it is immediate, while as a approaches one, it occurs very slowly. Figure 4.2 is similar to 4.1 but with
a = 0.999. Only at about t = 2,500 do the standard error lines begin to “flatten out”.
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Figure 4.1 Example of a simulated AR(1) process with a = 0.9 and 95% error bounds. The top panel is just a magnified
view of the beginning of the series. The figures are plotted such that the observations, indicated as dots, are
connected to enhance visibility, though note that the process is not continuous.
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Figure 4.2 Example of AR(1) process with a = 0.999.

One of the most interesting and important aspects of time-series models is their covariance struc-
ture. For the AR(1) model with |a| < 1, using (4.2) and the fact that Ui is independent of Yj for i > j,
we have that, for s ⩾ 0 (and taking c = 0),

Cov(Yt,Yt−s) = Cov

(
asYt−s +

s−1∑
i=0

aiUt−i, Yt−s

)
= as𝔼[Y 2

t−s] = as𝕍 (Yt−s).

In particular, using (4.6), this is

Cov(Yt,Yt−s) = 𝜎2as 1 − a2(t−s)
1 − a2

= 𝜎2 as − a2t−s
1 − a2

, s ⩾ 0, |a| < 1. (4.11)

Somewhat more generally, for any r and t,

Cov(Yt,Yr) = 𝜎2 a|t−r| − at+r
1 − a2

, (4.12)

as shown in Problem4.3. Taking the limit of (4.11) as t → ∞, we obtain theunconditional covariance,

𝛾s ∶= lim
t→∞

Cov(Yt,Yt−s) =
𝜎2as
1 − a2

, s ⩾ 0, |a| < 1.

For s ⩾ 1, this can be written as 𝛾s = a𝛾s−1, for |a| < 1.
Now consider Cov(Yt,Yt+s), for s ⩾ 0. Assume c = 0. From (4.2) with t + s replacing t,

Cov(Yt,Yt+s) = Cov(Yt+s,Yt) = Cov

(
asYt +

s−1∑
i=0

aiUt+s−i,Yt

)
= as𝕍 (Yt).

Thus, for any s ∈ ℤ,

𝛾s =
𝜎2a|s|
1 − a2

, |a| < 1. (4.13)

It is important to note that, in contrast to (4.11), 𝛾s does not depend on the particular time point t,
but rather only on the distance between two points of time. Furthermore, as s → ∞, 𝛾s → 0.
TheGaussianAR(1) process is (weak-)stationary if the condition |a| < 1 is fulfilled.More generally,

a time series is weak-stationary if (i) the unconditional mean, unconditional variance, and uncondi-
tional covariances are finite and constant, and (ii) the unconditional covariances depend only on the
time distance between two observations.
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An example of a process that is not weak-stationary is an AR(1) model with |a| ⩾ 1. In this case,
as the mean is not constant through time, the process is non-stationary. Non-stationarity could also
arise if, say, parameter a is such that |a| < 1 changes (at one or more points) through time, or if c,
or 𝜎2 > 0, changes through time. This gives rise to models with structural breaks, or time-varying
parameters, for which a large literature has been developed, given their importance in economics
(and surely other fields).
The opposite of weak-stationarity is not non-stationarity. A process could be such that it is not

weak-stationary, but still is strictly-stationary, or strongly-stationary:

A strictly-stationary process {Yt} is one whose joint probability distribution over k values in
time does not change when the time index is shifted. That is, for a set of time indexes t1 < t2 <
· · · < tk , k ∈ ℕ, the joint distribution of Yt1 ,Yt2 ,… ,Ytk is the same as Yt1+s,Yt2+s,… ,Ytk+s, for all
s ∈ ℤ.

An example of a strictly-stationary process that is not weak-stationary is a sequence of i.i.d. Cauchy
random variables: Observe that the joint distribution of any set of them is invariant to time shifts,
but the mean (and variance) do not exist. If a strictly stationary process also has existence of second
moments, then it is weak-stationary. A very important and useful fact is that, if process {Yt} is weakly
stationary and such that the joint distribution of Yt1 ,Yt2 ,… ,Ytk , for a set of time indexes t1 < t2 <
· · · < tk , and any k ∈ ℕ, is multivariate normal, then the process is also strictly stationary. Observe
that the multivariate normal is characterized by its first two moments (the means, variances, and
covariances); see, e.g., Chapter II.3, and Brockwell and Davis (1991, Sec. 1.6).

Remark The concept of weak-stationarity is a special case of stationarity up to order m. As in
Priestley (1981, p. 105), time series {Yt} is stationary up to orderm if, for a set of time indexes t1 < t2 <
· · · < tk , k ∈ ℕ, and for all s ∈ ℤ, all the joint moments up to order m ⩾ 0 of {Y (t1),Y (t2),… ,Y (tk)}
exist, and equal the corresponding jointmoments up to orderm of {Y (t1 + s),Y (t2 + s),… ,Y (tk + s)}.
In particular,

𝔼[{Y (t1)}m1{Y (t2)}m2 · · · {Y (tk)}mk ] = 𝔼[{Y (t1 + s)}m1{Y (t2 + s)}m2 · · · {Y (tk + s)}mk ],

for any k ∈ ℕ, and set of non-negative {mi} such thatm1 +m2 + · · · +mk ⩽ m. Weak-stationarity is
thus stationarity up to order two. ◾

TheAR(1) model with |a| > 1 is an example of what is referred to as an explosive process: Simulat-
ing and plotting such a process will quickly reveal why. If a = 1 and c = 0, then model (4.1) is referred
to as a randomwalk, and is said to have a unit root: We will have much more to say about unit roots
in Section 5.5.
If a = 1 and c ≠ 0, then process (4.1) is said to be a randomwalkwith drift.The name randomwalk

attempts to describe the evolution of the Yt through time: Assuming c = 0, the value of the process
at time t + 1 is just the value in the previous time period t plus a random quantity that has equal
probability of being positive or negative. As such, the process appears to randomly “walk” up or down
through time.One of the distinguishing features of the randomwalk is that, recalling (4.6), its variance
grows with t and is infinite as t → ∞.

Remark Though sometimes attributed to George Pólya, the first use of the expression is usually
accredited to Karl Pearson, from his article “The Problem of the RandomWalk”, in the July 1905 issue
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of Nature (Vol. LXXII). On page 294, it states “A man starts from a point O and walks l yard in a
straight line; he then turns through any angle whatever and walks another l yard in a second straight
line. He repeats this process n times. I require the probability that, after these stretches, he is at a
distance between r and r + dr from his starting point O.” ◾

The top panel of Figure 4.3 illustrates a simulated random walk with T = 200 observations and
𝜎 = 1. The evolution of Yt in the figure is very typical for small values of T in that artificial upward
or downward trends appear over parts of the data. From the data generating process, or d.g.p., Yt =
Yt−1 +Ut , it is obvious that these trends are not genuine; they are referred to as spurious trends.
Indeed, taking T larger makes this clearer: The bottom panel of Figure 4.3 shows the same random
walk but with many more observations. One can already imagine the problems that will occur in the
analysis of real data without (some) knowledge of the true underlying d.g.p.

Example 4.1 A simple model for stock prices is a random walk with drift, i.e., the price at time t,
Pt , is the price at time t − 1 plus a random quantity Ut

i.i.d.∼ N(0, 𝜎2), and possibly a small, positive,
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Figure 4.3 Top: Example of randomwalk. Bottom: Same randomwalk but showing more observations.
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Figure 4.4 Randomwalk without drift (top) and with drift (bottom) based on the same Ut sequence.
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Figure 4.5 The daily S&P 500 stock index over a 10 year period.
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constant value c that reflects the average rate of return over time for bearing the risk of the asset.That
is, Pt = Pt−1 + c +Ut . To illustrate, Figure 4.4 shows a random walk as before, i.e., without drift, and
the same random walk but plus a constant drift term c = 0.05. This can be compared to Figure 4.5,
which shows the S&P 500 stock index from 1982 to 1992. ◾

The AR(1) process at the other stationarity border, a = −1, is less important than the a = 1 case,
and behaves quite differently; see Problem 4.2.

4.2 Order of Integration and Long-Run Variance

Another concept related to stationarity is order of integration, denoted I(d), where d is the order
of integration and such that, first informally, the time series requires taking first differences d times
in order to arrive at a stationary process. The definition from one of the seminal papers reads: “A
series with no deterministic component which has a stationary, invertible ARMA representation after
differencing d times is said to be integrated of order d...” (Engle and Granger, 1987, p. 252).
The order of integration plays a major role in the study of co-integrationmodeling of multivariate

time series.Whilewewill not need the concept in this book, it is worth pointing out that several defini-
tions of I(0) have been presented in the literature, and being I(0) is not equivalent to being stationary.
See Davidson (2009) for a detailed discussion of this issue, comparison of several definitions provided
in the literature, and a suggestion for a formal definition in terms of an infinite stochastic sequence.
Davidson (2009) shows that a necessary condition for a process to be I(0) is if it admits a moving
average (MA) representation (see Section 7.2) such that the MA coefficients are square-summable,
i.e.,

∑∞
j=0 b2j < ∞.

According to Hayashi (2000, p. 558), an I(0) process is a strictly-stationary process whose long-run
variance is finite and positive, where the long-run variance of process {Yt} is limT→∞𝕍 (

√
TȲ ). This

latter constraint purposely rules out the following case: Let Yt = et − et−1, where {et} are independent
white noise, say {et}

i.i.d.∼ N(0, 1). Observe that Yt ∼ N(0, 2), and
Cov(Yt,Yt−1) = 𝔼[YtYt−1] = 𝔼[(et − et−1)(et−1 − et−2)] = −𝔼[e2t−1] = −1,

so that {Yt} is stationary. But et − et−1 being a first difference of i.i.d. random variables, in order for
{Yt} to be I(0), {et} needs to be I(1), but it is I(0), thus giving rise to a definitional anomaly. We have

T∑
t=1

Yt = (e1 − e0) + (e2 − e1) + (e3 − e2) + · · · = eT − e0,

and 𝕍 (
√
TȲ ) = 𝕍

(
T−1∕2 ∑T

t=1 Yt

)
= 𝕍 (T−1∕2(eT − e0))

T→∞
−−−−−→ 0. Another way of seeing this is to let

V = 𝕍 (Yt), and let e0 be fixed. Then,
Y1 = e1 − e0 ⇒ e1 = Y1 + e0 ,
Y2 = e2 − e1 = e2 − e0 − Y1 ⇒ e2 = Y2 + Y1 + e0 ,
Y3 = e3 − e2 = e3 − e0 − Y2 − Y1 ,

⋮

Yt = et − e0 −
t−1∑
j=1

Yt ,
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or

V = 𝕍 (et) − (t − 1)V ⇒ V =
𝕍 (et)
t

t→∞
−−−−→ 0.

Hence the requirement that the long-run variance is finite and positive.

4.3 Least Squares andML Estimation

4.3.1 OLS Estimator of a

LetY = (Y0,… ,YT )′ be a sequence ofT + 1 observations froma stationaryAR(1) processwith autore-
gressive parameter a, additive term c = 0 and Ut

i.i.d.∼ N(0, 𝜎2). (The situation with unknown c is a
special case of the model class studied in Chapter 5). Define the T × (T + 1) selection matricesDT =
[𝟎 ∣ IT ] and DT−1 = [IT ∣ 𝟎], with 𝟎 denoting a T-length column of zeros, and define

YT ∶= (Y1,… ,YT )′ = DTY and YT−1 ∶= (Y0,… ,YT−1)′ = DT−1Y.

TheAR(1) model has the form of a linear regression model, so the autoregressive parameter a can be
estimated by regressing the last T observations onto the first T observations, and 𝜎2 can be estimated
by the usual variance estimator in o.l.s. That is,

âLS =
∑T

t=1 YtYt−1∑T−1
t=0 Y 2

t

=
Y′
T−1YT

Y′
T−1YT−1

=
Y′D′

T−1DTY
Y′D′

T−1DT−1Y
, (4.14a)

and

�̂�2
LS =

∑T
t=1 (Yt − âLSYt−1)2

T − 1
. (4.14b)

These estimators are consistent and, except for very small sample sizes and/or cases in which |a| is
close to one, yield values that are very close to the m.l.e. Notice that, in �̂�2

LS, the sum of the T squared
residuals is divided by T minus the number of regressors, as is often done in least squares analysis to
remove the bias of the estimator of 𝜎2; recall (1.59).
While there exist numerous methods of parameter estimation for the ARMA class of time-series

models introduced later (the stationary AR(1) being a special case of which), the m.l.e. is usually
preferred because it exhibits good small sample performance and possesses attractive asymptotic
properties. We now illustrate three ways in which the likelihood can be determined.

4.3.2 Likelihood Derivation I

As Y0,U1,U2,… ,UT are independent of one another, their joint p.d.f. is easily expressed. For Y0,
because observations previous to Y0 are not available, we have to use its unconditional distribution:
Y0 ∼ N(0, 𝜎2∕(1 − a2)) or

fY0
(y) =

(
1 − a2
2𝜋𝜎2

)1∕2

exp
{
−1 − a2

2𝜎2 y2
}

. (4.15)
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Multiplying this by

fU1,…,UT
(u1,… ,uT ) = (2𝜋𝜎2)−T∕2 exp

{
− 1
2𝜎2

T∑
t=1

u2
t

}
yields the desired joint density. The transformation

Y0 = Y0
Y1 = aY0 +U1
Y2 = aY1 +U2

⋮
YT = aYT−1 +UT

⇐⇒

Y0 = Y0
U1 = Y1 − aY0
U2 = Y2 − aY1

⋮
UT = YT − aYT−1

has Jacobian

J =

⎡⎢⎢⎢⎢⎣
1 0 0 · · · 0
−a 1 0 0
0 −a 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 · · · 0 −a 1

⎤⎥⎥⎥⎥⎦
, det(J) = 1,

so that, with Y = (Y1,… ,YT ),

fY0,Y(y0, y) = fY0
(y0) ⋅ (2𝜋𝜎2)−T∕2 exp

{
− 1
2𝜎2

T∑
t=1

(yt − ayt−1)2
}

, (4.16)

where fY0
(y0) is given in (4.15).

A similar way of deriving (4.16) without the explicit use of the Jacobian is to express the joint density
of Y0,Y1,… ,YT as

fY0
fY1∣Y0

fY2∣Y1,Y0
fY3∣Y2,Y1,Y0

· · · fYT ∣YT−1,…,Y1,Y0
. (4.17)

The density fY0
is given in (4.15). From (4.1), Yt = aYt−1 +Ut , so that, conditional on Yt−1,

fYt ∣Yt−1 ,Yt−2,…,Y1,Y0
(yt ∣ yt−1, yt−2,… , y1, y0) = fYt ∣Yt−1

(yt ∣ yt−1),

and (Yt ∣ Yt−1 = yt−1) ∼ N(ayt−1, 𝜎2). Thus, the joint density of Y0,Y1,… ,YT evaluated at
y0, y1,… , yT is

fY0
(y0) ⋅

T∏
t=1

1
𝜎
√
2𝜋

exp
{
− 1
2𝜎2 (yt − ayt−1)2

}
,

which is equivalent to (4.16).
The log-likelihood 𝓁(a, 𝜎;Y0,Y) = ln fY0,Y(y0, y; a, 𝜎) can be straightforwardly programmed and

maximized to obtain the m.l.e. and the (approximate) variance covariance matrix of a and 𝜎. The
resulting estimator is sometimes referred to as the exact m.l.e. because it is based on the exact
likelihood, as opposed to an approximation, discussed next.
Alternatively, the conditional m.l.e. can be used, which, in this context, means conditioning on the

first observationY0. Doing so implies that the conditional likelihood is just (4.17) but treating the term
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fY0
as a constant (and, thus, omitting it). Importantly, inspection of (4.16) shows that the conditional

m.l.e. is identical to the least squares estimator of a in (4.14) and also for 𝜎2 when �̂�2
LS in (4.14) is

divided by the number of observations instead of subtracting off the number of regressors. This also
implies that, for known Y0,

∑T
t=1 YtYt−1 and

∑T−1
t=0 Y 2

t are sufficient for a, recalling the definition of
sufficiency from, e.g., Section III.7.1. (See Forchini, 2000, for a study of the joint distribution of the
minimal sufficient statistics for a and 𝜎2 in this setting with known Y0.)

4.3.3 Likelihood Derivation II

It follows from (4.4), (4.12), and the normality assumption on the Ut , that (Y ∣ Y0 = y0) ∼ N(𝜼, 𝜎2𝚺0),
where 𝜼 = (ay0, a2y0,… , aTy0) and the elements of 𝚺0 are given by (4.12) (without the 𝜎2).Thus, from
the multivariate normal distribution,

fY∣Y0
(y ∣ y0) =

1|𝜎2𝚺0|1∕2(2𝜋)T∕2 exp
{
− 1
2𝜎2 (y − 𝜼)′𝚺−1

0 (y − 𝜼)
}
. (4.18)

The exact likelihood is then given by fY0
⋅ fY∣Y0

. It should be obvious that, computationally speaking,
(4.16) is greatly preferred because (4.18) entails the construction and inverse of a T × T matrix.

4.3.4 Likelihood Derivation III

Instead of assuming that we observe the “start” of the time series, Y0, we can envision having obtained
a segment of a time series that extends infinitely far into the past. This implies that the unconditional
expected value and covariances of the observations should be used.The former is zero from (4.7) and
the latter are given in (4.13). In particular, the previous distinction between Y0 and Y is no longer
necessary and, with y = (y0, y1,… , yT )′,

fY0,Y(y) =
1|𝜎2𝚺unc|1∕2(2𝜋)(T+1)∕2 exp

{
− 1
2𝜎2 y′𝚺−1

uncy
}
, (4.19)

where the (i, j)th element of 𝚺unc is just 𝛾i−j (without the 𝜎2), i.e.,

𝚺 = 𝚺unc =
1

1 − a2

⎡⎢⎢⎢⎢⎣
1 a a2 · · · aT
a 1 a · · · aT−1
a2 a 1 · · · aT−2
⋮ ⋮ ⋮ ⋱ ⋮

aT aT−1 aT−2 · · · 1

⎤⎥⎥⎥⎥⎦
, (4.20)

which is now a (T + 1) × (T + 1) matrix. In fact, (4.20) does not need to be computed and inverted
because it can be shown that its inverse takes on the simple tri-diagonal band form

𝚺−1
unc =

⎡⎢⎢⎢⎢⎣
1 −a 0 · · · 0

−a b −a ⋮
0 −a ⋱ 0
⋮ b −a
0 0 · · · −a 1

⎤⎥⎥⎥⎥⎦
, b = 1 + a2, (4.21)

as the reader should quickly confirm by direct multiplication. Tomakematters evenmore convenient,|𝚺unc| = 1∕(1 − a2), independent of T . This determinant result turns out to be a special case of (6.21)
for an AR(p) model.
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Remark The general theory for inverses and determinants of patterned matrices such as (4.20) is
well established. For this particular case, the result is given in Graybill (1983, p. 201), where more
general, and other useful, interesting results can be found. Another impressive resource for results on
structured matrices is Vandebril et al. (2008). ◾

This form of the likelihood can be related to (4.16) by using the fact that 𝚺−1
unc can be written as C′C,

where

C =

⎡⎢⎢⎢⎢⎢⎣

√
1 − a2 0 0 · · · 0
−a 1 0 · · · 0
0 −a 1 ⋱ ⋮
⋮ 0 ⋱ ⋱ 0
0 · · · 0 −a 1

⎤⎥⎥⎥⎥⎥⎦
.

Then

C[y0, y1,… , yT ]′ = [y0
√
1 − a2, y1 − ay0, … , yT − ayT−1]′, (4.22)

and

y′𝚺−1
uncy = y′C′Cy = y20(1 − a2) +

T∑
t=1

(yt − ayt−1)2, (4.23)

so that (4.19) and (4.16) are identical.

4.3.5 Asymptotic Distribution

If the data are generated by a stationary, mean-zero AR(1) process with i.i.d. N(0, 𝜎2) innovations,
then the asymptotic distribution of the m.l.e. of a is given by√

T(âML − a) asy∼ N(0, 1 − a2), (4.24)

i.e., for large enough samples, âML is approximately normally distributed with mean a and variance
(1 − a2)∕T . The o.l.s. estimator has the same asymptotic distribution, i.e.,

√
T(âLS − a) asy∼ N(0, 1 −

a2). To informally motivate this latter result, use (4.14) to write

âLS =
∑T

t=1 YtYt−1∑T−1
t=0 Y 2

t

=
∑T

t=1(aYt−1 +Ut)Yt−1∑T
t=1 Y 2

t−1

= a +
∑T

t=1 UtYt−1∑T
t=1 Y 2

t−1

,

so that√
T(âLS − a) =

T−1∕2 ∑T
t=1 UtYt−1

T−1 ∑T
t=1 Y 2

t−1

=∶ N
D
.

As Ut is independent of Yt−1 and both have expected value zero, 𝔼[UtYt−1] = 0. Recall (see Section
II.2.3) that, for independent random variables X and Y with means 𝜇X , 𝜇Y and finite variances 𝜎2

X , 𝜎
2
Y ,

𝔼[XY ] = 𝜇X𝜇Y and 𝕍 (XY ) = 𝜇2
Y𝜎

2
X + 𝜇2

X𝜎
2
Y + 𝜎2

X𝜎
2
Y . (4.25)
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Figure 4.6 Variance of âLS times T as a function of a.

Thus, 𝕍 (UtYt−1) = 𝕍 (Ut)𝕍 (Yt−1) = 𝜎2𝛾0. As such, treating {UtYt−1} as an i.i.d. sequence, Var(N) =
T−1T𝕍 (UtYt−1) = 𝜎2𝛾0 and, via the central limit theorem, N asy∼ N(0, 𝜎2𝛾0). As denominator D is a
consistent estimator of 𝛾0, we obtain√

T(âLS − a) asy∼ 1
𝛾0
N(0, 𝜎2𝛾0) = N

(
0, 𝜎

2

𝛾0

)
= N(0, 1 − a2). (4.26)

Observe that the asymptotic distribution does not involve 𝜎2. In fact, as shown in (4.37) below, âLS is
independent of 𝜎2 for any sample size.
To illustrate the quality of the asymptotic expression for the variance, (1 − a2)∕T , Figure 4.6 showsT

times the variance of âLS for three values of T , computed via simulation based on 10,000 replications,
over a grid of a-values.The dotted line is 1 − a2, which is nearly reached forT = 100, while for smaller
sample sizes, the variance curve is still essentially quadratic, but lower in a region around a = 0 and
higher outside.
It is important to keep inmind that this asymptotic result relies on the normality of the innovations;

see Problem 4.5 for the behavior of 𝕍 (âLS) in some non-normal cases.

4.4 Forecasting

One of the most interesting and useful aspects of time-series analysis is extrapolating the model
beyond the sample sizeT to obtain point and interval estimates of values thatwill be observed at a later
date. This is referred to as forecasting, as a special case of the more general concept of prediction,
though the two words are often used synonymously in the domain of statistical inference.1
Assume values of the process {Yt} are observed up to timeT , whichwe refer tomore generally as the

information set up to time T , denoted ΩT . Assume further that c = 0 in model (4.1), so that YT+1 =
aYT +UT+1. Then, a logical (and optimal) forecast of YT+1 givenΩT is aYT , obtained by replacing the
unobservable value ofUT+1 by its expected value. We denote this as YT+1 ∣ ΩT or, more commonly, as
YT+1∣T . As

YT+1∣T − YT+1 = aYT − (aYT +UT+1) = −UT+1 ,

1 At the risk of being pedantic, note that, in English, one might forecast the population size of the world, but we can only
predict the future of humankind.
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it follows that𝔼[YT+1∣T − YT+1] = 0 and 𝕍 (YT+1∣T − YT+1) = mse(YT+1∣T ) = 𝜎2. As awill almost always
be unknown, it is replaced by an estimate, say â = âML, to get ŶT+1∣T ∶= âYT and

mse(ŶT+1∣T ) = 𝔼[(ŶT+1∣T − YT+1)2] = 𝔼[(ŶT+1∣T − aYT + aYT − YT+1)2]

= 𝔼[(ŶT+1∣T − aYT )2] + 𝔼[(aYT − YT+1)2] + cross term
= 𝔼[(ŶT+1∣T − aYT )2] + 𝜎2, (4.27)

where the cross term

2 𝔼[(ŶT+1∣T − aYT )(aYT − YT+1)] = 2 𝔼[((â − a)YT )(−UT+1)]

is zero becauseUT+1 is independent of (â − a)YT . In this context, it is typical to speak ofmean square
prediction error, though we will not use this distinction here.
Observe from the nature of â, from (4.14a) or (4.17), that the covariance between â and YT goes to

zero as the sample size increases. Thus, (4.25), (4.8) and (4.24) imply that the first term in (4.27) is

𝔼[(ŶT+1∣T − aYT )2] = 𝔼[((â − a)YT )2]

≈ 𝔼[Y 2
T ]𝔼[(â − a)2] ≈ 𝜎2

1 − a2
1 − a2
T

= 𝜎2

T
, (4.28)

so that

mse(ŶT+1∣T ) ≈ (1 + T−1)𝜎2. (4.29)

Notice that this is independent of the true value of a and is asymptotically identical to mse(YT+1∣T ).
In practice, as 𝜎2 is unknown, it is replaced by an estimate for computing (4.29).
Figure 4.7 shows the approximate m.s.e. of ŶT+1∣T for this model as a function of (positive values of )

a, computed via simulation using 100,000 replications, based on 𝜎2 = 4 and T = 10. This was done
for the three estimators: (i) the exact m.l.e. âML, (ii) the o.l.s. estimator âLS, and (iii) the so-called
Yule–Walker estimator, denoted âYW. The latter is given by

∑T
t=2 YtYt−1∕

∑T
t=1 Y 2

t and discussed in
Section 6.1.3.2. Notice that âLS and âYW are algebraically very close.
The first observation to be made from Figure 4.7 is that, with respect to m.s.e., the exact m.l.e. is

superior to the conditional m.l.e. (âLS) for all 0 < a < 1, while for 0 < a < 0.6, âYW is better than âML,
but as a increases towards one, the m.s.e. of âYW grows significantly. Finally, for a near 0.5, the m.s.e.
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Figure 4.7 The m.s.e. of one-step ahead forecast ŶT+1∣T = âYT for the AR(1) model as a function of autoregressive
parameter a, with 𝜎 = 2. The solid line is the m.s.e. for âML, the dashed line is for âLS, and the dash-dot line is for âYW.
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of âML is indeed very close to 𝜎2(1 + 1∕T) = 4.4 from (4.29), but is higher for a near zero, and lower
for a near one, indicating the approximate nature of (4.28).
A two-step ahead point forecast given ΩT is denoted as ŶT+2∣T . For a stationary AR(1) model with

parameters a and 𝜎2, ŶT+2∣T is obtained by replacing all values in the equation for YT+2 by their best
estimates, i.e., as YT+2 = aYT+1 +UT+2, a is replaced by â, YT+1 by ŶT+1∣T , and UT+2 by zero. Thus,
ŶT+2∣T = â2YT . Similarly, ŶT+h∣T = âhYT , h ⩾ 1. Observe that limh→∞âhYT = 0, so that “long term”
forecasts converge to just the mean of the series. The m.s.e. of ŶT+h∣T can be obtained via a similar
decomposition as (4.27), i.e., for h ⩾ 1,

mse(ŶT+h∣T ) = 𝔼[(ŶT+h∣T − ahYT )2] + 𝔼[(ahYT − YT+h)2]. (4.30)

For the latter term in (4.30), repeated substitution as in (4.2) yields

ahYT − YT+h = ahYT −

(
ahYT +

h∑
i=1

ah−iUT+i

)
,

from which it follows that

𝔼[(ahYT − YT+h)2] = 𝜎2(1 + a2 + a4 + · · · + a2(h−1)). (4.31)

For the first term on the r.h.s. of (4.30), with â = a + 𝜖, applying the binomial theorem shows that

âh = (a + 𝜖)h =
h∑
i=0

(
h
i

)
ai𝜖h−i = 𝜖h + ha1𝜖h−1 + · · · + hah−1𝜖 + ah,

which, for large T (and, thus, small 𝜖), is approximately hah−1𝜖 + ah. Treating 𝜖 as a Gaussian random
variable with mean zero, it follows that 𝔼[âh] = ah and

𝕍 (âh) ≈ (hah−1)2𝕍 (𝜖). (4.32)

We can arrive at (4.32) in a different way, and also endow âh with a distribution, as follows: As the
asymptotic distribution of â is known from (4.24), that of âh can be inferred. In particular, recall the
delta method (see, e.g., Section III.3.1.4): For some differentiable function 𝜏 , 𝜏(�̂�ML)

asy∼ N(𝜏(𝜃), �̇�2V ),
where V is the asymptotic variance of �̂�ML. Thus, with 𝜏(â) = âh,√

T(âh − ah) asy∼ N(0, h2a2h−2(1 − a2)).

Using this, we have, similar to (4.28),

𝔼[(ŶT+h∣T − ahYT )2] = 𝔼[((âh − ah)YT )2]

≈ 𝔼[Y 2
T ]𝔼[(â

h − ah)2]

≈ 𝜎2

1 − a2
h2a2h−2 1 − a2

T
= 𝜎2 h2a2h−2

T
. (4.33)

Thus, from (4.30), (4.31), and (4.33),

mse(ŶT+h∣T ) ≈ 𝜎2
(
1 + a2 + a4 + · · · + a2(h−1) + h2a2h−2

T

)
. (4.34)
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As limh→∞(h2a2h−2) = 0, limh→∞mse(ŶT+h∣T ) = 𝜎2∕(1 − a2) = 𝕍 (Yt). In particular, the variance of
the “long-term” forecast is just the variance of the series itself. In addition to the approximate nature
of (4.34), observe that, for h > 1, (4.34) involves the two unknown parameters 𝜎2 and a. These need
to be replaced by their respective estimates if (4.34) is to be computed in practice, adding further to
its uncertainty.
To illustrate the nature of (4.34) in small samples, the top panel of Figure 4.8 shows the actual m.s.e.

of h-step ahead forecasts, h = 1,… , 8, of the AR(1) model with a = 0.5, 𝜎2 = 4, andT = 10 computed
via simulation with 200,000 replications. These are compared to (4.34) using the true values of a and
𝜎, and also (4.34) without the last term. Unsurprisingly, the m.s.e. based on the conditional m.l.e. is
higher than that based on the exact m.l.e. More importantly, we see that the true m.s.e. based on the
exact m.l.e. and (4.34) with all terms are reasonably close, particularly for h ⩽ 3, while use of (4.34)
without the last term is relatively inaccurate, but converges to (4.34) as h increases.The limiting value
as h increases is just the process variance, which in this case is 𝜎2∕(1 − a2) = 5.3̄.
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Figure 4.8 Top: True m.s.e. of h-step ahead forecasts, h = 1,… , 8, for a = 0.5, 𝜎2 = 4, and T = 10 using exact m.l.e.
(solid) and conditional m.l.e. (dotted), both restricted to yield stationary models. The dashed line is (4.34) using the
true values of a and 𝜎, while the dash-dot line is the same, but without the last term in (4.34). Bottom: Same, but with
T = 50. Note the change of the y-axis.
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4.5 Small Sample Distribution of the OLS andML Point Estimators

In conclusion, we should be fully prepared for the serious bias of the least squares estimate,
when we estimate the autoregressive model from a small sample typically dealt with in
econometrics.

(Takamitsu Sawa, 1978, p. 169)

As for most models, the exact sampling distribution of the m.l.e. in the AR(1) model is not analyt-
ically tractable, but simulation offers an easy way of empirically approximating it. This was done for
several values of a and T , using 1,000 replications. Kernel density estimates of the distribution of âML
are shown in Figure 4.9. With only T + 1 = 20 observations, the density of âML is quite spread out,
for a = 0, it appears symmetric around zero, while for a = 0.5, there is noticeable left skewness. This
arises because âML is constrained to lie between −1 and 1. The skewness is extreme for the a = 0.9
case, although the mode of the density is indeed quite close to 0.9.
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Figure 4.9 Kernel density estimates of the distribution of the m.l.e. of a in the AR(1) model using 10,000 replications
(values a = 0, a = 0.5, and a = 0.9) and three sample sizes, as indicated.
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Table 4.1 Small-sample behavior of AR(1) estimators âLS (o.l.s.) and âML (m.l.e.) based on 1,000 simulated time series,
near and on the stationarity border. The top panel gives the sample mean, the middle panel gives 1,000 times the
variance, and the bottom panel gives the percentage of estimates exceeding 1.0.

a

T + 1 0.90 0.95 0.99 1.00

o.l.s. m.l.e. o.l.s. m.l.e. o.l.s. m.l.e. o.l.s. m.l.e.

M
ea
n 20 0.831 0.833 0.887 0.889 0.950 0.950 0.919 0.832

100 0.883 0.884 0.933 0.934 0.976 0.978 0.982 0.970
500 0.896 0.896 0.946 0.946 0.986 0.987 0.997 0.995

10
3
⋅V

ar 20 20.5 17.3 15.8 12.5 8.98 6.62 21.6 21.2
100 2.44 2.29 1.56 1.41 0.692 0.520 0.986 0.955
500 0.406 0.399 0.223 0.216 0.0661 0.0601 0.0404 0.0327

%
>
1 20 3.89 0 10.9 0 26.6 0 32.9 0

100 0.0 0 0.15 0 9.67 0 31.9 0
500 0.0 0 0.0 0 0.14 0 32.1 0

We also observe that, as a increases from 0 to 1, the variance of âML decreases, agreeing with (4.24).
As expected, as T grows, the density becomes less skew and more Gaussian in appearance, centered
on the true value of a.
Now consider what happens as a approaches one.The exact likelihood cannot be evaluated at a = 1

because fY0
(⋅) = 0. Thus, when computing the m.l.e., the optimization algorithm must be prevented

from trying values of â ⩾ 1. This motivates use of the conditional m.l.e. âLS from (4.14a), which does
not require fY0

. For the three sample sizes T = 20, T = 100, and T = 500, and the four values of a,
0.90, 0.95, 0.99, and 1.0, the mean and variance of âLS and âML, based on 10,000 simulated time series,
are shown in Table 4.1, along with the percentage of estimates that equal or exceed unity.
Inspection of the table reveals several facts:

• As the sample size increases, both estimators improve in terms of bias and variance.
• For all values of a ⩾ 0.90, the variance of âML is smaller than âLS.
• For the stationary models, the variance decreases as a increases towards one, as was also seen in

Figure 4.9. But when a = 1 and T is small, the variance of both estimators jumps up considerably.
• Both the o.l.s. andm.l.e. are extremely downward biased forT = 20 andmoderately so forT = 100;

for T = 500, the bias is zero when measured with two significant digits.
• For the stationary models, the bias of the m.l.e. is slightly less than that of the o.l.s. estimator, with

their difference being more pronounced for smaller sample sizes.
• For a = 1, the m.l.e. exhibits a much greater bias than the o.l.s. estimator, particularly for small T .

This is due to the fact that both estimators have a relatively high variance when a = 1 but the m.l.e.
cannot equal or exceed one.

• A value of â > 1 is of little practical value if it can be assumed that the process is not explosive,
in which case it will most likely be truncated to one. For the random walk with T = 20, if all
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occurrences of âLS > 1 are set to one, then the mean is 0.9045 (not shown in the table), so that,
with respect to bias, the truncated o.l.s. estimator is preferred to the m.l.e. Similar results hold for
the larger sample sizes: For T = 100 (500), themean of the truncated o.l.s. values is 0.9800 (0.9960).

The previous analysis is useful because many time series of interest, notably in macro-economics,
have small T , and resemble a randomwalk, so that â for the AR(1) model will be close to one. In order
to make useful inferences in such cases (such as a valid confidence interval for a), we require the p.d.f.
and c.d.f. of âLS.
For model (4.1) with c = 0, i.e., Yt = aYt−1 +Ut , Ut

i.i.d.∼ N(0, 𝜎2), let as before Y = (Y0,… ,YT )′ and
U = (U0,… ,UT ) ∼ N(𝟎, 𝜎2IT+1). From (4.15), Y0 can be expressed as Y0 = bU0, where

b =
{

(1 − a2)−1∕2, if a ∈ (−1, 1),
0, otherwise, (4.35)

and

Y1 = aY0 +U1 = abU0 + U1,

Y2 = aY1 +U2 = a2bU0 + aU1 +U2,

etc., so that Y = RU, where

R = R(a) =

⎡⎢⎢⎢⎢⎢⎢⎣

b 0 0 · · · 0 0
ba 1 0 · · · 0 0
ba2 a 1 · · · 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

⋱ 1 0
baT aT−1 aT−2 · · · a 1

⎤⎥⎥⎥⎥⎥⎥⎦
. (4.36)

The distribution of the o.l.s. estimator âLS in (4.14) is thus that of the quadratic form
U′R′D′

T−1DTRU
U′R′D′

T−1DT−1RU
= U′AU

U′BU
, (4.37)

where A = (R′D′
T−1DTR + R′D′

TDT−1R)∕2 (so that it is symmetric, recalling the beginning of
Chapter A) and B = R′D′

T−1DT−1R. Note that 𝜎2 cancels from the numerator and denominator,
showing that âLS is invariant to its value.
The numericmethods of Appendix A.1 can be used to compute its p.d.f. and c.d.f. Figure 4.10 shows

the density of âLS for several a andT calculated from (i) simulation and (ii) using the p.d.f. saddlepoint
approximation of (4.37). The latter is highly accurate even for (the impractically small sample size of )
T + 1 = 10, and improves as T increases.
The probability that âLS is greater than one can be calculated from the c.d.f. Using the exact calcu-

lation for T = 20 yields 4.09%, 10.9%, 26.8%, and 33.0%, for a = 0.90, 0.95, 0.99, and 1.0, respectively.
These are very close to the values obtained via simulation, as shown in Table 4.1.2
The low order moments of âLS can be computed using the results in Appendix B.2 or obtained by

numerically integrating xnf̄ (x), where f̄ = f̂ ∕ ∫ f̂ (x) dx is the normalized saddlepoint density of âLS.

2 For comparison, the second-order c.d.f. s.p.a. gives values 3.93%, 10.3%, 25.1%, and 32.7%; note the relative inaccuracy for
a = 0.99 and this sample size. Alternatively, numerically integrating the normalized second-order p.d.f. gives 26.6% for this
case, which does compare well with the exact value of 26.8%.
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Figure 4.10 Density of âLS based on a = 0, a = 0.3, a = 0.7, and a = 0.95, for T + 1 = 10 (a), T + 1 = 20 (b), and
T + 1 = 50 (c) using simulation and kernel density estimation based on 10,000 replications (solid) and the saddlepoint
approximation of (4.37) (dashed).

For example, with T + 1 = 20, the means corresponding to a = 0.90, 0.95, 0.99, and 1.0 are 0.830,
0.885, 0.950, and 0.916, respectively, while the variances (times 1,000) are 20.2, 15.9, 9.10, and 22.3.
Observe that these are very close to the values in Table 4.1 obtained from simulation.

Remark A common measure of persistence in an autoregressive time-series model is the half life,
defined to be the time required for a unit shock to dissipate by 50%, and, for the AR(1) model, com-
puted as ĥ = ln(1∕2)∕ ln(�̂�), for 0 < �̂� < 1. Examples of its use can be found in the economic literature
on purchasing power parity; see, e.g., the references in Chen and Giles (2011), as well as a discussion
on its extension to the AR(p) case.
For the AR(1) model, the density of ĥ is, via univariate transformation,

fĥ∣C(h ∣ C) =
(1∕2)1∕h ln 2
h2 Pr(C)

fâLS ((1∕2)
1∕h), C = {0 < �̂� < 1}. (4.38)
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fâLS can quickly and accurately be approximated by f̂âLS , the density saddlepoint approximation (s.p.a.),
and Pr(C) can be computed from the s.p.a. of the c.d.f. of âLS. The c.d.f. of ĥ ∣ C at h can be computed
from the s.p.a. for Pr(âLS ⩽ (1∕2)1∕h)∕C.
Chen and Giles (2011) show that no positive integer moments of ĥ exist, lending explanation to the

difficulty in the literature of ascribing confidence intervals to h. Given the bias of the o.l.s. estimator of
𝛼, the half life h is often computed using a bias-adjusted estimator of 𝛼, such as the median-unbiased
estimator, discussed in the next section. ◾

4.6 Alternative Point Estimators of a

Sections III.7.4.4 and III.8.4 introduced the jackknife, and the mean-bias-adjusted, median-unbiased,
and mode-unbiased estimators, respectively, showing examples in an i.i.d. setting. These are briefly
reviewed here, and their application to estimation of parameter a is discussed.
The latter group of estimators rely on the analytic expressions for the p.d.f., c.d.f., and

moments of the o.l.s. estimator discussed in Chapters A and B. In particular, the calculation of
the mean-bias-adjusted estimator requires the mean of (4.37), which can be computed from (B.36),
the median unbiased estimator requires the c.d.f., while computation of the mode unbiased estimator
requires evaluation of the p.d.f.

4.6.1 Use of the Jackknife for Bias Reduction

Thebasic jackknife, using notation appropriate for time series, is as follows: Assume we have a sample
of T observations Y = (Y1,Y2,… ,YT )′ and �̂� = S = S(Y) is a statistic (a function of the data but not
of the unknown parameters) that serves as an estimator of parameter 𝜃, and which we refer to as
the base estimator. Let Y(t) denote the set of T − 1 observations resulting when observation Yt is not
included, i.e.,

Y(t) = (Y1,Y2,… ,Yt−1,Yt+1,… ,YT )′, t = 1, 2,… ,T , (4.39)

and let S(t) = S(Y(t)), t = 1,… ,T . The delete-1 jackknife estimator of 𝜃 based on �̂� is given by

�̂�∗ = TS − (T − 1)S̄•, S̄• = T−1
T∑
t=1

S(t), (4.40)

where S̄• is the average of the S(t). Assume the expansion

bias(S) = 𝔼[S] − 𝜃 =
a1
T

+
a2
T2 + · · · (4.41)

holds, for constants ai that can depend on 𝜃 but not on sample size T . Then

𝔼[�̂�∗] = T𝔼[S] − (T − 1)𝔼[S1]

= T
(
𝜃 +

a1
T

+
a2
T2 +

a3
T3 + · · ·

)
− (T − 1)

(
𝜃 +

a1
T − 1

+
a2

(T − 1)2
+

a3
(T − 1)3

+ · · ·
)

= 𝜃 + a2
( 1
T

− 1
T − 1

)
+ a3

(
1
T2 − 1

(T − 1)2

)
+ · · · = 𝜃 −

a2
T(T − 1)

+ O(T−3),
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showing that the first-order term a1∕T drops out and the second-order term is only slightly larger
than a2∕T2 in (4.41). If, for all 𝜃, �̂� itself is unbiased (so that a1 = a2 = · · · = 0), then, clearly, �̂�∗ is also
unbiased.
This is applicable to an i.i.d. sample, with some simple examples shown in Section III.7.4.4 and far

more detail provided in Shao and Tu (1995). In a time series (or spacial data) context with ordered
data Y1,Y2,… ,YT , observe how removing an observation and computing, say, the estimator of the
AR(1) parameter assuming model (4.1) is no longer valid, as the time series structure is disturbed.
Instead, non-overlapping or moving-block sub-samples are used. The former was developed for the
AR(1) model by Phillips and Yu (2005), while both are considered in Chambers (2013), where the
method is also extended to the AR(p) case, building on results developed in Shaman and Stine (1988)
and Patterson (2000b).
Observe how there is overlap in the sub-samples in (4.40). For the jackknife with non-overlapping

sub-samples, let 𝓁 denote the length of the sub-sample and m denote the number of sub-samples,
such that (perhaps overly optimistically) T = m × 𝓁; define Y(i) to be a sub-sample of Y given by

Y(i) = (Y(i−1)𝓁+1,… ,Yi𝓁)′, i = 1,… ,m; (4.42)

and let S(i) = S(Y(i)), i = 1,… ,m. The jackknife estimator for non-overlapping sub-samples is defined
as in Phillips and Yu (2005) to be

�̂�(m) =
( T
T − 𝓁

)
S −

(
𝓁

T − 𝓁

)
S̄•, S̄• = m−1

m∑
i=1

S(i), (4.43)

where, as before, S̄• is the average of the S(i). As 𝓁 = T∕m and T − 𝓁 = (T∕m)(m − 1), (4.43) can be
written as

�̂�(m) =
( m
m − 1

)
S −

( 1
m − 1

)
S̄•, S̄• = m−1

m∑
i=1

S(i). (4.44)

Observe the special case of (4.43) with 𝓁 = T − 1 (so that T − 𝓁 = 1), m = T , and use of definition
(4.39) instead of (4.42) for Y(i), i = 1,… ,m = T , yields �̂�∗ in (4.40).
The (more realistic) situation when the sub-sample lengths are not all equal, as well as the

use of moving block sub-samples (such that the sub-samples have overlap), are addressed in
Chambers (2013).
We illustrate the jackknife procedure for non-overlapping sub-samples (4.44) in the AR(1) case,

with the o.l.s. estimator as the base, T = 20, and values m ∈ {2, 4, 5}. Figure 4.11 shows the results,
over a grid of a-values. The top panels indicate the mean-bias and, true to the theory, the jackknife
reduces it, compared to the o.l.s. estimator, with themost reduction form = 2.Themiddle panels show
that the median-bias is also reduced, while the lower panels indicate, unfortunately, that the m.s.e.
is, for 0 < a < 0.85, lower with the o.l.s. estimator, while for a > 0.85, the reduction in m.s.e. from
the jackknife, for any m, is not appreciable. This graphical analysis can be compared to Figure 4.13,
showing the performance of other bias-adjusted estimators, as well as that of the exact m.l.e.

4.6.2 Use of the Bootstrap for Bias Reduction

While the bootstrap was showcased in Chapter III.1 as a reliable and generally applicable means of
computing an interval estimator, it can also be deployed for bias reduction. The jackknife can be
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Figure 4.11 Left: Performance comparison as a function of AR(1) parameter a, of the least squares estimator, denoted
as OLS, along with jackknife bias-adjusted estimator (4.44) for several values ofm, as indicated, and based on 100,000
replications. The top graphs show the mean-bias, the middle graphs show the median-bias, and the bottom graphs
show the m.s.e. Right: Same but concentrating on the area near the unit root.

viewed as an approximation of the bootstrap; see, e.g., Efron (1979) and Shao and Tu (1995). Like with
the jackknife and the other methods discussed below for bias-adjusted estimators, its use can result in
the final estimator possessing a highermean squared error.Theprocedureworks as follows for |a| < 1:

1) Denote by B the number of bootstrap replications, chosen large enough such that the inferential
result (here, a bias-adjusted estimate) does not change appreciably as B is increased.

2) For sampleY = (Y1,Y2,… ,YT )′, compute the base estimator �̂� = S = S(Y), which can be either âML
or âLS in our context, as well as the associatedmodel residuals (the filtered time series innovations)
Û = (Û1,… , ÛT )′, which are presumed to be i.i.d.

3) For the nonparametric bootstrap, letU(b) be the bth bootstrap replication of Û, formed by sampling
with replacement. For each U(b), b = 1,… ,B, construct time series Y(b) by taking Y(b) = 𝚺1∕2U(b),
where 𝚺 is given in (4.20), conditional on �̂� (either âML or âLS).
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4) For each bootstrap data set Y(b), calculate �̂�(b) = S(Y(b)), b = 1,… ,B. In the AR(1) context, this
is â(b)ML or â(b)LS . The parametric bootstrap is similar, but draws Û(b) from the assumed parametric
distribution and conditional on its estimated parameters from step 2, such as �̂�2.

5) Denote the arithmetic average of the �̂�(b) as ̄̂
𝜃. The bootstrap estimated bias of �̂� is given by ̄̂

𝜃 − �̂�,
and the bias-adjusted estimator is then �̂� − ( ̄̂𝜃 − �̂�) = 2�̂� − ̄̂

𝜃.

The reader is encouraged to implement this and, via simulation, generate results paralleling those
in Figure 4.11, as well as reproducing the jackknife results in Figure 4.11.
Bias-adjusted estimators (based on the bootstrap) for the vector autoregressive model, in both the

stationary and non-stationary (unit root or explosive) cases, is pursued in Engsted and Pedersen
(2014).

4.6.3 Median-Unbiased Estimator

By definition, an estimator �̂� ismedian-unbiased for 𝜃 if, for each value 𝜃 in the parameter space, 𝜃 is
a median of �̂�. The median-unbiased estimator was first proposed in the context of the AR(1) model
by Andrews (1993), with further developments in Carstensen and Paolella (2003).
The following bias correction procedure then makes âMed a median-unbiased estimator: âMed takes

that value of a that yields the o.l.s. estimator to have a median equal to the o.l.s. estimate obtained
from the data. More formally, let Med(âLS ∣ a) = m(a) denote the median function of âLS when a is
the true parameter, and letm−1 ∶ (m(−1),m(1)] → (−1, 1] denote its inverse which, asm(a) is strictly
increasing, is properly defined. The median-unbiased estimator âMed is then given by

âMed =
⎧⎪⎨⎪⎩

1, if âLS > m(1),
m−1(âLS), if m(−1) < âLS ⩽ m(1),
−1, if âLS ⩽ m(−1).

(4.45)

Given the observed value of the o.l.s. estimator, say âOLS, the estimator can be expressed for m(−1) <
âOLS ⩽ m(1) as

âMed = m−1(âLS) = argmina|Med(âLS ∣ a) − âOLS|, (4.46)

or, equivalently, with FâLS denoting the c.d.f. of âLS,

âMed = m−1(âLS) = argmina|FâLS (âOLS ∣ a) − 0.5|, (4.47)

which lends itself to computation.

4.6.4 Mean-Bias Adjusted Estimator

The ability to quickly and accurately evaluate FâLS facilitates modification of the median unbiasedness
procedure to obtain an approximatelymean-unbiased estimator. This approach of bias correction is
not new; it has, for example, been pursued in MacKinnon and Smith, Jr. (1998) in a general context,
and in Tanizaki (2000) for this setting. Analytic results on the mean-bias are derived in Bao (2007)
and Bao and Ullah (2007), and could be used with the method discussed in Section III.7.4.1 for bias
reduction.
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The mean-bias reducing method amounts to interpreting m(⋅) as the analogously defined mean
function in (4.45), i.e., letm(a) = 𝔼[âLS ∣ a]. Like themedian function, it is strictly increasing for−1 <

a < 1, so that its inverse exists. In particular, form(−1) < âOLS ⩽ m(1),

âMean = m−1(âLS) = argmina|𝔼[âLS ∣ a] − âOLS|. (4.48)

Estimator âMean is not exactly mean-unbiased, not only because of the truncation at−1 and 1, but also
because of the nonlinearity of the mean function, i.e., 𝔼[m−1(âLS)] ≠ m−1(𝔼[âLS]) = a.
A reliable method for evaluating 𝔼[âLS] is required in (4.48), which is now briefly discussed. Con-

trary to Tanizaki (2000), who used simulation to obtain the mean function, the computation of 𝔼[âLS]
can be more accurately achieved by means of the relation

𝔼[âLS] = ∫
∞

0
[1 − FâLS (t)] dt − ∫

0

−∞
FâLS (t) dt (4.49)

(see, e.g., (I.7.71)). In this context, the use of the s.p.a. for evaluating (4.49) allows for substantial time
savings without sacrificing accuracy relevant for empirical work. Alternatively, and potentially faster
for larger sample sizes, is to use the expressions for the first and secondmoments of a ratio of quadratic
forms in normal variables as given in Appendix B.2.

4.6.5 Mode-Adjusted Estimator

Use of bias adjustment methods based on the mean and median (as measures of central tendency),
leads naturally to consideration of the third such measure: the mode, as introduced in Broda et al.
(2007). Following (4.46) and (4.48), it is natural to define themode-adjusted estimator as

âMode = m−1(âLS) = argmina|Mode(âLS ∣ a) − âOLS|, (4.50)

wherem(⋅) is now interpreted in (4.45) as the mode function. In comparison to âMed and âMean, which
are well-defined and unique for continuous distributions with finite first moment, use of âMode only
makes sense if the relevant distribution is unimodal. Indeed, inspection shows that, for sample sizes
greater than five, the p.d.f. of âLS is unimodal and, paralleling the requirements of the median and
mean, the mode function of âLS is strictly increasing for |a| < 1, thus guaranteeing that âMode is
uniquely defined.
Let fâLS (x; a) denote the p.d.f. of âLS at x when the true parameter is a. From the definition of the

mode, it follows that (4.50) is equivalent to choosing â such that the density fâLS (x; â) attains its maxi-
mum at the observed value of âLS. That is, we can write

âOLS = argmaxxfâLS (x; âMode), (4.51)

i.e., âMode is the (unique) value of a such that the observed value is a mode of fâLS (x; a).
Both (4.50) and (4.51) can be operationalized to construct an algorithm for the computation of

âMode. However, both involve a nested root search (the outer one being for the objective function, the
inner one to obtain the mode), and so are relatively much slower than computation of âMed or âMean.
As such, we instead compute (4.51) as

𝜕fâLS (x; âMode)
𝜕x

|||||x=âOLS = 0. (4.52)
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This is justified under the stated assumptions of unimodality and monotonicity of the mode of âLS
as a function of a (for |a| < 1). As only a single univariate root search is required in (4.52), its use
with numerical differentiation will be much faster than (4.50) or (4.51) and, by avoiding the otherwise
necessary nested root search, it is also numerically more reliable.3

4.6.6 Comparison

To see that the different point estimators will exhibit differing small-sample properties, Figure 4.12
plots the mean, median, and mode, minus a, of (4.37), based on a sample size of T + 1 = 20 observa-
tions, over a grid of a-values.
Figure 4.13 shows the bias andm.s.e. results based on a simulationwith 10,000 replications, whereby

OLS andMLE refer to the least squares andmaximum likelihood estimators, respectively, whileMBA,
MED and MOD refer to the mean-bias-adjusted, median-unbiased, and mode-unbiased estimators,
respectively.The top panels of Figure 4.13 show themean-bias, computed as the average of the 10,000
observations for each value of a, minus a. As expected, the mean-bias for the MBA estimator is very
close to zero, though it does deviate somewhat from zero as a increases. This is possible because the
mean of (4.37) as a function of a is not linear, deviating from linearity more so as a approaches one.
All the other estimators exhibit a negative mean-bias that grows in magnitude as amoves from zero
to about 0.85, with the most bias from the mode-unbiased estimator MOD. The middle panel shows
the median-bias, computed analogously as the mean-bias. True to the theory, the median-unbiased
estimator MED indeed exhibits virtually no median-bias for any value of a, while MBA has positive
median-bias and the remaining have negative median-bias, the most being fromMOD.
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Figure 4.12 The mean (solid), median (dashed), and mode (dash-dot) of (4.37), minus a, versus a, for T = 19.

3 The only possible caveat to use of the mode-unbiased estimator is the approximate nature of the density via the s.p.a. To
check this, we used the numerical second derivative of the exact c.d.f. of âLS, which was found to be numerically quite
reliable, but extremely time-consuming compared to use of the s.p.a. Using the very small sample size of T = 25, we found
that the differences in âMode based on the s.p.a. and use of the exact c.d.f. were affected in only the third or fourth decimal
place, thus confirming that use of the s.p.a. in this context will not jeopardize the accuracy of the method by any appreciable
amount. (As T increases, so does the accuracy of the s.p.a. because the distribution of âLS approaches the normal, for which
the s.p.a. is exact.)
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Figure 4.13 Performance comparison of the least squares (OLS), exact maximum likelihood (MLE),
mean-bias-adjusted (MBA), median-unbiased (MED), and mode-unbiased (MOD) estimators for parameter a in the
AR(1) model with T + 1 = 20. The top graphs show the mean-bias, the middle graphs show the median-bias, and the
bottom graphs show the m.s.e.

Arguably the most important single measurement is the mean squared error, m.s.e., shown in the
bottom panels. As is typical when examining the performance of several competitive estimators for
parameters in more complicated models, the best estimator (with respect to m.s.e. or similar criteria)
will, unfortunately, depend on the true value of the parameter being estimated. This concept was
emphasized in Section III.1.1.2, in the context of a simpler, i.i.d. model.
In this case, o.l.s. and m.l.e. are relatively close in performance for all a < 0.9, with the latter being

the preferred of the two, while for 0.9 < a < 1, o.l.s. is better. The other estimators give rise to rather
different behavior depending on a. For values of a between 0 and 0.4, the MOD is preferred by a
considerable margin, while theMBA performs worst. For 0.75 < a < 1, theMBA andMED dominate,
with the latter being slightly better. For 0.7 < a < 0.95,MODhas the highestm.s.e., while for a > 0.95,
the m.l.e. is uniformly the worst performer.
We will revisit these estimators in Chapter 5, in the context of the AR(1) model with exogenous

regressors.
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4.7 Confidence Intervals for a

A simple way of computing confidence intervals (c.i.s) for a and 𝜎 when |a| < 1 is to use the asymp-
totic normality of the m.l.e. (valid for |a| < 1) in conjunction with the numerically computed Hessian
matrix. However, the c.i. for a will become problematic for small sample sizes and values of a near
one because (i) the upper bound of the c.i. could exceed one, (ii) the density of the m.l.e. is highly
left skewed (and thus not Gaussian), and (iii) the m.l.e. of a is downwards biased, so that the actual
coverage probability will be lower than the nominal.
The first two problems can be corrected by using the bootstrap, as described in Section 4.6.2. Let

â(i)ML denote the ith bootstrap estimate, i = 1,… ,B. Then, for a particular choice of significance level
𝛼, the appropriate sample quantiles from the â(i)ML are calculated to determine the bootstrap interval.
Note that (i) the downward bias of âML will jeopardize the performance of the bootstrap for a near one
and (ii) the smaller the choice of 𝛼, the larger B should be, to ensure adequate sampling in the tails.
For this model class, an analytic method is available for computing an exact c.i. for a, based on the

o.l.s. estimator. Similar to the construction of the median-unbiased estimator of a, let qp(a) be the
p-quantile of random variable âLS, based on T observations, when the true value of the parameter is
a. That is, qp(a) is a function of T , p, and a, and is implicitly given by

p = ∫
qp(a)

−∞
fâLS (x; a) dx = FâLS (q; a), 0 < p < 1.

For fixed T and p, 0 < p < 1, qp is a function of a. Assuming that qp(a) is monotone for all a ∈ (−1, 1],
the inverse function q−1p is well-defined. Let âOLS be the observed value of âLS, and let c = q−1p (âOLS) ⇐⇒
qp(c) = âOLS. As in Andrews (1993), an exact 100(1 − 𝛼)% c.i. for a is then given by

(ĉL, ĉU), (4.53)

where, for given values 𝛼1 ⩾ 0, 𝛼2 ⩾ 0, and 𝛼2 > 𝛼1 such that 𝛼 = 𝛼1 + (1 − 𝛼2) for 0 < 𝛼 < 1, the lower
and upper bounds are given by

ĉL =
⎧⎪⎨⎪⎩

1, if âOLS > q𝛼2(1),
q−1𝛼2 (â

O
LS), if q𝛼2(−1) < âOLS ⩽ q𝛼2 (1),

−1, if âOLS ⩽ q𝛼2(−1),
(4.54)

and

ĉU =
⎧⎪⎨⎪⎩

1, if âOLS > q𝛼1 (1),
q−1𝛼1 (â

O
LS), if q𝛼1 (−1) < âOLS ⩽ q𝛼1(1),

−1, if âOLS ⩽ q𝛼1 (−1),
(4.55)

respectively. For example, if 𝛼 = 0.10, we can take 𝛼2 = 0.95 and 𝛼1 = 0.05.
To see that interval (4.53) has correct coverage, ignore the truncation and observe that

Pr(ĉL ⩽ a ⩽ ĉU) = Pr(ĉL ⩽ a) − Pr(ĉU ⩽ a) = 𝛼2 − 𝛼1 = 1 − 𝛼,

which follows because

Pr(ĉL ⩽ a) = Pr(q−1𝛼2 (âLS) ⩽ a) = Pr(âLS ⩽ q𝛼2 (a)) = 𝛼2,
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1 function [lo,hi]=ar1andrewsCI(y,X,alpha)
2 T=length(y)-1; % Assumes y is of length T+1, Y_0,Y_1,...,Y_T
3 if nargin<3, alpha=0.10; end
4 if nargin<2, X=[]; end
5 if numel(X)==1 % signal to use a particular X matrix as follows:
6 type=X;
7 if type==1, X=ones(T,1);
8 elseif type==2, X=[ones(T,1) (1:T)'];
9 else error('Type of X matrix not defined')

10 end
11 end
12 if isempty(X), M=eye(T);
13 %else XT=X(:,2:end); XT1=X(:,1:(end−1)); Z=[XT XT1]; M=makeM(Z);
14 else M=makeM(X);
15 end
16
17 DT=[zeros(T,1) eye(T)]; D1=[eye(T) zeros(T,1)];
18 ahat=(y'*D1'*M*DT*y)/(y'*D1'*M*D1*y);
19 p1=alpha/2; p2=1-alpha/2;
20 tol=1e-5; opt=optimset('Display','none','TolFun',tol,'TolX',tol);
21 if 1==2 % the lower bound, as defined in Andrews
22 q1=fzero(@(a) ff(a,1,M,p2),0.99,opt); qm1=fzero(@(a) ff(a,-1,M,p2),-0.99,opt);
23 if q1<ahat, lo=1; elseif ahat<qm1, lo=-1;
24 else lo=fzero(@(a) ff(a,ahat,M,p2),0,opt);
25 end
26 else % faster but not formally correct
27 lo=fzero(@(a) ff(a,ahat,M,p2),0,opt);
28 end
29 if 1==2
30 q1=fzero(@(a) ff(a,1,M,p1),0.99,opt); qm1=fzero(@(a) ff(a,-1,M,p1),-0.99,opt);
31 if q1<ahat, hi=1; elseif ahat<qm1, hi=-1;
32 else hi=fzero(@(a) ff(a,ahat,M,p1),0,opt);
33 end
34 else
35 hi=fzero(@(a) ff(a,ahat,M,p1),0,opt);
36 end
37
38 function M=makeM(X), [T,~]=size(X); M=eye(T)-X*pinv(X'*X)*X';
39 function d=ff(a,ahat,M,p), cdf=ar1olsdist(a,ahat,M); d=cdf-p;
40 function cdf=ar1olsdist(a,ahat,M,imhof) % cdf of OLS a-hat in ARX(1) model
41 if nargin<4, imhof=0; end
42 [T,~]=size(M); if a>=1, b=0; else b=1/sqrt(1-aˆ2); end
43 aa=a.ˆ(0:T)'; R=toeplitz(aa,[1 zeros(1,T)]); R(:,1)=R(:,1)*b;
44 DT=[zeros(T,1) eye(T)]; D1=[eye(T) zeros(T,1)];
45 A=R'*D1'*M*DT*R; A=(A+A')/2; B=R'*D1'*M*D1*R;
46 if imhof, cdf=imhofratio(ahat,A,B,1,0);
47 else
48 SPAorder=1; [~,cdf]=sparatio(ahat,A,B,1,0,SPAorder,0);
49 if cdf<0 % flag that SPA failed, try Imhof
50 disp('SPA failed, trying Imhof'), [~,cdf]=sparatio(ahat,A,B,1,0,SPAorder,1);
51 end
52 end

Program Listing 4.1: Calculates the c.i. (4.53), using the s.p.a. for the c.d.f. of the ratio of quadratic
forms. Anticipating use of regressors, as shown in Chapter 5, the code in lines 4–15 handles the 𝐗
matrix. In the setting in this chapter, there is no 𝐗 matrix and matrix 𝐌 is just the identity matrix.
The function makeM, as was given in Listing B.2, is replaced by the version shown in line 39, using a
generalized inverse, because the 𝐌 matrix in (5.11) in Chapter 5 could be singular. However, in our
examples it suffices to use 𝐗 instead of 𝐙, as discussed in Section 5.2, thus line 13 is commented out
and line 14 is used.
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and similarly for ĉU .4 Values of 𝛼1 and 𝛼2 may be chosen to give, for example, equal-tailed or one-sided
intervals. For a 90% equal-tailed c.i., one takes 𝛼1 = (1 − 0.90)∕2 = 0.05 and 𝛼2 = 1 − 𝛼1 = 0.95. (Note
that 𝛼1 + 𝛼2 = 1 when equal tail intervals are chosen, so that 𝛼1 = 𝛼∕2, otherwise they do not sum
to one.)
Values ĉL and ĉU are computationally straightforward to obtain using the methods and programs

developed in Appendix A.3. The program in Listing 4.1 computes (4.53), optionally (as we have) just
using the middle terms in (4.54) and (4.55). It is thus easy to confirm the actual coverage probability
and determine the average interval length for a given T , a, and 𝛼. To illustrate the 90% equal-tail
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Figure 4.14 Confidence intervals over 1,000 replications when a = 0.8, for the indicated sample sizes.

4 Andrews (1993) notes that, in order to maintain exact coverage when a = 1, ĉL should rather be defined as ĉL > 1 if
âLS > q

𝛼2
(1), resulting in an empty set for the confidence interval. Otherwise, the coverage is 1 − 𝛼1 > 1 − 𝛼 when a = 1, as

the true parameter cannot lie to the left of the interval.
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1 T=40; a=0.80; sim=1000; lovec=zeros(sim,1); hivec=lovec; cover=lovec;
2 for i=1:sim, disp(i)
3 % generate an AR(1) process, use a warm-up of 40 observations
4 U=randn(T+40,1); y=zeros(T+40,1);
5 for t=2:T+40, y(t)=a*y(t-1)+U(t); end, y=y((end-T+1):end);
6 % get confidence interval and keep track of coverage
7 X=[]; % no X matrix
8 %X=1; % a constant
9 %X=2; % a constant and time trend

10 [lo,hi]=ar1andrewsCI(y,X); lovec(i)=lo; hivec(i)=hi;
11 cover(i)=(a>lo) && (a<hi);
12 actual_coverage = mean(cover) %#ok<NOPTS>
13 figure, plot(1:sim,lovec,'r-', 1:sim,hivec,'g-'), grid
14 set(gca,'fontsize',16), ylim([-0.5 1.3])
15 title(['Lower and Upper C.I. Bounds for a with T=',int2str(T)])
16 line([0 1000], [a a],'color','k','linestyle','--','linewidth',3)
17 lowside = mean(a>lovec), hiside = mean(a<hivec) %#ok<NOPTS>
18 end

ProgramListing 4.2: Generates the graphics in Figure 4.14. Anticipating use of regressors, as shown
in Chapter 5, the code in lines 7–9 allows a choice of 𝐗matrix. In our setting, there is no 𝐗matrix.

confidence intervals for a particular value of a, say a = 0.8, Figure 4.14 shows them for 1,000 simulated
values, and for two sample sizes, having used the code in Listing 4.2.
To illustrate the coverage over a range of a, the top panel of Figure 4.15 shows the actual cover-

age of the nominal 90% c.i. for a grid of a-values between zero and 0.95, based on a simulation with
20,000 replications, using 𝜎 = 1. As expected, interval (4.53) exhibits the correct coverage,5 while the
coverage of the asymptotic-based c.i. drops off markedly as a increases, as expected from the bias of
the point estimator and the deviation from normality of its distribution. The right panel shows the
lengths of the intervals, along with the length of the asymptotic-based c.i. but truncating its upper
end at one. Observe how the length decreases almost four-fold when moving from a = 0 to a = 0.95.
Figure 4.16 is similar, but shows the results for the asymptotic-based 90% c.i.s for𝜎 and its truncation

at zero. From the top panel, we see that the coverage probability for values of a less than 0.8 is about
0.865, but then drops off as a approaches 1. The lengths of the intervals are, in comparison to c.i.s for
a, virtually constant for 0 ⩽ a ⩽ 0.8, but then decrease as a approaches one.

Remark In the case of an AR(p) model (as discussed in Section 6.1), an exact method for a
median-unbiased point estimator analogous to (4.45), and its extension for confidence intervals in
(4.53), appears to not be possible, but an approximate method is developed in Andrews and Chen
(1994). In the AR(1) case but allowing for an unknown form of heteroskedasticity, Romano and
Wolf (2001) and Andrews and Guggenberger (2014) present a method for constructing a confidence
interval with asymptotically correct size, the latter not requiring any tuning (sub-sample size)
parameters. ◾

5 It deviates slightly as a approaches one because of numerical inaccuracies in calculating the quantities in ĉL and ĉU .
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Figure 4.15 Comparison of actual confidence interval coverage (top panel) and length (bottom panel) for parameter a
in the AR(1) model with T = 19, based on simulation with 20,000 replications and level of significance 𝛼 = 0.90. “Exact”
(solid) refers to (4.53), “Asymp” (dashed) refers to c.i.s based on the m.l.e. and its asymptotic normal distribution. and
“Asy Cut” (dash dot) is the same as “Asymp” but truncating the c.i.s to lie between −1 and 1.

4.8 Problems

Problem 4.1 Construct programs to simulate an AR(1) process and to estimate it via least squares.
Use them to make code that replicates Figure 4.6.

Problem 4.2 Consider the AR(1) model with parameter a = −1. As yt is just the negative of its pre-
decessor yt−1 plus an error term, the process will tend to oscillate back and forth around zero. Use
recursive substitution to show that Y0,Y2,Y4,…, is a randomwalk with i.i.d. N(0, 2𝜎2) innovations.
Then simulate and plot the process for a large value of T to see how the variance appears to change
through time.
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Figure 4.16 Similar to Figure 4.15 but for parameter 𝜎. “Asy Cut” (dash dot) is the same as “Asymp” but truncating the
c.i.s to lie above zero.

Problem 4.3 Show (4.12), i.e., that, for any r and t,

Cov(Yt,Yr) = 𝜎2 a|t−r| − at+r
1 − a2

. (4.56)

Then verify the following special and limiting cases:
• If r = t, then (4.12) reduces to the expression for 𝕍 (Yt) given in the top of (4.6).
• If r = t − s for s > 0, then (4.12) reduces to the expression for the covariance given in (4.11).
• If the time index is shifted forward in time by 𝑣 units, i.e., instead of observing Y1 through YT

we observe Y1+𝑣 through YT+𝑣, then (4.12) becomes, for 1 ⩽ t, r ⩽ T ,

Cov(Yt+𝑣,Yr+𝑣) = 𝜎2 a|t−r| − at+r+2𝑣
1 − a2

and, in the limit as 𝑣 → ∞, this approaches 𝜎2a|t−r|∕(1 − a2), which is 𝛾t−r from (4.13).
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Problem 4.4 Recall Figure 4.8, in which the top panel shows the m.s.e. of h-step ahead forecasts
for a = 0.5, 𝜎2 = 4, and T = 10. Notice that (for the chosen values of a and T), the empirically
observed m.s.e. decreases after h = 4. Show algebraically that the expression in (4.34) decreases
after h = 3 by computing the difference mse(ŶT+4∣T ) −mse(ŶT+3∣T ) and determining when this is
negative. Under what conditions is (4.34) nondecreasing in h?

Problem 4.5 Recall the discussion in Section 4.3.5 regarding the asymptotic variance of âLS and its
small sample behavior. In practice, the normality assumption might not be valid, with the usual
violation being leptokurtosis.The effect of non-normality can be investigated in this case by repeat-
ing the simulation exercise in Section 4.3.5 with a heavy-tailed distribution such as Student’s t(𝑣)
instead of the normal. Do so for different values of 𝑣 and examine the behavior as 𝑣 changes. What
do you expect to see?
Also use a contaminated normal distribution such as 80% N(0,1) and 20% N(0,16). Do you expect
the results to be similar to the Student’s t case?
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5

Regression Extensions: AR(1) Errors and Time-varying Parameters

The place of econometrics at the centre of economics is now confirmed.
(The Economist, Oct. 11, 2003, p. 84)

A popular univariate time-series model that is useful in itself and also serving as a baseline for
advancedmodels in econometrics is the regression framework of Chapter 1 combined with the AR(1)
model for the regression error term from Chapter 4. This chapter considers this model in detail.
After discussing the likelihood in Section 5.1, we develop point and interval estimators for theAR(1)

parameter amid regressor covariates in Section 5.2. Section 5.3 discusses methods for testing the null
hypothesis of the AR(1) coefficient being zero. Section 5.4 builds on the methods from Section 4.6
for bias-adjusted point estimation of the AR(1) parameter. Section 5.5 details some basic methods
for unit-root testing. Finally, we turn to the regression model with time-varying 𝜷 coefficients in
Section 5.6.

5.1 The AR(1) Regression Model and the Likelihood

Let x′t , t = 0, 1,… ,T , be a set of 1 × k vectors of non-stochastic, known constants, such that X =
[x0,… , xT ]′ is a full rank (T + 1) × k matrix. The model is now given by two equations; the first is the
observation equation,

Yt = x′t𝜷 + 𝜖t , (5.1)

which is identical to the linear model (1.3). The difference between (5.1) and (1.3) is the assumptions
on the 𝜖t , brought out in the second model equation,

𝜖t = a𝜖t−1 +Ut , Ut
i.i.d.∼ N(0, 𝜎2), (5.2)

referred to as the latent equation. The names indicate that the Yt are observed, but not the 𝜖t . The 𝜖t
are also referred to as latent variables.
There are now k + 2 parameters: 𝜷 ∈ ℝk , a ∈ (−1, 1], and 𝜎2 > 0. If a = 0, then the AR(1) structure

in (5.2) renders the 𝜖t i.i.d., and (5.1) becomes just the linear model (1.3). If, instead, there are no
regressors, then Yt = 𝜖t and the model reduces to the pure AR(1) process (4.1). If a ∈ (−1, 1), then 𝜖0
is assumed to be a realization from its unconditional distribution, N(0, 𝜎2∕(1 − a2)), while, if a = 1,
then 𝜖0 is taken to be an arbitrary constant.

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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The latent equation (5.2) can also be written as (1 − aL)𝜖t = Ut , where L𝜖t = 𝜖t−1 and L is referred
to as the lag operator. (We will make extensive use of the lag operator in Chapter 6.) Treating L as a
variable and multiplying (5.1) by the polynomial (1 − aL) gives

(1 − aL)Yt = (1 − aL)x′t𝜷 + (1 − aL)𝜖t,

or
Yt = aYt−1 + (1 − aL)x′t𝜷 +Ut . (5.3)

Example 5.1 Let the x′t consist of a constant and time trend, denoted x′t = (1, t), so that the second
column of X is (0, 1, 2,… ,T)′ and x′t𝜷 = 𝛽1 + 𝛽2t. Then, as L1 = 1 and Lt = t − 1,

(1 − aL)x′t𝜷 = (1 − aL)(𝛽1 + 𝛽2t)
= (𝛽1 + 𝛽2t) − a(𝛽1 + 𝛽2(t − 1))
= (1 − a)𝛽1 + a𝛽2 + (1 − a)𝛽2t,

so that (5.3) can be written as

Yt = aYt−1 + 𝛽∗
1 + 𝛽∗

2 t + Ut , (5.4)

where 𝛽∗
1 = (1 − a)𝛽1 + a𝛽2 and 𝛽∗

2 = (1 − a)𝛽2. Notice that, if a = 1, then 𝛽∗
1 = 𝛽2, 𝛽∗

2 = 0, and the
model reduces to a random walk with drift, given by Yt = 𝛽2 + Yt−1 +Ut . Going the other way, for|a| < 1,

𝛽1 =
𝛽∗
1 (1 − a) − a𝛽∗

2

(1 − a)2
, 𝛽2 =

𝛽∗
2

1 − a
,

these being referred to as common factor restrictions. ◾

Let Y = (Y0,Y1,… ,YT )′ and assume |a| < 1. From (5.1), Y ∼ N(X𝜷, 𝜎2𝚺), where 𝜎2𝚺 is the (T +
1) × (T + 1) covariance matrix of Y − X𝜷 = 𝝐 = (𝜖0, 𝜖1,… , 𝜖T )′. From (5.2), 𝚺 is given by (4.20).Thus,
fY(y) is the same as in (4.19) but with y−X𝜷 replacing y on the r.h.s., and, recalling the decomposition
of 𝚺 in (4.23),

(Y−X𝜷)′𝚺−1(Y−X𝜷) = (1 − a2)𝜖20 +
T∑
t=1

(𝜖t − a𝜖t−1)2, (5.5)

giving the expression for the exact likelihood

(𝜷, 𝜎2, a;Y) = Ka exp

{
− 1
2𝜎2

[
(1 − a2)𝜖20 +

T∑
t=1

(𝜖t − a𝜖t−1)2
]}

, (5.6)

where Ka =
√
1 − a2 ∕(2𝜋𝜎2)(T+1)∕2. This is straightforward to evaluate and maximize to obtain point

estimates of a, 𝜷 , and 𝜎2.
An equivalent expression for the likelihood can be obtained by using the model representation in

(5.3): Let 𝜃t = (1 − aL)x′t𝜷 , t = 1,… ,T . As before, we assume that 𝜖0 is drawn from its unconditional
distribution N(0, 𝛾0), where 𝛾0 = 𝜎2∕(1 − a2) from (4.8).Then Y0 = x′0𝜷 + 𝜖0 ∼ N(x′0𝜷, 𝛾0). Condition-
ally, Yt ∣ Yt−1 ∼ N(aYt−1 + 𝜃t, 𝜎

2), t = 1,… ,T , i.e.,

fYt ∣Yt−1
(yt ∣ yt−1) =

1√
2𝜋𝜎

exp
{
− 1
2𝜎2 [yt − (ayt−1 + 𝜃t)]2

}
, (5.7)
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so that the joint density of Y can be expressed as

fY0
(y0) ×

T∏
i=1

fYt ∣Yt−1
(yt ∣ yt−1). (5.8)

The equivalence of (5.6) and (5.8) follows because both representations use the same unconditional
density of Y0, and the term in the exponent of (5.7) can be written as

yt − (ayt−1 + 𝜃t) = yt − ayt−1 − (1 − aL)x′t𝜷
= (yt − x′t𝜷) − a(yt−1 − x′t−1𝜷) = zt − azt−1.

From (5.6), some simple algebra (that the reader should confirm) shows that the likelihood function
can also be expressed as follows:

(𝜷, 𝜎2, a;Y) = Ka exp

{
− 1
2𝜎2

[
(1 + a2)𝝐′𝝐 − a2(𝜖20 + 𝜖2T ) − 2a

T∑
t=1

𝜖t𝜖t−1

]}
. (5.9)

Accurate starting values (or even as final values) can be obtained by iterating between simple esti-
mators for 𝜷 , 𝜎2, and a. In particular, let 𝜷

(1)
= 𝜷LS = (X′X)−1X′Y be the standard o.l.s. estimator

appropriate in a linear regression model assuming an i.i.d. Gaussian error process, with residuals
�̂�
(1) = Y − X𝜷

(1)
. Then let â(1) = âLS from (4.14) based on the residuals �̂�(1). Next, let 𝜷

(2)
= 𝜷GLS =

(X′𝚺−1X)−1X′𝚺−1Y, where 𝚺 is (4.20) based on â(1), from which �̂�
(2) = Y − X𝜷

(2)
are computed. From

�̂�
(2), let â(2) = âLS from (4.14). The process can be repeated until convergence for a given tolerance.

The estimator for 𝜎2 can be taken from either the 𝜷LS step or the âLS step. Similar to the pure AR(1)
case, this procedure will not perform well for small sample sizes and a near one.
Interval estimates of the parameters can easily be computed using the asymptotically valid Wald

intervals, based on the approximate standard errors generated as a by-product from Hessian-based
optimization routines, as discussed at length in Chapter III.4.More accurate intervals can be obtained
via use of the parametric or nonparametric bootstrap. In both cases, sampling involves theUt . For the
ith parametric bootstrap draw, U (i)

t
i.i.d.∼ N(0, 𝜎2), from which 𝜖

(i)
t = â𝜖(i)t−1 +U (i)

t is constructed, as in
(5.2), with 𝜖

(i)
0 ∼ N(0, �̂�2∕(1 − â2)), and then Y (i)

t = x′t𝜷 + 𝜖
(i)
t , from (5.1), t = 0, 1,… ,T . The nonpara-

metric bootstrap is similar, but the U (i)
t are sampled, with replacement, from the filtered innovation

sequence Ût , t = 1,… ,T .

5.2 OLS Point and Interval Estimation of a

As above, let Y = (Y0,Y1,… ,YT )′ and define, as in Section 4.3, the T × (T + 1)matricesDT = [𝟎 ∣ IT ]
and DT−1 = [IT ∣ 𝟎], so that

YT = (Y1,… ,YT )′ = DTY and YT−1 = (Y0,… ,YT−1)′ = DT−1Y.

Then, generalizing Example 5.1 to the case with k regressors,

Yt = aYt−1 + x′t𝜷 − ax′t−1𝜷 +Ut , t = 1,… ,T ,
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or, in matrix form,

YT = aYT−1 + Z𝜸 +UT , (5.10)

where 𝜸 = [𝜷 ′
,−a𝜷 ′]′, Z = [XT ,XT−1], XT = [x1,… , xT ]′, XT−1 = [x0,… , xT−1]′, and UT =

(U1,… ,UT )′. Applying the Frisch–Waugh–Lovell theorem from Example 1.1 shows that, with1

M = IT − Z(Z′Z)−Z′, (5.11)

the o.l.s. estimator of a can be expressed as

âLS =
Y′
T−1MYT

Y′
T−1MYT−1

. (5.12)

Observe from Example 5.1 that, for a model with intercept (X being a column of ones) or an intercept
and time-trendmodel (X = [𝟏, t]), the column spaces ofX andZ are equal, and (5.11) can be replaced
withM = IT − X(X′X)−1X′.
We now show that âLS is independent of 𝜷 for any exogenous regressor matrix X, generalizing the

result in Andrews (1993), which is restricted to X corresponding to a constant and time trend. This
can be done in two ways. One is based on the observation that the o.l.s. estimator is a function of Y
only through a so-calledmaximal invariant whose distribution is free of 𝜷 , see, e.g., Dufour and King
(1991). A second way is to use a singular value decomposition, hereafter SVD (see, e.g., Harville, 1997,
Sec. 21.12; Gentle, 2007, Sec. 7.7; Lay et al., 2015, p. 435) of X (which allows for linearly dependent
regressors, as we require), and is now demonstrated.

Theorem 5.1 Estimator âLS is independent of 𝜷 for any exogenous regressor matrix X.

Proof : First note that the computation of (5.12) requires the T × 2k matrix Z to be of full column
rank.This is not always satisfied, e.g., if the regressors include a constant, a constant and a linear time
trend, or a specific combination of impulse and step dummies. For a particularX such as the constant
and time-trendmodel, the linearly dependent columns can be “calculated out by hand”, as in Andrews
(1993).
In order that the proof is valid for all r = rank(Z) ⩽ 2k, let the SVD of Z be Z=QWV′, where Q

and V are T × r and 2k × r matrices, respectively, of full column rank r, and W is an r × r diagonal
matrix of full rank.Moreover,Q′Q = V′V = Ir . Clearly, only r different parameters in 𝜸 are identified.
Defining Z̃ = QW and �̃� = V′𝜸, we can rewrite (5.10) as

YT = aYT−1 + Z̃�̃� +UT . (5.13)

The linearly dependent columns of Z are effectively removed by means of the SVD of Z. The o.l.s.
estimator for a can now be obtained as in (5.12) withM replaced byM = IT − Z̃(Z̃′Z̃)−Z̃′ = IT −QQ′.
As in Andrews (1993), to show that âLS does not depend on the value of 𝜷 , it suffices to show that

the residualsMYT andMYT−1 do not depend on 𝜷 . As

MYT = MXT𝜷 +M𝝐T and MYT−1 = MXT−1𝜷 +M𝝐T−1,

1 The notation A− denotes a generalized inverse of A. It satisfies AA−A = A. A generalized inverse always exists for A
symmetric, and also satisfies A−AA− = A−, known as the reflexive property, and is symmetric. Finally, and crucially,
Z(Z′Z)−Z′ is the perpendicular projection operator onto (Z); see, e.g., Seber and Lee (2003, p. 476) or Christensen (2011,
p. 430). Detailed presentations of generalized inverses can be found in several books; in addition to the aforementioned
references; see, e.g., Ravishanker and Dey (2002, Ch. 3) and Dhrymes (2013, Sec. 3.3). See also Remark (a) in Section C.2.3.
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where 𝝐T and 𝝐T−1 are defined analogously to YT and YT−1, this amounts to showing that MXT = 𝟎
and MXT−1 = 𝟎 because neither M𝝐T nor M𝝐T−1 depend on 𝜷 . Partitioning V′ into the first k and
the last k columns V′

1 and V′
2, respectively, we obtain Z = [XT ,XT−1] = [QWV′

1,QWV′
2] and, thus,

XT = QWV′
1 and XT−1 = QWV′

2. Now,

MXT = (IT −QQ′)QWV′
1 = (Q−Q)WV′

1 = 𝟎

and

MXT = (IT −QQ′)QWV′
2 = (Q−Q)WV′

2 = 𝟎,

confirming that âLS is independent of 𝜷 . ◾

The invariance of âLS with respect to 𝜎2 follows from the structure of (5.12) as a ratio, such that 𝜎2

cancels. Thus, we can assume 𝜷 = 𝟎 and 𝜎2 = 1 in the following, without loss of generality.
We now have MYT = MDT𝝐 and MYT−1 = MDT−1𝝐, where 𝝐 = [𝜖0, 𝝐′T ]

′. Substituting this into
(5.12) shows that âLS has the same distribution as

𝝐′D′
T−1MD′

T𝝐

𝝐′D′
T−1MD′

T−1𝝐
=

U′R′D′
T−1MDTRU

U′R′D′
T−1MDT−1RU

= U′AU
U′BU

, (5.14)

where A and B are so defined (and taking A to be the symmetric version, i.e., (A′ + A)∕2) and 𝝐 =
RU for U = (U0,… ,UT )′ ∼ N(𝟎, IT+1), with R = R(a) given in (4.35) and (4.36). In case there are no
exogenous regressors, set M = I and all conditioning on X is replaced by conditioning on T . The
methods detailed in Chapters A and B can be used to compute the distribution and moments of âLS,
respectively.
An exact confidence interval (meaning that the nominal and actual coverage coincide) for a can be

computed precisely as in Section 4.7. Note that the code in Listing 4.1 was already designed to support
the use of a (possibly rank deficient) regressor matrix.
As discussed in Chapter III.2, much intellectual effort has been invested into the Neyman–Pearson

hypothesis testing framework in statistical and econometric modeling for investigating various para-
metric assumptions, and the resulting tests can often be used to construct valid confidence intervals
for parameters. The Durbin–Watson test is discussed in Appendix B, and detailed further below in
Section 5.3.2, with test statisticD = �̂�

′A�̂�∕�̂�′�̂�, where �̂� = MY andA is given in (B.8). Let d denote the
observed test statistic for a given data set Y and regression matrix X, where Y ∼ N(X𝜷, 𝜎2𝚺(a)), with
a, |a| < 1, the unknown AR(1) parameter. For a one-sided c.i. of a of the form (a, 1) with significance
level 𝛼, consider taking a to be that value such that

𝛼 = Pr(Da ⩽ d) ∶= Pr
(
Z′MAMZ
Z′MZ

⩽ d
)
, Z ∼ N(𝟎,𝚺(a)), (5.15)

where we can ignore X𝜷 becauseMX = 𝟎 and 𝜎2 cancels from the ratio. The idea is to find the point
a such that, for −1 < a < a we would reject the null, while for a < a < 1 we do not reject.
This is perhaps best explained graphically: For a simulated data set of T = 50 observations from

an AR(1) regression model with X = [𝟏, t] and true a = 0.5, Figure 5.1 shows the density of the
Durbin–Watson statistic D under the null of a = 0, with the vertical dashed line indicating the
observed test statistic d, overlaid with the density of D corresponding to 𝚺(a). The area under the
density to the left of the vertical dashed line is 𝛼 = 0.05. The code used to generate Figure 5.1 is
shown in Listing 5.1.
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Figure 5.1 Demonstration of computation of a in (5.15).

1 T=50; X=[ones(T,1) (1:T)']; M=makeM(X); A=makeDW(T);
2 a=0.5; Si=leeuwAR(a,T); [V,D]=eig(Si); S12=V*Dˆ(-1/2)*V'; S=V*Dˆ(-1)*V';
3 e=S12*randn(T,1); eh=M*e; d=(eh'*A*eh)/(eh'*eh);
4 aLO=fzero(@(aa) cdfratio(d,M*A*M,M,inv(leeuwAR(aa,T)),[],1)-0.05, 1.5);
5
6 rvec=0:0.05:4;
7 a=0; Si=leeuwAR(a,T); [V,D]=eig(Si); S12=V*Dˆ(-1/2)*V';
8 pdf0=ROQpdfgeary(rvec,S12*M*A*M*S12,S12*M*S12);
9

10 a=aLO; Si=leeuwAR(a,T); [V,D]=eig(Si); S12=V*Dˆ(-1/2)*V';
11 pdfLO=ROQpdfgeary(rvec,S12*M*A*M*S12,S12*M*S12);
12 pdfatd=interp1(rvec,pdfLO,d);
13
14 figure, plot(rvec,pdf0,'r-','linewidth',3), hold on
15 plot(rvec,pdfLO,'b--','linewidth',2), hold off
16 set(gca,'fontsize',16), xlabel('DW Statistic values d')
17 title('Density of D under null and at a_{LO}')
18 yy=ylim; yy=yy(2); ylim([0 yy]), xlim([0.8 2.9])
19 legend('Null a=0','For a=aLO')
20 line([d d],[0 pdfatd],'linewidth',2,'linestyle','--','color','k')

Program Listing 5.1: Simulates an AR(1) regression model, computes a (impressively, in the sin-
gle line 4), and generates Figure 5.1. Program ROQpdfgeary for computing the p.d.f. of a ratio of
quadratic forms is available in the book’s associated collection of programs. Program leeuwAR is
given in Listing 7.5.
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The reader is encouraged to set up a simulation for a grid of true values of a ⩾ 0 and several sample
sizes T , and confirm that the actual coverage of the generated c.i. is indeed the nominal of 1 − 𝛼.

5.3 Testing a = 0 in the ARX(1) Model

There is always a well-known solution to every human problem—neat, plausible, and wrong.
(Henry Louis Mencken, 1920)2

The goal of this section is to test the null hypothesis that the autoregressive parameter a in (5.2) is
zero—an endeavor that was deemed very important starting in the late 1940s, with the seminal work
being from Durbin and Watson (1950).

5.3.1 Use of Confidence Intervals

As a dual to use of a statistical hypothesis testing framework to generate a confidence interval for a,
as in Section 5.2 above, we show how to construct a two-sided equal-tail test based on the confidence
interval of âLS fromSection 5.2. Very simply, the test rejects if zero is not in the confidence interval. For
illustration, Figure 5.2 shows the power for two sample sizes, based on 𝛼 = 0.10 and several regressor
matrices. The bottom right panel uses an Xmatrix consisting of a constant, time trend, a vector with
the first half zeros and the second half ones, and a vector with the first half zeros and the second half
a time trend squared, as a model to capture a break in the intercept and trend (recall the regression
examples in Section 1.4.6). We denote the associated matrix as X = [𝟏, t,D1,Dt2].3 As expected, the
power is higher as the sample size T increases. We also see that the power gets lower as the Xmatrix
increases in complexity and number of regressors.

5.3.2 The Durbin–Watson Test

We next consider statistics that were designed specifically for testing a = 0 and explain in what sense
these tests are optimal, starting with the Durbin–Watson test. Recall Chapter III.2, in which the basic
concepts of hypothesis testing were discussed, such as simple and composite, unbiasedness, consis-
tency, and uniformly most powerful (UMP) and uniformly most powerful unbiased (UMPU).We will
meet other concepts below, such as point optimal tests and invariance.

2 Mencken was better known for his disdain of the 1920 Republican Presidential candidate, Warren Harding, and the folly of
many voters, resulting in a now-well-cited quote. On July 26, 1920, he published a column in the Baltimore newspaperThe
Evening Sun, writing “The larger the mob, the harder the test. In small areas, before small electorates, a first-rate man
occasionally fights his way through, carrying even the mob with him by the force of his personality. But when the field is
nationwide, and the fight must be waged chiefly at second and third hand, and the force of personality cannot so readily make
itself felt, then all the odds are on the man who is, intrinsically, the most devious and mediocre—the man who can most
adeptly disperse the notion that his mind is a virtual vacuum.” He went on to say, now famously, “On some great and glorious
day the plain folks of the land will reach their heart’s desire at last, and the White House will be adorned by a downright
moron.”
3 For this matrix, Z′Z in (5.11) is not full rank, and the generalized inverse is required. However, in this case, using full rank
X in place of Z yields the same results.
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Figure 5.2 Power of the test for the null of a = 0 based on the two-sided equal-tail confidence interval for a, for
significance level 𝛼 = 0.10 and T = 30 and T = 60, for various Xmatrices, as indicated, and based on 5,000 simulated
replications.

Observe that likelihood expression (5.9) is approximately (note the middle term in the exponent,
changing a2 to a)

(𝜷, 𝜎2, a; y) ≈ Ka exp

{
− 1
2𝜎2

[
(1 + a2)𝝐′𝝐 − a(𝜖20 + 𝜖2T ) − 2a

T∑
t=1

𝜖t𝜖t−1

]}
= Ka exp

{
− 1
2𝜎2 [(1 + a2)𝝐′𝝐 − 2a𝝐′𝚯𝝐]

}
, 𝚯 = I − 1

2
A,

= Ka exp
{
− 1
2𝜎2 [𝝐

′((1 − a)2I + aA)𝝐]
}
, (5.16)

as the reader should quickly confirm (algebraically and/or numerically), whereA is the matrix associ-
ated with the Durbin–Watson test, given in (B.8), and the test statistic is, repeating from (B.16), with
�̂� = MY = M𝝐 the o.l.s. regression residuals, andM = I − X(X′X)−1X′, as given in (1.53),

D =
∑T

t=2 (𝜖t − 𝜖t−1)2∑T
t=1 𝜖

2
t

= �̂�
′A�̂�
�̂�
′
�̂�

= 𝝐′M′AM𝝐

𝝐′M′M𝝐
= 𝝐′MAM𝝐

𝝐′M𝝐
. (5.17)

Anderson (1948) (see also Anderson, 1971) showed that, ifKa is neglected in (5.16) and the k columns
ofX can be expressed as linear combinations of k of the eigenvectors ofA, then the statisticD in (5.17)
provides a UMP one-sided test for H0 ∶ a = 0 vs. H1 ∶ a > 0 or H1 ∶ a < 0.

Remark See also Durbin and Watson (1971), Kariya (1977), Kariya and Eaton (1977), and King
(1980) regarding this optimality in the more general elliptic distribution setting. As the eigenvec-
tor condition will not be fulfilled precisely in general, the Durbin–Watson test (B.16) is said to be
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approximately UMP. Cassing and White (1983) consider the impact of this eigenvector assumption
on the power of the D test. Another aspect that influences the performance of D (and other tests for
first-order autocorrelation) is when the observation equation (5.1) is mis-specified. The case when
relevant explanatory variables are missing from the regressor matrix was addressed in Examples B.6
and B.7. ◾

More generally, for the regression model (5.1) such that 𝝐 ∼ N(𝟎, 𝜎2𝚺(𝜆)), where 𝚺 > 0 is of any
form (and not only the AR(1) model), King and Hillier (1985) show via application of the generalized
Neyman–Pearson lemma (see, e.g., Lehmann, 1986, p. 96; Ferguson, 1967, p. 235) that the test of 𝜆 = 0
versus 𝜆 > 0 that rejects for (depending on the application) small or large values of

�̂�
′L(0)�̂�
�̂�
′
�̂�

, L(𝛌) = 𝜕[𝚺(𝜆)]−1
𝜕𝜆

, (5.18)

is locally best invariant (LBI) or point optimal invariant (POI), where �̂� = MY are the ordinary least
squares residuals. See also Cox (1983), Chester (1984), and McCabe and Leybourne (2000) regarding
this derivation.
The term “locally best” means that the power function has maximal slope as 𝜆 → 0, while for invari-

ance, observe that this statistic is invariant to changes in the scale of Y (because 𝜎2 cancels from the
numerator and denominator) and also invariant to 𝜷 (because MX = 𝟎). This is often written in the
literature as saying that the test statistic is invariant to translations of the form Y∗ = 𝛾0Y + X𝜸 for 𝛾0
a positive scalar and 𝜸 is any real k × 1 vector; see, e.g., King (1980, Eq. (3.2)).
For example, in the AR(1) testing case with error covariance matrix 𝚺(a), we see from (5.16) that

[𝚺(a)]−1 ≈ (1 − a)2I + aA, so that L(0) = A − 2I, and (5.18) immediately yields the Durbin–Watson
test statistic.

5.3.3 Other Tests for First-order Autocorrelation

Since 1970, other tests for first-order autocorrelation have been proposed, also expressible as a ratio
of quadratic forms. These include that from King (1981), given by

D′ = �̂�
′Ã�̂�
�̂�
′
�̂�

= D +
𝜖21 + 𝜖2T∑T

t=1 𝜖
2
t

, (5.19)

where D is given in (B.16) and (5.17), and Ã is A as given in (B.8) but taking the top left and bottom
right entries to be two instead of one. Clearly, as T grows, the two tests will be equivalent. King (1981)
showed that D′ has higher power than D for a < 0.
Building on thework of Kadiyala (1970) andDurbin andWatson (1971), Berenblut andWebb (1973)

(hereafter B-W) proposed a test for first-order autocorrelation that has higher power thanD for large
values of a, i.e., as a → 1.Their test statistic is a modification of a generalized likelihood ratio, with the
numerator taking the fixed value a = 1 and the denominator taking a = 0 (but 𝜷 is estimated in both,
hence “generalized”). Similar to the approximation in (5.16) and assumptions on the X matrix, B-W
showed that the test is approximately UMP in a neighborhood of a = 1, i.e., it is an (approximate)
LBI test.
Recall from (4.21) the form of 𝚺−1 in (5.5). B-W define the distribution of the first observation in

a different way, so that this matrix, denoted V−1(a) to distinguish it, is (4.21) but such that the (1, 1)
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element is b = 1 + a2 instead of 1. Berenblut and Webb (1973, p. 38) mention possible use of the
likelihood ratio

Λ =
supΘ(𝜽;Y,X)
supΘ0(𝜽;Y,X) ≈

(Y − X�̃�)′V−1(â)(Y − X�̃�)
(Y − X𝜷)′(Y − X𝜷)

, (5.20)

(with the r.h.s. being an approximation because it omits some terms in the likelihood) where Θ =
{𝜷 ∈ ℝk , a ∈ (−1, 1]}, Θ0 = {𝜷 ∈ ℝk , a = 0}, �̃� = (X′V−1(â)X)−1X′V−1(â)Y is the generalized least
squares estimator (and m.l.e.) of 𝜷 , and â is the m.l.e. of a. As Λ is a (generalized) likelihood ratio test,
under certain conditions it will be UMP asymptotically, though this does not imply it will have good
power properties in small samples.
B-W did not pursue it, for computational reasons that will be made clear below. Instead, they took

B = V−1(1), which is the same as the Durbin–Watson matrix A in (B.8), but with the (1, 1) element
being 2 instead of 1, and �̃� = (X′BX)−1X′BY, and propose the test statistic

G =
(Y − X�̃�)′B(Y − X�̃�)
(Y − X𝜷)′(Y − X𝜷)

= Y′WY
Y′MY

, W = B − BX(X′BX)−1X′B, (5.21)

where M is the usual o.l.s. residual projection matrix given in (B.15) and (1.53). Similar to the
canonical reduction of D in (B.18), G can be expressed as (when there is a total of T observations)∑T−k

i=1 𝜆i𝜒
2
i ∕

∑T−k
i=1 𝜒2

i , where the 𝜆i are the eigenvalues ofMW.
The program in Listing 5.2 computes the relevant cutoff values for the three test statistics D, G

and Λ. Those for the first two use the methodology and programs developed in Section A.3.1, and
require less than a second, while that for Λ requires simulation, involving exact maximum likelihood
estimation of the ARX(1) model (using the more general code we develop for the so-called ARMAX
model in Chapter 7). This is clearly the most time-consuming part of the computation (and would
have been prohibitive in the 1970s). The program then conducts a simulation, for a given value of
parameter a, to determine the power. Again, because of the need to compute the m.l.e. (as opposed
to just the D and G statistics), this calculation is rather time-consuming.
Figure 5.3 shows the power of the three tests, for the same two sample sizes as used in Figure 5.2,

and based on theXmatrices used in the bottom panels of that figure. Observe that the size is correct.
For X = [𝟏, t] in the top panel, the D and G tests have the same power, while in the bottom panel,
G (slightly) dominates for a > 0.7, while D has (slightly) higher power for 0 < a < 0.5. The test based
on Λ has much lower power for a > 0, and also power less than the size for a substantial part of the
parameter space of a, showing that it is a biased test. Comparing the graphs in Figure 5.3 to the
bottom panels of Figure 5.2, we see that theD andG tests are more powerful, as expected, given their
approximate UMP nature.
It is noteworthy that the Λ test has good power properties for a < 0 and appears unbiased. The

reader is invited to investigate the power of the D, D′ and G tests for the a < 0 case (which involves
rejecting for large values of the statistics), and compare with that of Λ.
Another test statistic for a = 0 expressible as a ratio of quadratic forms is that of King (1985a),

given by

K(a∗) = Y′G′[G𝚺(a∗)G′]−1GY
Y′MY

, |a∗| < 1, (5.22)
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1 function [DWp,BWp,LRTp]=DWBWLRTsim(a,T,X,alpha)
2 % determine power for Durbin Watson, Berenblut-Webb, and LRT
3 % for ARX model with sample size T, AR(1) param a, X matrix and
4 % significance level alpha (default 0.05)
5 persistent DWc BWc LRTc
6 sim=1e4;
7 if nargin<3 || isempty(X), X=0; end
8 if nargin<4, alpha=0.05; end
9

10 if numel(X)==1 % signal to use a particular X matrix as follows:
11 type=X;
12 if type==0, X=[];
13 elseif type==1, X=ones(T,1);
14 elseif type==2, X=[ones(T,1) (1:T)'];
15 elseif type==3
16 c=round(T/2);
17 D1=[zeros(c,1) ; ones(c,1)]; if length(D1)>T, D1=D1(1:(end-1)); end
18 Dt=[zeros(c,1) ; ((c+1):T)'];if length(Dt)>T, Dt=Dt(1:(end-1)); end
19 X=[ones(T,1), (1:T)', D1, Dt.ˆ2];
20 else error('Type of X matrix not defined')
21 end
22 end
23 [Tchk,k]=size(X); if Tchk ~= T, error('T and X incompatible'), end
24 M=makeM(X); A=makeDW(T); B=A; B(1,1)=2;
25 W=B-B*X*inv(X'*B*X)*X'*B; %#ok<MINV>
26 if isempty(DWc)
27 disp('Calculating cutoff values')
28 useimhof=1;
29 DWc=fzero(@(r) cdfratio(r,M*A*M,M,eye(T),[],useimhof)-alpha, 1.45)
30 BWc=fzero(@(r) cdfratio(r,W, M,eye(T),[],useimhof)-alpha, 1.45)
31 LRT=zeros(sim,1);
32 for i=1:sim
33 e=randn(T,1);
34 [~, ~, ~, ~, llfull]=armareg(e,X,1,0,1);
35 S=e'*M*e; % Residual sum of squares for OLS
36 s2=S/(T-k); llols = -T/2*log(2*pi) - T/2*log(s2) - S/2/s2;
37 LRT(i)=2*(llols-llfull);
38 end
39 LRTc=quantile(LRT,alpha) %#ok<NOPRT>
40 end

Program Listing 5.2: Computes the power of theD,G, andΛ tests for model (5.1)–(5.2) with passed
AR(1) parameter a, sample size T , regressor matrix 𝐗, and significance level 𝛼 (default 0.05). Passing
𝐗 as scalar is used to generate the typical regressor matrices of none, constant, and time trend, as
well as the one with a trend break, [𝟏, 𝐭,D1,Dt2]. Use clear DWBWLRTsim to remove the cutoff
values (defined as persistent variables). Function armareg is given in Listing 7.7 in Chapter 7.
The log-likelihood corresponding to the o.l.s. model calculated in lines 35–36 uses (1.4), (1.10), and
(1.56). The program is continued in Listing 5.3.
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Figure 5.3 Power of the D, G, and Λ tests, for significance level 𝛼 = 0.10, two sample sizes T = 30 and T = 60, and two
Xmatrices, as indicated. The lines corresponding to D and G are graphically indistinguishable in the top plot.

rejecting for small values of K(a∗), and whereG is fromTheorem 1.3. As with (5.18), this test statistic
is invariant to translations of the form Y∗ = 𝛾0Y + X𝜸 for 𝛾0 a positive scalar and 𝜸 is any real k × 1
vector. The test based on (5.22) is POI because it is the most powerful (invariant) test at the point
a = a∗, as shown in King (1980).
Using (1.65), we see that (5.22) is a type of likelihood ratio test, but such that the m.l.e. estimate

of a is not used, but rather a fixed value of a in the alternative space. As discussed in King (1985a),
it is similar to the B-W test in that it is point optimal, but such that the chosen point, say a∗, about
which power is optimized, is not equal to one. (More precisely, the B-W test can be viewed as an
approximation of (5.22) as a∗ → 1. Likewise, the Durbin–Watson test, which is of the form (5.18) and
thus designed to have maximal power for a close to zero, approximates (5.22) as a∗ → 0.)
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1 DWr=zeros(sim,1); BWr=DWr; LRTr=DWr;
2 if a==0, S12=eye(T); Si=eye(T); S=eye(T);
3 else
4 b=1+aˆ2; r=[b -a zeros(1,T-2)];
5 Si=toeplitz(r); Si(1,1)=1; Si(T,T)=1;
6 [V,D]=eig(Si); S12=V*Dˆ(-1/2)*V'; S=inv(Si);
7 end
8 for i=1:sim
9 e=S12*randn(T,1); % normal innovations. Next line uses stable

10 %staba=1.5; stabb=0.8; e=S12*stabgen(T,staba,stabb)';
11 eh=M*e; D=(eh'*A*eh)/(eh'*eh); G=(e'*W*e)/(e'*M*e);
12 if 1==2 % The LRT using true value of a
13 BetaGLS=inv(X'*Si*X)*X'*Si*e; s2=1; % little sigmaˆ2
14 Term=(e-X*BetaGLS)'*Si*(e-X*BetaGLS);
15 llfull=-(T/2)*log(2*pi) -0.5*log(det(s2*S))-Term/2/s2;
16 else % LRT with full MLE estimation
17 [~, ~, ~, ~, llfull]=armareg(e,X,1,0,1);
18 end
19 S=e'*M*e; s2=S/(T-k); llols = -T/2*log(2*pi) - T/2*log(s2) - S/2/s2;
20 LR=2*(llols-llfull);
21 DWr(i)=D<DWc; BWr(i)=G<BWc; LRTr(i)=LR<LRTc;
22 end
23 DWp=mean(DWr); BWp=mean(BWr); LRTp=mean(LRTr);

Program Listing 5.3: Continued from Listing 5.2. Program stabgen in line 9 (commented out) is
for generating stable Paretian variates, and is given in Listing III.A.5.

We will encounter related point optimal tests below, namely, in Section 5.5.1 for a unit root, and in
Section 5.6.3.2 for regression parameter constancy. As emphasized in King (1985a, p. 29), the obser-
vation vector Y should not be used to choose the value of a∗. Observe how this differs from the Λ test
in (5.20), which we saw has relatively lower power.

Remarks
a) It is of interest to investigate the size and power properties of the tests amid non-Gaussian innova-

tions. We conducted this for the D and G tests using the asymmetric stable Paretian distribution
(accomplished by activating line 9 in Listing 5.3). For (approximately) 1.4 < 𝛼 < 2, where here 𝛼
denotes the stable tail index, there was almost no change in the size or power of the test. (The
graphics are not shown, as they look virtually identical to those in Figure 5.3, and, not having com-
puted the Λ statistic, are computed within seconds.) As tail index 𝛼 decreases, the size starts to
drop, though not by much, and the results seem essentially invariant to the choice of asymmetry
parameter 𝛽. As such, while the tests are not invariant to use of innovation distributions exhibit-
ing even rather heavy tails and asymmetry, they are highly robust to them. This agrees with the
findings of Ali and Sharma (1993), who examined this robustness in more detail with distributions
other than the stable Paretian.

b) Further tests, such as the nonparametric ones by Geary (1970) and Bartels (1982, 1984), do not
require the relatively more complicated distribution theory associated with quadratic forms, but
(unsurprisingly, given the approximate UMP result noted above) tend to have lower power thanD
and related tests; see, e.g., Dubbelman et al. (1978). ◾
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5.3.4 Further Details on the Durbin–Watson Test

There is nothing more frightful than ignorance in action.
(Johann von Goethe)

Section 5.3.4.1 outlines some historical aspects of the famous Durbin–Watson test D, including the
traditionally used bounds test that readers might have seen in a first course in econometrics. It also
bolsters the arguments outlined in Section III.2.8 against use of significance and hypothesis testing for
model selection. Section 5.3.4.2 studies the limiting power properties of D, and, in doing so, demon-
strates why alternative tests with higher power for more extreme autocorrelation, such as the B-W
test (5.21), might be preferred in some contexts.

5.3.4.1 The Bounds Test, and Critique of Use of p-Values
Before approximately 1970, there were no precise algorithmic methods to calculate the c.d.f. of the D
statistic (5.17) in order to get a p-value. Just obtaining the eigenvalues of the T × T matrix MA was
quite a chore, given the limited access to computers and the necessary computational algorithms.
Henshaw, Jr. (1966) proposed use of the four-parameter beta distribution (the two shape parame-

ters, as well as the two endpoints), such that themoments coincidewith the first four integermoments
of D. This has been shown by several authors (see, e.g., Harrison, 1972) to yield a highly accurate
approximation that can be used in practice instead of an exact or saddlepoint-based approximation. A
similar approximation was developed by Ali (1983), who used a four-parameter Pearson distribution.
These approximations can be obtained without explicitly calculating the eigenvalues—recall (B.5).
(Interestingly, though of less relevance in modern computing environments, the exact distribution
can also be obtained without calculating eigenvalues; see Farebrother, 1985, 1994, and the references
therein.)
This idea of using the beta distribution was known to Durbin and Watson in 1950: They suggested

its use, based on matching the first two moments and assuming the support of D to be (0, 4), if the
bounds test is inconclusive. (This is not as accurate as the approximation of Henshaw, Jr. (1966) using
fourmoments.) However, at the time they had little confidence in the beta, as the necessary computing
power to check it was simply not available. Evaluating the beta approximation still involves non-trivial
matrix calculations, as well as evaluation of the incomplete beta function for the c.d.f., so that, in
the 1950s, it would have been impractical to ask an applied researcher, or anyone for that matter, to
calculate this routinely.
Their solution, which to this day is still used (though is arguably now superfluous; see below), is

referred to as thebounds test. It consists of constructing lower and upper bounding randomvariables,
say dL and dU , whose distributions are independent ofX, and tabulating their values for various sample
sizes T and number of regressors k, at the popular cutoff significance levels of 0.05 and 0.01. In this
way, for a test with significance level 𝛼 (either 0.05 or 0.01), if the calculated d statistic is less than dL,
then one would reject the null hypothesis. Similarly, if d is greater than dU , then one would not reject
it.The test is inconclusive when dL < d < dU , which is, appropriately, called the inconclusive region.
This method is described in numerous econometrics textbooks, including recent ones (see, e.g.,

Wooldridge, 2009, p. 415; Baum, 2006, p. 157), as well as theWikipedia entry on the Durbin–Watson
statistic, though the methodology for computing the c.d.f., and thus the p-value, is well-known now,
and tables of the bounds (and the dreaded result of winding up in the inconclusive region) can be
done away with.



Regression Extensions: AR(1) Errors and Time-varying Parameters 237

To derive these bounding random variables for fixed T and k, we use a method that is now com-
mon, and is more general than that used by Durbin and Watson, namely the Poincaré Separation
Theorem: Let 𝜈1 ⩽ 𝜈2 ⩽ · · · ⩽ 𝜈T be the ordered eigenvalues of A, as given in (B.9), and let 𝜆1 ⩽ 𝜆2 ⩽
· · · ⩽ 𝜆T−k be the ordered eigenvalues ofMA. Corollary 1 of Theorem B.5 in Section B.5 implies

𝜈i ⩽ 𝜆i ⩽ 𝜈i+k , i = 1,… ,T − k,

so that

dL ∶=
∑T−k

i=1 𝜈i𝜒
2
i∑T−k

i=1 𝜒2
i

⩽
∑T−k

i=1 𝜆i𝜒
2
i∑T−k

i=1 𝜒2
i

⩽
∑T−k

i=1 𝜈i+k𝜒
2
i∑T−k

i=1 𝜒2
i

∶= dU , (5.23)

as the 𝜒2
i are positive.

Remarks
a) Although the problem had been reduced to determining specific quantiles of just two bounding

random variables for several combinations of T and k, this was still not trivial in 1950. In order
to calculate these values, Durbin and Watson used a technique involving an expansion in Jacobi
polynomials. In doing so, they used further approximations, reducing the problem to one involving
simply a large number of elementary calculations, suitable for a hand calculator.
In his interviewwith P. C. B. Phillips (1988), James Durbin recalled how the calculations for their

published tables were actually constructed. They had at that time, “a room with perhaps eight or
ten young ladies operating desk calculators, supervised by an older lady of forbidding demeanor.
They did the computing.” Although they claimed two-digit accuracy, they were not sure for quite
some time.

b) In the late 1960s, Durbin and Watson were planning their third paper and wanted to recalculate
their published tables with the help of “modern” computing. Johan Koerts and Adriaan P. J. Abra-
hamse had independently decided to investigate the same question, and informed Durbin that,
to two digits, their initial tables were correct. By this point in time, far more precise methods had
been developed to evaluate the c.d.f. ofD, such as by Pan Jie-Jian (1964) andKoerts andAbrahamse
(1969), the latter giving a Fortran program to compute it to a user-specified degree of accuracy,
based on the work of Imhof (1961), which uses the inversion formula method for calculating the
c.d.f., as discussed in Chapter A. ◾

We state some disadvantages of using the bounds test, as compared to computing the p-value.

• For fixed k, the size of the inconclusive region is inversely proportional to the sample size T , and
can be quite large for moderate T , as is common in economic data sets.

• Even when the test is conclusive, the researcher is prevented from reporting the corresponding p
value, which conveys much more information than just the binary result of the hypothesis test.

• The tables have entries for a limited number of values of the sample size T , so that more often
than not, one must (linearly) interpolate. This requires not only more time, but introduces a small
amount of error.

• Use of tables is outdated and inconvenient. Econometric packages now have the tables built in (with
all their aforementioned limitations), while several modern statistical software packages compute
the exact or approximate p-value.
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• The bounds test without modification is inappropriate for detecting autocorrelation at higher lags,
which might accompany seasonal data. As an example, monthly sales data might not only have
first-order serial correlation, but also 12th order. The generalized Durbin–Watson test naturally
suggests itself, generalizing (B.16) to

Dj =
∑T

t=j+1 (𝜖t − 𝜖t−j)2∑T
t=1 𝜖

2
t

=
𝝐′MAjM𝝐

𝝐′M𝝐
, (5.24)

j = 1, 2,…, where Aj = D′
jDj generalizes (B.8), with D the (T − j) × T Toeplitz matrix with first

column [−1, 0,… , 0]′ as before, and first row [−1, 0,… , 0, 1, 0,… , 0], where there are j − 1 zeros
between −1 and 1 (see Vinod, 1973; and Ali, 1987). The SAS programming language, for example,
computes these (and the associated exact p-values), while Matlab’s function dwtest also returns
a p-value, but is only for j = 1.

• The same methods that are used to compute the p-value for D and related tests (such as that from
Berenblut andWebb, 1973) can also evaluate their corresponding power against AR(1) alternatives,
as discussed in Section 5.3.4.2. Tabulating the power is impractical, as it would need to be done for
various T k, a and 𝛼, but is anyway futile, as the power of these tests strongly depends on X.

In addition to the above disadvantages of using the bounds test instead of direct calculation of the
p-value, one might question the use of such tests, even if the p-value is delivered.This was elaborated
upon inmore generality in Section III.2.8. In particular, the Fisher significance testing framework (use
of p-values) was designed for situations involving assessment of treatment effects in designed studies,
with the intention of deciding if the experiment should be repeated (several times) to confirm and
measure efficacy. In our setting here, a single data set from a (vastly) more complicated data generat-
ing process (hereafter d.g.p.) is under study, and interest centers on the choice of model: Regression
with or without an AR(1) term for the residual process. While the Durbin–Watson (and related) test
statistics have value in indicating deviations from a regression model with i.i.d. error terms, it is no
longer clear how one should use the p-value for deciding on the appropriate model.
While earlier researchers may not have questioned the use of the general hypothesis testing

paradigm in econometrics, some explicitly considered the effect of basing the choice of model on
the result of the Durbin–Watson test. For example, Nakamura and Nakamura (1978) investigated
the pretest estimator of 𝛽2 in (B.17) when the choice of model is determined by the outcome of D
for a given significance level 𝛼. Nakamura and Nakamura (1978, p. 207) conclude: “Our results so
far suggest that tests of significance for autocorrelation might best be dispensed with in estimating
[regression relationships] in favor of a practice of always transforming.” (Here, “transform” refers to
estimating the regression model with AR(1) disturbance term, which, at the time, was not so trivial.
They used the so-called Cochrane–Orcutt method of estimation, which is not the same as, and
inferior to, the m.l.e., as well as the other methods we will explore in Section 5.4.)
Their results were independently corroborated by Fomby and Guilkey (1978), who showed that, if

a pretest estimator for 𝜷 is used based on the Durbin–Watson statistic, then the optimal significance
level 𝛼 is far greater than 0.05, and more like 0.50, when measuring the performance of 𝜷 based on
m.s.e. Notice that this implies yet another reason why the tabulated bounds for the D test, using
significance levels 0.01 and 0.05, are of little use.
Similar findings regarding the inappropriateness of the traditional significance levels have been

shown to be the case in the unit root testing framework; see Kim and Choi (2017).
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5.3.4.2 Limiting Power as a → ±1
Use of the Durbin–Watson test statisticD in (5.17), or, equivalently,D1 in (5.24), is expected to result
in among the most powerful tests for first-order serial correlation in the Gaussian linear regression
model (5.1)–(5.2) because it is approximately UMP, in the sense detailed in Section 5.3.2. With the
ability to quickly and reliably compute the distribution of ratios of quadratic forms in normal vari-
ables (with any positive definite covariance matrix), the power of the D and related tests are easily
determined, and can be compared to each other, as in Figure 5.3 above, for a particular X matrix,
as a function of autoregressive parameter a. This section looks at some analytic results regarding the
power ofD. In particular, we can characterize the limiting power as a → 1 (with similar results holding
for a → −1), and see how the choice of X affects it.
Let 𝛼 be the tail probability corresponding to the test significance level, and let

𝜋D(a+) = Pr(D ⩽ d+
𝛼 ∣ a = a+), 0 ⩽ a+ < 1, (5.25)

denote the power of the D test for testing against positive autocorrelation (suppressing the depen-
dence on theXmatrix), with d+

𝛼 the test cutoff value corresponding to 𝛼. Here, a+ is a specific value of
the autocorrelation parameter, and the null hypothesis isH0 ∶ a = 0. By construction, 𝜋D(0) = Pr(D ⩽
d+
𝛼 ∣ a = 0) = 𝛼. The power function for testing against negative autocorrelation is defined similarly,

namely

𝜋D(a−) = Pr(D ⩾ d−
𝛼 ∣ a = a−), −1 < a− ⩽ 0, (5.26)

though interest is usually on (5.25).
Assume a sample of size T . From (5.17), and similar to the rearrangement in (A.32),

𝜋D(a+) = Pr
(
𝝐′MAM𝝐

𝝐′M𝝐
⩽ d+

𝛼 ∣ a = a+
)

= Pr(𝝐′(Q − d+
𝛼M)𝝐 ⩽ 0 ∣ a = a+), (5.27)

whereQ = MAM. Assume 𝝐 ∼ N(𝟎, 𝜎2𝚺), with 𝚺 (of size T × T) given in (4.20) (and observe that we
restrict 0 ⩽ a+ < 1 so that it is well-defined). Let 𝜼 = (𝜎2𝚺)−1∕2𝝐 ∼ N(𝟎, IT ), so that 𝝐 = (𝜎2𝚺)1∕2𝜼, and
substitute this into (5.27) to get

𝜋D(a+) = Pr(𝜎2𝜼′𝚺1∕2(Q − d+
𝛼M)𝚺1∕2𝜼 ⩽ 0 ∣ a = a+).

As the right-hand side of the inequality is zero, wemay cancel the positive constants 𝜎2 and (1 − a2)−1
from 𝚺 to get the slightly simpler

𝜋D(a+) = Pr(𝜼′V1∕2(Q − d+
𝛼M)V1∕2𝜼 ⩽ 0 ∣ a = a+),

where [V]i,j]=a|i−j| , i.e.,

V =

⎡⎢⎢⎢⎢⎢⎢⎣

1 a a2 · · · aT−1

a 1 a · · · aT−2

a2 a 1 · · · aT−3

⋮ ⋮ ⋮ ⋱ ⋮

aT−1 aT−2 aT−3 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦
.

As V1∕2(Q − d+
𝛼M)V1∕2 is (real and) symmetric, it can be expressed as L𝚲L′, with 𝚲 =

diag([𝜆1,… , 𝜆T ]) the diagonal matrix of eigenvalues, and L the corresponding orthogonal matrix, as
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was similarly done in (A.2)–(A.4). Thus,

𝜋D(a+) = Pr(𝜼′L𝚲L′𝜼 ⩽ 0 ∣ a = a+) = Pr

( T∑
i=1

𝜆i𝜂
2
i ⩽ 0 ∣ a = a+

)
, (5.28)

where 𝜂2i
i.i.d.∼ 𝜒2(1), i = 1,… ,T , because L′𝜼 ∼ N(𝟎, IT ). Also observe that, from Theorem B.4, the

nonzero 𝜆i are also the eigenvalues of (Q − d+
𝛼M)V = M(A − d+

𝛼 I)MV or, equivalently, those ofV(Q −
d+
𝛼M) = VM(A − d+

𝛼 I)M (where the latter expression is just the transpose ofM(A − d+
𝛼 I)MV, and thus

has the same eigenvalues, as the reader should confirm in general). For testing against negative auto-
correlation, 𝜋D(a−) is the same as (5.28) except that we use d−

𝛼 instead of d+
𝛼 in constructing the 𝜆i, and

the inequality sign is reversed.
From Figure 5.3, one might think that, as |a| → 1, 𝜋D(a) → 1. Unfortunately, this is not usually true,

with the limiting power, which we denote by 𝜋D(1−), depending on the X matrix (and thus also the
sample size). It turns out that 𝜋D(1−) can be below the size of the test, or even zero, rendering D (and
similar autocorrelation tests expressible as ratios of quadratic forms) biased. Denote the T-vector of
ones as 𝟏 = (1, 1,… , 1)′. As in Krämer (1985), observe that, as a → +1, V → 𝟏𝟏′ =∶ V+, the matrix
consisting of all ones, so that V+ is of rank one. Hence, via (B.66), (Q − d+

𝛼M)V+ is at most rank one,
and there is at most one nonzero eigenvalue in the sum in (5.28). Assume there is one such value, say
𝜆∗. Then, as the 𝜂2 are strictly positive, when this single eigenvalue is negative (positive), the limiting
power is one (zero).
Recall the definition of column space from (1.38). For determining the power as |a| → 1, it is useful

to differentiate between the two exclusive and exhaustive cases: Either 𝟏 ∈ (X) or 𝟏 ∉ (X). The
latter case amounts to a regression without a constant term or appropriate set of dummy variables,
and implies that 𝜆∗ ≠ 0 because if 𝟏 ∉ (X), thenMV+ = M𝟏𝟏′ ≠ 𝟎, from the ProjectionTheorem 1.1,
and (1.54). Thus, if 𝟏 ∉ (X), then there is exactly one nonzero eigenvalue 𝜆∗, and, recalling that the
trace of a matrix is equal to the sum of its eigenvalues, 𝜆∗ is given by the trace of (Q − d+

𝛼M)V+. The
limiting power in this case is either zero or one. Krämer (1985) gives a simple example of anXmatrix
such that 𝜋D(a+) initially increases in a+, but then begins to decrease as a+ → 1, with 𝜋D(1−) = 0.
Thus, in this case, 𝜋D(a+) is not monotonic in a+, and D is biased. This undesirable feature of D was
also noted and studied in Tillman (1975) and King (1985a).
An illustration is provided in the (rather uneventful) graphic in the top panel of Figure 5.4, demon-

strating that, for each of the threeXmatrices considered and all values ofT shown, the limiting power
is one.The reader should confirm this theoretical finding by plotting, for a fixed sample sizeT and each
of the used X matrices, the power of the D test for a grid of a-values such as 0.900, 0.901,… , 0.999,
as computed from (part of ) the program in Listing 5.2.
If the limiting power is zero, then one could add the regressor 𝟏, and thereby increase the power

for suitably large a, which appears rather dubious, as adding a regressor the researcher believes to be
incorrect should not enhance a statistical procedure. As discussed in Krämer (1985), the resolution to
this contradiction is to note that, in this setting, the Durbin–Watson test is perhaps not optimal, nor
possibly the o.l.s. procedure for estimation.4 Use of an alternative test, such as the B-W test (5.21) or
that of King (1985a) in (5.22), is suggested. Note that, as shown by Krämer (1985) and Zeisel (1989),
there exist Xmatrices with 𝟏 ∉ (X) such that 𝜋D(1−) remains at zero for any T .

4 As further stated in Krämer and Zeisel (1990, p. 371), “[This] does not imply that by adding or removing an intercept, one
can control the power of the test. Whether or not the design matrix should contain an intercept is no matter of choice but
rather dictated by the underlying data generating process.”
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Figure 5.4 Top: Limiting power corresponding to a significance level of 𝛼 = 0.05, for several Xmatrices, none of which
contain a column of ones, as a function of sample size T . Bottom: Same but showing the limiting power (5.29), such
that the Xmatrices contain a column of ones.

Otherwise, as is more common, 𝟏 ∈ (X), and 𝜋D(1−) lies strictly between zero and one, as rigor-
ously shown by Zeisel (1989) and Krämer and Zeisel (1990), building on the work of Tillman (1975).
Following the elegant derivation in Krämer and Zeisel (1990), replace 𝜆i by �̃�i = (1 − a)−1𝜆i in (5.28)
and notice that the power is unchanged. The {�̃�i} are the eigenvalues of V(1 − a)−1(Q − d+

𝛼M). We
know in this case that V+(Q − d+

𝛼M) = 𝟎, so that

lim
a→1

(1 − a)−1V(Q − d+
𝛼M) = lim

a→1
(1 − a)−1(V−V+)(Q − d+

𝛼M).
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Observe that, in the limit, both (1 − a) and all the elements of (V−V+) are zero. Applying l’Hopital’s
rule elementwise, lima→1(1 − a)−1(V−V+) is given by

W ∶= −(|i − j|)i,j = − lim
a→1

⎡⎢⎢⎢⎢⎢⎣

0 1 · · · (T − 1)aT−2

1 0 · · · (T − 2)aT−3

2a 1 · · ·
⋮ ⋮ ⋱ ⋮

(T − 1)aT−2 (T − 2)aT−3 · · · 0

⎤⎥⎥⎥⎥⎥⎦
,

which is full rank. Thus, the limiting power 𝜋D(1−) is given by

𝜋D(1−) = Pr

( T∑
i=1

𝜆i𝜂
2
i ⩽ 0

)
, (𝜆1,… , 𝜆T ) = Eig((Q − d+

𝛼M)W). (5.29)

Using a less direct method of proof, Zeisel (1989) showed that the limiting power is given by

𝜋D(1−) = Pr

( T∑
i=1

𝛾i𝜂
2
i ⩽ 0

)
, (𝛾1,… , 𝛾T ) = Eig((Q − d+

𝛼M)Z), (5.30)

where

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0
0 1 1 1 · · · 1
0 1 2 2 · · · 2
0 1 2 3 · · · 3
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 1 2 3 · · · T − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= UU′, U =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · 0
0 1 0 0 · · · 0
0 1 1 0 · · · 0
0 1 1 1 · · · 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 1 1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

i.e., Z = [min(i, j) − 1]i,j. Numeric inspection via the code in Listing 5.4 shows that {𝜆i} = 2{𝛾i}, and
note that the factor of two does not influence the power in (5.30), so that either (5.29) or (5.30) can be
used to compute 𝜋D(1−) (though see the caption of Listing 5.4).
As a contrast to the first example, the bottom panel of Figure 5.4 plots (5.29) as a function of sample

size T , for the same three X matrices, but each now with an intercept term, as indicated. The reader
is encouraged to replicate both panels of the figure.

1 T=200; X=[ones(T,1), (1:T)'];
2 %T=25; k=2; X=[ones(T,1), randn(T,k)];
3 A=makeDW(T); M=makeM(X); Q=M*A*M;
4 W=zeros(T,T); for i=1:T, for j=1:T, W(i,j)=-abs(i-j); end, end
5 Z=zeros(T,T); for i=1:T, for j=1:T, Z(i,j)=min(i,j)-1; end, end
6 alpha=0.05; d=fzero(@(r) cdfratio(r,M*A*M,M,eye(T),[],1)-alpha, 1.45);
7 lamW=sort(eig((Q-d*M)*W)); lamZ=sort(eig(Z*(Q-d*M)));
8 disp(max(abs(lamW - 2*lamZ)))

Program Listing 5.4: Code for confirming equality of (5.29) and (5.30) when 𝟏 ∈  (𝐗). Use of the
commented out line 2 also works, though as T and k increase, the equality often does not hold, even
if 𝐗 is full rank, presumably because of round-off error. In the event they are not equal, calculating
the power via the program in Listing 5.2 for a = 0.999 reveals that use of𝐖 and (5.29) leads to more
accurate limiting power than use of 𝐙 and (5.30), as the reader should confirm.



Regression Extensions: AR(1) Errors and Time-varying Parameters 243

Krämer and Zeisel (1990) and Small (1993) showed that similar findings regarding the limiting
power apply to the B-W test (5.21) and the POI test (5.22), i.e., for the latter 𝜋K (1−) is zero or one
when 𝟏 ∉ (X), and is otherwise strictly between zero and one. The study of 𝜋D(1−) is augmented in
Bartels (1992) to include the random walk case, i.e., a = 1. Wan et al. (2007) investigated the limiting
power of the Durbin–Watson and related tests in the presence of correct and, notably, mis-specified
linear restrictions on the regression coefficients (see also examples B.6 and B.7, and Section 1.4).

5.4 Bias-Adjusted Point Estimation

This section builds on the methods in Section 4.6 for bias-adjusted estimators of a, now allowing
for a set of regressors. It is well-known that âLS is downward biased, increasingly so for a near one;
recall the results in Section 4.5. While various procedures exist to partially correct for this, no oper-
ational method has so far been devised that is exactly mean-unbiased. It is, however, straightforward
to construct a median-unbiased estimator, hereafter denoted âMed, and first pursued in this context
by Andrews (1993).
Perhaps unsurprisingly, it turns out that none of the bias-correctedmethods is uniformly betterwith

respect to all criteria, though it appears that their relative behavior is virtually invariant to the choice of
sample size and set of regressors, as detailed in Broda et al. (2007). Moreover, this fortuitous behavior
remains (approximately) constant for a variety of non-normal innovation distribution assumptions
commonly entertained in practice. The optimal choice of estimator depends (essentially) only on the
true value of the autoregressive parameter a, but in virtually the same way for any model design and
distributional assumption. For example, as demonstrated in Figure 5.6, the mean-adjusted estimator
has the lowest mean squared error for all a between about 0.7 and 1.0—a result of interest given that
many (macroeconomic) series exhibit high persistence or evennear unit-root behavior. It is interesting
to note that, while this work has its origins in that of Andrews (1993), who proposed and studied the
median-unbiased estimator in this context, for no range of a is themedian unbiased estimator optimal
in terms of mean squared error.
Before turning to the results, we first look at the effects and magnitudes induced by the different

corrections. Figure 5.5a plots values of âLS on the ordinate (y-axis) versus the corresponding quantity
that should be added to âLS to arrive at âMed on the abscissa (x-axis). For example, with T = 10 and
an X matrix consisting of an intercept and time trend, if âLS = 0.2, then âMed ≈ 0.68. As expected,
the amount of correction decreases as the sample size increases. One also sees that, particularly for
smaller sample sizes, the amount of correction increases substantially when the X matrix changes
from 𝟏 to [𝟏, t].
Figure 5.5b is similar, but shows the correction appropriate for âMean. Observe that it differs sig-

nificantly from Figure 5.5b only for values of âLS less than −0.4. Figure 5.5c shows the correction
appropriate for âMode, and is quite unlike its two counterparts. This implies that its small-sample
properties will differ markedly from those of âMed and âMean, as detailed next.
A simulation was conducted with 10,000 replications, based on T = 19 observations, using the two

regression matricesX=𝟏 andX = [𝟏, t]. Figure 5.6 shows the results just for the mean squared error
(m.s.e.), and is thus similar to the bottom two panels in Figure 4.13 (which correspond to no regression
matrix), except that the m.l.e. was not computed. The first characteristic one sees is that, as the com-
plexity of the regression matrix increases, i.e., when going from no X matrix to X=𝟏 to X = [𝟏, t],
the least squares estimator becomes less attractive compared to the adjusted estimators, particularly
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Figure 5.5 Adjustment to âLS corresponding to âMed (a), âMean (b), and âMode (c), shown for the two indicated X
matrices (solid and dashed lines). The four sample sizes used are T = 10, T = 25, T = 50, and T = 100, moving from
right to left within each plot.

as a increases towards one. Secondly, the magnitude of the m.s.e. increases for all estimators as X
increases in complexity.
Approximately speaking, in the case with no X matrix, the m.s.e. is 0.035 for all of the estimators

at a = 0.7, for X=𝟏 and a = 0.7, the m.s.e. is 0.052 for all adjusted estimators (but not for the o.l.s.
estimator), and forX = [𝟏, t] and a = 0.7, them.s.e. is 0.075 for all adjusted estimators, which is more
than double the value corresponding to the no Xmatrix case.
Otherwise, the results are similar when comparing the ordering of the estimators, with âLS being

best for a < −0.1, the mode-unbiased estimator being preferred for −0.1 < a < 0.5 for no X matrix
and −0.1 < a < 0.7 for the other twomatrices, and for 0.7 < a < 1, the mean-bias-adjusted estimator
is preferred (with the median-unbiased estimator relatively close in performance). Rather conve-
niently, it turns out that these results are qualitatively very similar for different sample sizes, and
numerous Xmatrices tried.

Remarks
a) An interesting and useful property of the three bias-corrected estimators is that they are

one-to-one transformations of the least squares estimator, say âBC = m−1
BC(âLS), where BC denotes
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Figure 5.6 Comparison of the m.s.e. for the least squares (OLS), mean bias-adjusted (MBA), median unbiased (MED),
and mode unbiased (MOD) estimators for parameter a in the AR(1) model with T = 19. The top panels refer to use of
X=𝟏, while the bottom panels are for X = [𝟏 t]. The right panels just focus on the range 0.9 < a < 1.

the respective method of bias correction, i.e., BC ∈ {Mean,Med,Mode}, and m−1
BC(âLS) is the

inverse mean, median, and mode function, respectively. Of course, m−1
BC(âLS) is not available

analytically, and is computed by numerical methods. For a given sample size and X matrix, the
adjusted estimators can be calculated for a tight grid of âLS values, from which properties of
interest such as the median and moments (for the bias and m.s.e.) could be obtained by numeric
integration.
Alternatively, as each of the three estimators takes under a second to compute on a modern

PC, a direct, brute-force simulation exercise is also feasible. We use a combination of these two
methods, which involves simulation, but capitalizes on the one-to-one transformation of the
estimators.This results in a ten-fold decrease in computation time compared to direct simulation,
and is now discussed.
The first step is to computem−1

BC(âLS) over a judiciously chosen set of âLS values. In particular, for
any given parameter constellation, an unequally spaced grid of points is dynamically constructed
using a recursive algorithm that ensures a specified accuracy, as required in the next step. This
avoids redundant calculation and saves considerable time.
For the second step, (i) simulate a time series from model (5.1)–(5.2), (ii) calculate âLS, and (iii)

from âLS use linear interpolation from the grid obtained in the first step to obtain the corresponding
bias-corrected estimators. As parts (i), (ii) and (iii) are all numerically cheap, this second step is
extremely fast, enabling use of a very large number of replications (we used 10,000), so that the
inherent variation arising from simulation can be effectively eliminated. Thus, for any given X
matrix, the mean- and median-bias, and the m.s.e., of the three bias-adjusted estimators can be
routinely computed over a grid of a-values.
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b) Consider treating the p.d.f. of âLS as a likelihood function and choosing a to be the value for which
it obtains its maximum. We refer to this as the pseudo maximum likelihood estimator (p.m.l.),
denoted âPML, and defined as

âPML = argmaxa fâLS (a; âLS). (5.31)

Note the similarity of (5.31) to the mode-adjusted estimator (4.51). However, this method only
requires computation of the maximum of one p.d.f., and is thus significantly faster. Inspection
shows that the resulting estimator is uniquely defined.5

The performance of âPML is, relatively speaking, very similar to that of âMode with respect to
both mean- and median-bias, and m.s.e.These two estimators also have the highest linear correla-
tion when computed from a simulation. As âPML is much faster to evaluate than âMode, the former
might be preferred when used in conjunction with numerically intensive procedures, such as sim-
ulation and bootstrap exercises. The reader is encouraged to implement this and investigate its
performance. ◾

The small-sample behavior with respect to non-Gaussian innovations is now examined.We use the
constant and time-trendmodelwithT = 25 observations, but take the distributional assumption to be
Cauchy,which possesses tailsmuch fatter than usually arises in empirical applications in econometrics
and serves as a special case of both the Student’s t and symmetric stable Paretian distribution, and for
which the expectation does not exist. It should be kept in mind that the adjusted estimators are all
based on the normal assumption used in the calculation of the distribution of âLS in (5.14).
The results are shown in Figure 5.7. The overall behavior of the estimators is still similar to the

normal case. For example, âMean is still approximately unbiased over most of the parameter space,
exhibiting an increase in bias as |a| approaches one, as in the normal case. Estimator âMed is no
longermedian-unbiased, but is approximately so for a < 0.8. Interestingly, âMode is also approximately
median-unbiased. The differences in m.s.e. among the adjusted estimators are somewhat less pro-
nounced, although, qualitatively speaking, the envelope of minimum m.s.e. is virtually the same as
before, i.e., âLS is recommended over most of the negative a range, âMode for −0.1 < a < 0.7 and âMean
for a > 0.7. Similar results were found based on Laplace, as well as Student’s t and asymmetric sta-
ble Paretian distributional assumptions for a variety of tail thickness parameters. Thus, it appears
that, particularly for small sample sizes, the choice of X has more of an impact than does—even
considerable—deviation from normality.

5.5 Unit Root Testing in the ARX(1) Model

How to link a theoretical model with empirical evidence in a scientifically valid way is a tremen-
dously difficult task that has been debated as long as economics and econometrics have existed.
The dilemma facing an empirical economist/econometrician is that there are many economic
models but only one economic reality: which of the models should be chosen?

(Katarina Juselius, 2018, p. 1)

5 Note that the uni-modality of fâLS (t ∣ a,X) with respect to t does not automatically imply a unique maximum with respect
to a.
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Figure 5.7 The performance of the various adjusted estimators, having used Cauchy innovations.

Starting with the seminal work of Dickey and Fuller (1979), unit root testing has become the focus of a
large number of research papers and is now a routine part of applied econometrics. Part of the reason
is that a unit root implies that the effect of the innovation sequence never dies out and there is no
mean to which the process reverts. In the context of economics, this has interpretations to “shocks”
(the innovations) to the economy and policy implications; see, e.g., Campbell and Mankiw (1987),
Cochrane (1988), Cribari-Neto (1996), and the references therein.
This can be contrasted with a trend-stationary model, i.e., model (5.1)–(5.2) with mean dic-

tated by x′t𝜷 (often with a time trend in the X matrix) and |a| < 1. For the latter, shocks die
out over time (the speed of which is dictated by a) and are mean-reverting (or have an attrac-
tor) towards x′t𝜷 . Another reason for the popularity of unit root tests is because the decision
between |a| < 1 and a = 1 has implications for so-called co-integration models. Pre-testing for
unit roots is usually the first step in building such models; see, e.g., Watson (1994), Hamilton
(1994), Maddala and Kim (1998), Patterson (2000a), Hayashi (2000), Lütkepohl (2005), Zivot
and Wang (2006), and the references therein on unit root testing and co-integration model-
ing. The unit root literature is extensive: Starting points for deeper study include the previous
references, as well as Stock (1994), Hatanaka (1996), Perron (2006), Patterson (2011, 2012),
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and Choi (2015). See also Abadir (1998), Larsson (1995, 1998), and the references therein
for details on approximations of the small-sample distribution of unit root tests and their
asymptotics.
Much of the literature on unit root testing appeals to the use of asymptotic distribution theory, often

involving (functionals of ) Brownian motion and use of tabulated cutoff-values for finite sample sizes
based on simulation. In certain model contexts, this will be unavoidable, while in simpler ones exact
distribution theory for finite samples via ratios of quadratic forms, as outlined in Appendices A and
B, is available, and, for general (non-stochastic) X and sample size, a p-value can be delivered.
Section 5.5.1 begins with the first generation of tests, for which the null is a unit root (a = 1), fol-

lowed by Section 5.5.2, addressing the subsequent development of tests for which the null is a < 1.
This situation in which tests are available for both forms of the null is very useful. In practice, tests
from both types are conducted when analyzing real data.Wewill present somemodel paradigms later
in Section 7.7 when neither of these nulls is true, such as allowing parameter a to be time-varying,
giving rise to a so-called stochastic unit root model, and the use of fractional integration.

5.5.1 Null is a = 1

If you apply unit root tests to an hour of second by second temperature data from 9 to 10 AM
you will think it has both a linear trend and a unit root. Millisecond data will not help you to
detect climate change.That’s why unit root tests are a problem. You have to think, and consider
the span of data you have and the frequency of mean reversion that makes economic sense in
your data.

(John H. Cochrane, April 2015, internet blog)

The starting point is the o.l.s. estimator of a in model (5.1)–(5.2), and its distribution under the null
hypothesis of a = 1. The most basic setup presumes the model has no regressors and is given by Yt =
aYt−1 +Ut ,Ut

i.i.d.∼ N(0, 𝜎2), and the null hypothesis isH0 ∶ a = 1 versusH1 ∶ a < 1. Dickey and Fuller
(1979) propose to use 𝜏 = (âLS − 1)∕std(âLS) as the test statistic. Under the null of a = 1, âLS does not

1 sim=1e4; reject=zeros(sim,1); alpha=0.05; T=25; % 25 or 50
2 avec=0:0.02:1; alen=length(avec); pow=zeros(alen,1);
3 model='AR'; % AR or ARD or TS, for, respectively, X=[], X[1], and X[1 t]
4 for aloop=1:alen, a=avec(aloop); disp(a)
5 parfor i=1:sim
6 U=randn(T+40,1); y=zeros(T+40,1);
7 for t=2:T+40, y(t)=a*y(t-1)+U(t); end
8 y=y((end-T+1):end);
9 reject(i)=adftest(y,'model',model,'alpha',alpha);

10 end
11 pow(aloop) = mean(reject);
12 end
13 figure, plot(avec,pow,'r-','linewidth',3)

Program Listing 5.5: Simulates the power of the Dickey–Fuller unit root test using the built-in
Matlab function adftest, which supports use of the three 𝐗 matrices used in Figure 5.8. When
simulating the Yt , a “burn in” period of 40 observations is used to remove the effect of the initial value
of Y , here zero.
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have the asymptotic distribution given in (4.26), and simulation is required to obtain the cutoff values
associated with the usual levels of significance, for a given sample size.
The Dickey–Fuller test is built into many high-level programming languages and statistical soft-

ware packages. In Matlab, the relevant function is adftest (where the “a” stands for “augmented”,
referring to the test in the AR(p) case). Cutoff values obtained via simulation for the usual significance
levels have been tabulated for the aforementioned no-regressor model, as well as model (5.1)–(5.2)
with X = [𝟏] and X = [𝟏, t]. The code in Listing 5.5 calculates the power of the test based on simula-
tion, for these three Xmatrices, and was used to produce the top panels in Figure 5.8.
Now consider the use of a one-sided test derived from the c.i. of parameter a based on âLS as in

Section 4.7, whereby appeals to asymptotics or simulation for obtaining cutoff values are not required.
As it is based on âLS, one might expect it to have similar power properties to the classic Dickey–Fuller
test.The test rejects if the value of one is not in the confidence interval.The bottompanels of Figure 5.8
show the power curves corresponding to this test with significance 𝛼 = 0.05, and demonstrate that
they are higher than those for the Dickey–Fuller test, particularly in the case with regressors. The
reader is encouraged to set up the code to replicate these results.
Hisamatsu and Maekawa (1994) suggest use of the Durbin–Watson statistic for testing for a unit

root in the pure AR(1) case (no regressors), assuming the first observation is zero. Their simulations
show that it has nearly the same power properties as the Dickey and Fuller (1979) tests. The test can
be augmented to the case with regressors, and is expressible as, and amenable to the analytic results
for, ratios of quadratic forms, provided that a modification is made to the assumption on the first
observation, as in Hisamatsu and Maekawa (1994). Under the null that a = 1, (4.20) is rank deficient,
recalling its determinant is 1∕(1 − a2). However, recalling Section 5.3, we can take 𝚺−1 with a = 1 to
beB in (5.21), using themodification from Berenblut andWebb (1973) on the first observation so that
it is full rank.
Then, for (first observation modified) model (5.1)–(5.2), with Z = B1∕2𝝐 ∼ N(𝟎, 𝜎2IT ), A

the Durbin–Watson matrix as given in (B.8), H = B−1∕2MAMB−1∕2, K = B−1∕2MB−1∕2, and
M = IT − X(X′X)−1X′ being the usual projection matrix onto the orthogonal complement of regres-
sor matrix X, as given in (1.53), the test statistic and its distribution under the null of a unit root and
the use of the modified model is

R = 𝝐′MAM𝝐

𝝐′M𝝐
= 𝝐′B1∕2B−1∕2MAMB−1∕2B1∕2𝝐

𝝐′B1∕2B−1∕2MB−1∕2B1∕2𝝐
= Z′HZ

Z′KZ
, (5.32)

and we reject the null hypothesis of a unit root for large R. Observe that R is invariant to scale term
𝜎 > 0 in (5.2). Its c.d.f. can be evaluated using program cdfratio in Listing A.3, and the 𝛼-quantile
(cutoff value for the test) can be evaluated using the fzero command as in line 29 of Listing 5.2.
The short code in Listing 5.6 calculates the cutoff c = c(1 − 𝛼,T ,X) for T = 50 and significance

level 0.05 (corresponding to the 95% quantile, as we reject for large R), for an Xmatrix consisting of a
constant and time trend, and confirms the level of the test via simulation with (an indulgence of) ten
million replications, yielding 0.0500.
It might appear that the power for |a| < 1 and cutoff c = c(1 − 𝛼,T ,X), using the usual matrix 𝚺 for

the covariance matrix for 𝝐, is given by

(wrong) Pr(R > c) = Pr
(
𝝐′B1∕2B−1∕2MAMB−1∕2B1∕2𝝐

𝝐′B1∕2B−1∕2MB−1∕2B1∕2𝝐
> c

)
= Pr

(
Z′HZ
Z′KZ

> c
)
, Z = B1∕2𝝐 ∼ N(𝟎, 𝜎2B1∕2𝚺B1∕2). (5.33)
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Figure 5.8 Top: The power of the Dickey–Fuller unit root test, for two sample sizes and three Xmatrices, as indicated. Bottom: Same, but based on the
one-sided c.i. of âLS as in Section 4.7.
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1 alpha=0.95; T=50; X=[ones(T,1), (1:T)'];
2 if isempty(X), M=eye(T); k=0; else M=makeM(X); [~,k]=size(X); end
3 A=makeDW(T); B=A; B(1,1)=2; [V,D]=eig(B); Bm12=V*sqrt(inv(D))*V';
4 H=Bm12*M*A*M*Bm12; K=Bm12*M*Bm12;
5 Rc=fzero(@(r) cdfratio(r,H,K,eye(T),[],1)-alpha, 0.5);
6 sim=1e7; rej=zeros(sim,1); % now simulate the size
7 for i=1:sim
8 U=[0 ; randn(T-1,1)]; e=cumsum(U);
9 R=(e'*M*A*M*e)/(e'*M*e); rej(i)=R>Rc;

10 end
11 thesize=mean(rej) %#ok<NOPTS>

Program Listing 5.6: Calculates the cutoff value for the unit root test (5.32) and simulates the size.

However, observe that, because the model assumption in the test statistic under the null was modi-
fied, as a → 1, (5.33) is incorrect (though will be close as the sample size increases, as the reader can
confirm). Similarly, with G as given inTheorem 1.3,

(wrong) Pr(R > c) = Pr
(
𝝐′MAM𝝐

𝝐′M𝝐
> c

)
= Pr

(
𝝐′G′GAG′G𝝐

𝝐′G′G𝝐
> c

)
= Pr

(
Z′ÃZ
Z′Z

> c
)
, Z = B1∕2Z = G𝝐 ∼ NT−k(𝟎, 𝜎2G𝚺G′), (5.34)

where Ã = GAG′ is (T − k) × (T − k), is also incorrect, and results in very similar values as (5.33).
However, if we replace 𝚺 in (5.34) with �̃�, where the latter is “almost” the variance covariance matrix
of a stationary AR(1) process with parameter a, but computed as the inverse of 𝚺−1(a) such that the
(1,1) element is b = 1 + a2 instead of one, then the power is nearly exact, though it appears in this
setting that (because of the change of the assumption on the first observation of themodel) simulation
is the only way to get exact values.
The (nearly exact) power can be very quickly computed using our usual programcdfratio applied

to (5.34) but, as mentioned, using �̃� instead of 𝚺. Figure 5.9 illustrates the power for three values
of sample size T and two X matrices, based on the analytic calculation and simulation. The slight
difference in the powers between the analytic and simulated calculations for sample size T = 25 is
apparent. Note that this is not due to s.p.a. error, having performed the analytic calculation using
both the exact and s.p.a. methods.
These figures can be compared to the middle and right panels of Figure 5.8, for T = 25 and T = 50:

We see that the powers are virtually identical to those of the test derived from the one-sided c.i. of
parameter a based on âLS.
We now turn to the test proposed by Shively (2001), which builds upon related work by Sargan

and Bhargava (1983), Bhargava (1986), and Dufour and King (1991). In order to facilitate optimal
comparison to the bottom panel in Figure 5.9, Figure 5.10 shows the resulting power.We immediately
see that, particularly for T = 25, it has lower power than the R test (5.32). We detail it because its
construction is interesting and has some relations to the test statistics developed in Section 5.6 for
time-varying regression coefficients.
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Figure 5.9 Top: Approximate power of the R test (5.32) computed analytically (solid line) and from simulation (dashed
line) with significance level 0.05, for T = 25, T = 50, and T = 100, using X = [𝟏]. Bottom: Same, but based on X = [𝟏, t].

In this setting, the null hypothesis is the randomwalk with drift, Yt = 𝛿 + Yt−1 +Ut ,Ut
i.i.d.∼ N(0, 𝜎2),

and the alternative is the stationary model with intercept and time trend given in (5.1)–(5.2) for X =
[𝟏, t], or (5.4). Recursive substitution of the null model gives

Yt = 𝛿 + Yt−1 +Ut

= 𝛿 + 𝛿 + Yt−2 +Ut−1 +Ut

= 𝛿 + 𝛿 + 𝛿 + Yt−3 +Ut−2 +Ut−1 +Ut

⋮

= Y0 + 𝛿t + U∗
t , U∗

t = U1 + · · · +Ut ,
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Figure 5.10 Similar to the right panel of Figure 5.9, but based on the test (5.35) from Shively (2001).

where Y0 is the unknown starting value of the random walk.This can be expressed in matrix notation
as Y = X𝜷 +U∗, X = [𝟏, t], and Y ∼ N(X𝜷, 𝜎2�̃�), with the (i, j)th element of �̃� given by min(i, j), or

Ỹ ∶= �̃�−1∕2Y = �̃�−1∕2X𝜷 + �̃�−1∕2U∗ =∶ X̃𝜷 + V, V ∼ N(𝟎, 𝜎2I),

where ∶= (=∶) indicates that the element(s) on the left (right) hand side are so-defined.
The alternativemodel, denotedH(a), isY = X𝜷 + 𝝐 with 𝝐 ∼ N(𝟎, 𝜎2𝚺(a)), where𝚺(a) is the covari-

ance matrix of a stationary AR(1) process with parameter a. Multiplying this by �̃�−1∕2 gives

Ỹ = X̃𝜷 + 𝜼, 𝜼 = �̃�−1∕2𝝐 ∼ N(𝟎, 𝜎2𝛀(a)), 𝛀(a) = �̃�−1∕2𝚺(a)�̃�−1∕2.

The proposed test is then precisely the same form as (5.22), i.e., we reject for small values of test
statistic

T(a∗) = Y′�̃�−1∕2G̃′N−1(a∗)G̃�̃�−1∕2Y
Y′�̃�−1∕2M̃�̃�−1∕2Y

, N(a) = G̃𝛀(a)G̃′, (5.35)

where M̃ = IT − X̃(X̃′X̃)−1X̃′, G̃ fromTheorem1.3 is (T − 2) × T and such that M̃ = G̃′G̃, G̃G̃′ = IT−k ,
and G̃X̃ = 𝟎. Value a∗ is a point in the stationary support of a and, crucially, such that it does not
depend on the data but rather is chosen in advance.6 In this model setting, the X matrix is fixed,
and Shively (2001) recommends use of the value a∗ = 0.9. As the vector of ones is included in the
regression, the invariance property implies that T(a∗) does not depend on specification of Y0, unlike
the test of Dufour and King (1991); see also Remark (b) below.
Our usual methods for ratios of quadratic forms in normal variables can be used to determine the

appropriate cutoff value, c = c(𝛼,T , a∗), of test statistic (5.35), for a given T and significance level 𝛼,
for which we use 0.05. In particular, the distribution of (5.35) under the null is the stated ratio of
quadratic forms in Y ∼ N(X𝜷, 𝜎2�̃�), and one ignores the 𝜎2 as it cancels from the ratio, and ignores

6 This is emphasized in a similar context in King (1985a, p. 29), stating “Y should not be used in any way to choose the value
of [a∗]. Its use would mean that the test is no longer [most powerful invariant] at [a = a∗]…”. A similar statement is given in
King (1985b, p. 213).
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X𝜷 as it is removed from pre-multiplication with G̃�̃�−1∕2. Alternatively, the distribution of the ratio
under the null is the same as that of (Z′N−1(a∗)Z)∕(Z′Z), where Z ∶= G̃Ỹ = G̃�̃�−1∕2Y ∼ N(𝟎, IT−2).
The power of the test, as a function of a (and 𝛼, T , and a∗) is7

Pr(T(a∗) ⩽ c ∣ H(a)) = Pr
(
Z′N−1(a∗)Z

Z′Z
⩽ c

)
, Z ∼ N(𝟎, 𝜎2N(a)). (5.36)

Figure 5.10 shows the power of the test for three different sample sizes as a function of a, computed
analytically from (5.36) (via the s.p.a.) and via simulation (they are optically indistinguishable), and
can be compared to Figure 5.9. Unfortunately, as mentioned, the power ofT(a∗)with a∗ = 0.9 is lower
over most of the parameter space. The reader is encouraged to compute its power for other values
of a∗.

Remarks
a) Cochrane (1991) and Blough (1992) discuss a critique of unit root tests in that they can have power

against any stationary alternative only if they also have excessive probability of false rejection for
some unit root processes. With respect to the low power of unit root tests and the choice of sig-
nificance level, see Kim and Choi (2017).

b) There are several other unit root test statistics that can be expressed as a ratio of quadratic forms in
normal variables, though there does not exist a test that is uniformly most powerful (King, 1987b).
A relevant issue in this testing framework is the initial regression error term—assumptions on it
affect the power of the test; see, e.g., Müller and Elliott (2003), Choi (2015, Sec. 2.4.10), and the
references therein. Tests with high power irrespective of the initial error term, nesting several
seemingly disparate tests in the literature and which are amenable to exact inference (under
normality), are developed in Broda et al. (2009). Unit root tests can also be used to generate
near-optimal confidence intervals for parameter a when it is close to unity; see, e.g., Elliott and
Stock (2001).

c) The exact small-sample distribution theory no longer holds when leaving theGaussian framework.
We wish to investigate the size and power of the test when we still use this assumption but take
the error term to be non-Gaussian. Figure 5.11 shows the results, only for T = 25, having used the
same, analytically determined cutoff value under normality, but taking the innovation sequence
to be (symmetric) stable Paretian for several values of stable tail index 𝛼 (and using simulation to
determine the actual size and power). As 𝛼 decreases, the actual size indeed decreases, but to such
a small extent that, even for very heavy-tailed innovation processes, the test is still highly accurate,
and with very similar power curves. Further information on unit root and other tests with stable
Paretian innovations can be found in Rachev and Mittnik (2000, Ch. 14–15).

d) Particularly in economics, there is ample reason to suspect that the true d.g.p. is not as simple
as dictated by a linear regression model. In particular, the X matrix could well be mis-specified
because of structural breaks in the parameters of the constant and time trend, and this will have a
negative impact on the ability of unit root tests to reject the null of a = 1; see, e.g., Perron (1989),
and the references given at the beginning of this section.When such breaks are ignored, the size of
standard unit root tests tends to zero as the magnitude of the break(s) increase. Work on unit root
testing in the presence of structural breaks includes that by Breitung (2002), Kurozumi (2002),

7 The expressions for the power given in the middle of page 541 of Shively (2001) are incorrect.
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Figure 5.11 Top: Power of the R test (5.32) computed from simulation from 10,000 replications, using S
𝛼,0 innovations,

with significance level 0.05, T = 25, and X = [𝟏]. Bottom: Same, but for X = [𝟏, t].

Saikkonen and Lütkepohl (2002), Kim and Perron (2009), and the references therein, as well as
innovation variance shifts; see, e.g., Kim et al. (2002).
To demonstrate this, we use the test statistic in (5.32), based falsely on X = [𝟏, t], with the actual
X given by [𝟏, t,D1,Dt], similar to the matrix described at the beginning of Section 5.3 (but with
Dt and not Dt2). Figure 5.12 shows the actual size, based on simulation, of the unit root test, as a
function of 𝛽3 (top) and 𝛽4 (bottom), where these are the coefficients for the latter two columns
of the actual X matrix. As they increase in magnitude, the size drops towards zero. The code in
Listing 5.7 (omitting the graphics commands) was used to generate the plots. The test developed
in Kim and Perron (2009) can remedy this situation, and is such that the time of the break point is
unknown.8

e) Recall Section 4.6.1 on the use of the jackknife for bias reduction in the stationary AR(1) model.
Their use in the unit root setting is developed in Chambers and Kyriacou (2013) and Chen and Yu
(2015), while Chambers and Kyriacou (2018) consider the near-unit root case. ◾

8 Matlab code for that test is available from those authors.
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1 alpha=0.95; T=25; X=[ones(T,1), (1:T)'];
2 M=makeM(X); G=makeG(X); [~,k]=size(X);
3 A=makeDW(T); B=A; B(1,1)=2;
4 [V,D]=eig(B); Bm12=V*sqrt(inv(D))*V';
5 H=Bm12*M*A*M*Bm12; K=Bm12*M*Bm12;
6 Rc=fzero(@(r) cdfratio(r,H,K,eye(T),[],1)-alpha, 0.5);
7 c=round(T/2); % now generate actual X matrix
8 D1=[zeros(c,1) ; ones(c,1)]; if length(D1)>T, D1=D1(1:(end-1)); end
9 Dt=[zeros(c,1) ; ((c+1):T)'];if length(Dt)>T, Dt=Dt(1:(end-1)); end

10 X2=[ones(T,1), (1:T)', D1, Dt]; b1=5; b2=2;
11
12 a=1; sim=1e5; power1=zeros(sim,1);
13 %bvec=0:0.1:10; blen=length(bvec); power=zeros(blen,1);
14 bvec=0:0.05:0.8; blen=length(bvec); power=zeros(blen,1);
15 for bloop=1:blen, b=bvec(bloop); disp(b)
16 beta=[b1 b2 0 b]'; % or beta=[b1 b2 b 0]';
17 for i=1:sim
18 U=[0 ; randn(T-1,1)]; e=zeros(T,1);
19 for t=2:T, e(t)=a*e(t-1)+U(t); end
20 Y=X2*beta+e; R=(Y'*M*A*M*Y)/(Y'*M*Y); power1(i)=R>Rc;
21 end
22 power(bloop)=mean(power1);
23 end

Program Listing 5.7: Code for generating the values shown in Figure 5.12.

5.5.2 Null is a < 1

As emphasized in Section III.2.8, there is a growing consensus regarding the preference of use of con-
fidence intervals and study of effect sizes (or other relevant implications) over use of significance and
hypothesis testing. Besides the arbitrary choice of the significance level, a crucial issue concerns what
one does in light of the binary result of a hypothesis test for a unit root: Either the test does not reject
the null of a unit root, or it rejects, and subsequently, one usually conditions on the result, i.e., proceeds
as if it is the case.9 It is more sensible (though often far more difficult, in terms of distribution theory)
to invoke a pre-test testing or pre-test estimation framework in which one explicitly accounts for the
conditioning on the result of the pre-conducted test in subsequent testing or estimation exercises.
To help temper this issue in the unit root testing context, Kwiatkowski et al. (1992), hereafter KPSS,

investigated the hypothesis test such that the null is stationarity and the alternative is a unit root.
In doing so, they and many subsequent researchers have found that, for many economic data sets of
interest, the (usually Dickey–Fuller) test with null of a unit root, and also the KPSS test, do not reject
their respective nulls, implying the lack of strong evidence in favor of, or against, a unit root.
Notice that this conclusion can also be drawn from the use of (correct) confidence intervals, com-

puted via themethod discussed above in Section 5.2: If the interval includes unity, and is short enough
(a subjective decision that cannot be outsourced to, and objectified by, the use of a binary hypothesis
test), then one can be relatively certain that (to the extent that the model and choice of regressors
is reasonable) the assumption of a unit root is tenable; whereas, if the interval includes unity but

9 As an example, applying the augmented Dickey–Fuller unit root test to monthly observations from the NYSE Composite
Index, Narayan (2006, p. 105) reports the test statistic and the 5% cutoff value, and concludes “…[W]e are unable to reject the
unit root null hypothesis. This implies that US stock price has a unit root.”
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Figure 5.12 Top: Actual size of the R test (5.32), for T = 25 and nominal size 𝛼 = 0.05, computed via simulation with
100,000 replications, as a function of 𝛽3, the coefficient referring to the regressor capturing the break in the constant.
Bottom: Same, but as a function of 𝛽4, the coefficient referring to the regressor capturing the break in the trend.

is long enough, then one cannot be so sure, and could proceed by investigating inference (such as
forecasting or assessing the relevance of particular regressors) in both the stationary and unit root
settings. Finally, if the confidence interval does not contain unity, then one has more assurance that a
unit root may not be tenable, though, of course, the choice of the confidence level associated with the
interval influences this.
We now turn to the KPSS test. Repeating the model (5.1)–(5.2) here for convenience, the observa-

tion and latent equations, respectively, are given by

Yt = x′t𝜷 + 𝜖t , 𝜖t = a𝜖t−1 + Ut , Ut
i.i.d.∼ N(0, 𝜎2), (5.37)

and interest centers on knowing if a = 1 or |a| < 1.Themodel can be expressed somewhat differently,
with two error terms, as

Yt = 𝛼t + z′t𝜷 + 𝜖t , 𝛼t = 𝛼t−1 + Ut , (5.38)



258 Linear Models and Time-Series Analysis

where zt embodies a set of known regressors (typically a time trend in the unit root literature), {𝜖t}
denotes a stationary time-series process (such as an AR(1) model), independent of Ut , assumed to
be an i.i.d. white noise (not necessarily Gaussian) process. If, as in a special case of the general KPSS
framework, we assume that 𝜖t

i.i.d.∼ N(0, 𝜎2), independent ofUt
i.i.d.∼ N(0, 𝜆𝜎2), for 𝜎2 > 0 and 𝜆 ⩾ 0, then

this is exactly model (5.58) given below (with xt = 1 in (5.58)), proposed in the context of a regression
model with 𝛼t being a time-varying regression coefficient.
We wish to test the null of 𝜆 = 0 versus the alternative of 𝜆 > 0. Notice how the null corresponds to

the desired null hypothesis of a stationary time series, whereas the alternative is a unit root. Below, in
Section 5.6.3, as in Nyblom andMäkeläinen (1983) andNabeya and Tanaka (1988), we will develop an
exact (meaning, the small-sample distribution theory is tractable) LBI test, using ratios of quadratic
forms.This is in fact precisely the test studied by KPSS in the special case of (5.38)—a fact they explic-
itly state (Kwiatkowski et al., 1992, Sec. 2). However, instead of using exact distribution theory, KPSS
derive the asymptotic distribution under weaker assumptions on {𝜖t} (as the i.i.d. assumption will not
be tenable for many time series of interest) and require specification of a tuning parameter 𝓁 (such
that 𝓁 = 0 corresponds to the exact small-sample theory case). They study the efficacy of its use in
small samples via simulation.
The power of the test in the case of zt = t is shown below, in the right panel of Figure 5.21, for three

sample sizes, and agree with the values given in Kwiatkowski et al. (1992, Table 4, column 6) obtained
via simulation. We recommend that, if one wishes to use the unit root hypothesis testing framework,
both a test with null of a unit root and a test with a stationary null are applied. If, as is the case with
many unit root tests in the former group, and for the more general KPSS and the Leybourne and
McCabe (1994, 1999) tests (discussed in Remark (b) below) in the latter group, exact small-sample
distribution theory is not available for assessing the power, one should use simulation.
Above, we mentioned that all such inference is conditional on the extent to which the assumed

model is a reasonable approximation to the unknown but surely highly complicated actual d.g.p. In
general, one might be skeptical of the efficacy of such a simple model as (5.1)–(5.2) to adequately
describe phenomena as complex as major economic measures. We partially address this later, in
Section 7.7, where we discuss some alternative models that nest the unit root process as a limiting
special case.

Remarks
a) Augmenting the previous comment on possible alternative models, one needs to keep in mind

the idea that the complexity of the model (when used for highly complex phenomena) will be to
a large extent dictated by the available number of data points, as discussed in Section III.3.3. For
example, one could argue that, if both the (say) Dickey–Fuller and (say) KPSS tests do not reject
their respective nulls (and tests with higher power are not available), then one should attempt to
obtain more data, so that the power of both tests is higher, and more definitive conclusions can be
drawn. This argument is flawed in the sense that (besides the obvious fact that more data might
not be available), if the true d.g.p. is not equal to the one assumed (this being almost surely the
case), then the availability of more data might be better used in conjunction with a richer model
that more adequately describes the d.g.p., instead of one so simple as a regression model (with
constant regressors) and either a stationary or unit root AR(p) error structure.

b) Leybourne andMcCabe (1994, 1999) argue that economic time series are “often best” represented
as ARIMA processes instead of pure AR or randomwalk models, and consider the null hypothesis
of a stationary ARMA(p, 1) process (possibly with regressors, or ARMAX) versus the alternative
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of an ARIMA(p, 1, 1) process. In particular, using notation that we will detail in Chapter 6, the
model is

𝜙(L)Yt = 𝛼t + 𝛽t + 𝜖t, 𝛼t = 𝛼t−1 +Ut , (5.39)

where 𝜙(L) = 1 − 𝜙1L − · · · − 𝜙pLp, i.e.,

Yt = 𝛼t + 𝛽t + 𝜙1Yt−1 + · · ·𝜙pYt−p + 𝜖t , 𝛼t = 𝛼t−1 +Ut ,

the 𝜙i are such that Yt = 𝜙1Yt−1 + · · · + 𝜙pYt−p + 𝜖t is stationary (see Section 6.1.1), 𝜖t
i.i.d.∼ N(0, 𝜎2

𝜖 ),
independent of Ut

i.i.d.∼ N(0, 𝜎2
U), 𝜎

2
𝜖 > 0, and 𝜎2

U ⩾ 0. Observe how this generalizes (5.38). The null
is that (5.39) is trend stationary, i.e., 𝜎2

U = 0, with all 𝛼t = 𝛼0 =∶ 𝛼. The alternative is that 𝜎2
U > 0

and is such that it is a “local departure” resembling the ARIMA(p, 1, 1) process

𝜙(L)(1 − L)Yt = 𝛽 + (1 − 𝜃L)𝜉t , 0 < 𝜃 < 1, 𝜉t
i.i.d.∼ N(0, 𝜎2

𝜉
),

where the (necessary in this context) assumption is made that there is no zero pole cancellation,
i.e., (1 − 𝜃L) is not a factor of the polynomial 𝜙(L) (see Chapter 7). The relationship of 𝜎2

𝜉
to 𝜎2

𝜖 , 𝜃
and 𝜎2

U is detailed in Leybourne and McCabe (1994, p. 158).
Exact distribution theory is not available for the generalmodel (5.39). In this setting, p is a tuning

parameter that needs to be specified: For economic time series, Leybourne and McCabe (1994)
argue that it should be greater than zero, and conveniently show via simulation that choosing p
too large is not costly in terms of actual size and power. The case with p = 0 results in tractable
small-sample theory, as discussed above. The two tests of Leybourne and McCabe (1994, 1999)
differentiate themselves by how the estimate of 𝜎2

𝜖 is computed. Matlab implements both tests in
their function lmctest, along with the KPSS test as kpsstest. ◾

5.6 Time-Varying Parameter Regression

In some problems it seems reasonable to assume that the regression coefficients are not con-
stants but chance variables.

(AbrahamWald, 1947, p. 586)

The potential pitfalls confronting empirical research include inadequate theory, data
inaccuracy, hidden dependencies, invalid conditioning, inappropriate functional form,
non-identification, parameter non-constancy, dependent, heteroskedastic errors, wrong
expectations formation, mis-estimation and incorrect model selection.

(David F. Hendry, 2009, p. 3)

In class there is much discussion of the assumptions of exogeneity, homoskedasticity, and serial
correlation. However, in practice it may be unstable regression coefficients that are most trou-
bling. Rarely is there a credible economic rationale for the assumption that the slope coefficients
are time invariant.

(Robert F. Engle, 2016, p. 643)
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5.6.1 Motivation and Introductory Remarks

The above three quotes, as well as that fromCooley and Prescott (1973) at the beginning of Chapter 4,
should serve as indicators of the relevance and popularity of (regression) models that allow for some
form of time variation in one or more parameters. A strong critique of the usual, fixed-coefficient
linear model, in favor of one with random coefficients, is given in Swamy et al. (1988).
Starting with Wald (1947) and particularly since the late 1960s, an enormous amount of research

has been published on time-varying parameter (TVP) regression models; so much, that already by
the mid 1970s, an annotated bibliography was deemed appropriate; see Johnson (1977). More recent
overviews are provided by Dziechciarz (1989), Freimann (1991), and Swamy and Tavlas (1995, 2001).
Their use can found use in numerous settings, including testing the capital asset pricing model
(CAPM) in finance; see, e.g., Bos and Newbold (1984), as one of the earliest such references, and,
more recently, Engle (2016) and Bali et al. (2016a,b).
We detail three basic types of models for time-varying regression parameters, and their associated

statistical tests, in Sections 5.6.2, 5.6.3, and 5.6.4, respectively. Before commencing, we provide some
remarks.

Remarks
a) This is a large, important, and ever-growing field of research, and we only cover some fundamen-

tal, albeit still relevant, structures and statistical tests. A more general modeling framework is
discussed in Creal et al. (2013), while a related, but conceptually different (and more modern)
regression-type model with TVPs was introduced in Hastie and Tibshirani (1993), with a recent
survey of the field by Park et al. (2015). Different, more general, tests of parameter constancy are
developed in Nyblom (1989) and Hansen (1992). Likelihood-based methods for detecting model
constancy of parameters andmis-specification in general are discussed inMcCabe and Leybourne
(2000), Golden et al. (2016), and the references therein.

b) We will see below that parameter estimation is straightforward in the first two classes of models
considered. However, a far more general framework applicable to all the models, and others not
considered herein, is to cast the model into the so-called state space representation and use the
methods of Kalman filtering. This is now a very well-studied area, with estimation techniques,
inferential methods, and computational algorithms that were not available “in the earlier days”.
As in Durbin (2000), the linear Gaussian state space model is given by

Yt = X′
t𝜶t + 𝝐t , 𝜶t = Tt𝜶t−1 +Ut,

with 𝝐t ∼ N(𝟎,Ht) independent ofUt ∼ N(𝟎,Qt). Notice here that the observed time series Yt can
be multivariate, and 𝜶t , referred to as the state vector at time t, can, but need not, evolve as a
random walk. Moreover, the covariance matrices of 𝝐t and Ut can also vary with time.

It can be shown that generation of the recursive residuals from Section 1.5 is a special case of
the Kalman filter, see, e.g., Harvey (1993, p. 99) and Durbin and Koopman (2012, p. 150). An early
and very accessible reference on use of Kalman filtering for the linear regression model with TVPs
is Morrison and Pike (1977).
Book-length treatments on state space methods aimed at statisticians and econometricians

include West and Harrison (1997)10 and Durbin and Koopman (2012), while Chui and Chen

10 The title of the book by West and Harrison, Bayesian Forecasting and Dynamic Modelsmakes their modeling slant and
intended audience rather clear. On page 35 of the first edition, they write “It is now well-known that, in normal [dynamic
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(1999) is aimed more at engineers. An implementation augmenting Matlab’s tools for state space
modeling is provided by Peng and Aston (2011). See also the relevant chapters in Hamilton (1994),
Brockwell and Davis (1991, 2016), and Shumway and Stoffer (2000), and the filtering method
discussed in Rao (2000).
This framework is also necessary for incorporating time-varying linear constraints into the

time-varying regression model, as briefly discussed in the Remark at the end of Section 1.4.1. ◾

5.6.2 The Hildreth–Houck Random Coefficient Model

The two influential papers of Rao (1965) and Hildreth and Houck (1968) studied estimation of, and
inference based on, the regressionmodel with random coefficients.They were not the first to propose
the model, nor methods for estimation (see the references below, and in their papers), though their
work has become associated with this random coefficient structure, and is often referred to as the
Hildreth–Houck random coefficient (HHRC) model. It serves as an excellent starting point for more
general structures, such as the Rosenberg formulation discussed in Section 5.6.4, and the much more
general state space framework, mentioned above.
The HHRC model is given by

Yt = Xt,1(𝛽1 + Vt,1) + · · · + Xt,k(𝛽k + Vt,k), Vt,i ∼ N(0, 𝜎2
i )

= x′t𝜷 t , 𝜷 t = 𝜷 + Vt, Vt
i.i.d.∼ N(𝟎,𝚲) (5.40)

= x′t𝜷 +Ut , Ut =
k∑
i=1

Xt,iVt,i = x′tVt , (5.41)

orY = X𝜷 +U, where, in our usual notation,Y = (Y1,… ,YT )′,U = (U1,…,UT )′,Vt = [Vt,1,…,Vt,k]′,
and (also as usual) xt = [Xt,1,… ,Xt,k]′ is assumed fixed (or weakly exogenous), with X = [x1,… , xT ]′
T × k of full rank. The standard HHRC model assumes that the Vt,i are independent, i = 1,… , k,
t = 1,… ,T , so that 𝚲 is diagonal, i.e.,

𝚲 = diag(𝝈(2)), 𝝈(2) = (𝜎2
1 ,… , 𝜎2

k )
′.

Observe how there is no regression equation error term 𝜖t in (5.41), as in the usual regression model
(5.1), because it is assumed that Xt,1 = 1, in which case Vt,1 serves this purpose. Adding an 𝜖t with
variance 𝜎2 would render parameters 𝜎2 and 𝜎2

1 to be unidentifiable.
As an illustration of data following the HHRC model, Figure 5.13 depicts simulated realizations

from (5.41) based on a regression with intercept and time trend.
We now turn to the covariance structure and estimation of the HHRC model. Observe that

𝔼[U] = 𝟎 and

H(𝚲) ∶= 𝕍 (U) = 𝔼[UU′] = diag(h) = X𝚲X′ ⊙ IT , (5.42)

linear models] with known variances, the recurrence relationships for sequential updating of posterior distributions are
essentially equivalent to the Kalman filter […]. It was clearly not, as many people appear to believe, that Bayesian Forecasting
is founded upon Kalman Filtering […]. To say that ’Bayesian Forecasting is Kalman Filtering’ is akin to saying that statistical
inference is regression!”
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Figure 5.13 Twenty realizations of model (5.41) with X = [𝟏, t], 𝜷 = (1, 1)′, and 𝜎2
1 and 𝜎2

2 as indicated in the titles. The
thick solid line is the true mean of Yt , obtained by setting 𝜎2

1 = 𝜎2
2 = 0.

where h ∶= (H1,… ,HT )′, because, for t ≠ s, 𝔼[UtUs] = 0, while, as Vt,i ⟂ Vt,j for i ≠ j,

Ht ∶= 𝔼[U2
t ] = 𝔼

[( k∑
i=1

Xt,iVt,i

)( k∑
j=1

Xt,jVt,j

)]
= 𝔼

[ k∑
i=1

X2
t,iV

2
t,i

]

=
k∑
i=1

X2
t,i𝔼[V

2
t,i] =

k∑
i=1

X2
t,i𝜎

2
i = x′t𝚲xt. (5.43)

A natural generalization is to let𝚲 in (5.41) be any positive semi-definite covariancematrix, as studied
in Nelder (1968) and Swamy (1971). Observe how, while (5.41) and the usual linear regression model
(5.1) have the same conditional means, the latter has constant variance for all t, whereas the variance
formodel (5.41) depends on t and xt , and is thus a heteroskedastic regressionmodel.This distinction
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is sometimes reflected in referring to (5.1) and (5.41) as regression models of the first and second
kind, respectively; see Fisk (1967) and Nelder (1968).

Remark Nelder (1968, p. 304) also provides a nice motivation for the use of a regression model of
the second kind by considering (in line with much of the work of Ronald Fisher) an example from
agricultural statistics: “Consider, for example, an agricultural experiment with fertilizers; if x is the
amount of fertilizer applied and y the yield, one can think of the field plot as a black box converting
input x into output y, and assert that, whereas we know fairly exactly howmuch fertilizer we put in and
howmuch yield we got out from each plot, what we do not know are the parameters of the individual
black boxes (plots) that did the conversion. Thus, assuming a linear relation for simplicity, we are led
to a model of the second kind with yi = b0i + b1ixi, where b0i and b1i define the conversion process
over the plots with means 𝛽0 and 𝛽1 and a variance matrix [in our notation] 𝚲.” ◾

If 𝚲 is known, then the usual generalized least squares solution (1.28) is applicable to determine
𝜷 , as

𝜷𝚲 = 𝜷GLS(𝚲) = (X′H(𝚲)X)−1X′H(𝚲)Y. (5.44)

If, far more likely, 𝚲 is not known, then the exact likelihood is easily expressed, given that
Y ∼ N(X𝜷,H). In this case, as (5.44) is the m.l.e. of 𝜷 given 𝚲, we can use (5.44) to form the
concentrated likelihood, as first noted by Rubin (1950) in this context, and given by

(𝚲;Y) = 1|H|1∕2(2𝜋)T∕2 exp{−1
2
((Y − X𝜷𝚲)′H−1(Y − X𝜷𝚲))

}
. (5.45)

Thus, numeric maximization needs to be applied only over the k(k + 1)∕2 unique terms in 𝚲 in the
general case, or the k variance terms in 𝚲, for the diagonal HHRC case.

Remark Unfortunately, as discussed in Zaman (2002), for the case with general positive
semi-definite 𝚲, the likelihood suffers from the same issue as with discrete mixtures of nor-
mals (recall Section III.5.1.3) in that the likelihood can tend to infinity. For the (more typical) case
of diagonal 𝚲, if the elements of X are from a continuous distribution such that the probability of
any element being zero is zero, then, as the sample size increases, the probability of encountering
one of the singularities during numeric estimation decreases. In general with this model, maximum
likelihood estimation can behave poorly, as reported in Froehlich (1973) and Dent and Hildreth
(1977); see also the simulation results below. ◾

Wewish to first develop a least squares estimator for𝚲, as inThiel andMennes (1959) (andHildreth
and Houck, 1968; Froehlich, 1973; and Crockett, 1985). To this end, let R = MY be the o.l.s. resid-
ual vector, whereM = IT − X(X′X)−1X′ from (1.53). AsR = MY = MU, 𝔼[R] = 𝟎 and 𝕍 (R) = MHM.
Denote by Ż the elementwise squares of each element of the matrix, i.e., Ż = Z⊙ Z, where⊙ denotes
the Hadamard, or elementwise product.11 To proceed, we will require the following two basic results:

Theorem 5.2 For A and B T × T matrices, and U ∼ (𝟎,H) of length T ,

𝔼[AU⊙ BU] = diag(A𝔼[UU′]B′). (5.46)

11 This is the notation used in several research papers on the HHRC model, though more formal, and general, notation for
Hadamard multiplication would be Z∘2, as suggested by Reams (1999).
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Proof : This is the elementary observation that, for T × 1 vectors x and y, x⊙ y = diag(xy′). With
U a T × 1 vector, AU⊙ BU = diag((AU)(BU)′). Thus, (5.46) follows because (BU)′ = U′B′ and the
linearity of expectation. ◾

Theorem 5.3 Let A and B be m × n matrices, and let H be an n × n diagonal matrix with diagonal
entries given by vector h, i.e.,H = diag(h). Then

diag(AHB′) = (A⊙ B)h. (5.47)

Proof : Writing out both sides confirms the result. See Horn (1994, p. 305) for details and further
related results. ◾

We now have, from (5.46) and (5.47),

𝔼[Ṙ] = 𝔼[MU⊙MU] = diag(M𝔼[UU′]M′) = diag(MHM) = (M⊙M)h = Ṁh, (5.48)

as stated in Hildreth and Houck (1968) without proof.

Remark Observe from (5.42) that we can write h = 𝔼[U⊙U]. One might thus wonder if we can
obtain (5.48) directly, from the conjecture that, for T × T matrices A and B,

𝔼[AU⊙ BU]
?
= 𝔼[(A⊙ B)(U⊙U)] = (A⊙ B)𝔼[U⊙U] = (A⊙ B)h,

which would be the case if the elegant-looking result AU⊙ BU
?
= (A⊙ B)(U⊙U) were true. The

reader can confirm numerically that this is not the case in general, and also not when taking A and B
both to be a projection matrixM. ◾

From (5.43) and (5.48),

Ṙ = Ṁh + 𝝐 = ṀẊ𝝈(2) + 𝝐, (5.49)

where the error term 𝝐 = (𝜖1,… , 𝜖T )′ denotes the discrepancy between Ṙ and 𝔼[Ṙ]. Thus, o.l.s. can
be applied to (5.49) to obtain estimator

�̃�
(2)
OLS = (Ẋ′Ṁ2Ẋ)−1Ẋ′ṀṘ. (5.50)

An alternative estimator, from Rao (1968), though also proposed in Hildreth and Houck (1968), and
derived in detail in Froehlich (1973), is

�̃�
(2)
MQ = (Ẋ′ṀẊ)−1Ẋ′Ṙ. (5.51)

This is the so-calledminimumnorm quadratic unbiased estimation estimator, orMINQUE, as coined
by Rao (1968). Both (5.50) and (5.51) are consistent estimators, as shown by Hildreth and Houck
(1968), while their asymptotic normality is proven in Crockett (1985) and Anh (1988). As (5.50) or
(5.51) could contain negative elements, we take 𝝈(2) = max(�̃�(2), 𝟎k). Constrained optimization could
also be used to avoid the latter construct, as discussed in Hildreth and Houck (1968) and Froehlich
(1973).
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The following iterated least-squares estimation procedure (for diagonal 𝚲) then suggests itself:
Compute the o.l.s. residuals R = MY and then 𝝈

(2). Next, with �̂� = diag(𝝈(2)), take

𝜷(�̂�) = (X′H(�̂�)X)−1X′H(�̂�)Y (5.52)

from the g.l.s. estimator (5.44). Observe that one could then iterate on 𝜷(�̂�) and𝝈(2) until convergence,
though in our code and simulation belowweperformonly two iterations. By the nature of least squares
and projection, the distribution of 𝜷 − 𝜷 is invariant to the choice of 𝜷 .
As shown in Griffiths (1972) and Lee and Griffiths (1979) (see also Judge et al., 1985, p. 807, and the

references therein), for known 𝚲, the minimum variance unbiased estimator of 𝜷 t in (5.40) is not 𝜷𝚲
in (5.44), but rather given by, with Ht = x′t𝚲xt from (5.43),

𝜷 t = 𝜷𝚲 +
Yt − x′t𝜷𝚲

Ht
𝚲xt .

In practice, 𝚲 would be replaced by �̂�.
We turn now to the small-sample distribution of the estimators, obtained by simulation. Figure 5.14

shows histograms of the least squares estimates of the parameters based on T = 100, X = [𝟏, t],
𝜷 = (0, 0)′,𝜎2

1 = 10,𝜎2
2 = 0.1, and 10,000 replications.We see that, except for �̂�2

1 , they are close to unbi-
ased and reasonably Gaussian in shape, though the right tail of �̂�2

2 is somewhat elongated. The least
squares estimator can be used to obtain starting values for the m.l.e., computed based on (5.44) and
(5.45). Figure 5.15 shows the resulting histograms based on them.l.e.The distribution of 𝛽1 exhibits an
(unexplained) bimodality. On a more positive note, �̂�2

1 has much less pile-up at zero, and its mode is
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Figure 5.14 Histograms of the least squares estimators for the HHRC model based on T = 100, X = [𝟏, t], 𝜷 = (0, 0)′,
𝜎2
1 = 10, 𝜎2

2 = 0.1, and 10,000 replications. For �̂�2
1 , about 25% of the estimates were zero.



266 Linear Models and Time-Series Analysis

−15 −10 −5 0 5 10 15
0

50

100

150

200

250
β1, True = 0ˆ

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

50

100

150

200

250

300
β2, True = 0ˆ

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300
σ2

2, True = 0.1ˆ

0 50 100 150 200
0

50
100
150
200
250
300
350
400

σ1
2, True = 10ˆ

Figure 5.15 Same as Figure 5.14 but based on the m.l.e.

1 function [betahat,Sighat]=HHRCOLS(Y,X)
2 if nargin<1 % simulate data of an intercept-trend model
3 T=100; X=[ones(T,1), (1:T)']; s1=10; s2=0.1; % sigmaˆ2_1 and sigmaˆ2_2
4 beta1true=0; beta2true=0;
5 beta1=beta1true+sqrt(s1)*randn(T,1);
6 beta2=beta2true+sqrt(s2)*randn(T,1);
7 Y = sum( X .* [beta1, beta2] , 2);
8 end
9 [T,k]=size(X); M=makeM(X); R=M*Y; Z=(M.*M)*(X.*X);

10 Sighat=max(inv(Z'*Z)*Z'*(R.*R), zeros(k,1)); %#ok<MINV>
11 Lam=diag(Sighat); H=(X*Lam*X').*eye(T);
12 betahat=inv(X'*H*X)*X'*H*Y; %#ok<MINV>
13 if 1==1 % could stop there, but do one more iteration
14 R=Y-X*betahat;
15 Sighat=max(inv(Z'*Z)*Z'*(R.*R), zeros(k,1)); %#ok<MINV>
16 Lam=diag(Sighat); H=(X*Lam*X').*eye(T);
17 betahat=inv(X'*H*X)*X'*H*Y; %#ok<MINV>
18 end

Program Listing 5.8: Least squares estimation of the HHRC model.

close to the true parameter value. Finally, observe that the right tail of �̂�2
2 is less elongated compared to

the least squares estimator, resulting in the m.l.e. having lower variance and being closer to Gaussian.
The program in Listing 5.8 computes the least squares estimates (and optionally simulates the pro-

cess), while that in Listing 5.9 is for the m.l.e.
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1 function [betahat,sighat]=HHRCMLE(Y,X)
2 [~,SighatOLS]=HHRCOLS(Y,X);
3 if SighatOLS(1) <= 1e-6, SighatOLS(1)=1; end
4 if SighatOLS(2) <= 1e-6, SighatOLS(2)=0.01; end
5 initvec = [min(SighatOLS(1), 190) min(SighatOLS(2), 0.28)];
6 bound.lo=[0 0]; bound.hi=[200 0.3]; bound.which=[1 1];
7 maxiter=200; tol=1e-5;
8 opts=optimset('Display','off', 'Maxiter',maxiter, ...
9 'TolFun',tol,'TolX',tol,'LargeScale','Off');

10 [pout,~,~,~,~,hess] = fminunc(@(param) ...
11 HHRCLik(param,Y,X,bound), einschrk(initvec,bound), opts);
12 V=inv(hess); [param,V]=einschrk(pout,bound,V);
13 sighat=param'; Lam=diag(sighat); H=(X*Lam*X').*eye(T);
14 betahat=inv(X'*H*X)*X'*H*Y; %#ok<MINV>
15
16 function ll=HHRCLik(param,Y,X,bound)
17 if nargin<4, bound=0; end
18 if any(isinf(param)) || any(isnan(param)) || any(~isreal(param))
19 paramvec=[1 0.01];
20 else
21 if isstruct(bound)
22 paramvec=einschrk(param,bound,999);
23 else
24 paramvec=param;
25 end
26 end
27 s1=paramvec(1); s2=paramvec(2); sigv=[s1,s2];
28 Lam=diag(sigv); [T,~]=size(X); H=(X*Lam*X').*eye(T);
29 beta=inv(X'*H*X)*X'*H*Y; %#ok<MINV>
30 h=diag(H); h=max(1e-12, h); H=diag(h);
31 if 1==2
32 f=mvnpdf(Y,X*beta,H); ll=log(f);
33 else
34 Z=Y-X*beta; Hinv=diag(1./h);
35 ll=-0.5*sum(log(h))-0.5*Z'*Hinv*Z;
36 end
37 ll = -sum(ll);

Program Listing 5.9: Maximum likelihood estimation of the HHRC model.

Repeating the exercise with T = 1,000 (results not shown) yielded estimates for 𝛽2 and 𝜎2
2 around

their true values, with lower dispersion than for T = 100 and, for the least squares estimator, the
empirical distribution of �̂�2

2 was highly Gaussian in appearance. However, for both estimators, the
dispersion of 𝛽1 increased, and �̂�2

1 often took on very large values. The qualitatively same results were
obtained for the m.l.e. when using the true parameter values as starting values, instead of the least
squares estimates. This finding appears to contradict the consistency results for the least squares and
maximum likelihood estimators. Note that this model, with X = [𝟏, t], has 𝕍 (Yt) = 𝕍 (Ut) = Ht =
𝜎2
1 + t2𝜎2

2 , from (5.43), as depicted in the bottom panel of Figure 5.13. Recalling that Xt,1 = 1 and
Vt,1 ∼ N(0, 𝜎2

1 ) takes the role of the usual error term in the regression model, it appears that, with
the ever-increasing variance ofUt as t grows, estimation of intercept coefficient 𝛽1 might not become
more accurate as t grows.
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Figure 5.16 Histograms of the least squares estimators for the HHRC model based on T = 100, X = [𝟏, v], where v is
the eigenvector 𝝂 i in (B.10) with i = round(T∕3), 𝜷 = (0, 0)′, 𝜎2

1 = 1, 𝜎2
2 = 10, and 10,000 replications. For �̂�2

2 , about
33% of the estimates were zero.

To help corroborate this, the experiment was repeated, but using X = [𝟏, v], where v is the
eigenvector 𝝂i in (B.10) with i = round(T∕3); see Example B.5. As the magnitude of v does not
grow with t, one might expect different results. This is indeed the case: Based on the least squares
estimator, histograms of the point estimates are shown in Figure 5.16. Compared to the case with
X = [𝟏, t], we now see that 𝜎2

1 is estimated very accurately and has a near-Gaussian distribution,
while 𝜎2

2 has a large pile-up at zero, and is otherwise far too large.
To study the casewithX = [𝟏, t] further, assume 𝛽1 and 𝛽2 are known and, without loss of generality,

let 𝛽1 = 𝛽2 = 0, so thatYt = Ut , with𝕍 (Ut) = 𝜎2
1 + t2𝜎2

2 .The toppanel of Figure 5.17 shows a histogram
of the computed m.l.e.s of 𝜎2

1 , assuming both 𝜷 = (𝛽1, 𝛽2)′ and 𝜎2
2 are known, based on T = 1,000 and

1,000 replications. Observe in this case, that

𝓁(𝜎2
1 ) = −1

2

T∑
t=1

ln(𝜎2
1 + t𝜎2

2 ) −
1
2

T∑
t=1

Y 2
t

𝜎2
1 + t𝜎2

2
,

and, with Ht = 𝜎2
1 + t𝜎2

2 = 𝔼[Y 2
t ],

�̇�1 ∶=
d
d𝜎2

1
𝓁(𝜎2

1 ) = −1
2

T∑
t=1

1
𝜎2
1 + t𝜎2

2
+ 1

2

T∑
t=1

Y 2
t

(𝜎2
1 + t𝜎2

2 )2
= 1

2

T∑
t=1

(Y 2
t −Ht

H2
t

)
,

so that �̂�2
1 could be determined by (numerically) solving �̇�1 = 0.

The bottom panels of Figure 5.17 similarly show histograms of �̂�2
1 and �̂�2

2 assuming known 𝜷 =
(0, 0)′. The behavior of �̂�2

1 is, in both cases, demonstrably better, suggesting that, for this model
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Figure 5.17 Histograms of the m.l.e. for the HHRC model for X = [𝟏, t], 𝜷 = (0, 0)′, 𝜎2
1 = 10, 𝜎2

2 = 0.1, but now
based on T = 1,000, and 1,000 replications, and assuming known 𝛽1 and 𝛽2. The top panel further assumes 𝜎2

2 is also
known.

and choice of X matrix, there could be an identifiability issue with 𝛽1 and 𝜎2
1 . This finding behooves

consideration of constrained optimization, such as a restriction on the sum of the variance terms,
as done, for example, by Zaman (2002) in his simulation study. Another potential approach is use of
shrinkage estimation, possibly along the lines of Hamilton (1991), as also noted by Zaman (2002). A
more formal Bayesian approach also suggests itself; see, e.g., Liu and Hanssens (1981). Finally, one
could entertain a different model that has better understood estimation properties, such as the ran-
dom walk coefficient model, as considered in the next section.
Testing the null of the usual regressionmodel versus the variance structure of the HHRC is a special

case of heteroskedasticity tests in “classic” regression analysis; see, e.g., the excellent (and at the time,
state of the art) presentation in Judge et al. (1985), as well as Evans and King (1985, 1988), who provide
point optimal tests expressible as ratios of quadratic forms, as will be detailed below in Sections 5.6.3.2
and 5.6.4 in the context of different TVP regression models.

5.6.3 The TVP RandomWalk Model

Generalizing the baseline regression model (1.3), the linear model with coefficients that are
time-varying and evolve as a random walk is given by

Yt = x′t𝜶t + 𝜖t , 𝜶t = 𝜶t−1 +Ut , (5.53)
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for known set of vectors xt ∈ ℝk , and unknown 𝜶t ∈ ℝk , where 𝜖t
i.i.d.∼ N(0, 𝜎2) independent of

Ut
i.i.d.∼ N(𝟎, 𝜆𝜎2𝚿), for 𝜎2 > 0, 𝜆 ⩾ 0, and covariance matrix𝚿. When k = 1 and xt = 1, this is referred

to as a local level model, and a specification of the distribution of 𝛼0 is made.
Figure 5.18 shows sample realizations of the model using an X matrix corresponding to an inter-

cept and time trend, i.e., X = [𝟏, t], allowing only the coefficient corresponding to the intercept (top
graphic) and only that of the time trend (bottom graphic) to vary. Observe how, in the latter case,
use of only 𝜆 = 0.001 can induce so much variation in the evolution of the process. The reader is
encouraged to replicate these figures, using code for general X and𝚿.
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Figure 5.18 Top: Twenty realizations of model (5.53) with X = [𝟏, t], 𝜶0 = [0, 1]′, 𝜎2 = 4,𝚿 = diag([1, 0]), and two
values of 𝜆. Bottom: Same, but having used𝚿 = diag([0, 1]).
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We first detail the covariance structure and estimation of the model in Section 5.6.3.1, followed by
methods for testing for this form of time variation in Section 5.6.3.2.

5.6.3.1 Covariance Structure and Estimation
Let �̃�t ∶= 𝜶t − 𝜶0, so that �̃�t = �̃�t−1 +Ut . Observe that �̃�0 = 𝟎 and 𝔼[𝜶t] = 𝔼[�̃�t] = 𝟎. Setting Vt ∶=
x′t�̃�t + 𝜖t , the observation equation can be expressed as Yt = x′t𝜶0 + Vt or, with Y = (Y1,… ,YT )′,X =
(x1,… , xT )′, and V = (V1,… ,VT )′, as

Y = X𝜶0 + V, 𝕍 (V) = 𝜎2𝛀(𝜆), 𝛀(𝜆) = 𝜆W⊙ (X𝚿X′) + I, (5.54)

where𝜶0 is an unknown constant, and [W]s,t = min(s, t).This follows because𝔼[Vt] = 0 and, for t < s,
using (II.3.6) gives

Cov(Vt,Vs) = 𝔼[(x′t�̃�t + 𝜖t)(x′s�̃�s + 𝜖s)] = 𝔼[(x′t�̃�t)(x′s�̃�s)′] = x′t𝔼[�̃�t�̃�
′
s]xs

= x′t𝔼[�̃�t(�̃�t +Ut+1 + · · · +Us)′]xs = x′t𝕍 (�̃�t)xs = t𝜆𝜎2x′t𝚿xs.

Similarly, for s < t, Cov(Vt,Vs) = s𝜆𝜎2x′t𝚿xs, and

𝕍 (Vt) = 𝔼[(x′t�̃�t + 𝜖t)(x′t�̃�t + 𝜖t)] = x′t𝔼[�̃�t�̃�
′
t]xt + 𝕍 (𝜖t) = 𝜎2 + t𝜆𝜎2x′t𝚿xs.

Remark We might attempt to use features of Matlab to compute matrixW as fast as possible. Let-
ting [E]t,s = 𝕀(t ⩾ s) be the lower triangular matrix with all nonzero entries equal to one, W can be
expressed as EE′. Matrix E can be computed in several ways, such as, with T defined:

a) E=zeros(T,T); for t=1:T, for s=1:T, E(t,s)=(t>=s); end, end
b) E=zeros(T,T); for i=1:T, for j=1:i, E(i,j)=1; end, end
c) E=toeplitz(ones(T,1),[1 zeros(1,T-1)]);
d) E=toeplitz(ones(T,1),zeros(1,T)); % correct but generates a warning message and

then, W is computed as W=E*E’. Of these four, option (b) is the fastest. Alternatively, W can be
computed directly via

e) W=diag(1:T)/2; for t=1:T, for s=(t+1):T, W(t,s)=min(t,s); end,
end, W=W+W’;

f ) W=zeros(T,T); for t=1:T, for s=1:T, W(t,s)=min(t,s); end, end

where (e) attempts to capitalize on the symmetry ofW. It turns out that, of all themethods, the simple
“brute force” way (f ) is the fastest. ◾

As Y ∼ N(X𝜶0, 𝜎
2𝛀(𝜆)), the log-likelihood for a given regressor X matrix and set of data

(Y1,… ,YT )′ is easily expressed and numeric techniques can be used to compute the m.l.e. As in
Cooley and Prescott (1973), and as done for the HHRCmodel in Section 5.6.2 above, it suggests itself
to use the known m.l.e.s of 𝜶0 and 𝜎2 from the generalized least squares solutions (1.28) and (1.30),

�̂�0(𝜆) = (X′𝛀(𝜆)X)−1X′𝛀(𝜆)Y, �̂�2(𝜆) = T−1(Y − X�̂�0(𝜆))′𝛀(𝜆)(Y − X�̂�0(𝜆)),

to form the concentrated likelihood, given by (suppressing the notational dependence of �̂�0, �̂�2, and
𝛀 on 𝜆)

(𝜆;Y) = 1
(�̂�2)T∕2|𝛀|1∕2(2𝜋)T∕2 exp{−1

2
((Y − X�̂�0)′𝛀−1(Y − X�̂�0))

}
,
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or, simplifying, taking logs, and omitting the (2𝜋) term as it does not depend on 𝜆,

𝓁(𝜆;Y) = −T
2
ln �̂�2(𝜆) − 1

2
ln|𝛀(𝜆)|. (5.55)

Thus, numeric maximization needs to be applied only over 𝜆.12
To illustrate, Figure 5.19 shows kernel density plots of �̂�ML based on T = 100, X = [𝟏, t], and 𝚿 =

diag([1, 0]). For each of the two values of 𝜆, the simulation was run for three values of 𝜎2, confirming
that �̂�ML is independent of 𝜎2. An upper bound of 30 was imposed on �̂�ML. While the mode of �̂�ML is
close to the true value, we see that, as 𝜆 increases, so does the probability that �̂�ML can assume large
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Figure 5.19 Kernel density plots of �̂�ML based on 1,000 replications, sample size T = 100, X = [𝟏, t],𝚿 = diag([1, 0]),
and 𝜆 = 1 (top) and 𝜆 = 3 (bottom).

12 In case the elements of𝚿 are not specified, they can also be estimated, but observe that they are not all identified because
of the multiplicative factor 𝜆. One could omit 𝜆 and let diag(𝚿) = (𝜆1,… , 𝜆k).
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values far into the right tail. More specifically, for 𝜆 = 3, 775 of the �̂�ML-values lie between 0 and 20,
while 225 piled up at the imposed border of 30. Thus, there is over a 20% chance of m.l.e. failure.
Inspection based on one of the “failed” data sets shows that the log-likelihood increases quickly as 𝜆
increases from 0 to about 10, and then is relatively flat (for values far beyond the imposed estimation
upper limit of 30). It thus appears that, for some data sets, 𝓁(𝜆;Y) can increase in 𝜆 without bound
(though it is nearly flat).
If we restrict attention to the cases such that the �̂�ML did not hit the imposed upper bound of 30, it is

of interest to see the behavior of the approximate standard errors of �̂�ML, as they could be used to form
approximate (Wald) confidence intervals for 𝜆 that would presumably improve as T increases and the
distribution of �̂�ML is closer toGaussian (observe the large skewness in Figure 5.19). Scatterplots of the
�̂�ML-values versus their corresponding approximate standard errors returned from theHessian-based
optimization algorithm, overlaid with a fitted regression line, are shown in Figure 5.20 for the two
cases 𝜆 = 1 and 𝜆 = 3. For the latter, the fitted regression of the standard error (SE) is

SE ≈ −0.2611 + 0.5834�̂�ML + 0.0908�̂�2ML, (5.56)
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Figure 5.20 Scatterplots showing the approximate standard error as a function of �̂�ML, where the values used
correspond to the �̂�ML used in Figure 5.19 but having been truncated such that �̂�ML < 25.
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with R2 = 0.98. Thus, when �̂�ML is close to (the true value of ) 3, the approximate standard error is
about 2.3, implying that zero will be in the 90% (and obviously 95%) Wald confidence interval. More
generally, this is the case for �̂�ML ⩽ 11 (and ⩽ 15 for a 95% c.i.). The parametric bootstrap in this
case will not be of much help: Even if we (i) get lucky enough that �̂�ML ≈ 𝜆 and (ii) we reject the bth
bootstrap replication if �̂�(b)ML hits the upper bound of some reasonably imposed constraint, we see that
the sampling variation of the �̂�(b)ML is still very high. In this case (for 𝜆 = 3), the sample standard error of
the 775 “valid” replications is 3.9, which is almost double that suggested by (5.56). As mentioned, the
Wald c.i.s are anyway a poor choice in this context because of the strong asymmetry of the distribution
of �̂�(b)ML.
The method of generating a confidence interval from use of a hypothesis test statistic (shown at

the end of Section 5.2) using the test given in (5.57) below, was not successful in this case, as the
reader is invited to confirm. A possible solution to this issue is developed in Stock andWatson (1998),
who develop asymptotically valid confidence intervals andmedian-unbiased point estimators for 𝜆 in
model (5.53).
A point forecast of Yt+h requires knowledge of �̂�T , and this is best obtained by use of filtering meth-

ods, as discussed in Remark (b) in the beginning of Section 5.6.

5.6.3.2 Testing for Parameter Constancy
Testing for TVP in model (5.53) has been considered by several authors, including the exact tests
(known small-sample distribution theory) of LaMotte and McWhorter, Jr. (1978), Nyblom and
Mäkeläinen (1983), and Nabeya and Tanaka (1988).13 We will detail that of the latter two. In (5.53)
and (5.54), the null hypothesis of constant 𝜶t is expressible as 𝜆 = 0, versus the alternative of 𝜆 > 0.
Then, for 𝚿 known, direct application of (5.18) yields the test statistic

L = Y′M[W⊙ (X𝚿X′)]MY
Y′MY

, (5.57)

and the null is rejected for large values of L. Its distribution under the null is computed in our usual
way for ratios of quadratic forms, and such that Y ∼ N(𝟎, IT ) (because L is invariant to 𝜎2 and 𝜶0).
Observe that a subset of the vector 𝜶t can be tested for constancy simply by setting the appropriate

elements of𝚿 to zero. As an example, Figure 5.21 shows the power of the test using significance level
𝛼 = 0.05 and three sample sizes T , for two different models. Model 1 takes X = [𝟏], while Model 2
refers to use of X = [𝟏, t] and 𝚿 = diag([1, 0]). We immediately see that, though both are testing for
parameter variation in the intercept of the regression, adding the (unknown, but constant parameter)
time trend to the regression induces a substantial loss of power, particularly for small T .
The case of testing only one of the regression coefficients for constancy is of interest, andwe consider

it in more detail, showing a more powerful test. In this setting, the model can be expressed as

Yt = xt𝛼t + z′t𝜷 + 𝜖t , 𝛼t = 𝛼t−1 +Ut , (5.58)

where 𝜖t
i.i.d.∼ N(0, 𝜎2) independent of Ut

i.i.d.∼ N(0, 𝜆𝜎2), for 𝜎2 > 0 and 𝜆 ⩾ 0. As in the more general
case (5.53), the null hypothesis of constant 𝛼t is expressible as 𝜆 = 0, versus the alternative of 𝜆 > 0.

13 A discussion and illustration of various tests for parameter constancy in the context of the capital asset pricing model
(CAPM) is given in Wells (1996, Ch. 2). Dangl and Halling (2012) investigate the out-of-sample predictive performance of
regression models with random walk coefficients for the monthly returns on the S&P 500 index, demonstrating its efficacy in
this context.
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Figure 5.21 The power of the Nyblom and Mäkeläinen (1983) test (5.57) for three sample sizes and two models, as
described in the text. Solid (dashed) lines were computed using the exact (s.p.a.) method; they are essentially
indistinguishable, with use of the s.p.a. being about three times faster.

We illustrate the test from Shively (1988a) for model (5.58), which was shown to have higher power
than other tests in this context. The setup is the same as that of Nyblom and Mäkeläinen (1983),
namely use of a locally most powerful test, but such that a different point for the optimality is used.
As before, with �̃�t = 𝛼t − 𝛼0 and Vt = xt�̃�t + 𝜖t , the model can be expressed as �̃�t = �̃�t−1 +Ut and

Yt = xt𝛼0 + z′t𝜷 + Vt , or, in obvious matrix notation,

Y =
[
x Z

] [ 𝛼0
𝜷

]
+ V, 𝕍 (V) = 𝜎2𝛀(𝜆), 𝛀(𝜆) = 𝜆DWD + I, (5.59)

where D = diag(x). The derivation of 𝕍 (V) is similar to that of the more general case above in (5.54),
but can be seen directly as follows: As 𝔼[𝛼t] = 𝔼[�̃�t] = 0,

𝕍 (Vt) = x2t𝕍 (�̃�t) + 𝕍 (𝜖t) = 𝜎2(x2t 𝜆t + 1),

and, for t < s,

Cov(Vt,Vs) = 𝔼[(xt�̃�t + 𝜖t)(xs�̃�s + 𝜖s)] = xtxs𝔼[�̃�t�̃�s]
= xtxs𝔼[�̃�t(�̃�t +Ut+1 + · · · +Us)] = xtxs𝕍 (�̃�t) = 𝜎2xtxs𝜆t,

or, for all t and s, Cov(Vt,Vs) = 𝜎2(xtxs𝜆min(t, s) + 𝕀{t = s}), which is (5.59).
The null and alternative are V ∼ N(𝟎, 𝜎2I) and V ∼ N(𝟎, 𝜎2𝛀(𝜆)), respectively. Then, similar to the

construction of tests (5.22) and (5.35), a POI test statistic for some particular value of 𝜆, say, 𝜆∗, is
given by

T(𝜆∗) = Y′G′[G𝛀(𝜆∗)G′]−1GY
Y′MY

, (5.60)

whereM andG are computed in the usual way, based onmatrix [x Z], and we reject the null for small
values ofT(𝜆∗). Via use of (1.65), this is stated inNyblomandMäkeläinen (1983, Eq. (2.5)), though they
chose to use the test statistic (5.57), for which power is maximized around 𝜆 = 0. Similar to proposals
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Figure 5.22 The power of the Shively (1988a) test (5.60) and the value of 𝜆∗ such that the power of the test based on
T(𝜆∗) is 0.5 when the true 𝜆 equals 𝜆∗, for three sample sizes and three models, as described in the text.

in King (1985a) and Franzini and Harvey (1983), Shively (1988a) suggests choosing the value of 𝜆∗ in
(5.60) such that the power of the test based on T(𝜆∗)when the true 𝜆 equals 𝜆∗ is 0.5. Observe that, as
usual, T(𝜆∗) is invariant to scale changes in Y, i.e., 𝜎2 cancels from the numerator and denominator.
Figure 5.22 shows the power for three sample sizes and three design matrices. Model 1 is as above,

with xt = 1 and no Z matrix, as also studied in Shively (1988a). Model 2 is the same as above, with
xt = 1 and zt = t. Thus, the first two panels of Figure 5.22 can be compared to those in Figure 5.21.
We see that the test based on (5.60) is indeed more powerful.
Finally, model 3 takes xt =

√
t and zt = 1. An attempt with xt = t and zt = 1 did not work (for any

sample size) because of numeric problems obtaining 𝜆∗, though this is not too surprising in light of
Figure 5.18, which shows that relatively very small values of 𝜆 need to be used. The reader is encour-
aged to implement this test and replicate our shown results: We suggest use of Matlab’s fminbnd
function for use in determining 𝜆∗.
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Formodel 1, computation of 𝜆∗ for a grid of values between sample sizesT = 20 andT = 120 reveals
that 𝜆∗ is smoothly decreasing in T , and can be approximated as

Model 1: 𝜆∗ ≈ −0.0469 − 6.4190
T

+ 1.0371
T1∕2 + 130.2943

T2 ,

yielding a regression R2 of just over 0.9999. Its use results in the power being graphically identical to
the top panel in Figure 5.22. A similar exercise yields

Model 2: 𝜆∗ ≈ −0.3972 − 51.8997
T

+ 8.6150
T1∕2 + 714.3107

T2 .

Returning to the problematic case of the desired model 3 with xt = t and zt = 1 but using either of
the previous approximations to 𝜆∗ reveals that the power is relatively very high, reaching unity for
𝜆 ≈ 0.03 (𝜆 ≈ 0.002) for T = 25 (T = 50).

5.6.4 Rosenberg Return to Normalcy Model

Rosenberg (1973) proposed a model that nests both (5.41) and (a limiting case of ) (5.53), such that 𝜶t
is not a random walk under the null, but rather a stationary (vector) AR(1) process. For the case with
only one possibly TVP, the model can be expressed as

Yt = xt𝛼t + z′t𝜷 + 𝜖t, 𝛼t − 𝜇 = 𝜙(𝛼t−1 − 𝜇) +Ut , |𝜙| < 1, (5.61)

where 𝜖t
i.i.d.∼ N(0, 𝜎2) independent ofUt

i.i.d.∼ N(0, 𝜆𝜎2), for𝜎2 > 0 and𝜆 ⩾ 0.This is nowoften referred to
as the (Rosenberg) return-to-normalcymodel, or just the Rosenberg model. With 𝜙 = 0, the model
reduces to the HHRC model (5.41), while with 𝜙 = 1, it reduces to the random walk model (5.53).
Recalling (4.10), the law ofmotion for 𝛼t can be expressed as 𝛼t = (1 − 𝜙)𝜇 + 𝜙𝛼t−1 +Ut , showing that
𝛼t is a weighted average of 𝜇 and 𝛼t−1, such that theweights sum to one. As (5.61) nests both theHHRC
and the baseline (constant regressor) regression models, there are two possible null hypotheses.
We concentrate on the first null hypothesis of interest,H0 ∶ 𝜆 = 0, in which case, along with 𝛼0 = 𝜇,

(5.61) reduces to the usual baseline linear regression model. We wish to test the null of 𝜆 = 0 versus
the stochastic coefficient case of {𝜆 > 0, |𝜙| < 1}. This testing situation is somewhat more challeng-
ing because parameter 𝜙 is not identified under the null, but only under the alternative, so that the
usual likelihood ratio test cannot be applied. A test was operationalized in Watson and Engle (1985)
by applying the method proposed by Davies (1977, 1987), which builds on the work of Roy (1953). Its
small sample distribution is not tractable, but Watson and Engle (1985) provide a method for calcu-
lating the critical value of the test such that the size of the test is asymptotically bounded. Alternative
approaches were developed in King (1987a) and Shively (1988b), yielding tests expressible as ratios
of quadratic forms (in normal variables) and thus can make use of exact small-sample inference. We
detail that of Shively (1988b), as he demonstrates that his test has higher power for many models and
alternatives of interest.
As before, the model can be expressed as Yt = xt𝜇 + z′t𝜷 + Vt , Vt = xt(𝛼t − 𝜇) + 𝜖t , 𝛼t − 𝜇 =

𝜙(𝛼t−1 − 𝜇) +Ut , or, in matrix notation, and recalling (4.13),

Y =
[
x Z

] [ 𝜇
𝜷

]
+ V, 𝕍 (V) = 𝜎2𝛀(𝜆, 𝜙), 𝛀(𝜆, 𝜙) = 𝜆D𝚺(𝜙)D + I,
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where D = diag(x) and 𝚺(𝜙) is the covariance matrix of a stationary AR(1) model, as in (4.13), i.e.,
[𝚺(𝜙)]s,t = 𝜙|s−t|∕(1 − 𝜙2).
Analogous to the test statistic (5.22), Shively (1988b) proposes a POI test for a specified alternative

{𝜆∗, 𝜙∗}. He suggests use of 𝜙∗ = 0.7 and, similar to the method of Shively (1988a) for model (5.58),
choosing 𝜆∗ such that the power of the test based on statistic T(𝜆∗, 𝜙∗) at {𝜆∗, 0.7} is 0.5, where

T(𝜆∗, 𝜙∗) = Y′G′[G𝛀(𝜆∗, 𝜙∗)G′]−1GY
Y′MY

, (5.62)

and we reject for small values of T(𝜆∗, 𝜙∗). This can be set up precisely as with test statistic (5.60), and
the reader is encouraged to do so.
Figure 5.23 is similar to Figure 5.22, showing the power of the T(𝜆∗, 𝜙∗) test for the same three type

of models, but in the form (5.61), e.g., Model 1 is given by

Yt = 𝛼t + 𝜖t , 𝛼t − 𝜇 = 𝜙(𝛼t−1 − 𝜇) +Ut , |𝜙| < 1, (5.63)
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Figure 5.23 The power of the Shively (1988b) test (5.62) and the value of 𝜆∗ such that the power of the test based on
T(𝜆∗, 𝜙∗) is 0.5 when the true 𝜆 equals 𝜆∗, for three sample sizes and three models, as described in the text.
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t = 1,… ,T .14 Comparing Figures 5.22 and 5.23, we see that the power associated with the use of the
return-to-normalcy alternative model is much lower than with the random walk alternative model.

Remarks
a) Brooks (1993) proposes an alternative method of selecting {𝜆∗, 𝜙∗} in the Shively (1988b) test,

based on the idea of Cox andHinkley (1974, p. 102) tomaximize someweighted average of powers.
b) Shively (1988b) also provides a highly accurate approximation to the small-sample distribution of

the test statistic used in Watson and Engle (1985), and develops a test similar to (5.62) but for the
ARIMA(1,1,0) alternative model

Yt = xt𝛼t + z′t𝜷 + 𝜖t, 𝛼t = 𝛼t−1 + 𝜙(𝛼t−1 − 𝛼t−2) +Ut , |𝜙| < 1. (5.64)

c) The second null hypothesis is theHHRCmodel, versus themore general formulation (5.61). Brooks
and King (1994) (see also Brooks, 1995, 1997) propose a test statistic similar to the above ones,
expressible as a ratio of quadratic forms, so that our usual computational machinery is applicable.
The decision between the twomodels has been considered by Bos andNewbold (1984) and Brooks
et al. (1994) in the context of the capital asset pricing model.

d) The more general alternative hypothesis involving all, or a subset of, the regression coefficients
evolving according to a stationary vector autoregressive process, denoted VAR(p), and such that
p is known, has been investigated by Lin and Teräsvirta (1999). ◾

14 The test using this model was also demonstrated in Shively (1988b) for T = 31. For this sample size, we obtain the same
value, 𝜆∗ = 0.436, and the same power for the select values he reports in his Table 1.
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6

Autoregressive andMoving Average Processes

Statements about parameter values have been discussed as if parameters have a clearly-defined
tangible existence, whereas inmost cases, they are at best mathematical artifacts introduced only
in order to provide the most useful approximation available to the behaviour of the underlying
reality. It is all too easy to lose sight of the fact that the real purpose of the analysis is to make
statements about this reality rather than about the models that approximate it.

(James Durbin, 1987, p. 179)

There are many extensions of the AR(1) model, a very natural one of which is to include more lagged
terms, yielding theAR(p)model. Another important one is to consider lags of the error termUt , giving
rise to moving average, or MA(q), models. In this chapter, these two models will be introduced and
methods for their estimation discussed.

6.1 AR(p) Processes

A natural generalization of the AR(1) model (4.1) is to allow more past values of Yt into the equation;
this is called the autoregressive model of order p, or AR(p)model, given by

Yt = c + a1Yt−1 + a2Yt−2 + · · · + apYt−p +Ut , (6.1)

where here and throughout the chapter,

Ut
i.i.d.∼ N(0, 𝜎2), (6.2)

as in (4.1). Model (6.1) can be more compactly expressed as a(L)Yt = c +Ut , where

a(L) = 1 − a1L − · · · − apLp (6.3)

is a polynomial in L, and L is the lag operator such that LYt = Yt−1. As one might imagine, the AR(p)
parameterization allows a much richer class of dynamic behavior than the AR(1) case.
There are two popular conventions used for denoting the observations of an AR(p) time-series

model. The first extends that used in the AR(1) case in Chapter 4: We label the observations
Y1−p,Y2−p,… , Y0,Y1,… ,YT , so that one has a total of T + p observations available. For example, if
p = 2, the sample is Y−1,Y0,… ,YT . This has the advantage that the o.l.s. estimator of the autoregres-
sive terms uses T observations. The second notation just labels the sequence as Y1,… ,YT , for a total

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.



282 Linear Models and Time-Series Analysis

of T observations. Both notations have advantages and disadvantages. We primarily use the former,
but in general choose the one that is more convenient for the task at hand.

6.1.1 Stationarity and Unit Root Processes

In the AR(1) case, the polynomial (6.3) is just a(L) = 1 − a1L. When L is treated as a variable, the solu-
tion to the equation a(L) = 0 is 1∕a1, so that the stationarity condition can be stated as requiring that
the root of the AR(1) polynomial is greater than one in absolute value. This carries over to the AR(p)
case:Themodel is stationary when themoduli of all p (possibly complex) roots of the polynomial a(L)
are greater than one. If the complex numbers are plotted in the usual fashion, then this is equivalent
to requiring that the roots lie outside of the complex unit circle.
For the special case with p = 2, the simple quadratic formula can be used: Treating L as a vari-

able gives

a(L) = 1 − a1L − a2L2 = (1 − 𝜆1L)(1 − 𝜆2L),

where 𝜆1 and 𝜆2 are so defined, and the roots of a(L) are thus 𝜆−11 and 𝜆−12 . Multiplying this by L−2 and
setting 𝜆 = L−1 gives 𝜆2 − a1𝜆 − a2 = (𝜆 − 𝜆1)(𝜆 − 𝜆2), with solution

𝜆1,2 =
1
2
a1 ±

1
2

√
a21 + 4a2. (6.4)

The roots are complex if a21 + 4a2 < 0, and real otherwise. In general, express a(L) as

a(L) = 1 − a1L − · · · − apLp = (1 − 𝜆1L) ⋅ · · · ⋅ (1 − 𝜆pL), (6.5)

with roots 𝜆−11 ,… , 𝜆−1p . These can be computed numerically. The model is stationary when |𝜆−1i | > 1
or, equivalently, when |𝜆i| < 1, i = 1,… , p, where |𝜆i| is the modulus of 𝜆i.

Remark The roots are easily computed in Matlab using the built-in roots function. For example,
if the model is an AR(2) with parameters a1 = 1.2 and a2 = −0.8, then executing rr=roots([0.8
-1.2 1]) returns the two complex roots 0.75 ± 0.8292i. The modulus is computed as abs(rr),
giving in this case 1.1180 for both roots, so that the model is stationary. In general, if a = (a1,… , ap)
is the autoregressive parameter vector, then executing rr=roots([-a(end:-1:1) 1]) returns
the p roots. ◾

If |𝜆i| < 1, i = 1,… , p − 1, and 𝜆p = 1, then the process a(L)Yt = c +Ut has a unit root (recall
Section 5.5) and will resemble a random walk, with drift if c ≠ 0. The process can be writ-
ten as (1 − 𝜆1L) ⋅ · · · ⋅ (1 − 𝜆p−1L)(1 − L)Yt = c +Ut or, with Xt ∶= (1 − L)Yt = Yt − Yt−1, as
(1 − 𝜆1L) ⋅ · · · ⋅ (1 − 𝜆p−1L)Xt = c +Ut . That is, the first difference of an AR(p) process with a
unit root is a stationary AR(p − 1) process. The practical implication of this fact is that, when
faced with time-series data that resemble a random walk, the first difference Xt = Yt − Yt−1 can
be computed and subsequently analyzed to infer a guess for p (or for p and q in the case of a
mixed ARMA(p, q) model), this being the topic of Chapter 9, and conduct parameter estimation, as
discussed below and in Chapter 7.
While functions for the computation of polynomial roots are standard in numerical toolboxes and

computing languages, there is a computationally less sophisticated method for determining if the
AR polynomial corresponds to a stationary process, due originally to Schur (1917) and Cohn (1922):
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A necessary and sufficient condition that all the roots of polynomial 𝛼(z) = 𝛼0 + 𝛼1z + · · · + 𝛼pzp lie
outside the unit circle is that

S𝛼 ∶= T1T′
1 − T′

2T2 > 0, (6.6)

i.e., that S𝛼 is positive definite, where T1 and T2 are the Toeplitz matrices given by

T1 =
⎡⎢⎢⎢⎣

𝛼0 0 · · · 0
𝛼1 𝛼0 · · · 0
⋮ ⋮ ⋱ ⋮
𝛼p−1 𝛼p−2 · · · 𝛼0

⎤⎥⎥⎥⎦ and T2 =
⎡⎢⎢⎢⎣

𝛼p 𝛼p−1 · · · 𝛼1
0 𝛼p · · · 𝛼2
⋮ ⋮ ⋱ ⋮
0 0 · · · 𝛼p

⎤⎥⎥⎥⎦ . (6.7)

We will refer to (6.6) as the Schur condition. By taking 𝛼0 = 1 and 𝛼i = −ai, i = 1,… , p, (6.6) can be
computed for the AR polynomial.

Remark It seems little is gained by this, as positive definiteness of a symmetric matrix is equivalent
to all the (necessarily real) eigenvalues being positive, and computation of the latter is essentially
equivalent to polynomial root solving. However, another way to verify that S𝛼 is positive definite is
to check that all the leading principle minors of S𝛼 are positive. Recall that, if A is an n × n matrix,
the leading principal minor of A of order k, 1 ⩽ k ⩽ n, is the determinant of the matrix obtained by
deleting the last n − k rows and columns ofA. MatrixA is positive definite if and only if all the leading
principal minors are positive (see, e.g., Abadir and Magnus, 2005, p. 223).
Pagano (1973, p. 541) notes that, in the context of the Schur condition, the calculation of the leading

principal minors can be numerically unstable. See also Pollock (1999, pp. 157–158) for more details
on the Schur condition. ◾

Example 6.1 For every p ∈ ℕ, the (1, 1) element of Sa is easily seen to be given by 1 − a2p, so that it
is necessary that |ap| < 1 for the AR(p)model to be stationary. ◾

Example 6.2 In the p = 1 case, the Schur condition reduces to 1 − a21 > 0, or |a1| < 1, as noted in
Chapter 4. ◾

Example 6.3 For p = 2, S𝛼 is[
1 0
−a1 1

] [
1 −a1
0 1

]
−
[

−a2 0
−a1 −a2

] [
−a2 −a1
0 −a2

]
=
[

1 − a22 −a1 − a2a1
−a1 − a2a1 1 − a22

]
,

from which the two leading principle minors are

1 − a22 and (a2 + 1)2(a1 + a2 − 1)(a2 − a1 − 1),

giving conditions −1 < a2 < 1 and (a1 + a2 − 1)(a2 − a1 − 1) > 0. Expanding the latter, simplifying,
and using the former, these can be written as

−1 < a2 < 1, |a1| < 1 − a2. (6.8)

From the second of these,

a2 − 1 < a1 < 1 − a2, (6.9)
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and adding a2 shows that 2a2 − 1 < a1 + a2 < 1; in particular, that
a1 + a2 < 1 (6.10)

is a necessary condition for stationarity.
From conditions −1 < a2 < 1 and (6.9), it is necessary that a1 < 2 for stationarity.
To see that the model has a unit root when a1 + a2 = 1 and a1 < 2, let a2 = 1 − a1 and use (6.4) to

compute the roots
1
2
a1 ±

1
2

√
a21 + 4(1 − a1) =

1
2
(a1 ± |2 − a1|).

If a1 < 2, then

𝜆1 =
1
2
(a1 + (2 − a1)) = 1 and 𝜆2 =

1
2
(a1 − (2 − a1)) = a1 − 1 < 1,

showing that there is exactly one unit root. ◾

Example 6.4 For the AR(3) process Yt = 1.2Yt−1 − 0.8Yt−2 + 0.59Yt−3 +Ut , we construct the
matrices

T1 =
⎡⎢⎢⎣

1 0 0
−1.2 1 0
0.8 −1.2 1

⎤⎥⎥⎦ , T2 =
⎡⎢⎢⎣

−0.59 0.80 −1.20
0 −0.59 0.80
0 0 −0.59

⎤⎥⎥⎦ ,
and compute

S𝛼 =
⎡⎢⎢⎣

0.652 −0.728 0.092
−0.728 1.452 −0.728
0.092 −0.728 0.652

⎤⎥⎥⎦ ,
with leading principle minors 0.6519, 0.4165, and 0.0113, showing that the process is stationary. In
this case, the minimum eigenvalue of S𝛼 is 0.0092 and the minimum of the modulus of the roots of
the polynomial 1 − 1.2L + 0.8L2 − 0.59L3 is 1.0073, also confirming stationarity.
If we instead take a3 = 0.61, the leading principle minors are 0.6279, 0.3896, and −0.0113, showing

that the process is not stationary. The minimum eigenvalue of S𝛼 is −0.0095 and the minimum of
the modulus of the roots of the corresponding polynomial is 0.9930, also showing that the model is
not stationary. For a3 = 0.6, the moduli of the AR polynomial roots are 1.2910, 1.2910, and 1.000, so
that the model has exactly one unit root. Observe in this case that a1 + a2 + a3 = 1, which can be
compared to (6.10) in the p = 2 case. ◾

6.1.2 Moments

Instead of proceeding as we did in Section 4.1 to compute 𝜇, the mean of process (6.1) in the limit
as t → ∞, we instead assume that the process is stationary and calculate the expected value of (6.1).
With 𝜇 = limt→∞𝔼[Yt], this gives

𝜇 = c + a1𝜇 + a2𝜇 + · · · + ap𝜇

= c
1 − a1 − a2 − · · · − ap

= c
a(1)

, (6.11)

where a(⋅) is the polynomial in (6.3). Recall that, for the AR(1) model to be stationary, it is necessary
that a1 < 1, while for the AR(2) model, from (6.10), it is necessary that a1 + a2 < 1.We found a similar
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result for the AR(3)model in Example 6.4. From the form of (6.11), onemight conjecture that, in order
for the AR(p) process to be stationary, it should be necessary that

∑p
i=1 ai < 1, and, if

∑p
i=1 ai = 1, then

there is one unit root. This is indeed true, although we do not formally prove it.

Example 6.5 The AR(4) model
Yt = −0.2Yt−1 + 1.1Yt−2 + 0.4Yt−3 − 0.3Yt−4 +Ut (6.12)

is such that a1 + a2 + a3 + a4 = 1. The model can also be written as
(1 − 𝜆1L)(1 − 𝜆2L)(1 − 𝜆3L)(1 − L)Yt = Ut ,

with |𝜆−11 | = 2.4839 and |𝜆−12,3| = 1.1584 (to 4 decimal places). Denote the first difference of Yt as Xt =
(1 − L)Yt , so that (1 − 𝜆1L)(1 − 𝜆2L)(1 − 𝜆3L)Xt = Ut is a stationary AR(3) process. Multiplying out,
the model for Xt can be written as

Xt = −1.2Xt−1 − 0.1Xt−2 + 0.3Xt−3 +Ut . (6.13)
A simulated realization of (6.12) is shown in the top panel of Figure 6.1.The “overallmovement” indeed
has the usual characteristic of a random walk, but there is also short-term autocorrelation because of
the stationary AR(3) component.
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Figure 6.1 Simulated unit-root AR(4) process (6.12) (top) and part of the first difference series (bottom).
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Notice the abrupt and persistent “change of direction” of the series around observation 350. This is
purely an artifact of chance, though when faced with similar-looking real data (say, a stock price or
exchange rate), a natural inclination might be to consider the change to be evidence of a structural
break in themodel purported to describe the evolution of the series.The right panel shows the first 200
observations of Xt = (1 − L)Yt . While this series appears mean stationary (around zero), one might
question the constancy of the variance, which appears to changewith time.The reason for the seeming
“volatility clustering” of model (6.13) is the large negative coefficient on Xt−1 and the proximity of the
polynomial roots to the unit circle. ◾

We now turn to the unconditional variance, 𝛾0 = limt→∞𝕍 (Yt), and the unconditional covariances,
𝛾s = limt→∞Cov(Yt,Yt−s). Similar to the AR(1) case in (4.13), 𝛾s = 𝛾−s.
To derive the {𝛾s}, it is advantageous to use the expression for 𝜇 in (6.11), and quickly confirm that

(6.1) can be written as

Yt − 𝜇 = a1(Yt−1 − 𝜇) + a2(Yt−2 − 𝜇) + · · · + ap(Yt−p − 𝜇) +Ut , (6.14)

generalizing expression (4.9) in the stationary AR(1) case. Now, multiplying both sides of (6.14) by
Yt − 𝜇, taking expectations, and using the relation 𝛾s = 𝛾−s, we have

𝛾0 = a1𝛾1 + a2𝛾2 + · · · + ap𝛾p + 𝜎2. (6.15)

Similarly, multiplying (6.14) by Yt−j − 𝜇 and taking expectations gives

𝛾j = a1𝛾j−1 + a2𝛾j−2 + · · · + ap𝛾j−p, j = 1, 2,… . (6.16)

Example 6.6 With p = 2, (6.15) and (6.16) give the system of equations

𝛾0 = a1𝛾1 + a2𝛾2 + 𝜎2,

𝛾1 = a1𝛾0 + a2𝛾1,
𝛾2 = a1𝛾1 + a2𝛾0,

which can be solved to yield

𝛾0 = 𝜎2 (1 − a2)
D

, 𝛾1 = 𝜎2 a1
D
, 𝛾2 = 𝜎2 (a

2
1 + a2 − a22)

D
, (6.17)

where D = (a2 + 1)(a1 + a2 − 1)(a2 − a1 − 1). To compute 𝛾j for j ⩾ 3, use (6.16), giving 𝛾j = a1𝛾j−1 +
a2𝛾j−2. The correlations 𝜌j = 𝛾j∕𝛾0 are, in this case,

𝜌0 = 1, 𝜌1 =
a1

1 − a2
, 𝜌2 =

a21 + a2 − a22
1 − a2

, (6.18)

valid for a2 < 1 (true under stationarity), and 𝜌j = a1𝜌j−1 + a2𝜌j−2 for j ⩾ 3. ◾

For a stationary AR(p)model, dividing (6.16) by 𝛾0 yields

𝜌j = a1𝜌j−1 + a2𝜌j−2 + · · · + ap𝜌j−p, j = 1, 2,… , (6.19)

which are referred to as the Yule–Walker equations from Yule (1927) and Walker (1931).
As in Example 6.6 for p = 2, solving the set of covariance equations to obtain the 𝛾s is clearly

theoretically feasible for any p. However, the calculations become algebraically messy for p ⩾ 4
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1 function [Vi,detVi]=leeuwAR(a,T);
2 % a is [a1 a2 ... ap] of a stationary AR(p) model
3 p=length(a); a=-a; if nargin < 2, T=p+1; end
4 firrowP = [1 zeros(1,T-1)]; fircolP = [1 a zeros(1,T-p-1)];
5 P = toeplitz(fircolP,firrowP); P1 = P(1:p,1:p);
6 firrowQ1 = a(p:-1:1); fircolQ1 = [a(p) zeros(1,p-1)];
7 Q1 = toeplitz(fircolQ1,firrowQ1); Q = [Q1; zeros(T-p,p)];
8 Vi = P'*P - Q*Q';
9 if nargout>=2, detVi = det ( P1'*P1 - Q1*Q1' ); end

Program Listing 6.1: Computes (6.20) and its determinant.

and numerically prohibitive as p grows. Instead, several other methods have been developed for
calculating the 𝛾s that are far more expedient; see Galbraith and Galbraith (1974), McLeod (1975), De
Gooijer (1978), and Mittnik (1988). We use the expression by van der Leeuw (1994), which is conve-
nient inmatrix-based software and, for the AR(p) case, delivers the inverse of the variance-covariance
matrix.
Let 𝜎2𝚺 denote the T × T unconditional covariance matrix of Y1,… ,YT , and denote the (ij)th ele-

ment of 𝚺 as 𝛾i−j. For p < T ,

𝚺−1 = P′P −QQ′, (6.20)

where P is the T × T band matrix with (𝛼0, 𝛼1,… , 𝛼p, 0,… , 0)′ as the first column, 𝛼0 = 1, 𝛼i = −ai,
i = 1,… , p, and

Q =
[
T2
𝟎

]
,

of size T × p, where T2 is given in (6.7). Observe that the upper p × p portion of P is just T1 from
(6.7).The covariances 𝛾0, 𝛾1,… , 𝛾T−1 are then given by the first row or column of the inverse of (6.20).
Useful also is that|𝚺−1| = |T′

1T1 − T2T′
2|, T > p, (6.21)

with the special case of p = 1 easily seen to be 1 − a21. A program to compute 𝚺−1 and its determinant
is given in Listing 6.1.

6.1.3 Estimation

6.1.3.1 Without Mean Term
We first consider the case with c = 0. Because we have a method of computing the covariance matrix
𝚺 of the Yt , under the assumption that Ut

i.i.d.∼ N(0, 𝜎2), the likelihood of the Yt is just the multivariate
normal density with mean 𝟎 and covariance matrix 𝜎2𝚺, identical to the expression in (4.19), but
where 𝚺 corresponds to the AR(p) model with parameters a = (a1, a2,… , ap)′. Observe from (4.19)
that what is required is not 𝚺, but rather 𝚺−1 and its determinant, which is what (6.20) conveniently
delivers. Nevertheless, if T is large, the evaluation of (6.20) and (4.19) can still be costly. Instead, it
makes sense to partition the likelihood as in (4.16),

fY0,Y(y0, y) = fY0
(y0)fY∣Y0

(y ∣ y0), (6.22)

where Y0 = (Y1−p,Y2−p,… ,Y0)′ and Y = (Y1,Y2,… ,YT )′.



288 Linear Models and Time-Series Analysis

For example, with the AR(2) model and using (6.17), the inverse of

𝚺 =
[

𝛾0 𝛾1
𝛾1 𝛾0

]
is 𝚺−1 =

[
1 − a22 −a1(1 + a2)

−a1(1 + a2) 1 − a22

]
, (6.23)

with determinant|𝚺−1| = (a2 + 1)2((1 − a2)2 − a21). (6.24)
Then [

Y−1
Y0

]
∼ N

([
0
0

]
, 𝜎2

[
𝛾0 𝛾1
𝛾1 𝛾0

])
, (6.25)

or

fY−1,Y0
(y0) =

|𝚺−1|1∕2
(2𝜋𝜎2)p∕2

exp
{
− 1
2𝜎2 y

′
0𝚺

−1y0
}
, p = 2,

and

fY ∣(Y−1,Y0)(y ∣ y0) =
T∏
t=1

1
(2𝜋𝜎2)1∕2

exp
{
− 1
2𝜎2 (yt − a1yt−1 − a2yt−2)2

}
.

In the AR(2) case, via (6.17) we were able to derive 𝚺−1 of size 2 × 2. If we use (6.20) instead, then T
must be at least p + 1, giving the 3 × 3 matrix

𝚺−1 =
⎡⎢⎢⎣

1 −a1 −a2
0 1 −a1
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0
−a1 1 0
−a2 −a1 1

⎤⎥⎥⎦ −
⎡⎢⎢⎣

−a2 −a1
0 −a2
0 0

⎤⎥⎥⎦
[

−a2 0 0
−a1 −a2 0

]

=
⎡⎢⎢⎣

1 −a1 −a2
−a1 1 + a21 − a22 −a1
−a2 −a1 1

⎤⎥⎥⎦ , (6.26)

also with determinant (6.24). We would then compute the likelihood as
(a, 𝜎; y0, y) = fY−1,Y0,Y1

(y0)f(Y2,…,YT ) ∣(Y−1,Y0,Y1)(y) (6.27)

= |𝚺−1|1∕2
(2𝜋𝜎2)(p+1)∕2

exp
{
− 1
2𝜎2 y

′
0𝚺

−1y0
}

×
T∏
t=2

1
(2𝜋𝜎2)1∕2

exp
{
− 1
2𝜎2 (yt − a1yt−1 − a2yt−2)2

}
,

where here, p = 2, a = (a1, a2), y0 = (y−1, y0, y1)′ and y = (y2,… , yT )′. As a check, inverting (6.26),
taking its upper 2 × 2 submatrix and inverting it indeed yields 𝚺−1, as given in (6.23).
For general p, use (6.20) to obtain the (p + 1) × (p + 1)matrix 𝚺−1 and calculate the likelihood as

(a, 𝜎; y0, y) = fY1−p,Y2−p,…,Y0,Y1
(y0)f(Y2,…,YT ) ∣(Y1−p ,Y2−p ,…,Y0,Y1)(y) (6.28)

= |𝚺−1|1∕2
(2𝜋𝜎2)(p+1)∕2

exp
{
− 1
2𝜎2 y

′
0𝚺

−1y0
}

×
T∏
t=2

1
(2𝜋𝜎2)1∕2

exp
⎧⎪⎨⎪⎩−

1
2𝜎2

(
yt −

p∑
i=1

aiyt−i

)2⎫⎪⎬⎪⎭ ,



Autoregressive and Moving Average Processes 289

1 function [MLE, stderr]=exactarp(y,p)
2 n=length(y); y=reshape(y,n,1); initvec=[yw(y,p); std(y)];
3 tol=1e-5; maxiter=200; show='none'; % 'iter','notify', or 'final'.
4 options = optimset('Display',show,'TolX',tol,'Tolfun',tol, ...
5 'MaxIter',maxiter,'LargeScale','off');
6 [MLE,loglik,exitflag]=fminunc(@exactarp_,initvec,options,y,p);
7 if nargout>1
8 H = -hessian(@exactarp_,MLE,y,p);
9 stderr=real(sqrt(diag(inv(H))));

10 end
11
12 function loglik=exactarp_(param,y,p)
13 a=param(1:(end-1)); rr=roots([-a(end:-1:1); 1]); rootcheck=min(abs(rr));
14 if rootcheck<=1, loglik=abs(0.999-rootcheck)*1e8; return, end
15 sig=abs(param(end)); % this is not sigmaˆ2, but just (little) sigma.
16 n=length(y); [Vi,detVi]=leeuwAR(a'); start=y(1:(p+1));
17 lik0=0.5*log(detVi)-((n)/2)*log(2*pi*sigˆ2)-(0.5/sigˆ2)*start'*Vi*start;
18 res=y((p+2):end); for i=1:p, res=res-a(i)*y(p+2-i:end-i); end
19 ll=lik0-sum(res.ˆ2)/2/sigˆ2; loglik = -ll;

ProgramListing 6.2: Computes the exactm.l.e. of anAR(p)model with knownmean zero andGaus-
sian innovations. Programs yw and leeuwAR are given in Listings 6.3 and 6.1, respectively, while
program hessian is given in Listing III.5.4.

where y0 and y are appropriately defined. The m.l.e.s, denoted âML and �̂�2
ML, are those values of a and

𝜎2 that maximize (the log of) (6.28) under the constraint of stationarity.
A program to compute the exact m.l.e. of a stationary AR(p) model with known mean zero is given

in Listing 6.2. It calls the program in Listing 6.3 below to compute starting values and uses the pro-
gram in Listing 6.1 above to compute the (inverse of the) covariance matrix of the first p + 1 values.
To enforce stationarity, a simple penalty term for parameter values corresponding to non-stationary
models is used.
The left panel of Figure 6.2 shows a contour plot of the likelihood for a simulated AR(2) time series

with 15 observations, known mean zero and known scale parameter 𝜎 = 1, as a function of a1 (hor-
izontal axis) and a2 (vertical axis). The inscribed triangle indicates the region of stationarity, and the
dark dot indicates the true parameters, which in this case are a1 = a2 = 0.Themiddle panel is similar,
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Figure 6.2 Contour plots of likelihoods of simulated AR(2) time series as functions of a1 (horizontal axis) and a2
(vertical axis). The left panel takes a1 = a2 = 0 and T = 15 observations, the middle panel takes a1 = 1.4, a2 = −0.8,
and T = 15, and the right panel shows both these cases, but based on simulated series with T = 30 observations.
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but based on an AR(2) model with a1 = 1.4 and a2 = −0.8. Observe how the likelihood behaves as the
parameters approach the stationarity border, and also how far the true parameter is from the m.l.e.,
which, of course, is at the center of the concentric circles. The last panel overlays the likelihood of the
previous two models, but based on simulated series with 30 observations. The reader is encouraged
to construct a program to replicate Figure 6.2.
Asymptotically, under certain assumptions on the innovation sequence (that include as a special

case being i.i.d. Gaussian), for a stationary AR(p) process,√
T(âML − a) asy∼ N(𝟎, 𝜎2𝚪−1), (6.29)

where a = (a1,… , ap)′ and âML are both p-dimensional, and 𝚪 is just 𝚺, but of size p × p, i.e., the (ij)th
element of 𝚪 is 𝛾i−j. See, e.g., Brockwell and Davis (1991, Sec. 8.8, 10.8) for the required conditions
and proof. For p = 1, this reduces to

√
T(âML − a) asy∼ N(0, 1 − a2), while for p = 2, from (6.23),√

T(âML − a) asy∼ N
([ 0

0

]
,

[ 1 − a22 −a1(1 + a2)
⋅ 1 − a22

])
. (6.30)

Observe how the asymptotic variance of both a1 and a2 only depends on a2. Problem 6.8 asks the
reader to check this via simulation.

6.1.3.2 Starting Values
An important issue that arises in the numeric maximization of the log of likelihood (6.28) is the start-
ing values of the p + 1 parameters a = (a1,… , ap)′ and𝜎2.Wepresent two easily computed estimators.

Least Squares As in the AR(1) case, the o.l.s. estimator is applicable. This is obtained by taking the
dependent variable to be (Y1,… ,YT )′ and using the T × p design matrix

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y0 Y−1 … Y1−p

Y1 Y0 … Y2−p

⋮ ⋮ ⋮

⋮ ⋮ ⋮

YT−2 YT−3 … YT−p−1

YT−1 YT−2 … YT−p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.31)

Then

âLS(p) = (âLS(1, p),… , âLS(p, p))′ = (Z′Z)−1Z′(Y1,… ,YT )′.

When it is clear from the context, we will suppress the explicit dependence of the estimator on p and
just write âLS. Writing this out, âLS is⎡⎢⎢⎢⎢⎢⎣

∑T−1
i=0 Y 2

i
∑T−2

i=−1 YiYi+1 · · ·
∑T−p

i=1−p YiYi−1+p∑T−1
i=0 YiYi−1

∑T−2
i=−1 Y 2

i · · ·
∑T−p

i=1−p YiYi−2+p

⋮ ⋮ ⋮∑T−1
i=0 YiYi+1−p

∑T−2
i=−1 YiY2+i−p · · ·

∑T−p
i=1−p Y

2
i

⎤⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎣

∑T
i=1 YiYi−1∑T
i=1 YiYi−2

⋮∑T
i=1 YiYi−p

⎤⎥⎥⎥⎥⎥⎦
. (6.32)
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For clarity of structure, with p = 3 this is⎡⎢⎢⎢⎣
∑T−1

i=0 Y 2
i

∑T−2
i=−1 YiYi+1

∑T−3
i=−2 YiYi+2∑T−1

i=0 YiYi−1
∑T−2

i=−1 Y 2
i

∑T−3
i=−2 YiYi+1∑T−1

i=0 YiYi−2
∑T−2

i=−1 YiYi−1
∑T−3

i=−2 Y 2
i

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

∑T
i=1 YiYi−1∑T
i=1 YiYi−2∑T
i=1 YiYi−3

⎤⎥⎥⎥⎦ .
By its matrix construction, Z′Z is symmetric, which is also seen by carefully looking at the individual
elements in (6.32). Observe also that the elements along any chosen diagonal of Z′Z are close, but not
identical.
The estimate of 𝜎2 is computed as usual, namely the sumof squared residuals divided by eitherT (for

the conditional m.l.e.) or T − p to adjust for bias. As in the AR(1) case, the o.l.s. estimator is the value
that maximizes the conditional likelihood f(Y1,…,YT ) ∣(Y1−p ,Y2−p ,…,Y0)(y; a, 𝜎

2). It will yield estimates that are
reasonably close to the exact m.l.e. values, except for small sample sizes and/or cases for which the
process is close to the stationarity border.
Thus, the o.l.s. estimator is equivalent to the conditional m.l.e., and assuming (correctly) that,

asymptotically, the first p observations become negligible when the model is stationary, one would
expect that âLS has the same asymptotic distribution as the m.l.e. This is true, and was shown by
Mann and Wold (1943), i.e.,

√
T(âLS − a) asy∼ N(𝟎, 𝜎2𝚪−1) (see also Hamilton, 1994, pp. 215–216; and

Fuller, 1996, Sec. 8.2.1).
Yule–WalkerThe Yule–Walker equations (6.19) can also be used to derive estimates of the model

parameters. We denote them as âYW(i, p), i = 1,… , p, for p < T . Recalling that 𝜌s = 𝜌−s and using the
sample counterparts (detailed in Section 8.1.1) for observed time series Y1,… ,YT ,

�̂�s =
�̂�s

�̂�0
, �̂�s = T−1

T∑
t=s+1

YtYt−s, (6.33)

we arrive at the set of equations

r̂ =
⎡⎢⎢⎢⎣
�̂�1
�̂�2
⋮
�̂�p

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

1 �̂�1 · · · �̂�p−1
�̂�1 ⋱ ⋱ ⋮
⋮ �̂�1

�̂�p−1 �̂�p−2 · · · 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a1
a2
⋮
ap

⎤⎥⎥⎥⎦ = R̂a, (6.34)

where r̂ and R̂ are so defined. Note that R̂ = �̂�∕�̂�0. This can be solved for
âYW(p) = (âYW(1, p),… âYW(p, p))′

as R̂−1r̂, for any p < T . Based on (6.32) and (6.33), notice the striking similarity to the least squares
estimator. As with âLS, we suppress the argument p and just write âYW.
For 𝜎2, (6.15) can be used to obtain

�̂�2 = �̂�0 −
p∑
i=1

âi�̂�i = �̂�0 − â′(�̂�0r̂) = �̂�0(1 − r̂′R̂−1r̂). (6.35)

For p = 1, the solution is just âYW = �̂�1. This will always be less in absolute value than the least
squares estimator (4.14) because

âYW = �̂�1 =
∑T

t=2 YtYt−1∑T
t=1 Y 2

t

⋖

∑T
t=2 YtYt−1∑T−1
t=1 Y 2

t

= âLS, (6.36)
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1 function [ayw,aols]=yw(y,p)
2 y=reshape(y,length(y),1); r=localsacf(y,p);
3 v=[1; r(1:end-1)]; R=toeplitz(v,v); ayw=inv(R)*r;
4 if nargout>1 % the o.l.s. estimator
5 z=y(p+1:end); zl=length(z); Z=[];
6 for i=1:p, Z=[Z y(p-i+1:p-i+zl)]; end
7 R=inv(Z'*Z)*Z'; aols=R*z;
8 end
9

10 function acf=localsacf(x,imax) % computes the estimates of gamma_i
11 T=length(x); a=zeros(imax,1);
12 for i=1:imax, a(i)= sum(x(i+1:T) .* x(1:T-i) ); end
13 acf=a./sum(x.ˆ2);

Program Listing 6.3: Computes the Yule–Walker and the least squares estimator for an AR(p)
model.

where a⋖b means |a| < |b|. These expressions are clearly asymptotically equivalent. For p = 2, and
writing ri = �̂�i, i = 1, 2,

âYW =
[
âYW(1, 2)
âYW(2, 2)

]
=
[

1 r1
r1 1

]−1 [ r1
r2

]
= 1

(r1 − 1)(r1 + 1)

[
r1(r2 − 1)
r21 − r2

]
. (6.37)

Although it is now somewhat more difficult to algebraically relate âYW to âLS, one can surmise from
the validity of the Yule–Walker equations and the consistency of the �̂�i that âYW(2) is consistent for
a1 and a2 when the model is AR(2) or, more generally, that âYW(p) is consistent for a1,… , ap when
the model is stationary AR(p). Unsurprisingly, under the appropriate assumptions, âYW has the same
asymptotic distribution as âML and âLS. A proof can be found in Brockwell and Davis (1991, Sec. 8.10).
Listing 6.3 gives a program to compute the Yule–Walker and least squares estimates.

6.1.3.3 With Mean Term
Usually, parameter c will not be known, though in some cases, such as with stock returns, economic
theory can provide a value (in this case, zero). Considermodel (6.1), but nowwith all p + 2 parameters,
c, 𝜎, and a1,… , ap, unknown. The extension of (6.28) to handle the case with unknown c is quite
straightforward. Recall from (6.11) that

𝔼[Yt] = 𝜇 = c∕(1 − a1 − · · · − ap), (6.38)

so that, similar to (6.25), Y0 ∼ N(𝝁,𝚺), where Y0 = (Y1−p,Y2−p,… ,Y0,Y1)′ is of length p + 1, 𝝁 =
(𝜇,… , 𝜇)′ and (6.20) can be used to calculate 𝚺−1. The likelihood is just the product of fY0

and fY,
where Y = (Y2,… ,YT )′ and

fY(y) =
T∏
t=2

1
(2𝜋𝜎2)1∕2

exp
⎧⎪⎨⎪⎩−

1
2𝜎2

(
yt − c −

p∑
i=1

aiyt−i

)2⎫⎪⎬⎪⎭ .

One simple way of obtaining starting values for c and the ai is to take �̂� = Ȳ and then use either
Yule–Walker or least squares based on Ẏt = Yt − �̂� to obtain estimates of the ai. An estimate for c is
then obtained from (6.38). One could also iterate on this procedure.
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Estimation in the more general case in which the mean of the Yt involves a set of k regression
coefficients will be dealt with in Section 7.4 in the more general setting of an ARMAmodel.

6.1.3.4 Approximate Standard Errors
It is desirable to have (an approximation of) the standard errors of the parameters, fromwhich asymp-
totically valid confidence intervals can be constructed. Often in statistical software a p-value for each
ai coefficient is reported, corresponding to the test that ai = 0. These can be computed based on the
asymptotic result (6.29). The variance covariance matrix 𝚪−1 can be approximated for a finite-length
observed time series in an obvious way by replacing the ai used to construct 𝚺 in (6.20) with their
respective m.l.e.s. An alternative way is to replace the 𝛾i in 𝚪 with their sample counterparts �̂�i =
T−1∑T

t=i+1 YtYt−i for observed time series Y1,… ,YT . An estimate of 𝜎2 can be obtained from (6.35).
Another way to get standard errors of the parameters, but which involves more computation, is to

approximate the Hessian matrix via numerical differentiation using the estimated m.l.e.1 Lastly, and
most computationally expensive of the methods stated so far, is to use the bootstrap.

Example 6.7 To investigate the performance of some of the aforementioned methods for getting
standard errors of the AR parameters, a simulation was done with 10,000 replications, using an AR(1)
model with the three values a = 0, 0.5, and 0.9, and two sample sizes T = 10 and 50 (and constant
value𝜎2 = 4). For eachmodel andmethod, the average of the 10,000 standard errors of âML is reported,
which we refer to just as SE.The exactm.l.e. was used for estimation. In addition, it would be expected
to make a difference if we know the mean of the series, or—as is far more common in practice—if we
do not, in which case it needs to be estimated along with a and 𝜎. Both ways are considered. The
results are shown in Table 6.1.
As expected, we see that, for all methods of SE construction, (i) as |a| increases, SE decreases, (ii) as

T increases, SE decreases, and (iii) for a given T and a, SE is higher if the mean is assumed unknown.
Relatively speaking, the method based on use of �̂�i is the best in almost all cases, with second best
being the use of the Hessian matrix. The worst performer is using âML to construct the asymptotic
variance–covariance matrix. This result is somewhat surprising, as one would expect a function of
the �̂�i to have a higher sampling variance than a function of âML. Also, particularly for T = 10 and
a = 0.9, one would expect the true and asymptotic distribution of �̂�i to deviate considerably, and so
favoring use of the SE based on the numeric Hessian matrix.
It is interesting to consider what happens when the estimated model is mis-specified. Taking the

true model to be an AR(2) with a1 = 1.2 and a2 = −0.8 and repeating the above exercise, just for
T = 10 and c known, and (wrongly) using an AR(1) model results in an empirical (sample standard
deviation of the 10,000 âML values) standard error for âML of 0.042, while all three methods discussed
above resulted in about the same SE of 0.106.
It is not surprising that use of the variance covariance matrix in (6.29) with any method of its esti-

mation is relatively inaccurate because (6.29) is only valid when the value of p used for the model is
at least as large as the true value of p. ◾

1 Recall that this method has the drawback that numerical derivatives are functions of the tuning parameter h dictating the
perturbation in the function, though for well-behaved functions there will usually be a reasonable range of h-values such that
the elements of the Hessian will be approximately constant. Alternatively, the selection of h can be avoided by using the final
value of the Hessian matrix that is built up when using the quasi-Newton numerical maximization methods. However, it is
also subject to variation because it is a function of the convergence criteria imposed on the estimation. It is not at all clear
which method will be more accurate on average, or for a particular data set.
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Table 6.1 Comparison of estimated standard errors for the AR(1) model. “Emp” is the empirically observed standard
error of âML, calculated as the sample standard deviation of the âML based on simulation with 10,000 replications; (�̂�) is
short for [�̂�2𝚪−1](�̂�), which refers to use of the sample covariances to form the asymptotic variance–covariance matrix
in (6.29); (âML) is short for [�̂�2𝚪−1](âML) and refers to use of âML to form the asymptotic variance–covariance matrix in
(6.29); and “Hess” refers to use of the estimated Hessian matrix constructed from the quasi-Newton method used to
numerically maximize the likelihood. The values in parentheses indicate the sample standard error of the 10,000
estimates. Entries under “Known c = 0” assume the process has zero mean, so that only a and 𝜎 are estimated, and the
�̂�i are formed as in (8.6), i.e., without subtracting the mean from the data. For “c jointly estimated”, the model is
extended to include an Xmatrix consisting of a column of ones, and the �̂�i are formed with mean subtraction, as in
(8.10). Boldface entries indicate being closest to the empirically observed standard error of âML.

Known c = 0 c jointly estimated

T a Emp (�̂�) (âML) Hess Emp (�̂�) (âML) Hess

0 0.310 𝟎.𝟑𝟎𝟒
(0.017)

0.300
(0.022)

0.319
(0.051)

0.310 𝟎.𝟑𝟎𝟐
(0.018)

0.297
(0.025)

0.319
(0.057)

10 0.5 0.279 0.280
(0.034)

0.270
(0.042)

𝟎.𝟐𝟕𝟗
(0.065)

0.316 0.300
(0.022)

0.288
(0.032)

𝟎.𝟑𝟏𝟐
(0.060)

0.9 0.207 𝟎.𝟐𝟏𝟐
(0.053)

0.170
(0.068)

0.153
(0.091)

0.311 𝟎.𝟐𝟕𝟕
(0.032)

0.249
(0.055)

0.267
(0.086)

0 0.140 𝟎.𝟏𝟒𝟎
(0.0019)

0.140
(0.0020)

0.143
(0.044)

0.140 𝟎.𝟏𝟒𝟎
(0.0019)

0.140
(0.0020)

0.143
(0.029)

50 0.5 0.123 𝟎.𝟏𝟐𝟑
(0.0091)

0.122
(0.0095)

0.125
(0.050)

0.128 0.125
(0.0087)

0.125
(0.0091)

𝟎.𝟏𝟐𝟔
(0.015)

0.9 0.0713 𝟎.𝟎𝟕𝟐𝟏
(0.016)

0.0669
(0.017)

0.0638
(0.021)

0.0906 𝟎.𝟎𝟖𝟑𝟒
(0.016)

0.0774
(0.018)

0.0760
(0.020)

6.2 Moving Average Processes

6.2.1 MA(1) Process

Observe that p parameters are required to model the dynamic portion of the AR(p) model and, if the
true process has in fact a “long memory”, then p could be rather large. In the spirit of what is called
parsimonious model building, whereby we recognize that we will never find the underlying true
model and try instead to find the simplest model that “adequately” describes the process, we might
consider the above AR(p) structure, but with the restriction that ai = fi(a), where fi is some known
function that depends only on the single parameter a, i = 1,… , p. Because we can choose the fi, the
model is more flexible than the AR(1) model, but has the same number of parameters. The greater
flexibility comes from allowing observations frommore than one time period in the past to affect the
current realization, albeit in a restricted way, dictated by the specification of the fi.
Let the model be Yt = aYt−1 − a2Yt−2 + a3Yt−3 − · · · +Ut , for |a| < 1, and let p → ∞ so that the

model can be expressed as

(1 − aL + a2L2 − a3L3 + · · · )Yt = Ut . (6.39)

Because

1 − aL + a2L2 − a3L3 + · · · =
∞∑
j=0

(−aL)j = 1
1 + aL

, (6.40)
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the model can be written as
1

1 + aL
Yt = Ut or Yt = (1 + aL)Ut = Ut + aUt−1.

This is referred to as a moving average model of order 1, or MA(1), with parameter a. The usual
convention is to write the model as

Yt = c +Ut + bUt−1. (6.41)

The name moving average refers to the fact that Yt is a (weighted) average of Ut and Ut−1, and this
average “moves” along the Ut as t changes.
One could imagine having started with formulation (6.41), and seeing what this implies for a finite

data set. Simple recursive substitution yields Y1 = U1 + bU0, or U1 = Y1 − bU0 and

Y2 = U2 + bU1 = U2 + b(Y1 − bU0) = U2 + bY1 − b2U0

or U2 = Y2 − bY1 + b2U0 and U3 = Y3 − bU2 = Y3 − bY2 + b2Y1 − b3U0. Clearly, for general t ⩾ 1,2

Ut = Yt − bYt−1 + b2Yt−2 − b3Yt−3 + · · · + (−b)tU0 =
t−1∑
k=0

(−bL)kYt + (−b)tU0. (6.42)

This is just the finite version of the infinite series in (6.40). Thus, dividing the MA(1) model Yt =
(1 + bL)Ut by (1 + bL) is justified for |b| < 1, so we can write

1
1 + bL

Yt = Ut ,

and 1∕(1 + bL) is understood to be the above finite sequence for a finite set of data, while in the limit,
we arrive at the geometric infinite sequence because |b| < 1 implies (−b)tU0 → 0.
As Ut

i.i.d.∼ N(0, 𝜎2), taking expectations of both sides of (6.41) reveals that 𝔼[Yt] = c,

𝛾0 = 𝕍 (Yt) = 𝔼[(Yt − c)2] = 𝔼[(Ut + bUt−1)2] = (1 + b2)𝜎2, (6.43)

𝛾1 = b𝜎2, and 𝛾s = 0 for s ⩾ 2. The correlation structure is thus

𝜌1 =
b

1 + b2
, 𝜌2 = 𝜌3 = · · · = 0, (6.44)

and 𝜌1 has a maximum of 1/2 at |b| = 1.
Simulating an MA(1) process is straightforward; it just involves evaluating the recursion Yt = Ut +

bUt−1 with Ut
i.i.d.∼ N(0, 𝜎2), t = 0,… ,T . Listing 6.4 implements this method.

Let c = 0 and 𝜎2 = 1, and consider the model Yt = Ut + b−1Ut−1 for b ≠ 0. From (6.43), 𝛾0 = (1 +
b−2), 𝛾1 = b−1 and

𝜌1 =
b−1

1 + b−2
= b2

b2
b−1

1 + b−2
= b

1 + b2
,

2 Some students set up the sum of the Yt terms differently, by working backwards, thus getting

Ut =
t∑

j=1
(−bL)t−jYt ,

and these are of course equivalent, seen by letting k = t − j so that when j = t, k = 0, etc.
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1 function y=ma1sim(nobs,sigma,b)
2 u=sigma*randn(nobs,1); y=zeros(nobs,1); y(1)=u(1)+b*sigma*randn(1,1);
3 for i=2:nobs, y(i) = u(i) + b*u(i-1); end

Program Listing 6.4: Simulates an MA(1) series with Gaussian innovations.

so that the processes Yt = Ut + b−1Ut−1 and Yt = Ut + bUt−1 have exactly the same correlation
structure and either model could be used. From (6.39), the model Yt = Ut + bUt−1 can be written as
(1 + bL)−1Yt = Ut or

Yt = bYt−1 − b2Yt−2 + b3Yt−3 − · · · +Ut , (6.45)

and the alternating sign geometric series of these coefficients converges for |b| < 1 and diverges for|b| ⩾ 1. Because it ismore convenient to workwith convergent series, theMA(1)model with |b| < 1 is
preferred to |b| > 1. If |b| < 1, then themodel is said to be invertible, and is otherwisenon-invertible.
For b = 1, there is only one representation of the model, but as the sum of coefficients in (6.45)
diverges, the borderline case of b = 1 is also deemed non-invertible.
From the simple covariance structure, matrix 𝚺 and its inverse are easily constructed, so that the

likelihood and, thus, the m.l.e. can be computed. Unfortunately, an expression resembling (6.28) that
partitions the likelihood is not available with themoving averagemodel. One way of proceeding is just
to compute 𝚺 corresponding to the whole T-length sample, along with its inverse and determinant,
and then evaluate the likelihood function as

(b, 𝜎; y) = |𝚺−1|1∕2
(2𝜋𝜎2)T∕2

exp
{
− 1
2𝜎2 y

′𝚺−1y
}
, y = (y1,… , yT )′. (6.46)

The first problem associated with the numeric maximization of the log of (6.46) is that b̂ should be
restricted to lie in (−1, 1] so that the resultingmodel (except at the borderline) is invertible.This can be
achieved in the following way: Let 𝜎2 be any positive value, let 0 < |b| < 1, and consider the twomod-
els Yt = Ut + bUt−1, Ut

i.i.d.∼ N(0, 𝜎2
U), and Zt = Vt + b−1Vt−1, Vt

i.i.d.∼ N(0, 𝜎2
V ), such that 𝕍 (Yt) = 𝕍 (Zt).

This implies

𝕍 (Yt) = (1 + b2)𝜎2
U = (1 + b−2)𝜎2

V = 𝕍 (Zt),

or
𝜎2
U = 𝜎2

V
1 + b−2
1 + b2

=
𝜎2
V

b2
.

This can be used during the iterativemaximization of the likelihood as follows: If the numeric function
maximizer attempts a value of |b| > 1, set b ← 1∕b and then 𝜎2 ← 𝜎2∕b2.
The second problem with numeric maximization of (6.46) is that it will be computationally slow

when T is over, say, 100, and will be essentially impossible to compute for data sets with thousands of
observations (as arise, e.g., in the analysis of daily, or even higher frequency financial asset returns).3
There exists a method for computing the inverse of this patterned matrix that is (much) faster than
O(T3), as shown in Uppuluri and Carpenter (1969), as well as a closed-form approximation, from
Durbin (1959).

3 This concern, in turn, is mitigated by reality: It is unlikely that the moving average parameter is constant over such long
time periods. In reality, shorter moving windows for estimation are used to account for this issue. See also Chapter 13 in this
regard.
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The method we suggest is to use an approximation to the likelihood function in place of the exact
expression. Its use not only speeds up the calculations enormously, but, precisely for larger sample
sizes, its approximate nature becomes negligible compared to use of the exact m.l.e. If we condition
on U0 = u0 ∶= 0 = 𝔼[U0], then the simple recursion Ut = Yt − bUt−1, t = 1,… ,T can be used to get
the “filtered” values Ût = Yt − bÛt−1.The conditional likelihood is then just the product ofT normal
densities evaluated at the Ût , i.e.,

cond(b, 𝜎2;Y,U0) =
T∏
t=1

𝜙(Ût; 0, 𝜎2), 𝜙(u; 0, 𝜎2) = 1√
2𝜋𝜎

exp
{
−1
2
u2

𝜎2

}
, (6.47)

and its log would be maximized over b and 𝜎. The programs in Listings 6.5 and 6.6 implement both
the exact and conditional m.l.e. calculation.
Asymptotically, the two methods of likelihood calculation are equivalent when the model is invert-

ible. However, there will be differences when working with small sample sizes. Figure 6.3 shows the
results of a simulation study, based on 10,000 replications, of the behavior of the exact and conditional
m.l.e. of an MA(1) model for two values of b, 𝜎 = 10, and sample size T = 15.The sampling variation
for b̂ is large for both methods of estimation because of the small sample size, with the exact m.l.e.
having a tendency to pile up at the border more so than for the conditional m.l.e. For �̂�, the bias of
the exact m.l.e. is small, but apparent. The same simulation but with b = 0 reveals that conditional
and exact m.l.e.s result in virtually identical small-sample distributions. The reader is encouraged to
replicate these results.

1 function [param, stderr, resid]=ma1(y,exact)
2 ylen=length(y); y=reshape(y,ylen,1); initvec=[0 std(y)]';
3 opt=optimset('Display','iter','TolX',1e-3,'MaxIter',100,'LargeScale','off');
4 if exact==1, [param,loglik,exitflag]=fminunc(@exactma1_,initvec,opt,y);
5 else [param,loglik,exitflag]=fminunc(@condma1_,initvec,opt,y);
6 end
7 b=param(1); littlesig=abs(param(2));
8 if abs(b)>1, b=1/b; littlesig=littlesig/abs(b); end
9 param=[b littlesig]';

10 if nargout>1
11 if exact==1, H = -hessian(@exactma1_,param,y); stderr=sqrt(diag(inv(H)));
12 else H = -hessian(@condma1_,param,y); stderr=sqrt(diag(inv(H)));
13 end
14 end
15 if nargout>2
16 if exact==1
17 Sigma=ma1Sigma(b,ylen); SigInv=inv(Sigma);
18 [V,D]=eig(0.5*(SigInv+SigInv')); W=sqrt(D); SigInvhalf = V*W*V';
19 resid = SigInvhalf*y/littlesig;
20 else
21 [garb,uvec]=condma1_(param,y); resid=uvec/littlesig;
22 end
23 end

Program Listing 6.5: Computes the m.l.e. (exact or conditional) of an MA(1) model. Set exact to
1 to compute the exact m.l.e., otherwise the conditional m.l.e. is computed.The program is continued
in Listing 6.6.
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1 function [loglik,uvec]=condma1_(param,y)
2 ylen=length(y); uvec=zeros(ylen,1); pastu=0;
3 b=param(1); sig=abs(param(2)); % this is NOT sigmaˆ2, but just (little) sigma.
4 if abs(b)>1, b=1/b; sig=sig/abs(b); end
5 for t=1:ylen, u=y(t)-b*pastu; uvec(t)=u; pastu=u; end
6 ll = - ylen * log(sig) - sum(uvec.ˆ2)/(2*sig.ˆ2); loglik = -ll;
7
8 function loglik=exactma1_(param,y)
9 ylen=length(y); b=param(1); sig=abs(param(2));

10 if abs(b)>1, b=1/b; sig=sig/abs(b); end
11 Sigma=ma1Sigma(b,ylen); % varcov matrix, but not scaled by little sigma.
12 Vi=inv(Sigma); detVi=det(Vi);
13 if detVi<=0, loglik=abs(detVi+0.01)*1e4; return, end
14 ll = - ylen * log(sig) + 0.5*log(detVi) - y'*Vi*y/(2*sigˆ2); loglik = -ll;
15
16 function Sigma=ma1Sigma(b,ylen); % construct the varcov in a primitive way:
17 Sigma=zeros(ylen,ylen); v=(1+bˆ2); for i=1:ylen, Sigma(i,i)=v; end
18 for i=1:(ylen-1), Sigma(i,i+1)=b; Sigma(i+1,i)=b; end

Program Listing 6.6: Continuation of Listing 6.5.
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Figure 6.3 Left: Density of the exact m.l.e. (solid) and conditional m.l.e. (dashed) of parameter b in the MA(1) model
based on T = 15 observations, for true b = −0.5 (top), b = 0.8 (bottom), and 𝜎 = 10. Right: Same, but for �̂�.

The MA model (and, more generally, the ARMA model) is also amenable to the state space rep-
resentation and use of the Kalman filter for computing the likelihood, and has the advantage of not
requiring inversion of T × T matrices; see the references in Section 5.6 for details.
As the MA(1) model has only two unknown parameters, the choice of starting values is not overly

important: When using just the naive value of zero for b and the sample variance for 𝜎2 (as done in
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the program in Listing 6.5), one or two iterations of the numeric function maximization algorithm
are enough to pull the values into a region very close to the final values. Nevertheless, it is, in gen-
eral, better practice to use more intelligent starting values if easily computed ones are available. See
Problem 6.3 for details.

6.2.2 MA(q) Processes

TheMA(1) model (6.41) can be extended in a natural way to the MA(q)model, given by

Yt = c +Ut + b1Ut−1 + b2Ut−2 + · · · + bqUt−q = b(L)Ut, (6.48)

where

b(L) = 1 + b1L + · · · + bqLq. (6.49)

The mean of Yt is clearly c. Using the i.i.d. property of the Ut ,

Cov(Yt,Yt+s) = 𝔼[(Ut + b1Ut−1 · · · + bqUt−q)(Ut+s + b1Ut+s−1 + · · · + bqUt+s−q)]

= 𝜎2
q−∣s∣∑
i=0

bibi+|s|,
where b0 ≡ 1. Thus, 𝛾0 = 𝕍 (Yt) = 𝜎2∑q

i=0 b
2
i and

𝛾s = Cov(Yt,Yt+s) =
{

𝜎2∑q−|s|
i=0 bibi+|s|, |s| ⩽ q,

0, |s| > q, (6.50)

from which the 𝜌s = 𝛾s∕𝛾0 can be calculated. Van der Leeuw (1994) shows that the covariance matrix
of an MA(q) model with 𝜎 = 1 can be expressed as

𝚺 = MM′ +NN′, (6.51)

whereM is the T × T lower triangular band matrix with first column (1, b1,… , bq, 0,… , 0) and

N =
[
N1
𝟎

]
, N1 =

⎡⎢⎢⎢⎣
bq bq−1 · · · b1
0 bq · · · b2
⋮ ⋮ ⋱ ⋮
0 0 · · · bq

⎤⎥⎥⎥⎦ , (6.52)

where N is of size T × q. Note that matrices M and N parallel those of P and Q for the AR(p) case,
and that for the AR(p)model, 𝚺−1 was directly constructed, whereas it is 𝚺 for the MA(q)model.
For example, with q = 2, 𝜎2 = 1, and T = 4,

𝚺 =
⎡⎢⎢⎢⎣

1 0 0 0
b1 1 0 0
b2 b1 1 0
0 b2 b1 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 b1 b2 0
0 1 b1 b2
0 0 1 b1
0 0 0 1

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

b2 b1
0 b2
0 0
0 0

⎤⎥⎥⎥⎦
[

b2 0 0 0
b1 b2 0 0

]

=
⎡⎢⎢⎢⎣

1 + b21 + b22 b1 + b1b2 b2 0
b1 + b1b2 1 + b21 + b22 b1 + b1b2 b2

b2 b1 + b1b2 1 + b21 + b22 b1 + b1b2
0 b2 b1 + b1b2 1 + b21 + b22

⎤⎥⎥⎥⎦ ,
which agrees with (6.50).



300 Linear Models and Time-Series Analysis

The concept of invertibility is also extended to the MA(q) case. Paralleling the development of the
stationarity condition for AR(p) models, express polynomial (6.49) as

b(L) = 1 + b1L + · · · + bqLq = (1 − 𝜂1L) ⋅ · · · ⋅ (1 − 𝜂qL), (6.53)
so that the roots4 of b(L) are given by 𝜂−11 ,… , 𝜂−1q . The model is invertible when |𝜂−1i | > 1 or, equiva-
lently, when |𝜂i| < 1, i = 1,… , q, where |𝜂i| is the modulus of 𝜂i. Unlike the AR model, we can “flip”
any set of the 𝜂i and the correlation structure remains the same. For example, let b1 = −0.5 and
b2 = −0.24. As

1 − 0.5L − 0.24L2 = (1 + 0.3L)(1 − 0.8L),
the roots are 𝜂−11 = −10∕3 and 𝜂−12 = 10∕8, so that, as |𝜂−1i | > 1, i = 1, 2, the model is invertible. Flip-
ping 𝜂2 gives

(1 + 0.3L)
(
1 − 1

0.8
L
)
= 1 − 0.95L − 0.375 L2 =∶ 1 + b∗1L + b∗2L

2 =∶ b∗(L),

which is obviously not invertible, but the MA(2) models based on b(L) and b∗(L) have exactly the
same correlation (but not covariance) structure, namely, to four digits, 𝜌1 = −0.2906, 𝜌2 = −0.1835,
and 𝜌i = 0, i ⩾ 3. Interestingly, the parameters bi need not correspond to an invertible MA process in
order for (6.51) to be valid. The Schur condition can also be checked for the MA polynomial via (6.6)
and (6.7), with q in place of p, 𝛼0 = 1, and 𝛼i = bi, i = 1,… , q.
Using (6.51), the exact m.l.e. can be obtained by extending the program in Listing 6.5 in an obvious

way. Also, the conditional m.l.e. is straightforwardly computed by settingU0,… ,U1−q to zero. This is
illustrated in the context of the more general ARMA setting in Section 7.4.
Asymptotically, under certain assumptions on the innovation sequence, for both the exact and con-

ditional m.l.e. of b = (b1,… , bq)′,√
T(b̂ML − b) asy∼ N(𝟎, 𝜎2𝚪−1

∗ ), (6.54)
where 𝚪∗ is the covariance matrix of V = (Vt,Vt−1,… ,Vt−q+1)′, the Vt follow the AR(q) process
b(L)Vt = Ut , and b(L) = 1 + b1L + · · · + bqLq. Thus, the result parallels that for âML in the AR(p)
model, but replacing ai with −bi. For the MA(1) case,√

T(b̂ML − b) asy∼ N(0, 1 − b2), (6.55)
while for q = 2, replacing ai with −bi in the covariance matrix of (6.30),√

T(b̂ML − b) asy∼ N
([

0
0

]
,

[
1 − b22 b1(1 − b2)

⋅ 1 − b22

])
. (6.56)

The result for q = 3 is given in (6.62) below; see Problem 6.5. Proofs of (6.54) can be found in several
textbooks, including the 1970 monograph by Box and Jenkins and subsequent editions (Box et al.,
2008), Fuller (1996, Sec. 8.4), and Brockwell and Davis (1991, Sec. 8.8, 10.8).
The covariance matrix in (6.54) can be approximated by using the values of b̂ML in place of their

theoretical counterparts and/or theHessianmatrix can be approximated from the likelihood function,
as discussed in Section 6.1.3.4. The reader is encouraged to investigate via simulation which method
delivers better estimates of the standard error.
Forecasting MA(q) processes is dealt with in Section 7.5.

4 Similar to the expression for the AR polynomial, if b = (b1,… , bq) is the MA parameter vector, then executing
rr=roots([b(end:-1:1) 1]) computes the roots in Matlab.
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6.3 Problems

Problem 6.1 Use Matlab to graphically determine the ranges of a1 and a2 for the AR(3) process to
be stationary. Algebraically verify the limiting case a3 ↓ −1.

Problem 6.2 Recall the discussion of conditional and exact estimation of theMA(1)model. To inves-
tigate this, design a simulation to compare the bias and m.s.e. of the exact and conditional m.l.e.
for b over a grid of b-values for T = 15, 𝜎 = 1.

Problem 6.3 We wish to develop simple estimators for the two parameters of an MA(1) model that
can be used as starting values for computing the m.l.e. We consider two. First, use (6.44) to derive
a method of moments estimator for b, and, based on this, use (6.43) to get an estimate of 𝜎.
The second way is to use the fact that an MA(1) model can be represented as an infinite AR

model, which suggests estimating an AR(p) model via least squares and setting

b̂ = â1. (6.57)

The choice of p will of course influence the quality of the estimator: If p is chosen too small, then
the AR(p) model is “very” mis-specified, so that b̂will be quite biased, while if p is chosen too large,
then the variance of b̂will be large.This tradeoff becomes acute as |b| approaches one. Koreisha and
Pukkila (1990) recommend taking p to be

√
T , rounded off to the nearest integer. Make a program

to compute this.
Now compare via simulation the performance (in terms of bias and m.s.e.) of the two estimators

for b. Use a grid of b-values, T = 15 observations, 𝜎 = 1, and 10,000 replications.

Problem 6.4 For theMA(2) polynomial b(L) = 1 + b1L + b2L2 with b2 > 0, there is a range of values
of b1 such that the moduli of the two roots are equal and constant. For example, with b2 = 0.8, the
moduli are 1.118 for −1.78 < b1 < 1.78. Explain.

Problem 6.5 Using (6.20) and (6.54) (and a symbolic software package such as Maple), show (6.55)
and (6.56), and derive the expression for the q = 3 case. Assume throughout that 𝜎2 = 1.

Problem 6.6 In Example 6.6, the 𝜌i were derived for the AR(2) model and given in (6.18). Observe
that, if a2 = 0, then 𝜌1 = a1 and 𝜌2 = a21 = 𝜌21. It is of interest to know if 𝜌2 can equal 𝜌21 if a2 ≠ 0.
Show that it cannot.

Problem 6.7 Write a program that produces graphs like those in Figure 6.3. Do so for different values
of b.

Problem 6.8 For a stationary AR(2) process, the asymptotic distribution of the AR(2) parameters is
given in (6.30) to be√

T(âML − a) asy∼ N
([

0
0

]
,

[
1 − a22 −a1(1 + a2)

⋅ 1 − a22

])
.
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Figure 6.4 Top: Variance and covariance of estimated AR(2) parameters, as a function of a1, for constant a2 = −0.5
and sample size T = 25. Solid lines show the asymptotic values from (6.30). Bottom: Same, but for T = 200.

Write a program to investigate this via simulation for a2 = −0.5 and a grid of a1-values over the
stationarity region (6.8), and produce graphs like those in Figure 6.4, which correspond to T = 25
and T = 200. Use either Yule–Walker or least squares for estimation.

6.A Appendix: Solutions

Solution to Problem 6.1 Figure 6.5 shows two views of the stationarity region of an AR(3) model.
The panels were created with the code in Listing 6.7.

Figure 6.6 is similar, but each graph uses a constant value of a3. It was created with the code in List-
ing 6.8.
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Figure 6.5 Two views of the allowed range of parameters a1, a2, a3 of the AR(3) model such that the process is
stationary.

1 %mm=[];
2 figure
3 for a1=-3:0.1:3
4 for a2=-2:0.1:2
5 for a3=-1:0.1:1
6 a=[a1 a2 a3]; m=min( abs(roots([-a(end:-1:1) 1])) );
7 if m>1
8 if m<1.1, plot3(a1,a2,a3,'yo')
9 elseif m<1.2, plot3(a1,a2,a3,'ro')

10 elseif m<1.3, plot3(a1,a2,a3,'go')
11 elseif m<1.4, plot3(a1,a2,a3,'bo')
12 else plot3(a1,a2,a3,'ko')
13 hold on, %mm=[mm m];
14 end
15 end
16 end
17 end
18 end
19 hold off
20 set(gca,'fontsize',16), grid, xlabel('a1'), ylabel('a2'), zlabel('a3')
21 view(-0.5,90) % two-dimensional view

Program Listing 6.7: Produces Figure 6.5.The commented out pieces of the code construct a vector
mm. A histogram of it can be made to see the relative size of the minimum modulus of stationary
models, which was useful in determining the ranges for the colors used in the plot.

To verify what happens as a3 approaches −1, use the Schur condition to get

Sa =
⎡⎢⎢⎣

1 0 0
−a1 1 0
−a2 −a1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 −a1 −a2
0 1 −a1
0 0 1

⎤⎥⎥⎦ −
⎡⎢⎢⎣

−a3 0 0
−a2 −a3 0
−a1 −a2 −a3

⎤⎥⎥⎦
⎡⎢⎢⎣

−a3 −a2 −a1
0 −a3 −a2
0 0 −a3

⎤⎥⎥⎦
=
⎡⎢⎢⎣

−a23 + 1 −a1 − a2a3 −a2 − a1a3
−a1 − a2a3 a21 − a22 − a23 + 1 −a1 − a2a3
−a2 − a1a3 −a1 − a2a3 −a23 + 1

⎤⎥⎥⎦ .
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Figure 6.6 Allowed range of a1 and a2 in the AR(3) model for a fixed value of a3, for several values of a3.

1 a3vec=[-0.95 -0.9:0.2:-0.1 0 0.1:0.2:0.9]; lw=1.3;
2 for lp=1:length(a3vec)
3 a3=a3vec(lp), subplot(4,3,lp)
4 for a1=-3:0.02:3
5 for a2=-2:0.02:2
6 a=[a1 a2 a3]; m=min( abs(roots([-a(end:-1:1) 1])) );
7 if m>1
8 if m<1.1, h=plot(a1,a2,'y.');
9 elseif m<1.2, h=plot(a1,a2,'r.');

10 elseif m<1.3, h=plot(a1,a2,'g.');
11 elseif m<1.4, h=plot(a1,a2,'b.');
12 else h=plot(a1,a2,'k.');
13 end
14 set(h,'linewidth',lw), hold on
15 end
16 end
17 end
18 hold off, set(gca,'fontsize',12), axis([-2.5 2.7 -2.2 1.2])
19 str=['a3=',num2str(a3)]; text(-2.3,1.0,str,'fontsize',16)
20 end, orient tall

Program Listing 6.8: Produces Figure 6.6.
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Thus, 1 − a23 > 0 and, with A1 = a2 + a1a3 and A2 = 1 − a23 > 0,

det
[

−a23 + 1 −a1 − a2a3
−a1 − a2a3 a21 − a22 − a23 + 1

]
= −(A1 − A2)(A1 + A2) > 0. (6.58)

Now let a3 ↓ −1 so that A2 ↓ 0. Then (6.58) reduces to A2
1 < 0 or (a2 − a1)2 < 0, i.e., that a1 = a2.

Solution to Problem 6.2 The code in Listing 6.9 was used to perform the computation, based on
10,000 replications, and produce the graphs in Figure 6.7. We see, somewhat surprisingly, that the
conditional m.l.e. is actually preferred in terms of both bias and m.s.e. for most of the parameter
space. For |b| > 0.7, the exact m.l.e. exhibits lower bias, while for |b| > 0.8 it also has smaller m.s.e.

Solution to Problem 6.3 Using (6.44), its solutions are b = 0, if 𝜌1 = 0, and

b = 1
2𝜌1

(1 ±
√

1 − 4𝜌21 ), 𝜌1 ≠ 0. (6.59)

This is valid because |𝜌1| < 1∕2 for an MA(1) model. To ensure |b̂| < 1, i.e., an invertible model,
the solution in (6.59) with the negative sign is taken, i.e.,

b̂ =

⎧⎪⎪⎨⎪⎪⎩
0, if �̂�1 = 0,
1 −

√
(1 − 2�̂�1)(1 + 2�̂�1)

2�̂�1
, if 0 < |�̂�1| < 1

2
,

sgn(�̂�1) 0.95 if |�̂�1| ⩾ 1
2
,

(6.60)

where the value 0.95 is arbitrary. Of course, Pr(�̂�1 = 0) = 0, and if |�̂�1| ⩾ 1∕2, this might be a signal
that an MA(1) model is not appropriate for the data.

1 bvec=-0.95:0.05:0.95; sig=1; T=15; sim=10000;
2 b1=zeros(sim,length(bvec)); b2=b1; true=kron(ones(sim,1),bvec);
3 for bloop=1:length(bvec), b=bvec(bloop);
4 for i=1:sim
5 y=ma1sim(T,sig,b,i); if mod(i,100)==0, disp([i, b]), end
6 param=ma1(y,1); b1(i,bloop)=param(1); % exact
7 param=ma1(y,2); b2(i,bloop)=param(1); % conditional
8 end
9 end

10 figure, set(gca,'fontsize',16)
11 plot(bvec,mean(b1)-bvec,'r-',bvec,mean(b2)-bvec,'g--','linewidth',3)
12 title('Bias'), legend('Exact MLE','Conditional MLE')
13 figure, set(gca,'fontsize',16)
14 plot(bvec, mean((b1-true).ˆ2), 'r-', ...
15 bvec, mean((b2-true).ˆ2), 'g--', 'linewidth',3)
16 title('MSE'), legend('Exact MLE','Conditional MLE')

Program Listing 6.9: Simulates the exact and conditional MLE of an MA(1) model and compares
their bias and m.s.e. for parameter b. Function ma1sim is given in Listing 6.4, while the function for
estimation of the MA(1) model is given in Listings 6.5 and 6.6.
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Figure 6.7 The bias (top) and m.s.e. (bottom) of the exact m.l.e. (solid line) and conditional m.l.e. (dashed line) of b̂ in
the MA(1) model as a function of parameter b, based on T = 15 observations, 𝜎 = 1, and 10,000 replications. The
graphics were produced from the code in Listing 6.9.

1 T=length(y); p=round(sqrt(T)); z=y(p+1:end); zl=length(z); Z=[];
2 for i=1:p, Z=[Z y(p-i+1:p-i+zl)]; end, a=inv(Z'*Z)*Z'*z; b=a(1)

Program Listing 6.10: Code for computing (6.57).

An estimate of 𝜎2 follows from (6.43) as �̂�2 = �̂�2
Y∕(1 + b̂2), where �̂�2

Y = S2Y is the sample variance of
the series Y1,… ,YT .

For the approach based on an estimated AR(p) model, we set b̂ = â1 as in (6.57), where a1 is the first
of pAR terms estimated via least squares.The code in Listing 6.10 can be used to compute (6.57).

For the comparison, Figure 6.8 shows the resulting bias and m.s.e. Compared to Figure 6.7, we see
that the bias and m.s.e. of the initial estimators are considerably larger than for the m.l.e.s as |b|
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Figure 6.8 The bias (top) and m.s.e. (bottom) of the moments-method (6.60) (solid line) and long autoregression
method (6.57) (dashed line) of estimating b̂with closed-form expressions, for the MA(1) model as a function of
parameter b, based on T = 15 observations, 𝜎 = 1, and 10,000 replications.

approaches one, but are comparable for b near zero. Method (6.57) has smaller bias than (6.60) for
the entire parameter space except for a small region around b = −0.5. Regarding the m.s.e., (6.60)
is slightly better than (6.57) for −0.8 < b < 0.5, but (6.57) exhibits a much lower m.s.e. than (6.60)
as b increases towards 1.0. Taken all together, (6.57) would be preferred, but (6.60) is far cheaper
numerically.

Solution to Problem 6.4 Write b(L) = 1 + b1L + b2L2 = (1 − 𝜂1L)(1 − 𝜂2L), multiply by L−2 and set
𝜂 = L−1 to get 𝜂2 + b1𝜂 + b2 = (𝜂 − 𝜂1)(𝜂 − 𝜂2) with roots

𝜂1,2 = −1
2
b1 ±

1
2

√
b21 − 4b2. (6.61)
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Values 𝜂−11,2 are the two roots of b(L). If b2 > 0 and b21 − 4b2 < 0, then the latter term in (6.61) is a
purely imaginary number, and the the moduli of the 𝜂1,2 are√(

−1
2
b1
)2

+
(
1
2

√
4b2 − b21

)2

=
√

1
4
b21 +

1
4
(4b2 − b21) =

√
b2,

which is obviously constant in b1 and the moduli of the roots of b(L) are b−1∕22 for |b1| < 2b1∕22 . For
b2 = 0.8, b−1∕22 =

√
5∕2, and the range for b1 is ±4∕

√
5 or, approximately, ±1.788854382.

Solution to Problem 6.5 For the MA(1) model, 𝚪∗ can be computed as the inverse of the 1 × 1
matrix of 𝚺 from (6.20). We cannot compute 𝚪−1

∗ directly from (6.20) because (6.20) requires the
use of at least p + 1 elements. Thus,

𝚺−1 = P′P −QQ′ =
[

1 b1
0 1

] [
1 0
b1 1

]
−
[
b1
0

] [
b1 0

]
=
[

1 b1
b1 1

]
,

and the inverse of the upper 1 × 1 submatrix of

𝚺 =
[

1 b1
b1 1

]−1
= 1

1 − b21

[
1 −b1

−b1 1

]
is 1 − b21. For q = 2,

𝚺−1 =
⎡⎢⎢⎣
1 b1 b2
0 1 b1
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0
b1 1 0
b2 b1 1

⎤⎥⎥⎦ −
⎡⎢⎢⎣
b2 b1
0 b2
0 0

⎤⎥⎥⎦
[

b2 0 0
b1 b2 0

]
=
⎡⎢⎢⎣

1 b1 b2
b1 b21 − b22 + 1 b1
b2 b1 1

⎤⎥⎥⎦
and, with K = (b2 − 1)(b1 − b2 − 1)(b1 + b2 + 1),

𝚺 = 1
K

⎡⎢⎢⎣
1 + b2 −b1 −b2 + b21 − b22
−b1 1 + b2 −b1

−b2 + b21 − b22 −b1 1 + b2

⎤⎥⎥⎦ ,
so that the inverse of the upper 2 × 2 submatrix of 𝚺 is

𝚪−1
∗ =

[
1 − b22 b1 − b1b2

b1 − b1b2 1 − b22

]
.

Similarly for the q = 3 case,

𝚺−1 =
⎡⎢⎢⎢⎣

1 b1 b2 b3
0 1 b1 b2
0 0 1 b1
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1 0 0 0
b1 1 0 0
b2 b1 1 0
b3 b2 b1 1

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣

b3 b2 b1
0 b3 b2
0 0 b3
0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

b3 0 0 0
b2 b3 0 0
b1 b2 b3 0

⎤⎥⎥⎦
=
⎡⎢⎢⎢⎣

1 b1 b2 b3
b1 b21 − b23 + 1 b1 + b1b2 − b2b3 b2
b2 b1 + b1b2 − b2b3 b21 − b23 + 1 b1
b3 b2 b1 1

⎤⎥⎥⎥⎦ ,
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with inverse

𝚺 = 1
K

⎡⎢⎢⎢⎣
−b2 + b1b3 + b23 − 1 b1 − b2b3 b2 − b1b3 − b21 + b22 J

b1 − b2b3 −b2 + b1b3 + b23 − 1 b1 − b2b3 b2 − b1b3 − b21 + b22
b2 − b1b3 − b21 + b22 b1 − b2b3 −b2 + b1b3 + b23 − 1 b1 − b2b3

J b2 − b1b3 − b21 + b22 b1 − b2b3 −b2 + b1b3 + b23 − 1

⎤⎥⎥⎥⎦ ,
where

J = b3 − 2b1b2 + b2b3 + b31 − b33 − b1b22 − b1b23 + b21b3 + b22b3 ,
K = (b1 + b2 + b3 + 1)(b2 − b1b3 + b23 − 1)(b2 − b1 − b3 + 1).

The inverse of the upper 3 × 3 submatrix of this is

𝚪−1
∗ =

⎡⎢⎢⎣
1 − b23 b1 − b2b3 b2 − b1b3

b1 − b2b3 b21 − b22 − b23 + 1 b1 − b2b3
b2 − b1b3 b1 − b2b3 1 − b23

⎤⎥⎥⎦ , (6.62)

and

tr(𝚪−1
∗ ) = b21 − b22 − 3(b23 − 1).

Solution to Problem 6.6 Such values of a2 are given by the solutions to
a21 + a2 − a22

1 − a2
=

a21
(1 − a2)2

, (6.63)

which are 0, 1 − a1, and a1 + 1. But the latter condition in (6.9), namely a1 < 1 − a2, is violated for
the solution a2 = 1 − a1, and the former condition, a2 − 1 < a1, is violated for the solution a2 =
1 + a1, so that there are no stationary AR(2) models with nonzero a2 and such that 𝜌2 = 𝜌21.

1 b=-0.5; sig=10; T=15; sim=1000;
2 b1=zeros(sim,1); sig1=b1; bstd1=b1; b2=b1; sig2=b1; bstd2=b1;
3 for i=1:sim
4 if mod(i,100)==0, i, end
5 y=ma1sim(T,sig,b,i);
6 [param, stderr]=ma1(y,1);
7 b1(i)=param(1); sig1(i)=param(2); bstd1(i)=stderr(1);
8 [param, stderr]=ma1(y,0);
9 b2(i)=param(1); sig2(i)=param(2); bstd2(i)=stderr(1);

10 end
11 figure
12 [f,g]=kerngau(b1); plot(g,f,'r-'), hold on
13 [f,g]=kerngau(b2); plot(g,f,'g--'), hold off
14 figure
15 [f,g]=kerngau(sig1); plot(g,f,'r-'), hold on
16 [f,g]=kerngau(sig2); plot(g,f,'g--'), hold off
17 mean(bstd1), std(b1)
18 mean(bstd2), std(b2)

Program Listing 6.11: Code used to produce Figure 6.3. Change the first line, b, to investigate the
behavior for different b.
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1 T=25; % T=200; Need to also change text command below.
2 sig2=1; a2=-0.5; sim=500; lb=-(1-a2); ub=1-a2;
3 a1v=(lb+0.05):0.05:(ub-0.05);
4 var1=zeros(length(a1v),1); var2=var1; cov12=var1;
5 asyvar=var1; asycov=var1;
6 for aloop=1:length(a1v)
7 a1=a1v(aloop), a1est=zeros(sim,1); a2est=a1est;
8 for s=1:sim
9 y=armasim(T,sig2,[a1 a2],[],s,500); ayw=yw(y,2);

10 a1est(s)=ayw(1); a2est(s)=ayw(2);
11 end
12 varcov=T*cov(a1est,a2est);
13 var1(aloop)=varcov(1,1); var2(aloop)=varcov(2,2);
14 cov12(aloop)=varcov(1,2);
15 asyvar(aloop)=1-a2ˆ2; asycov(aloop)=-a1*(1+a2);
16 end
17 h=plot(a1v,var1,'r-',a1v,var2,'g--',a1v,cov12,'b-.')
18 for i=1:3, set(h(i),'linewidth',2), end
19 hold on
20 h=plot(a1v,asyvar,'k-',a1v,asycov,'k-')
21 for i=1:2, set(h(i),'linewidth',3), end
22 hold off
23 set(gca,'fontsize',16), text(-1,0,'T=25','fontsize',20)
24 legend('T*Var(a_1)', 'T*Var(a_2)', 'T*Cov(a_1,a_2)', ...
25 'Location','Southwest')

Program Listing 6.12: Produces Figure 6.4.

Alternatively, values of a2 such that 𝜌2 = a21 are given by the solutions to

a21 + a2 − a22
1 − a2

= a21,

which are zero if a1 = 0, and zero and 1 + a21 if a1 ≠ 0. But from the first condition in (6.8), a2 < 1,
which is clearly not fulfilled by 1 + a21, so that, for stationary AR(2) models, 𝜌2 ≠ a21.

Solution to Problem 6.7 The code in Listing 6.11 can be used.

Solution to Problem 6.8 The code in Listing 6.12 was used to produce Figure 6.4.
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7

ARMA Processes

Parsimoniously parameterized time-series models were developed as aids to short-term forecast-
ing, where the fiction that the analyst has discovered the ‘true’ model is innocuous. Such fiction,
however, is far from innocuous when attempting to base inference about long-run behavior on
these fitted models.

(Paul Newbold et al., 1993)

TheAR(p) andMA(q) time-seriesmodels seen in the previous chapter are straightforward to combine,
resulting in the so-called ARMA(p, q) model—a very flexible model class capable of producing a vari-
ety of autocorrelation structures. The infinite AR and MA expansions of this model, as developed in
Section 7.2, will be seen to play an important role in estimation and forecasting, these being discussed
in Sections 7.3, 7.4, and 7.5.This is done within the ARMAXmodel, which augments the ARMA error
structure with a set of regressors, as in Chapter 5. Section 7.6 builds on the material in Section 5.4
for obtaining an improved estimator of the AR(1) parameter. Finally, Section 7.7 briefly introduces
ARMA-type models that embody certain forms of nonlinearity, and/or can serve as an alternative to
a near or exact unit root process.

7.1 Basics of ARMAModels

7.1.1 The Model

Similar to (6.39), consider the infinite ARmodel whose coefficients are functions of a single parameter
a, given by

Yt = aYt−1 + a2Yt−2 + a3Yt−3 + · · · +Ut , |a| < 1∕2, (7.1)

where here and throughout the chapter,

Ut
i.i.d.∼ N(0, 𝜎2), (7.2)

as in (6.2). Model (7.1) can be written as (1 − aL − a2L2 − · · · )Yt = Ut , and, with z = aL, the polyno-
mial is

1 − z − z2 − · · · = 2 − (1 + z + z2 + · · · ) = 2 − 1
1 − z

= 1 − 2z
1 − z

,

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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so that
1 − 2z
1 − z

Yt = Ut ,

or Yt − 2aYt−1 = Ut − aUt−1 or

Yt = 2aYt−1 +Ut − aUt−1. (7.3)

Model (7.3) is stationary for |a| < 1∕2. This model combines an AR(1) with an MA(1) structure,
though in a restricted way. Relaxing the constraint gives a model with the form Yt = aYt−1 +Ut +
bUt−1, which is, appropriately, referred to as an ARMA(1,1) model (and is stationary if |a| < 1).
More generally, by combining the AR(p) andMA(q) structures and introducing the constant c as in

(6.1) and (6.48), the ARMA(p, q)model

a(L)Yt = c + b(L)Ut (7.4)

is obtained, where

a(L) = 1 − a1L − · · · − apLp and b(L) = 1 + b1L + · · · + bqLq. (7.5)

The same exercise that led to (6.11) shows that the mean is

𝔼[Yt] = 𝜇 = c∕(1 − a1 − · · · − ap). (7.6)

Using this value of 𝜇, it is easy to verify that model (7.4) can be written as

a(L)(Yt − 𝜇) = b(L)Ut.

Thus, as in the pure MA case, the mean does not depend on the MA parameters. For the time being,
we consider the known mean case, so that, without loss of generality, let 𝜇 = 0. The regression case,
which generalizes the use of c in (7.4), is dealt with in Section 7.4.2.

7.1.2 Zero Pole Cancellation

Recalling the notation in (6.5) and (6.53), we can write a(L) =
∏p

i=1(1 − 𝜆iL) and, similarly for theMA
polynomial, b(L) =

∏q
j=1(1 − 𝜂jL), so that

Yt =
(1 − 𝜂1L)(1 − 𝜂2L) · · · (1 − 𝜂qL)
(1 − 𝜆1L)(1 − 𝜆2L) · · · (1 − 𝜆pL)

Ut . (7.7)

Assume that the roots of both the AR and MA polynomials are all outside the unit circle. If there is a
pair (i, j) such that 𝜂i = 𝜆j, then the two factors (1 − 𝜆jL) and (1 − 𝜂iL) cancel in (7.7), and the model is
expressible as an ARMA(p − 1, q − 1). This is sometimes referred to as zero pole cancellation. This
can be continued until there are no more terms to cancel, giving the most parsimonious expression
for themodel.This is also important formodel estimation: If there is a term (1 − 𝜆jL) common to both
polynomials, then 𝜆j, and thus the ARMA model, is not identified. For this reason, we only entertain
stationary, invertible ARMA models such that the AR and MA polynomials do not have any roots
in common.

Remark In practice, with a finite data set, if the truemodel is a stationary and invertible ARMA(p, q)
process, then the likelihood of anARMA(p + k, q + k) process can have a uniquemaximum.However,
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the ARMA parameters will have rather large standard errors, and computation of the roots of the
AR and MA polynomials will reveal that k roots are (approximately) shared. Often, with modern
computing power, one just fits the model for numerous p and q, and uses the AIC and BIC criteria to
determine the best model; see Chapter 9. ◾

One might wonder why we cannot cancel roots (1 − 𝜆L) and (1 − 𝜂L) when 𝜆 = 𝜂 and such that|𝜆| ⩽ 1. This is because the process with the cancelled roots, and the one without, may not be the
same: Recall the discussion around (6.42) that motivated the meaning of dividing by a term of the
form (1 − 𝜆L). We informally concluded that this makes sense only when the root is outside the unit
circle, i.e., if modulus |𝜆| < 1. This is true, and more formally shown in functional analysis, where L
is the left shift operator on a sequence. A useful discussion is provided in Dhrymes (2013, Sec. 6.2).
The following example illustrates the point.

Example 7.1 Consider the model

(1 + bL)Yt = (1 + bL)Ut . (7.8)

Writing Yt = −bYt−1 + bUt−1 +Ut , recursive substitution easily gives

Yt = Ut + (−1)tbt(Y0 −U0) .

For |b| < 1, in the limit (in the sense of, for any fixed t, the time series extends infinitely into the past),
Yt = Ut and, thus, we can cancel the roots in (7.8). For b = 1, Yt = Ut plus the term (Y0 −U0), with
alternating signs—not a very intuitive model, and certainly not equivalent to a white noise process.
For b > 1, the process explodes. One might argue that taking Y0 = U0 = E[Ut] = 0 will resolve the
problem. If one defines the model in that way, then it works. Otherwise, the argument is wrong: In
terms of simulation, we should be able to sample values of U0 and Y0 from their respective uncondi-
tional distributions (or choose any real numbers in fact) and, with a long enough burn-in period, the
process is virtually independent of the actual values chosen for U0 and Y0. Clearly, for b ⩾ 1, this will
not be the case. Furthermore, for b ⩾ 1, it is not at all clear what the unconditional distribution of Y0
is, assuming it even exists.
Thus, for |b| < 1, we can cancel the common factor, but for |b| ⩾ 1, we cannot. ◾

7.1.3 Simulation

Thesimulation of anARMAprocess is quite straightforward.Oneway is to compute the square root of
the variance–covariance matrix corresponding to the specified ARMA model (given in Section 7.4)
and then right-multiply it by a vector of i.i.d. standard normal random variables. For large T , this
will clearly be time-consuming. Instead, we just use a loop and set Yt equal to the weighted sum
of the p past values of Y and the q past values of U dictated by the parameters of the ARMA(p, q)
model. Important then is the choice of starting values Y1−p,… ,Y0, which could be determined from
the aforementioned method based on the exact covariance matrix. Though that is arguably the best
way, we just set values Y1−p,… ,Y0 to zero, simulate 500 + T observations, and deliver the final T
values, where 500 is obviously arbitrary, and referred to as theburn-in period. (However, recall Figure
4.2, which demonstrates the relevance of the initial observation for an AR(1) model with a close to
unity, or, in general, when the process is close to the stationarity border, in which case the burn-in
period might need to be larger.) This is implemented in Listing 7.1.
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1 function y=armasim(nobs,sig2,pv,qv)
2 if nargin<4, qv=[]; end
3 p=length(pv); q=length(qv); pv=reshape(pv,1,p); qv=reshape(qv,1,q);
4 warmup=500; e=sqrt(sig2)*randn(nobs+warmup,1); init=0;
5 evec=zeros(q,1); yvec=zeros(p,1); y=zeros(nobs+warmup,1);
6 for i=1:nobs+warmup
7 if p>0, y(i) = y(i) + pv*yvec; end
8 if q>0, y(i) = y(i) + qv*evec; end
9 y(i) = y(i) + e(i);

10 if p>1, yvec(2:p)=yvec(1:p-1); end, yvec(1)=y(i);
11 if q>1, evec(2:q)=evec(1:q-1); end, evec(1)=e(i);
12 end
13 y=y(warmup+1:end);

Program Listing 7.1: Simulates nobs observations of an ARMA process with innovation variance
sig2, AR parameters passed as vector pv, MA parameters as vector qv, and uses a burn-in period
of 500. For example, to generate a series with 1,000 observations from the ARMA(2,1) model with
a1 = 1.2, a2 = −0.8, b1 = −0.5, and 𝜎2 = 1, use y=armasim(1000,1,[1.2 -0.8],-0.5,1);.

7.1.4 The ARIMA(p, d, q) Model

An important extension of the ARMA model (7.4)–(7.5) is when the data generating process is
such that it needs to be differenced d times to be a stationary ARMA(p, q) model, referred to as an
ARIMA(p, d, q) process. Most often, d is either zero or one, though the case of d = 2 does arise in
practice. The process {Zt} is then expressed as

a(L)(1 − L)dZt = c + b(L)Ut, d ∈ ℕ, (7.9)

and the polynomials a(L) and b(L) are given in (7.5). Note that Yt ∶= (1 − L)dZt is ARMA(p, q). If
d = 1, then the process is said to have a unit root, the testing of which is detailed in Section 5.5.
The constant c can be replaced by a more general structure, such as a regression equation x′t𝜷 , as
done throughout Chapter 5, and dealt with below in Section 7.4.2. Throughout the remainder of this
chapter, we assume that d is known, and concern centers on working with process (7.4)–(7.5). Fore-
casting an ARIMA(p, 1, q) model is dealt with in Section 7.5.3.

Remarks
a) A further extension of the ARIMA model class is to allow for a structure addressing season-

ality, such as when working with quarterly or monthly data. Then both the non-seasonal and
seasonal parts are endowed with an ARIMA structure, denoted ARIMA(p, d, q) × (P,D,Q)s or
ARIMA(p, d, q)(P,D,Q)s, where s denotes the periodicity of the seasonality, such as four or twelve.
The model is then

a(L)A(L)(1 − L)d(1 − Ls)DZt = c + b(L)B(L)Ut, (7.10)

where, similar to (7.5),

A(L) = 1 − A1Ls − · · · − APLps and B(L) = 1 + B1Ls + · · · + BQLqs. (7.11)

For example, the zero-mean ARIMA(1, 0, 0)(1, 0, 0)4 model is given by

1 − aL − AL4 + aAL5 = (1 − aL)(1 − AL4)Yt = Ut ,
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and can be viewed as an AR(5) model such that the coefficients for lags 2 and 3 are zero (a subset
ARmodel), and that of lag 5 is constrained to be a × A. The reader is encouraged to develop a pro-
gram to estimate a seasonal ARMAmodel for general a,A, b,B, with the polynomialmultiplication
function conv being of great use. (Note that packages such as R and SAS have procedures for this
model, and the reader can compare his/her results to those from canned routines.)

b) A conceptually different, relatively new, and potentially very useful technique suitable formodeling
seasonal time series is so-called singular spectrum analysis, or SSA. See Zhigljavsky (2010) for
an overview and, among others, Hassani andThomakos (2010), Hassani et al. (2013a,b), Silva and
Hassani (2015), de Carvalho and Rua (2017), and the references therein for further methodological
details and applications to economic time series, and Arteche and García-Enríquez (2017) for use
with stochastic volatility models applied to financial data. ◾

7.2 Infinite AR andMA Representations

We have already seen from (6.45) that an invertible MA(1) model can be represented by an infinite
AR model. Similarly, a stationary AR(1) model can be expressed as an infinite MA. In particular, if
Yt = aYt−1 +Ut , or (1 − aL)Yt = Ut , |a| < 1, then

Yt = (1 − aL)−1Ut = (1 + aL + a2L2 + · · · )Ut = Ut + aUt−1 + a2Ut−2 + · · · .

These results generalize: An invertible MA(q) process can be represented as an infinite AR, and a
stationary AR(p) can be represented as an infinite MA. To illustrate the latter, consider the station-
ary AR(p) process a(L)Yt = Ut with a(L) = 1 − a1L − · · · − apLp. The infinite MA representation is
given by

Yt = a−1(L)Ut = 𝜓(L)Ut = (1 + 𝜓1L + 𝜓2L2 + · · · )Ut .

The coefficients in 𝜓(L) can be obtained by treating L as the variable in a polynomial and multiplying
both sides of a−1(L) = 𝜓(L) by a(L), i.e., 1 = a(L)𝜓(L), and then equating coefficients of Lj. That is,

a(L)𝜓(L) = (1 − a1L − · · · − apLp)(1 + 𝜓1L + 𝜓2L2 + · · · )
= 1 + (𝜓1L − a1L) + (𝜓2 − a1𝜓1 − a2)L2 + (𝜓3 − a1𝜓2 − a2𝜓1 − a3)L3 + · · ·

so that
𝜓1 − a1 = 0 ⇒ 𝜓1 = a1

𝜓2 − a1𝜓1 − a2 = 0 ⇒ 𝜓2 = a1𝜓1 + a2
𝜓3 − a1𝜓2 − a2𝜓1 − a3 = 0 ⇒ 𝜓3 = a1𝜓2 + a2𝜓1 + a3

⋮

or

𝜓0 = 1, 𝜓j =
j∑

k=1
ak𝜓j−k , j = 1, 2,… .

Note that, for an AR(1) process, ai = 0 for i ⩾ 2, and 𝜓i = ai1, i = 0, 1, 2,….
Besides being of theoretical interest and also required for forecasting (see Section 7.5), the infinite

MA representation shows that AR andMAmodels are only “interchangeable” when infinite numbers
of terms are used. By combining the two structures, very flexible correlation structures can be realized
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1 function arcoef=infAR(a,b,n)
2 % AR coef a=(a_1,...,a_p) and MA coef b=(b_1,...,b_q)
3 % Call -infAR(-b,-a,n) to compute the infinite MA representation
4 q=length(b); p=length(a); a=reshape(a,p,1);
5 d=zeros(n,1); a=[a ; zeros(n-p,1)];
6 for j=1:n, s=0;
7 for k=1:min(j,q), if j-k==0, s=s-b(k); else s=s+b(k)*d(j-k); end, end
8 d(j)=a(j) - s;
9 end

10 arcoef=d;

Program Listing 7.2: Computes (7.15).

with far fewer parameters than would be required with pure AR or MA models, in line with the idea
of parsimonious model building.
The previous derivation of the infinite MA expression for an AR(p) model can be extended to the

mixed (stationary and invertible) ARMA(p, q) case in a straightforward way: The model is now

Yt = a−1(L)b(L)Ut = 𝜓(L)Ut, (7.12)

with {Ut} as in (7.2), so that we equate coefficients of Lj in

b(L) = a(L)𝜓(L)

to get the 𝜓i. With 𝜓0 = 1, it is straightforward to verify that this leads to the recursive expression
𝜓j = bj +

∑j
k=1 ak𝜓j−k or, using the finiteness of p and q,

𝜓0 = 1, 𝜓j = bj𝕀(j ⩽ q) +
min(j,p)∑
k=1

ak𝜓j−k , j ⩾ 1. (7.13)

Similarly, we can express the model as 𝜋(L)Yt = b−1(L)a(L)Yt = Ut , where

𝜋(L) = 1 − 𝜋1L − 𝜋2L2 + · · ·

is the infinite AR polynomial, the terms of which are computed by equating coefficients of Lj in
b(L)𝜋(L) = a(L) to get

𝜋0 = −1, 𝜋j = aj𝕀(j ⩽ p) −
min(j,q)∑
k=1

bk𝜋j−k , j ⩾ 1. (7.14)

The infinite AR representation is then

Yt = 𝜋1Yt−1 + 𝜋2Yt−2 + · · · . (7.15)

Program infAR(a,b,n) in Listing 7.2 computes (7.15). If in (7.14) we replace 𝜋i with −𝜓i, i ⩾ 0,
ai with −bi, and bi with −ai, i = 1,… ,max(p, q), we obtain 𝜓0 = 1 and, for j ⩾ 1,

−𝜓j = −bj𝕀(j ⩽ q) −
min(j,p)∑
k=1

(−ak)(−𝜓j−k), (7.16)

which is precisely (7.13). Thus, calling -infAR(-b,-a,n) delivers the 𝜓i.
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Let ai = 0 for i > p; bi = 0 for i > q; and 𝜋i = 0 for i < 0. Then (7.14) is

𝜋0 = −1, 𝜋j = aj − b1𝜋j−1 − · · · − bj−1𝜋1 + bj, j = 1, 2,… ,

which can be expressed in matrix terms as

ã = (Ir+1 + B)𝝅, (7.17)

where

𝝅 =

⎡⎢⎢⎢⎢⎢⎣

−1
𝜋1
𝜋2
⋮
𝜋r

⎤⎥⎥⎥⎥⎥⎦
, ã =

⎡⎢⎢⎢⎢⎢⎣

−1
a1
a2
⋮
ar

⎤⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
b1 0 0 0
b2 b1 ⋱ ⋮ ⋮
⋮ ⋮ 0 0
br br−1 · · · b1 0

⎤⎥⎥⎥⎥⎥⎦
.

This could be used to get the matrix expression 𝝅 = (Ir+1 + B)−1ã, where (Ir+1 + B)−1 always exists
because |Ir+1 + B| = 1. This could be computed for r = p and then, for j > p, the recursion

𝜋j = −b1𝜋j−1 − b2𝜋j−2 − · · · − bq𝜋j−q

would be used. In Matlab, with vectors a and b as the r-length, zero-padded AR and MA parameter
row vectors, this is just

B=toeplitz([0 b]’,zeros(r+1,1)); at=[-1 a]’; pi=inv(eye(r+1)+B)*at;
(7.18)

with 𝜋1,… , 𝜋r given as pi(2:end). Similarly,𝜓1,… , 𝜓r would be computed by executing temp=b;
b=-a; a=-temp; running (7.18) and delivering -pi(2:end). As an example, for the ARMA(1,3)
model with a1 = 0.5, b1 = −1.1, b2 = 0.7 and b3 = −0.3, 𝜓1 = −0.6, 𝜓2 = 0.4, 𝜓3 = −0.1, and, from
(7.13), 𝜓i = 23−i𝜓3, i ⩾ 4.
Another value of this exercise is that the latter equation can be used to express the bi in terms of

the 𝜋i by building a system of equations for j = p + 1,… , p + q, i.e., with 𝜋0 = 1 and 𝜋i = 0 for i < 0,⎡⎢⎢⎢⎢⎣
𝜋p+1

𝜋p+2

⋮
𝜋p+q

⎤⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎣
𝜋p 𝜋p−1 · · · 𝜋p+1−q

𝜋p+1 𝜋p · · · 𝜋p+2−q

⋮ ⋱
𝜋p+q−1 𝜋p+q−2 · · · 𝜋p

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
b1
b2
⋮
bq

⎤⎥⎥⎥⎥⎦
=∶ −𝚷b, (7.19)

which can be solved in an obvious way for b = (b1,… , bq)′, provided matrix 𝚷 is of full rank. With
b known, (7.17) can be computed with r = p to obtain ã and, thus, a = (a1,… , ap)′. In other words,
the parameter vectors a and b can be easily recovered from 𝜋1,… , 𝜋p+q. A program to compute this
is given in Listing 7.3.

7.3 Initial Parameter Estimation

Without doubt, the m.l.e. is among the most important estimators for the parameters of an ARMA
model, and Section 7.4 below develops the likelihood function. However, when q > 0, there is no
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1 function [a,b,detP]=pitoab(d,p,q)
2 % d is vector of infinite AR coefficients pi_1,...,pi_{p+q+1}
3 % corresponding to the ARMA(p,q) process with parameter vectors
4 % a=(a_1,...,a_p) and b=(b_1,...,b_q)
5 r=max(p,q); d=reshape(d,length(d),1); row=zeros(r,1);
6 if p==0, col=[-1 ; d(p+1:p+r-1)]; else col=d(p:p+r-1); end
7 for i=0:r-1
8 if p-i==0; row(i+1)=-1; elseif p-i<0, row(i+1)=0; else row(i+1)=d(p-i); end
9 end

10 Pimat=toeplitz(col,row); pivec=d(p+1:p+r); detP=det(Pimat);
11 if abs(detP)<1e-7
12 %disp(['determinant is ',num2str(detP),'. Try another p and/or q'])
13 a=0; b=0; return
14 else
15 b=-inv(Pimat)*pivec; B=toeplitz([0; b],zeros(r+1,1));
16 atilde=(eye(r+1)+B)*[-1 ; d(1:r)]; a=atilde(2:p+1); b=b(1:q);
17 end

Program Listing 7.3: Recovers the ai and bi from the 𝜋i via (7.19) and (7.17).

closed-form expression for the maximum of the conditional (let alone exact) likelihood of an ARMA
process, so that the likelihood needs to be numerically maximized.This is, of course, no longer a hin-
drance, but starting values will still be required, with poor ones potentially leading to a local inferior
maximum of the likelihood. For this purpose, computationally cheap estimators are required, and we
present two such methods.

7.3.1 Via the Infinite AR Representation

The ability to recover the ai and bi from the 𝜋i lends itself immediately to a way of obtaining simple,
closed-form estimators for the parameters of an ARMA model: Estimate via Yule–Walker or least
squares (see Listing 6.3) an AR(p∗) model, where p∗ is a function of T (say,

√
T , rounded) to get AR

coefficients �̂�i, i = 1,… , p∗, p∗ ⩾ p + q + 1.Then use (7.19) and (7.17) with �̂�i in place of the unknown
𝜋i.The sample variance of the residuals from theAR(p∗)model serves as an estimator of 𝜎2.The choice
of p∗ will play a role in the accuracy of the results in the usual way: Small values will induce a bias into
the �̂�i and large values will increase their variance.
To illustrate, consider the zero-mean ARMA(2,1) model with a1 = 1.2, a2 = −0.8, b1 = −0.3, and

𝜎 = 2. Figure 7.1 shows the resulting kernel density estimates of the estimated parameters, for sample
size T = 1,000, based on the conditional m.l.e., as discussed below in Section 7.4, and this infinite AR
method. The latter is clearly not as efficient as the m.l.e., though, for the three ARMA parameters, it
appears, at least for this parameter constellation and sample size, unbiased.
The reader is encouraged to design a short program, say armaviainfAR(y,p,q), that inputs a

time series, p and q, and outputs the vector of estimated parameters (hint: all the hard work is done
in Program Listing 7.3), and replicate this study and try other parameter constellations.

7.3.2 Via Infinite AR and Ordinary Least Squares

As in Section 7.3.1, we begin by estimating an AR(p∗) model, where p∗ is chosen as a function of the
series length T . Now, it is not the estimated AR parameters that are of use, but the T − p∗ filtered
residuals of this AR(p∗) model, Ût , t = p∗ + 1,… ,T , which serve as estimates of the true innovation
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Figure 7.1 Comparison of the conditional m.l.e. and the infinite AR representation method of Section 7.3.1 for
estimation of ARMA(2,1) parameters (shown as vertical lines in the plots) for T = 1,000 observations, based on 10,000
replications.

counterparts. These can be used as regressors in the model

Yt − Ût =
p∑
i=1

aiYt−i +
q∑
j=1

bjÛt−j + 𝜉t , t = p∗ + 1 + q,… ,T . (7.20)

This is implemented in Listing 7.4. As a first example, we use the same ARMA(2,1) model as used
above, with a1 = 1.2, a2 = −0.8, b1 = −0.3, and 𝜎 = 2. Figure 7.2 shows the kernel density results for

1 function param = armaols(y,p,q)
2 % assumes zero mean stationary invertible ARMA(p,q)
3 % param = [AR terms, MA terms, sigma]
4 L=ceil(sqrt(length(y))); z=y(L+1:end);
5 Z=toeplitz(y(L:end-1),y(L:-1:1));
6 uhat=(eye(length(z)) - Z*inv(Z'*Z)*Z') * z; %#ok<*MINV>
7 sigmahat = std(uhat); yy=z-uhat; X=[]; m=max(p,q);
8 for i=1:p, X=[X z(m-i+1 : length(z)-i)]; end %#ok<*AGROW>
9 for i=1:q, X=[X uhat(m-i+1 : length(uhat)-i)]; end

10 yuse=yy(m+1:end); ARMAparam=inv(X'*X)*X'*yuse;
11 param=[ARMAparam ; sigmahat];

Program Listing 7.4: Computes 7.20.
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â1, T = 100 â2, T = 100

b̂1, T = 100 σ̂, T = 100

MLE
OLS

MLE
OLS

MLE
OLS

MLE
OLS

Figure 7.2 Comparison of m.l.e. and o.l.s.-based methods for estimation of ARMA(2,1) parameters (shown as vertical
lines in the plots) for T = 100 observations, based on 10,000 replications.

sample size T = 100. It is noteworthy that method (7.20) is far faster than (certainly exact, but also
conditional) maximum likelihood. It clearly performs quite well relative to the m.l.e. benchmark, and
has the apparent advantage of avoiding the inferior local likelihood maximum indicated in the plots.
Figure 7.3 is similar, but having used T = 1,000 observations, and can thus be compared to Figure 7.1.
Next, we use the zero-mean ARMA(1,3) model with a1 = 0.5, b1 = −1.1, b2 = 0.7, and b3 = −0.3.

From (7.16) and calling -infAR(-b,-a,6), the first six terms of the infinite MA expansion are
−0.6000, 0.4000, −0.1000, −0.0500, −0.0250, and −0.0125. Figure 7.4 shows the results of method
(7.20) and the conditional m.l.e. for the four ARMA parameters. Now, the results are highly dis-
crepant, with both methods consistently drawn to two different optima, with that of the m.l.e. being
correct.Themedians of the 10,000 point estimates for method (7.20) are â1 = −0.1643, b̂1 = −0.4383,
b̂2 = 0.2996, and b̂3 = −0.0367, which result in an infiniteMA expansion of−0.6026, 0.3986,−0.1022,
0.0168, −0.0028, and 0.0005, these being indeed close to the true values. (The results for �̂� are not
shown: The m.l.e. resulted in a Gaussian-looking distribution centered at the true value of 2.0, while
that of method (7.20) was similar, but centered at 1.98.)

Remarks
a) An idea for further practice is the following: Presumably, for a given sample size T , known p and

q, and true ARMA parameters corresponding to a stationary, invertible process, there exists an
optimal p∗, in the sense that the resulting, say, m.s.e., is the smallest in aggregate across the p + q
parameters.Thus, an idea to improve themethod is to first take, say, p∗ = p∗(1) ∶= ⌊√T⌋, and obtain
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the p + q + 1 parameter estimates. Then, based on these values and the fixed sample size T , simu-
lation can be used with the o.l.s. method to determine the optimal p∗, say p∗(2). Observe how this is
similar to a parametric bootstrap.Then, based on p∗(2), the parameters corresponding to the original
data are re-estimated. This process could be repeated until the sequence {p∗(i)}

∞
i=1 converges.

Note that such a procedure will be considerably more time-consuming than just using p∗(1), pos-
sibly even more than the (conditional) m.l.e., and thus somewhat defeats the purpose. The goal
of this exercise is no longer to develop a computationally cheap estimator, but rather to study its
properties (and give the motivated student some practice in coding and the research process).The
iterative scheme also may not result in a substantially improved estimator, though presumably,
improvement will be a function of the magnitude of the roots of the AR and MA polynomials,
such that, for processes close to unit-root behavior, the optimal p∗ will be larger than p∗(1) = ⌊√T⌋.
The reader is invited to investigate this.

b) The reader is further encouraged to augment this o.l.s. method such that themodel isYt = x′t𝜷 + 𝜖t ,
as in (7.25) below, such that a(L)𝜖t = b(L)Ut is a stationary, invertible ARMA process. This can be
done in an iterative two-step process as described in Remark (a) below in Section 7.4.2. Observe
that, without the aforementioned iterative idea, this results in a computationally very fast, and
reasonably accurate, estimator of the parameters of a linear model with (stationary and invertible)
ARMA disturbances, and can be used to deliver forecasts. As will be seen below in Section 7.5
(in particular, Example 7.5), the uncertainty associated with point forecasts into the future is
large, and the contribution to this uncertainty resulting from parameter estimation based on
the conditional or exact m.l.e. is relatively very small. As such, if interest centers on generating
forecasts, particularly for a large number of time series, then this o.ls.-based method will be
attractive, given its reasonable accuracy compared to the m.l.e., and its enormous advantage in
terms of simplicity and speed.

c) Further discussions on the use of regression-type methods of estimation are given in Hannan and
McDougall (1988), Kapetanios (2003), and Kavalieris et al. (2003). See Appendix 7.1 for an exten-
sion of the regression method using generalized least squares, and Problem 7.2 for an extension
using iterated least squares.
Further methods can be found in Pollock (1999) and Granger and Newbold (1986, p. 87). ◾

7.4 Likelihood-Based Estimation

7.4.1 Covariance Structure

Assume the time series consists of observations Y1,… ,YT . Like in the MA(q) case, the exact m.l.e. of
the parameters of an ARMA model can be (numerically) obtained once a computable expression for
𝚺, the covariance matrix of the T observations, is available.
Let m = max(p, q) (and set ai = 0 if i > p, and bi = 0 if i > q). As with the pure AR and MA cases,

van der Leeuw (1994) has shown that the covariance matrix of a T-length time series generated by a
stationary and invertible ARMA(p, q) process can be expressed as

𝚺 = [N M][P̄′P̄ − Q̄Q̄′]−1[N M]′, (7.21)
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1 function V=leeuwARMA(a,b,T);
2 % a=(a_1,...,a_p), where the sign convention on the a_i is such that
3 % Y_t = a_1 Y_{t-1} + a_2 Y_{t-2} + ... a_p Y_{t-p}
4 % b=(b_1,...,b_q), and T is desired size of the covariance matrix
5 % pass a as [] for a pure MA model, and b as [] for a pure AR model
6
7 p=length(a); q=length(b); a=reshape(a,1,p); b=reshape(b,1,q);
8 m=max(p,q); a=[a zeros(1,m-p)]; b=[b zeros(1,m-q)]; p=m; q=m; % zero pad
9

10 a=-a; Tuse=T+p;
11 firrowP = [1 zeros(1,Tuse-1)]; fircolP = [1 a zeros(1,Tuse-p-1)];
12 P = toeplitz(fircolP,firrowP);
13 firrowQ1 = a(p:-1:1); fircolQ1 = [a(p) zeros(1,p-1)];
14 Q1 = toeplitz(fircolQ1,firrowQ1); Q = [Q1; zeros(Tuse-p,p)];
15
16 firrowM = [1 zeros(1,T-1)]; fircolM = [1 b zeros(1,T-q-1)];
17 M = toeplitz(fircolM,firrowM);
18 firrowN1 = b(q:-1:1); fircolN1 = [b(q) zeros(1,q-1)];
19 N1 = toeplitz(fircolN1,firrowN1); N = [N1; zeros(T-q,q)];
20
21 middle=P'*P - Q*Q'; outer=[N M]; V = outer * inv(middle) * outer';

Program Listing 7.5: Computes (7.21).

where P̄ and Q̄ have the same structure as matrices P and Q in (6.20), but are of order (T +m) ×
(T +m) and (T +m) ×m, respectively, and N and M are given in (6.51). Listing 7.5 shows the code
to compute this.

Example 7.2 For the ARMA(1,1) model Yt = aYt−1 +Ut + bUt−1 with T = 2,

P̄ =
⎡⎢⎢⎣

1 0 0
−a 1 0
0 −a 1

⎤⎥⎥⎦ , Q̄ =
⎡⎢⎢⎣
a
0
0

⎤⎥⎥⎦ , M =
[
1 0
b 1

]
, N =

[
b
0

]
and (7.21) gives

𝚺 =
[
b 1 0
0 b 1

] ⎡⎢⎢⎣
1 −a 0

−a a2 + 1 −a
0 −a 1

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

b 0
1 b
0 1

⎤⎥⎥⎦ =
[
𝛾0 𝛾1
𝛾1 𝛾0

]
,

where

𝛾0 =
1 + 2ab + b2

1 − a2
, 𝛾1 =

(1 + ab)(a + b)
1 − a2

, (7.22)

and higher-order covariances are computed as 𝛾i = a𝛾i−1, i ⩾ 2. ◾

While both elegant and easily programmed, (7.21) will be exceedingly slow as T grows. This prob-
lem can be eliminated by calculating (7.21) for T∗ = m + 1, m = max(p, q), and using the following
recursion for the remaining elements:

𝛾k =
p∑
i=1

ai𝛾k−i, k = m + 2,… ,T . (7.23)
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1 function Sigma=acvf(a,b,T);
2 p=length(a); q=length(b); m=max(p,q)+1; %+1 because of the way leeuwARMA works
3 V=leeuwARMA(a,b,m); gamma=[V(:,1) ; zeros(T-m,1) ];
4 for k=m+1:T, s=0; for i=1:p, s=s+a(i)*gamma(k-i); end, gamma(k)=s; end
5 Sigma=toeplitz(gamma);

Program Listing 7.6: A faster way of computing 𝚺 when T is large. The method assumes T >

max(p, q) + 1 without explicitly checking for it.

To see the validity of (7.23), first zero-pad the AR orMA polynomial so that p = q = m, then multiply
the equation for Yt by Yt−k (assuming 𝔼[Yt] = 0 without loss of generality) to give

YtYt−k = a1Yt−kYt−1 + · · · + amYt−kYt−m + Yt−kUt + b1Yt−kUt−1 + · · · + bmYt−kUt−m,

and take expectations to get (using the fact that 𝛾i = 𝛾−i)

𝛾k = a1𝛾k−1 + · · · + am𝛾k−m +
m∑
i=0

𝔼[Yt−kUt−i]. (7.24)

As 𝔼[Yt−kUt−i] = 0 if t − i > t − k, or k > i, the latter sum in (7.24) is zero if k > m, which justifies
(7.23). The only reason k starts from m + 2 instead of m + 1 in (7.23) is that (7.21) requires T > m.
This method is implemented in Listing (7.6) and the reader can verify its large speed advantage for
large T .

Remark The first explicit computer-programmable methods for calculating 𝛾m = (𝛾0,… , 𝛾m) for an
ARMA model appear to be given by McLeod (1975) and Tunnicliffe Wilson (1979), although, as
McLeod also states, the method was used for some special ARMA cases in the first edition (1970)
of the seminal Box and Jenkins monograph. A closed-form matrix expression for 𝛾m appears to have
been first given byMittnik (1988), while Zinde-Walsh (1988) and Karanasos (2000) derive expressions
for 𝛾i based on the bi and the roots of the AR polynomial, with Karanasos’ result restricted to the case
with distinct (real or complex) roots. ◾

7.4.2 Point Estimation

Once 𝚺 is numerically available, the likelihood is straightforward (in principle) to calculate and max-
imize. The drawback, however, of any method for calculating 𝚺, whatever its speed, is that a T × T
matrix inverse needs to be calculated at each likelihood evaluation. Keep in mind that this problem
evaporates when working with pure AR(p) models: From (6.28), the exact likelihood is partitioned so
that only 𝚺−1 of size p + 1 needs to be calculated—and 𝚺−1 can be directly calculated via (6.20), thus
even avoiding the small matrix inversion.
With MA or ARMA processes, this luxury is no longer available. As T gets into the hundreds, the

calculation of 𝚺−1 for MA or ARMA processes becomes prohibitive. The method involving use of
the Kalman filter would be preferred for computing the exact m.l.e., as it involves matrices only on
the order of max(p, q + 1). The startup conditions on the filter for calculating the exact likelihood
need to be addressed; see, e.g., Jones (1980) and Harvey and Pierse (1984). With large sample sizes,
the conditional m.l.e. will result in nearly the same results as use of the exact m.l.e., and is trivial to
program, as discussed next.
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The conditional m.l.e. simply combines the conditioning arguments used in the separate AR and
MA cases. In particular, the first p values of Yt are assumed fixed, and all q unobservable values of Ut
are taken to be zero. The conditional likelihood still needs to be numerically maximized, but as there
are no T × T matrices to invert, the method is very fast for large T and, unless the AR and/or MA
polynomials are close to the stationarity (invertibility) borders, there will not be much difference in
the conditional and exact m.l.e. values.
Similar to the development in Chapter 5, we can introduce a regression term into the model via the

observation equation

Yt = x′t𝜷 + 𝜖t , (7.25)

but with the latent equation being given by the ARMA process a(L)𝜖t = b(L)Ut , termed ARMAX.
Observe that the joint distribution of Y = (Y1,Y2,… ,YT )′ is N(X𝜷, 𝜎2𝚺), where X = [x1,… , xT ]′

and is assumed to be full rank, of size T × k, and 𝜎2𝚺 is the T × T covariance matrix of Y − X𝜷 =∶
𝝐 = (𝜖1, 𝜖2,… , 𝜖T )′. As 𝚺 is readily computable via (7.21) and (7.23), the exact likelihood of Y can be
straightforwardly computed and, thus, the m.l.e. of the parameter vector

𝜽 = (𝜷 ′
, a′, b′, 𝜎)′ (7.26)

can be obtained, where a = (a1,… , ap) and b = (b1,… , bq). If X is just a column of ones, i.e., X𝜷 is
just 𝛽1, then the model is equivalent to model (7.4), but the way of introducing the constant term into
the model is different. In particular, with (7.4), the mean is given by (7.6), whereas with (7.25), the
mean is 𝛽1.
A program to compute the conditional and exact m.l.e. of the parameters of model (7.25) is given in

Listings 7.7 and 7.8. Initial estimates for 𝜷 are obtained by o.l.s., and those for the ARMA parameters
are just zeros, though one of the methods discussed in Section 7.3 could easily be used instead. For
p = 1 and/or q = 1, the parameters are constrained to lie between −1 and 1. In the general ARMA
case, the program incorporates a simple, “brute force” method of imposing stationarity and invert-
ibility: Illustrating for stationarity, the roots of the autoregressive polynomial are computed at each
evaluation of the likelihood. If any are on or inside the unit circle, then the likelihood of the model is
not computed, and a very small value is returned in its place. It is chosen proportional to the extent
of the violation, so as to give the optimization routine a chance to “find its way back”.

Remarks
a) If there are regressors in the model, as in (7.25), then, given the ARMA parameters, the covariance

matrix 𝚺 of the 𝜖t can be constructed (up to a scale constant 𝜎) and the g.l.s. estimator (1.28) can
be used to obtain the m.l.e. of 𝜷 . This is attractive because it is a closed-form solution, but not
obtainable, as 𝚺 is not known. As such, the simple iterative method suggests itself: Starting with
the o.l.s. estimate of 𝜷 , compute the (say, conditional) m.l.e. of the ARMA parameters using the
o.l.s. residuals. Based on these, compute �̂� and use it to compute the g.l.s. estimator of 𝜷 . This can
be repeated until convergence.
The benefit of such a method is that numerical optimization is necessary only for a subset of

the model parameters, thus providing a speed advantage, similar in principle to use of the EM
algorithm. Observe, however, that an approximate joint covariance matrix is not available from
this method. If confidence intervals for the parameters are desired, or confidence regions for a
set of them, or the distribution of forecasts, then the bootstrap (single or double, parametric or
nonparametric) can be applied, as discussed in Chapter III.1.3.
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1 function [param, stderr, resid, varcov, loglik]=armareg(y,X,p,q,exact)
2 % Set exact=1 for exact ML, otherwise conditional ML is used.
3 % param=[B ; ar terms ; ma terms ; sigma]
4 % stderr is same shape as param and gives approximate standard errors
5 % resid is the estimated white noise series
6 % varcov is the entire (estimated) variance covariance matrix
7 % Pass X as [] if there is no constant term.
8 % If X is a scalar, it is set to a vector of ones
9 ylen=length(y); y=reshape(y,ylen,1); if length(X)==1, X=ones(ylen,1); end

10 if isempty(X), res=y; beta=[]; nrow=ylen; ncol=0;
11 else [nrow,ncol]=size(X); beta=inv(X'*X)*X'*y; res=y-X*beta;
12 end
13 if p+q==0, sigma=sqrt(res'*res/ylen); param=[beta' sigma]'; return, end
14 initvec=[beta' zeros(1,p+q) std(y)]';
15 if (p+q)==1 % for an AR(1) or MA(1) model.
16 %%%%%%%% beta a or b scale
17 bound.lo= [-ones(1,ncol) -1 0 ]';
18 bound.hi= [ ones(1,ncol) 1 2*std(y) ]';
19 bound.which=[zeros(1,ncol) 1 1 ]';
20 elseif (p==1) & (q==1)
21 %%%%%%%% beta a b scale
22 bound.lo= [-ones(1,ncol) -1 -1 0 ]';
23 bound.hi= [ ones(1,ncol) 1 1 2*std(y) ]';
24 bound.which=[zeros(1,ncol) 1 1 1 ]';
25 else
26 bound.which=zeros(1,length(initvec)); % no bounds at all.
27 end
28
29 mletol=1e-4; MaxIter=100; MaxFunEval=MaxIter*length(initvec);
30 opt=optimset('Display','None','TolX',mletol,'MaxIter',MaxIter,...
31 'MaxFunEval',MaxFunEval,'LargeScale','off');
32 [pout,negloglik,exitflag,theoutput,grad,hess]= ...
33 fminunc(@arma_,einschrk(initvec,bound),opt,y,X,p,q,exact,bound);
34 loglik=-negloglik; varcov=inv(hess);
35 [param,varcov]=einschrk(pout,bound,varcov);
36 if nargout>1 % get varcov and standard errors
37 if 1==1 % direct Hessian calc instead of bfgs output
38 H = -hessian(@arma_,param,y,X,p,q,exact); varcov=inv(H);
39 end
40 stderr=sqrt(diag(varcov));
41 end
42 if nargout>2 % get residuals
43 littlesig=param(end);
44 if exact==1
45 if isempty(X), z=y; else beta = param(1:ncol); z=y-X*beta; end
46 a=param(ncol+1:ncol+p); b=param(ncol+p+1:end-1);
47 Sigma = acvf(a,b,nrow); SigInv=inv(Sigma);
48 [V,D]=eig(0.5*(SigInv+SigInv')); W=sqrt(D); SigInvhalf = V*W*V';
49 resid = SigInvhalf*z/littlesig;
50 else
51 [garb,uvec]=arma_(param,y,X,p,q,0); resid=uvec/littlesig;
52 end
53 end

Program Listing 7.7: Computes the exact and conditional m.l.e. of the parameters in the linear
regressionmodel with ARMA disturbances. The program is continued in Listing 7.8.
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1 function [loglik,uvec]=arma_(param,y,X,p,q,exact,bound)
2 if nargin<7, bound=0; end
3 if isstruct(bound), param=einschrk(real(param),bound,999); end
4 if any(isinf(param)) | any(isnan(param))
5 param=zeros(length(param),1); param(end)=1;
6 end
7 if isempty(X), nrow=length(y); ncol=0;
8 else, [nrow,ncol]=size(X); regbeta=param(1:ncol); end
9 a=param(ncol+1:ncol+p); b=param(ncol+p+1:end-1);

10 sig=abs(param(end)); % this is NOT sigmaˆ2, but just (little) sigma.
11 if p>0 % enforce stationarity
12 rootcheck=min(abs(roots([ -a(end:-1:1); 1 ])));
13 if rootcheck<=1.0001, loglik=abs(1.01-rootcheck)*1e6; return, end
14 end
15 if q>0 % enforce invertibility
16 rootcheck=min(abs(roots([ b(end:-1:1); 1 ])));
17 if rootcheck<=1.0001, loglik=abs(1.01-rootcheck)*1e6; return, end
18 end
19 if isempty(X), z=y; else, z=y-X*regbeta; end
20
21 if exact==1 % get the exact likelihood
22 uvec=0;
23 if (p==1) & (q==0) % speed this case up considerably.
24 K=(-nrow/2) * log(2*pi); s2=sigˆ2;
25 e=z(1)ˆ2*(1-aˆ2) + sum( (z(2:end) - a*z(1:end-1)).ˆ2 );
26 % True ll is: ll = 0.5*log(1-aˆ2) + K - nrow * log(sig) - e/2/s2;
27 % If you include K, this is not compatible with the general case below.
28 % ll = 0.5*log(1-aˆ2) - nrow * log(sig) - e/2/s2;
29 ll = K + 0.5*log(1-aˆ2) - nrow * log(sig) - e/2/s2;
30 else
31 Sigma=acvf(a,b,nrow); Vi=inv(Sigma); detVi=det(Vi);
32 if detVi<=0, loglik=abs(detVi+0.01)*1e4; return, end
33 ll = -nrow * log(sig) + 0.5*log(detVi) - z'*Vi*z/(2*sigˆ2);
34 end
35 else % conditional likelihood
36 reversearvec= a(p:-1:1); % avoid reversing the part of z each time
37 uroll=zeros(q,1); % a rolling window of U_t hat values
38 uvec=zeros(nrow-p,1); % all the T-p U_t hat values
39 for t=p+1:nrow
40 u=z(t);
41 if p>0, u=u-sum( z((t-p):t-1).*reversearvec ); end
42 if q>0, u=u-sum(uroll.*b); uroll=[u ; uroll(1:q-1)]; end
43 uvec(t-p)=u;
44 end
45 ll = - nrow * log(sig) - sum(uvec.ˆ2)/(2*sig.ˆ2);
46 end
47 loglik = -ll;

Program Listing 7.8: Continued from Listing 7.7.
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b) An advantage of using the state space representation and Kalman filtering techniques is that it can
be set up to allow formissing values. This is explicitly dealt with in Jones (1980) and Harvey and
Pierse (1984), and, inmore generality, throughout themonograph byDurbin andKoopman (2012).
Here, we just mention one possible way of proceeding for an ARMAX(p, q) model when faced with
missing values in the time series, based on the method ofmultiple imputation.

Assume a time series from t = 1 to t = T and observation t is missing, t ∈ {p + 1, p +
2,… ,T − 1}. Using the current value of �̂� in (7.26) and the current set of filtered innovations Û1,
Û2, …, Ût−1 (where unavailable values are replaced by their expected value of zero), compute a
point estimate of Yt , say Ỹt , based on its optimal forecast as in (7.47) given below, and add to it
a value Ũt that is, for a nonparametric bootstrap type of imputation, drawn from the current set
of {Ût}, or, for a parametric bootstrap type of imputation, drawn from a N(0, �̂�2) distribution.
The likelihood can then be computed in the usual way, and the m.l.e. determined. This is repeated
B times, and a set of B point estimates �̂�1,… , �̂�B is obtained, from which the mean or median
could be taken as the single point estimate for each parameter. The empirical distribution of the
set of B point estimates can be plotted as histograms or kernel density estimates, indicating the
distribution of the point estimators taking into account the variation induced by the unknown
values of Yt .
This method is easily extended to the case in whichmultiple observations are missing, including

the case for which two or more adjacent observations are missing, by computing Ỹt+1 conditional
on Ỹt , etc. The reader is encouraged to augment the program for the conditional and exact m.l.e.
given in Listings 7.7 and 7.8 to implement this technique, passing an additional vector boolean
argument indicating which observations are present and missing. Observe how this method can
be combinedwith the traditional bootstrap in order to obtain bootstrap distributions of the param-
eters that account for their uncertainty from the missing values as well as their sampling error, and
similarly used to generate prediction intervals associated with point forecasts.

c) For the conditional m.l.e., conditioning on the first p-values of the series gives rise to the arguably
unattractive property that, for a given time series and set of ARMA(p, q) parameters, the likelihood
will not be the samewhen using anARMA(p + 1, q)model with the same parameters, and (p + 1)th
autoregressive coefficient âp+1 = 0.

d) With respect to ensuring stationarity and invertibility of theARMAmodel during estimation,more
sophisticated techniques of constrained optimization could be used (in conjunction with the poly-
nomial roots or the Schur condition), as allowed for in Matlab’s function fmincon.

e) Matlab (in its system identification toolbox) has a built-in routine for ARMA estimation that
runs extremely fast. For a pure ARMA model, one would execute m=armax(y,[p,q]);
ahat=-m.a(2:end); bhat=m.c(2:end);. The performance of this method can be
compared to those in Section 7.3. ◾

7.4.3 Interval Estimation

Asymptotically , for both the exact and conditional m.l.e. of 𝜽 = (a1,… , ap, b1,… , bq)′ corresponding
to a stationary and invertible ARMA process,√

T(�̂�ML − 𝜽) asy∼ N(𝟎,C), C = 𝜎2
[
𝔼[XX′] 𝔼[XV′]
𝔼[VX′] 𝔼[VV′]

]−1
, (7.27)
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where X = (Xt,Xt−1,… ,Xt−p+1), with a(L)Xt = Ut and V = (Vt,Vt−1,… ,Vt−q+1)′ with b(L)Vt = Ut .
This clearly generalizes the AR(p) result in (6.29) and the MA(q) result in (6.54). Proofs of (7.27)
and the precise conditions under which it holds can be found in the references stated at the end of
Section 6.2.2.

Example 7.3 For p = q = 1 and using the infinite MA representations for the AR polynomials,

𝔼[XtVt] = 𝔼

[( ∞∑
i=0

aiUt−i

)( ∞∑
j=0

(−b)jUt−j

)]
=

∞∑
i=0

(−ab)i = 1
1 + ab

,

so that

C = 𝜎2

[
𝜎2

1−a2
𝜎2

1+ab
𝜎2

1+ab
𝜎2

1−b2

]−1

= 1 + ab
(a + b)2

[
(1 − a2)(1 + ab) −(1 − a2)(1 − b2)
−(1 − a2)(1 − b2) (1 − b2)(1 + ab)

]
. (7.28)

If b = 0, then [C]1,1 = (1 − a2)∕a2 and [C]2,2 = 1∕a2 from (7.28). Thus, wrongly estimating an AR(1)
process as anARMA(1, 1) results in the asymptotic variance of âML and b̂ML increasing without bound
as a approaches zero. This makes sense, as there is zero pole cancellation and the parameters are no
longer identified. More generally, this holds if a = −b. ◾

Godolphin and Unwin (1983) developed an efficient algorithm to alleviate the otherwise tedious
evaluation of matrixC in (7.27) when p + q is not very small. With it,C can be numerically computed
with the m.l.e. values �̂�ML replacing 𝜽. Potentially easier (and possibly more accurate) is to use the
approximate Hessian matrix from the likelihood function, as discussed in Section 6.1.3.4. Based on
it and the asymptotic normality of the estimators, approximate one-at-a-time confidence intervals
(c.i.s) for each of the parameters can be constructed.
A way of obtaining more accurate interval estimators for the parameters is to use the bootstrap, as

was demonstrated for the AR(1) case in Section 4.7. In particular, given the estimated residuals Û =
(Û1,… , ÛT )′ (which are approximately i.i.d. normal if the true data generating process is a stationary,
invertible ARMA(p, q) model with normal innovations and p and q are correctly specified), letU(i) be
the ith bootstrap replication of the Û, formed by sampling from the Ût with replacement. For eachU(i),
generate time series Y(i) = 𝚺1∕2U(i), where 𝚺 = 𝚺(�̂�ML) is based on the m.l.e. of the original data, and
compute the corresponding m.l.e. �̂�(i)

ML. This is conducted B times and the usual method of obtaining
c.i.s for each of the parameters is used.

Example 7.4 For p = q = 1, a = −0.3, b = 0.7 and using B = 2,000 bootstrap replications, 90% c.i.s
were constructed for a and b for s = 1,000 simulated time series with T = 30 and 𝜎2 = 16.The length
of each interval andwhether or not it covered the true parameterwere recorded.Thiswas also done for
intervals based on the approximate Hessianmatrix returned with them.l.e. values and the asymptotic
normal distribution. For parameter a, the actual coverage of the asymptotic c.i. was 0.77, with average
length 0.96. The bootstrap c.i. had actual coverage 0.91 and mean length 1.3.
Thus, for this relatively small sample size, the bootstrap interval appears far superior to the use of

the asymptotic result. For parameter b, however, coverage of the asymptotic c.i. was 0.72 with length
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0.96, while the bootstrap coverage was 0.98 with length 1.5. While still closer in coverage than the
asymptotic c.i., the bootstrap interval is apparently too large. The reader is encouraged to investigate
the performance based on the double bootstrap. In addition, there are more accurate methods for
constructing (single) bootstrap c.i.s without muchmore computational effort; see Efron (2003), Davi-
son et al. (2003), Efron and Hastie (2016, Ch. 11), and the references therein. ◾

7.4.4 Model Mis-specification

Assume the true model is a stationary, invertible ARMA(p, q) process with i.i.d. normal innovations,
and, based on a “reasonably sized” data set, one estimates an ARMA(p, q) model. Then, the esti-
mated residuals should be close to i.i.d. normal. Under the normality assumption, independence can
be informally checked by the use of correlograms (sample autocorrelations) applied to the residuals,
as detailed in Chapter 8.
The model is said to be over-specified if one fits an ARMA(p∗, q∗), where either p∗ = p and q∗ > q,

or p∗ > p and q∗ = q, or p∗ > p and q∗ > q. Onemight think that, in all of these over-specified cases, as
the sample size tends to infinity, the parameter vector will be asymptotically unbiased and normally
distributed, such that the parameters that are nonzero attain their true values, and the zero ones
will be zero. This is, however, only true in the first two cases, i.e., p∗ = p and q∗ > q, or p∗ > p and
q∗ = q. In the last case, with p∗ > p and q∗ > q, we have the zero pole cancellation problem, discussed
after (7.7). Assume p∗ = p + 1 and q∗ = q + 1. Then the extraneous factor, say (1 − 𝜆L), in both the
AR and MA polynomial is not identified, meaning that the equivalent model arises for any |𝜆| < 1.
Because of cancellation, the likelihood has no information about 𝜆, and the value of zero is just as
likely as any other value for |𝜆| < 1. This implies that the coefficients in the AR and MA polynomial
are not identified.
As already mentioned above, one of the common modern strategies of deciding on p and q is to fit

numerous ARMAmodels (possibly all p, q combinations such that, say, 0 ⩽ p ⩽ 5 and 0 ⩽ q ⩽ 5 for a
non-seasonal model) and then take the one that yields the smallest AIC or BIC value; see Chapter 9.
The aforementioned issue with zero pole cancellation implies that this strategy could lead to numeric
estimation problems for some models. Observe, however, that this will not be the case if we restrict
ourselves to only AR(p) processes (which are anyway extremely fast to estimate when using the con-
ditional likelihood approach). Of course, such an approach will not be optimal if the true model is
genuinely from an ARMA(p, q) with q > 0. Yet, in practice:

It is often understood that the true data generating process is not ARMA, and an AR(p) model
for a suitably chosen p offers a good approximation.

Methods for choosing p include the same usage of the information criteria, and also ones that are
based on small sample distribution theory; see Section 9.5.
Now consider the under-specified case: One fits an ARMA(p∗, q∗), where p∗ < p and/or q∗ < q.

(Note this includes the case such that, say, p∗ < p and q∗ > q; it is still under-specified.) For illustration,
take p = 2, q = 1, and p∗ = q∗ = 1. Expressing the true AR(2) polynomial as (1 − 𝜆1L)(1 − 𝜆2L), and
denoting the fitted stationary invertible ARMA(1,1) coefficients as â∗ and b̂∗, the residuals {𝜖∗t } are
given by

𝜖∗t = (1 − â∗L)
(1 − b̂∗L)

Yt =
(1 − â∗L)
(1 − b̂∗L)

(1 + bL)
(1 − 𝜆1L)(1 − 𝜆2L)

𝜖t , (7.29)
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Figure 7.5 Histograms of fitted ARMA(1,1) parameters when the true model is ARMA(2,1) with a1 = 1.2, a2 = −0.8,
b1 = 0.5, and 𝜎 = 1, for T = 1,000 and 1,000 replications.

which is (depending if factors cancel) either an ARMA(3,2), an ARMA(2,1), or AR(1). The
under-specified model will not necessarily result in an AR(1) residual process, in the sense that the
roots cancel. More specifically, given continuity, Pr(â∗ = 𝜆1) = Pr(â∗ = 𝜆2) = 0, so that the roots will
never precisely cancel, but in principle, they might be “close enough” that, for practical purposes,
they cancel. However, recalling (6.4) and the condition on a1 and a2 such that the roots will be
complex, note that, if the AR(2) polynomial is such that the roots are complex pairs, then cancellation
could never occur in this example.
In general, the under-specified model maximizes the restricted likelihood, capturing part of the

autocorrelation structure of the data, and its residuals are “closer” to i.i.d. than the original time
series. As an example, consider what happens if we fit an ARMA(1,1) model when the true model
is ARMA(2,1) with parameters a1 = 1.2, a2 = −0.8, b1 = 0.5, and 𝜎 = 1. In this case, as a21 + 4a2 < 0,
the roots of the AR polynomial form a complex pair, and cancellation is not possible. Figure 7.5 shows
histograms of the three estimated parameters of the under-specified ARMA(1,1) model based on
simulation and estimationwith the conditionalm.l.e., using sample sizeT = 1,000 and s = 1,000 repli-
cations.Themean of the �̂� is 1.45, which is lower than

√
𝛾0 of the ARMA(2,1) process, 3.09, computed

from (7.21), but higher than the true value of 𝜎. The mean of â1 is 0.62, and that of b̂1 is 0.86.
As another example, let the true process be an AR(2) with a1 = 1.0 and a2 = −0.2, which is sta-

tionary, with AR polynomial roots 3.618 and 1.382. When we fit an under-specified AR(1) model, the
mean of â1 based on s = 1,000 replications is 0.83, which can be seen as the “best compromise value”,
and clearly does not induce any cancellation of roots in (7.29). The reader is encouraged to replicate
the simulations done here.

7.5 Forecasting

Forecasting is like trying to drive a car blindfolded and following directions given by a person
who is looking out of the back window.

(Anonymous)

7.5.1 AR(p)Model

For point prediction of an AR(p) process, the extension of the AR(1) case developed in Section
4.4 is straightforward. For h = 1, point forecast ŶT+1∣T is formed by substituting estimates in place
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of unknowns into the r.h.s. of YT+1 =
∑p

i=1 aiYT+1−i +UT+1, so that UT+1 is replaced by zero and
ai is replaced by âi, i = 1,… , p. For the m.s.e. of a one-step ahead forecast based on an esti-
mated AR(p) model, we proceed as in (4.27), but with a = (a1, a2,… , ap)′, â = (â1, â2,… , âp)′, and
Yt = (Yt,Yt−1,… ,Yt−p+1)′, to get

mse(ŶT+1∣T ) = 𝔼[(ŶT+1∣T − YT+1)2] = 𝔼[(ŶT+1∣T − a′YT + a′YT − YT+1)2]
= 𝔼[(ŶT+1∣T − a′YT )2] + 𝔼[(a′YT − YT+1)2] + cross term
= 𝔼[((â′ − a′)YT )2] + 𝜎2. (7.30)

It is intuitive that, for a stationary AR(p) model, the dependence between âi and Yt , for all i = 1,… , p
and t = 1,… ,T , weakens as T → ∞. Let di = âi − ai. From the identity

(∑r
i=1 xi

)2 = ∑r
i=1

∑r
j=1 xixj

and treating âi and Yt as if they were independent,

𝔼[((â′ − a′)YT )2] = 𝔼[(d1YT + d2YT−1 + · · · + diYT−i+1 + · · · + dpYT−p+1)2]

=
p∑
i=1

p∑
j=1

𝔼[diYT−i+1 djYT−j+1] (7.31)

≈
p∑
i=1

p∑
j=1

Cov(âi, âj)𝛾i−j. (7.32)

From (6.29),
√
T(âML − a) asy∼ N(𝟎, 𝜎2𝚪−1), where 𝚪 is the p × p unconditional covariance matrix of

Y1,… ,Yp, with (ij) th element 𝛾i−j. Thus, taking Cov(âi, âj) to be its large-sample approximation
(𝜎2∕T)𝚪−1, the product Cov(âi, âj)𝛾i−j in (7.32) is the (ij)th term in the matrix (𝜎2∕T)𝚪−1 ⊙ 𝚪, where
⊙ is the Hadamard, or elementwise, product. As the sum of all the elements of a p × p matrix A can
be written as 𝟏′A𝟏, where 𝟏 is a column of p ones, (7.32) is (𝜎2∕T)𝟏′(𝚪−1 ⊙ 𝚪)𝟏.
It turns out that, for any full rank symmetric matrix K of sizem,

𝟏′(K⊙ K−1)𝟏 = m, (7.33)

so that (7.32) reduces to 𝜎2p∕T . To prove (7.33), we use the following result.

Theorem 7.1 Let A and B be m × n (real) matrices, x any n × 1 (real) vector, and D = diag(x).
Then, the ith diagonal entry of matrix ADB′ coincides with the ith entry of vector (A⊙ B)x for all
i = 1,…m, i.e.,

[ADB′]ii = [(A⊙ B)x]i, ∀ 1 ⩽ i ⩽ m. (7.34)

Proof : See, e.g., Horn (1994, p. 305), or Schott (2005, p. 296). ◾

Then, (7.33) follows because, for x = 𝟏m = 𝟏, D = diag(x) = Im = I, and K a symmetric m ×m
matrix of full rank, (7.34) with A = K and B = K−1 implies

𝟏′(K⊙ K−1)𝟏 =
m∑
i=1

[(K⊙ K−1)𝟏]i =
m∑
i=1

[KDK−1]ii =
m∑
i=1

[I]ii = m.

Problem 7.5 shows this in other ways. The result is the pleasantly simple expression

mse(ŶT+1∣T ) ≈ 𝜎2
(
1 +

p
T

)
, (7.35)
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which generalizes (4.29) in the p = 1 case. Result (7.35) has been given by Bloomfield (1972, p. 505),
derived in the context of the spectral analysis of time series.
The easiest way of determining the quality of approximation (7.35) is via simulation. For the AR(2)

model with a1 = 1.2, a2 = −0.8, and 𝜎2 = 4, the truemse(ŶT+1∣T ) based on the exactm.l.e. and 100,000
replications is 4.99, 4.44, and 4.30 for T = 10, 20, and 30, respectively, which can be compared to the
values from (7.35) of 4.80, 4.40, and 4.27. Similarly, for a1 = −0.6, a2 = 0.2, simulation resulted in 4.91,
4.45, and 4.29 for T = 10, 20, and 30.
Though further simulation would be required before making general statements, it appears that

(7.35) is almost exact for T = 30 and is still vastly better for 10 < T < 30 than use of just its limiting
expression as T → ∞, i.e., 𝜎2.1
The method of computing an h-step ahead point forecast of an AR(p) process is the same as for

h = 1: we replace unknown values on the r.h.s. of YT+h =
∑p

i=1 aiYT+h−i +UT+h with estimates. In par-
ticular, UT+h is replaced by its expected value of zero, the ai are replaced by their estimates, while for
the Yt , if t ⩽ T , then the observed value Yt is used, otherwise its forecast Ŷt∣T is used. For example,
with p = 3,

ŶT+1∣T = â1YT + â2YT−1 + â3YT−2,

ŶT+2∣T = â1ŶT+1∣T + â2YT + â3YT−1,

ŶT+3∣T = â1ŶT+2∣T + â2ŶT+1∣T + â3YT , and
ŶT+h∣T = â1ŶT+h−1∣T + â2ŶT+h−2∣T + â3ŶT+h−3∣T , h > p.

Of course, ŶT+h∣T can be expressed as a linear combination of YT ,YT−1,… ,YT−p+1 ; for the AR(3) case
with h = 2,

ŶT+2∣T = â1ŶT+1∣T + â2YT + â3YT−1

= â1(â1YT + â2YT−1 + â3YT−2) + â2YT + â3YT−1

= (â21 + â2)YT + (â1â2 + â3)YT−1 + â1â3YT−2. (7.36)

Letting the coefficient of YT−i be designated by â(2)i , we can, in general, express ŶT+h∣T as

ŶT+h∣T =
p∑
i=1

â(h)i YT−i+1. (7.37)

1 It is interesting, though perhaps pure coincidence, that use of

mse(ŶT+1∣T )
?
≈ 𝜎2

(
1 +

p
T

+
p2

T2

)
yields values of 4.96, 4.44, and 4.30 for T = 10, 20, and 30, which are remarkably close to the true values. Further simulations,
with a variety of T , p, and a, would be required to assess its validity. Taking this conjecture one step further, it might be the
case that

mse(ŶT+1∣T )
?
≈ 𝜎2

∞∑
j=0

( p
T

)j
= T

T − p
𝜎2.

Unfortunately, even if this is true, it will have little value for small T because then the independence assumption of âi and Yt
will not be tenable. To illustrate, for T = 5, p = 2, and 𝜎2 = 4, (7.35) and its two extensions are, respectively, 5.6, 6.24, and
6.67; simulation (assuming known 𝜎2) resulted in 6.02, indicating either that this “generalization” is wrong, or that the
independence assumption becomes crucial for very small T , or both.
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A simple way of calculating the â(h)i in (7.37) for any h and p is to express the model as the vector
AR(1) process

Yt = AYt−1 +Ut , (7.38)

where Yt = (Yt,Yt−1,… ,Yt−p+1)′ and Ut = (Ut, 0,… , 0)′ are p × 1 vectors, and A is the p × pmatrix

A =

⎡⎢⎢⎢⎢⎢⎣

a1 a2 · · · ap−1 ap
1 0 0 0
0 1 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦
. (7.39)

Let Â denoteAwith the estimated values of the ai. As𝔼[UT+h] = 𝟎, (7.38) implies thatYT+h∣T = AhYT .
Thus, the â(h)i are the elements in the first row of Âh and ŶT+h∣T is the first element of ŶT+h∣T = ÂhYT .
Defining e1 = (1, 0,… , 0)′, we can express this as

ŶT+h∣T = e′1Â
hYT . (7.40)

For example, the coefficients in (7.36) are given by the first row in

Â2 =
⎡⎢⎢⎣
â1 â2 â3
1 0 0
0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
â1 â2 â3
1 0 0
0 1 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
â21 + â2 â1â2 + â3 â1â3

â1 â2 â3
1 0 0

⎤⎥⎥⎦ .
Also, simple substitution in (7.38) as in the scalar AR(1) case shows that

YT+h = AhYT +
h−1∑
i=0

AiUT+h−i, (7.41)

and

YT+h = e′1YT+h. (7.42)

For p = 1, the first term in (7.41) is just ah1YT and, if |a1| < 1, then ah1 → 0 as h → ∞. More generally,
if the AR(p) model is stationary, then Ah → 0 as h → ∞. To see this, write A=U𝚲U′, where U is
orthogonal and𝚲 = diag(𝜆1,… , 𝜆p) are the eigenvalues ofA.Then,Ah → 0 if each |𝜆i| < 1.The result
follows because the 𝜆i are the values that satisfy

1 − a1𝜆−1 − · · · − ap−1𝜆1−p − ap𝜆−p = 0,

as shown, for example, in Hamilton (1994, p. 21).
If the model is stationary, then, as h → ∞, Yt =

∑∞
i=0 AiUt−i from (7.41). This is an infinite MA

representation with e′1A
ie1 = 𝜓i, i.e., the ith term in the infinite moving average expression for Yt .

Thus, from (7.41) and (7.42),

mse(ŶT+h∣T ) = 𝔼[(ŶT+h∣T − e′1A
hYT + e′1A

hYT − YT+h)2]

= 𝔼[(e′1Â
hYT − e′1A

hYT )2] + 𝔼
⎡⎢⎢⎣
(
e′1A

hYT − e′1

(
AhYT +

h−1∑
i=0

AiUT+h−i

))2⎤⎥⎥⎦ + 0
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= 𝔼[(e′1(Â
h − Ah)YT )2] + 𝔼

⎡⎢⎢⎣
(
−e′1

h−1∑
i=0

AiUT+h−i

)2⎤⎥⎥⎦ , (7.43)

and the latter term is just 𝜎2 ∑h−1
i=0 𝜓2

i .
This decomposition makes clear that the m.s.e. consists of a term reflecting estimated parameter

uncertainty, and a term involving the future unknown innovations. The former term is significantly
more difficult to handle for general h than it was with h = 1. Using a critical result in Neudecker
(1969), Yamamoto (1976) showed that

𝔼[(e′1(Â
h − Ah)YT )2] ≈

𝜎2

T
tr[M′

h𝚪
−1Mh𝚪], (7.44)

where, as above, 𝚪 is the p × p unconditional covariance matrix of Y1,… ,Yp, the matrix Mh is the
upper left p × p submatrix of

∑h−1
i=0 (A′ i ⊗ Ah−1−i),⊗ is the Kronecker matrix product, and A is given

in (7.39). It is easy to see that, for general p and h = 1, (7.44) reduces to 𝜎2p∕T as derived above. Also,
for general h and p = 1, it reduces to the last term given in (4.34).
In practice, one often just computes the latter term in (7.43), i.e.,

mse(ŶT+h∣T ) ≈ 𝜎2
h−1∑
i=0

𝜓2
i , (7.45)

which obviously underestimates mse(ŶT+h∣T ) because it neglects the forecast error arising from the
parameter uncertainty. Matters increase in complexity when dealing with ARMA(p, q) processes,
compounded even further with an unknown mean term.

7.5.2 MA(q) and ARMA(p, q) Models

For the MA(q) model, the same principles as above are applied. For point estimates, with
b̂ = (b̂1, b̂2,… , b̂q)′ and Ût = (Ût , Ût−1,… , Ût−q+1)′,

ŶT+h∣T =
q∑
j=1

b̂jÛT+h−j = b̂′ÛT+h−1.

As none of the Ût are observed, the filtered values, i.e., the model residuals Ût , t = 1,… ,T , are used
in their place. If t > T , then 𝔼[Ut] = 0 is used. For example, with q = 2,

ŶT+1∣T = b̂1ÛT + b̂2ÛT−1,

ŶT+2∣T = 0 + b̂2ÛT , and
ŶT+h∣T = 0, h > q.

For the m.s.e., we ignore the part in its decomposition that accounts for the discrepancy between
b and b̂; this can be most effectively dealt with via use of the bootstrap as discussed below. What
remains is

𝔼
⎡⎢⎢⎣
( q∑

j=1
bjÛT+h−j −

(
UT+h +

q∑
j=1

bjUT+h−j

))2⎤⎥⎥⎦ = 𝔼
⎡⎢⎢⎣
(
−UT+h +

q∑
j=1

bj(ÛT+h−j −UT+h−j)

)2⎤⎥⎥⎦ .



336 Linear Models and Time-Series Analysis

Further assuming that ÛT+h−j = UT+h−j for T + h − j ⩽ T (or h ⩽ j), and with ÛT+h−j = 0 for T + h −
j > T (or h > j), this reduces to (with b0 = 1),

mse(ŶT+h∣T ) ≈ 𝔼
⎡⎢⎢⎣
(
−

h−1∑
j=0

bjUT+h−j

)2⎤⎥⎥⎦ = 𝜎2(1 + b21 + b22 + · · · + b2h−1), (7.46)

where bj = 0 if j > q. Observe that this is the same as (7.45) because the𝜓i are just theMAparameters.
It is important to keep in mind that, in both (7.45) and (7.46), parameter uncertainty is not taken into
account and, in the latter, also the error incurred by the assumption that ÛT+h−j = UT+h−j for h ⩽ j.
Both of these sources of error are accounted for via the bootstrap.
Point estimates for the ARMA(p, q) case follow analogously by combining the techniques in the AR

and MA special cases. For example, with p = 3 and q = 2,

ŶT+1∣T = â1YT + â2YT−1 + â3YT−2 + b̂1ÛT + b̂2ÛT−1, (7.47a)

ŶT+2∣T = â1ŶT+1∣T + â2YT + â3YT−1 + 0 + b̂2ÛT , (7.47b)

ŶT+3∣T = â1ŶT+2∣T + â2ŶT+1∣T + â3YT , and (7.47c)

ŶT+h∣T = â1ŶT+h−1∣T + â2ŶT+h−2∣T + â3ŶT+h−3∣T , h > max(p, q). (7.47d)
An alternative way of computing the point forecasts is to use the infinite AR representation (7.15).
For a pure AR(p) model, the forecasting methods are equivalent; otherwise, they will numerically dif-
fer. The program in Listing 7.9 implements both methods to compute 1, 2,… , h step ahead forecasts
corresponding to an (estimated) ARMA model. If 𝔼[Yt] = x′t𝜷 , then the X matrix corresponding to
Y1 through YT is passed to the routine as was done in Listing 7.7. One would add x′T+i𝜷 to the com-
puted output from the program for i = 1,… , h. The program can also be easily augmented to output
approximate forecast standard errors based on (7.49) given below, using the estimated parameters in
place of 𝜎 and the 𝜓i.
In light of (7.45) and (7.46), one might expect for the ARMA case that mse(ŶT+h∣T ) ≈ 𝜎2 ∑h−1

i=0 𝜓2
i ,

when parameter uncertainty is ignored. This is indeed the case. We have
mse(ŶT+h∣T ) = 𝔼[(ŶT+h∣T − YT+h)2] = 𝔼[(ŶT+h∣T − YT+h∣T + YT+h∣T − YT+h)2]

= 𝔼[(ŶT+h∣T − YT+h∣T )2] + 𝔼[(YT+h∣T − YT+h)2] +
cross
term (7.48)

where, as in all previous cases, the cross term is zero. Using its infinite MA representa-
tion, YT+h =

∑∞
i=0 𝜓iUT+h−i while that for YT+h∣T is the same, except that Ut = 0 for t > T , so

YT+h∣T =
∑∞

i=h 𝜓iUT+h−i. Thus, further assuming Ût = Ut for t ⩽ T , the middle term in (7.48) is

𝔼[(YT+h∣T − YT+h)2] = 𝔼
⎡⎢⎢⎣
(h−1∑

i=0
𝜓iUT+h−i

)2⎤⎥⎥⎦ ,
and ignoring the uncertainty of the estimated parameters as given by the first term in (7.48), we have

mse(ŶT+h∣T ) ≈ 𝜎2
h−1∑
i=0

𝜓2
i . (7.49)



ARMA Processes 337

1 function [fore, param, stderr, resid, varcov]=armafore(y,X,p,q,exact,h,useinfAR)
2 if nargin<7, useinfAR=0; end
3 fore=zeros(h,1); [param, stderr, resid, varcov]=armareg(y,X,p,q,exact);
4 if h==0, return, end
5 [nrow,ncol]=size(X); avec=param(ncol+1:ncol+p)'; bvec=param(ncol+p+1:end-1)';
6 if useinfAR==0
7 if p>0, yvec=y(end:-1:end+1-p); end, if q>0, uvec=resid(end:-1:end+1-q); end
8 for i=1:h
9 if p>0, fore(i)=fore(i)+avec*yvec; end

10 if q>0, fore(i)=fore(i)+bvec*uvec; uvec=[0 ; uvec(1:end-1)]; end
11 if p>0, yvec=[fore(i) ; yvec(1:end-1)]; end
12 end
13 else %infinite AR method. Identical for pure AR models.
14 arinfupperlim=100; % arbitrary!
15 n=min(length(y),arinfupperlim);
16 arcoef=infAR(avec,bvec,n); yvec=y(end:-1:end-n+1);
17 for i=1:h, fore(i)=sum(arcoef.*yvec); yvec=[fore(i) ; yvec(1:end-1)]; end
18 end

ProgramListing 7.9: Returns samequantities as programarmareg.m in Listing 7.7 but also returns
1 through h step ahead point forecasts for the ARMA part of the model; the regressor term still needs
to be added to the ARMA forecasts. The code that uses the infinite AR representation chooses an
arbitrary AR length. Instead, one could use the length of the time series, or (if that is excessively
large) choose the cutoff value such that the last AR coefficient (and all subsequent ones) are smaller
in magnitude than some specified value, like 10−6.

An analysis of the (downward) bias inherent in (7.49) is analyzed in detail by Ansley and Newbold
(1981). They find, among other things, that the bias becomes more extreme as the model gets closer
to the stationarity and/or the invertibility border.
The bootstrap could be used to computemore accurate c.i.s for the point forecasts. It would be used

just as described earlier, but instead of (or in addition to) keeping the bootstrap parameter estimates,
for each of B resampled series, an h-step ahead forecast would be made, say Ŷ (B)

T+h∣T , with the UT+i

chosen from the Ût , t = 1,… ,T , with replacement instead of set to zero. In doing so, the error arising
both from the futureUt and from the estimated parameter uncertainty are taken into account. Based
on the appropriate quantiles, a c.i. can be constructed. Also, a kernel density estimate of these val-
ues provides a nonparametric forecast of the entire density of YT+h∣T . A parametric density forecast
approximation can be obtained by fitting, say, a noncentral t, a normal inverse Gaussian, a mixture of
normals, etc., to the set of Ŷ (B)

T+h∣T .

Example 7.5 A sample series of length T = 100 based on the ARMA(2, 1) model with a2 = 1.2,
a2 = −0.8, b1 = 0.5, 𝜎 = 1 and intercept and trend regressor term 10 + 0.04twas simulated, its param-
eters estimated and the first 30 out-of-sample forecasts constructed, based on both the true and
estimated parameters. The exact m.l.e.s (with standard errors in parentheses) were 𝛽1 = 10.71(0.48),
𝛽2 = 0.0278(0.0081), â1 = 1.125(0.075), â2 = −0.747(0.072), b̂1 = 0.451(0.11), and �̂� = 0.983(0.070).
The series and the forecasts are shown in Figure 7.6, along with 90% c.i.s based on use of (7.49) with
the estimated values, i.e., �̂�2 ∑h−1

i=0 �̂�2
i . (The estimated regression line was added to the lower and upper

values for the ARMA c.i.s.)
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Figure 7.6 Simulated time series (solid line) with out-of-sample forecasts based on estimated parameters (circles) and
based on the true parameters (crosses). The straight dashed (dash-dot) line is the estimated (exact) regression term.

We see that a considerable portion of the difference between the point forecasts based on the
estimated and true parameters can be attributed to the trend line, to which they converge quickly.
Also, after about the 5-step ahead forecast, the size of the c.i.s are approximately that of the
(detrended) time series itself, rendering accurate forecasts much further than, say, two steps ahead,
almost impossible.The size of the c.i. for the one-step ahead forecast is however considerably smaller
than that for the detrended time series itself, but recall that it does not take parameter uncertainty
into account.
Finally, the conditional m.l.e. was computed and the largest relative percentage difference from the

exact m.l.e. was for 𝛽2, which changed to 0.0269 (just over −3%); the other parameters changed by
less than 1%. If one were to overlay the forecasts based on the conditional m.l.e. onto the plot, they
would be virtually indistinguishable from the point forecasts based on the exact m.l.e. The difference
between their point forecasts is thus relative to the difference between point forecasts based on the
estimated and true parameters, essentially zero.
This minute difference becomes completely negligible when considering the width of the c.i.s, i.e.,

taking the uncertainty of the futureUt into account. As such, if the primary goal of the analysis is fore-
casting, then use of the conditionalm.l.e. instead of the exactm.l.e. appears acceptable, and even use of
the methods in Section 7.3 might be adequate, especially if numerous time series require (automated)
predicting. ◾

Adding a bit of insult to injury to the analysis in the previous example, one should keep in mind
that the exercise used the knowledge that the true data generating process is a covariance stationary
ARMA(2,1) model with normal innovations. For real time series, not only will p and q not be known,
but the ARMA class itself may not be appropriate. Chapter 9 will have more to say about the selection
of p and q.
Finally, the assumption that the i.i.d. innovation sequence is normally distributed may not be

tenable, with the most common deviations being fatter tails and asymmetry. This point was inves-
tigated in detail by Harvey and Newbold (2003) using forecast errors based on macroeconomic
time series. They conclude that “… the frequently made assumption of forecast error normality is
untenable, its use resulting in overly narrow prediction intervals”, and that “… evidence of skewness
was also displayed for the vast majority of variables and horizons”.
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They recommend replacing the normal assumption with an asymmetric t, such as the noncen-
tral t. Observe that exactmaximum likelihood estimationwith such a distributional assumption is not
straightforward, lending even more support for use of the conditional m.l.e.The reader is encouraged
to adapt the programs in this chapter to support estimation of an ARMAX model with innovations
from an asymmetric, heavy-tailed distribution whose shape parameters are jointly estimated with the
remaining ARMAX model parameters.

7.5.3 ARIMA(p, d, q) Models

Let {Zt} follow an ARIMA(p, d, q) process (7.9), i.e., a(L)(1 − L)dZt = c + b(L)Ut , withUt
i.i.d.∼ N(0, 𝜎2)

as in (7.2), such that Yt = (1 − L)dZt is a stationary, invertible ARMA(p, q) process. For data {Zt}Tt=1,
the dth difference is taken to obtain Y1+d,Y2+d,… ,YT . For example, if d = 1, then Y2 = Z2 − Z1,Y3 =
Z3 − Z2,… ,YT = ZT − ZT−1, while if d = 2, then, as (1 − L)2 = 1 − 2L + L2,

Y3 = Z3 − 2Z2 + Z1,

Y4 = Z4 − 2Z3 + Z2,

⋮

YT = ZT − 2ZT−1 + ZT−2.

Given estimates of the ARMA parameters of {Yt}, say â(L) and b̂(L), such as obtained from the meth-
ods in Sections 7.3 or 7.4, forecasts of YT+h∣T are constructed as before; see, e.g., (7.47). Then, to form
forecasts ẐT+h∣T , h = 1, 2,…, the differencing operation needs to be reversed: For example, with d = 1,
asYT+1 = ZT+1 − ZT , we haveZT+1 = ZT + YT+1, or ẐT+1∣T = ZT + ŶT+1∣T , ẐT+2∣T = ẐT+1∣T + ŶT+2∣T =
ZT + ŶT+1∣T + ŶT+2∣T , etc. Prediction intervals can be straightforwardly and reliably computed using
the parametric or nonparametric bootstrap.The reader is encouraged to devise a program that inputs
a time series assumed to be ARIMA(p, 1, q), along with p, q, and h, and outputs the h forecast point
forecasts and associated 95% prediction intervals based on a nonparametric bootstrap, along with a
time-series plot showing the original series, the forecasts, and their prediction intervals.

7.6 Bias-Adjusted Point Estimation: Extension
to the ARMAX(1, q)model

This section was written with Simon Broda and Kai Carstensen
Recall Section 5.4, in which we examined methods for obtaining improved estimators of the AR(1)

parameter. Although the first-order autoregressive model is undoubtedly one of the most important
models in practice and continues to be the focus of many theoretical contributions in econometrics,
it may fail to adequately capture the autocorrelation structure inherent in the data generating pro-
cess. The ARMA class of models is one type of generalization. In the AR(p) case, an approximately
median-unbiased estimator was proposed in Andrews and Chen (1994). However, in the spirit of par-
simonious model building, in some situations introducing a moving average component may bemore
appropriate, thus leading to the ARMAX(1, q)model.
MA termsmay arise due to aggregation (Chambers, 2004) or other data transformations (Galbraith

and Zinde-Walsh, 1999). As an empirical example, Ng and Perron (2001) find strongly negativeMA(1)
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parameters for the inflation series of the G7 countries. MA components have received particular
attention in the study of unit roots because the “usual” tests are severely hampered by their presence;
see Phillips and Perron (1988) and Schwert (1989a). Studies such as Ng and Perron (1995, 2001) and
Galbraith and Zinde-Walsh (1999) have addressed this issue by constructing tests that take account of
the presence of anMA termby either augmenting the test equationwith higher-orderAR components
or by directly estimating the MA parameters.
The bias-adjusted estimators developed in Section 5.4 can be extended to the ARMAX(1, q)model.

For illustration, we restrict ourselves to the q = 1 case, with the extension to higher order q being
clear. Extending (5.1)–(5.2), the ARMAX(1,1) model can be written as

Yt = x′t𝜷 + 𝜖t , t = 0,… ,T ,

where

𝜖t = a𝜖t−1 + bUt−1 + Ut , t = 1,… ,T , Ut
iid∼ N(0, 𝜎2), (7.50)

and, from (7.22),

𝜖0 ∼ N(0, 𝜎2d), d = b2 + 2ab + 1
1 − a2

. (7.51)

If the MA(1) parameter b is known, then the estimators developed in Section 5.4 can be computed as
before, with R in (5.14) replaced by the symmetric square root of

𝚺 ≡ 𝔼[𝝐𝝐′] = T(c, c′), (7.52)

where

𝝐 = (𝜖0, 𝜖1,… , 𝜖T )′, c = 𝜎2(d ea ea2 … eaT )′, e = a(1 + b2) + b(1 + a2)
1 − a2

, (7.53)

and T(c, r) denotes a Toeplitz matrix with c as its first column and r as its first row. Extensions for
the q > 1 case could use the convenient matrix results of Mittnik (1988) or van der Leeuw (1994) for
computing (7.52).
For this procedure to be valid, it is required that, for every value of b, the mean, median, and mode

functions are strictly increasing in a. Inspection for several sample sizes and choices of X shows that
this is indeed the case, thus guaranteeing the existence of the respective inverse function. Figure 7.7
shows the inverse mean function of âLS for a model with X = 𝟏 and T = 50. Observe how, for each
value of b, a different inverse mean function is obtained.
Typically, of course, the MA(1) parameter b is not known. A natural idea is to replace nuisance

parameters in the covariance matrix by an estimator, which is also the approach taken by Phillips and
Sul (2003) to allow for cross-sectional dependence in their proposed median-unbiased estimator for
panel data. We suggest use of the following iterative scheme:

1) Let âOLS be the observed value of the o.l.s. estimator of a given in (5.12).
2) Obtain an initial estimate b̂0 for b and set i = 0.
3) Compute the bias-corrected estimator

âi ∶= m−1
b̂i
(âOLS), (7.54)

where m denotes the median, mode, and mean functions, respectively, with b in (7.52) replaced
by b̂i.
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Figure 7.7 Inverse mean function for various values of âOLS (here denoted as 𝛼LS) and b for the ARMAX(1,1) model with
X = 𝟏 and T = 50 observations.

4) Set i = i + 1. Obtain a new estimate b̂i for b by exact maximum likelihood, conditional on a = âi−1.
If |b̂i − b̂i−1| exceeds a given tolerance, then repeat from step 3.

In the below experiments, the exact m.l.e. as an initial estimator for b was used, along with a con-
vergence tolerance of 10−3 in step 4. If this scheme converges (which it did in all trials), we denote the
final value of â as the MA(q)-modified mean- ( median-, mode-, respectively) adjusted estimator.
With the additional complexity of theMA term, a simulation scheme as was used for the pure AR(1)

case, which makes use of the one-to-one nature of the estimators to fâLS , is no longer practical for
assessing the small sample properties of the MA(1)-modified estimator. Instead, direct simulation is
used. Because of the increased computation time required by theMA-modified estimator and the fact
that its performance needs to be assessed over the two-dimensional support of parameters a and b,
we investigate only a single model, based on 1,000 replications. We chose the representative sample
size T = 50 and X = 𝟏, and restricted ourselves to nonnegative values of a.
Three estimation situations are studied. First, the MA(1)-modified estimators are used, as stated

above; second, the bias-adjusted estimators ignoring theMAcomponent, i.e., wrongly assuming b = 0;
and third, the bias-adjusted estimators, given theMA(1) component, i.e., using theARMA(1,1) covari-
ance matrix with b known. The latter situation is obviously unrealistic in practice, but serves as a
theoretical benchmark for the former two.
We first concentrate on the median-unbiased estimator because, under the assumption that b is

known, its theoretical property of exact median-unbiasedness offers a simple check on the validity
of the procedure. Furthermore, we illustrate the results using a = 0.7, which, recalling the results in
Section 5.4, is (approximately) the single point at which âMed is optimal in terms of m.s.e. when b = 0.
For this model, the first plot in Figure 7.8 shows the mean bias, as a function of b, of (i) the exact

m.l.e., (ii) the unmodified median-unbiased estimator, and (iii) its MA(1)-modified counterpart, for
both b known and estimated. The middle and lower graphs are similar, but show the median-bias
and m.s.e., respectively. From the middle graph, we see that, when b is known, the MA(1)-modified
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Figure 7.8 Mean bias (top), median bias (middle), and m.s.e. (bottom) of the exact m.l.e. (dotted line) and the
MA(1)-modified median-unbiased estimator with b known (solid line), b estimated (dashedline), and b = 0 (dash-dot
line), based on a model with a constant, T = 50 observations and normal innovations. The bottom graph is truncated.

median-adjusted estimator is exactly median-unbiased, in agreement with the theory. With respect
to mean bias, we see from the top graph that the modified median-unbiased estimator is less biased
than the exact m.l.e.
Of arguablymost relevance is them.s.e., as shown in the bottom graph of Figure 7.8. Unsurprisingly,

comparing the bias-adjusted estimators with their MA(1)-modified counterparts, we see that it is
advantageous (in terms of m.s.e.) to neglect the MA term for “moderate” values of b, as the reduction
in bias is outweighed by the additional variation induced by estimating the MA term. For this model
and sample size, one should neglect the MA term for, approximately, |b| < 0.4, although this cutoff
will of course also depend on the true values of a to some extent. In particular, as a approaches unity,
this cutoff increases, i.e., as we approach the unit root model, the MA term should be ignored unless|b| is rather high. These conclusions can be expected to be valid for different sample sizes and design
matrices as well, so that some prior knowledge on the part of the researcher can help decide whether
or not to take a potential moving average component into account.
As expected, the MA(1)-modified estimator with b known performs best in terms of m.s.e. But,

more relevantly, when b is estimated, the modified median-unbiased estimator still outperforms the
exact m.l.e. Again, the relative performance depends on the magnitudes of both a and b. The depen-
dence on a can be seen from Figure 7.9, which shows the relative improvement in m.s.e. achieved
by the proposed procedure over the exact m.l.e. for the same model with a constant and T = 50
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Figure 7.9 Percentage reduction in m.s.e. compared to the exact m.l.e. of the modified mean-adjusted (solid line) and
median-unbiased (dashed line) estimators: From bottom to top, a = 0.7, 0.8, 0.9, 1.

observations, versus b, for a = 0.7, 0.8, 0.9, and 1.0. The results for the pure AR case carry over to the
ARMAX(1,1) setting considered here, in the sense that, for this range of the autoregressive parame-
ter, theMA(1)-modifiedmedian-unbiased estimator exhibits a lowerm.s.e., while otherwise the exact
m.l.e. performs better.
The previous results do not tell the whole story because (recalling the results in Section 5.4) âMed

is not optimal for a > 0.7. Instead, it is âMean which is of interest in this parameter range. As such,
we also include the performance of the MA(1)-modified mean-adjusted estimator in Figure 7.9. Con-
sistent with the results for b = 0, we see that, for the range of the autoregressive parameter under
investigation, it outperforms the MA(1)-modified median-unbiased estimator. For 0 < a < 0.7, the
performance of both are reasonably similar and not shown.
As such, we make the following recommendations. For high-persistence models (with a > 0.7), if

a moderate to strong MA(1) component is presumed, then use the MA(1)-modified mean-adjusted
estimator, otherwise âMean (without MA modification) is preferred. For models with less persistence
(−0.1 < a < 0.7), one should consider use of theMA(1)-modifiedmedian andmode-adjusted estima-
tors, unless there is only a weak MA component, in which case, âMode should be used.

7.7 Some ARIMAXModel Extensions

The new era of practical non-linear time series modelling is, without doubt, long overdue.
(Howell Tong and K. S. Lim, 1980, p. 245)

There is substantial evidence for “nonlinearities” in a variety of economic data, and an associated large
number of proposedmodels andmethods that deviate in some fashion from the use of linear ARMAX
and related structures applied to possibly first-differenced data; see, e.g., the monographs by Tong
(1990), Granger and Teräsvirta (1993), Franses and van Dijk (2000), Fan and Yao (2003), Teräsvirta
et al. (2010), and Haldrup et al. (2014), as well as Guidolin et al. (2008), Scholz et al. (2012, 2015) and,
notably, the numerous references therein.
Though our primary concern in Parts I and II of this book is establishing a strong foundation for

linear inference, this section briefly outlines some interesting and useful time-series structures that
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provide viable alternatives to the strictly linear ARMAX model with a single innovation sequence,
applied to a data set, or its first difference.

7.7.1 Stochastic Unit Root

For reasons that are probably obvious, stock market prices have been the most analysed eco-
nomic data during the past forty years or so.

(Clive W. J. Granger, 1992, p. 3)

Onemight easily imagine that, in systems as complex as economies, regressionmodels with a possibly
unit root process for the error term are too simplistic, and a better (albeit surely still mis-specified)
model for the actual d.g.p. allows the autoregressive parameter to vary over time. This idea can be
motivated by considering stock returns. Let the time series {Pt}, t = 1,… ,T , denote a sequence of
prices of a financial asset observed at equally spaced intervals, such as the daily closing price (and
ignoring weekends if the asset is not traded, such as stocks). Prices approximately follow a random
walk, and so are not covariance stationary. The returns, being formed from first differences, would
then be stationary, and are thus the objects primarily used for modeling and prediction.
Simple returns are defined as Rt = (Pt − Pt−1)∕Pt−1.2 Let 𝔼s[X] denote the expected return of ran-

dom variable X based on information available up to and including time s. Then, to motivate con-
sideration of a stochastic unit root using the simple returns, we have 𝔼t−1[Rt] = 𝔼t−1[Pt]∕Pt−1 − 1, or
𝔼t−1[Pt] = (1 + 𝔼t−1[Rt])Pt−1.With 𝜖t ∶= Pt − 𝔼t−1[Pt], 𝛿t = 𝔼t−1[Rt], and 𝛼t = 1 + 𝛿t , the price process
can be expressed as

Pt = 𝛼tPt−1 + 𝜖t . (7.55)

This is an AR(1) model with random autoregressive coefficient. Recursive substitution n times yields

Pt = 𝛼tPt−1 + 𝜖t

= 𝛼t{𝛼t−1Pt−2 + 𝜖t−1} + 𝜖t

= 𝛼t{𝛼t−1[𝛼t−2Pt−3 + 𝜖t−2] + 𝜖t−1} + 𝜖t

= 𝛼t{𝛼t−1[𝛼t−2(𝛼t−3Pt−4 + 𝜖t−3) + 𝜖t−2] + 𝜖t−1} + 𝜖t

= 𝛼t𝛼t−1𝛼t−2𝛼t−3Pt−4 + 𝛼t𝜖t−1 + 𝛼t𝛼t−1𝜖t−2 + 𝛼t𝛼t−1𝛼t−2𝜖t−3 + 𝜖t

=⋮

= Pt−n

(n−1∏
i=0

𝛼t−i

)
+

n−1∑
j=1

( j−1∏
i=0

𝛼t−i

)
𝜖t−j + 𝜖t . (7.56)

Conditions on {(𝛼t, 𝜖t)} such that {Pt} is strictly and/or covariance stationary are given in Gon-
zalo and Montesinos (2002), and depend on the convergence of infinite sequence {𝜓t,j}∞j=0, where
𝜓t,j =

∏j−1
i=0 𝛼t−i. See also Vervaat (1979), Nicholls and Quinn (1982), Tjøstheim (1986), Brandt (1986),

Pourahmadi (1986, 1988), and Karlsen (1990) on stationarity conditions for this model.

2 Later, in Part III, we will use the continuously compounded percentage returns associated with the price process, given by
Rt = 100(lnPt − lnPt−1), where their relation to simple returns is discussed in Section I.4.4.3. If, for example, the prices are
measured daily, then the Rt are called the daily percentage log returns, or just the daily returns.
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One natural candidate takes model (7.55) with

𝛿t
i.i.d.∼ N(0, 𝜎2

𝛿
) indep. of 𝜖t

i.i.d.∼ N(0, 𝜎2
𝜖 ). (7.57)

This is a stochastic unit root, or STUR process, as considered in Leybourne et al. (1996a,b), Granger
and Swanson (1997), and the references therein. We will see in Section 10.1 that this simple process
is such that {Rt} has no autocorrelation, but gives rise to volatility clustering and autocorrelations in
the squared returns, just like genuine financial asset returns data.
Another candidate, as analyzed in Leybourne et al. (1996a), takes (7.55) with 𝛿0 = 0, and otherwise

𝛿t = 𝜌𝛿t−1 + 𝜂t, |𝜌| ⩽ 1, 𝜖t
i.i.d.∼ N(0, 𝜎2

𝜖 ) indep. of 𝜂t
i.i.d.∼ N(0, 𝜎2

𝜂 ). (7.58)

For most realistic economic time series, there is a need for further lags of Pt and also possibly exoge-
nous regressors. As such, (7.58) is augmented in Leybourne et al. (1996a) to P∗

t = 𝛼tP∗
t−1 + 𝜖t , where

P∗
t = Pt − x′t𝜷 −

∑p
i=1 𝜙iPt−i, where the 𝜙i, i = 1,… , p, are such that the corresponding AR(p) model

is stationary; see Section 6.1.1. Leybourne et al. (1996a) illustrate how the parameters of the model
can be estimated via a state space representation and Kalman filtering; see Remark (b) in the begin-
ning of Section 5.6. From their application to six major stock indexes, Sollis et al. (2000) conclude that
“Evidence supporting the stochastic unit root hypothesis is found. However, the implementation of
this model generally leads to only very minuscule gains in the prediction of daily prices…”
Another possible STUR structure is

Pt = exp(at)Pt−1 + 𝜖t , at = 𝜙0 + 𝜙1at−1 + 𝜂t, (7.59)

where 𝜖t
i.i.d.∼ N(0, 𝜎2

𝜖 ), independent of 𝜂t
i.i.d.∼ N(0, 𝜎2

𝜂 ). The first equation in (7.59) is referred to as the
measurement equation, while the second is the transition equation. Two estimation methods for
(7.59) were proposed in Granger and Swanson (1997), though they gave rise to “wild estimates” that
are “fairly imprecise”, while a Bayesian estimation approach from Jones and Marriott (1999) appears
more reliable. Tests for changes in the persistence of the process have been considered by Busetti and
Taylor (2004) and Harvey et al. (2006).
Model (7.59) and its estimation via Bayesian techniques has been generalized in Yang and

Leon-Gonzalez (2010) to the GSTUR model

Pt = 𝜈t + 𝛿t + 𝛾, (7.60a)

𝜈t = exp(at)𝜈t−1 +
l∑

i=1
𝜆i △ 𝑣t−i + 𝜖t, (7.60b)

at = 𝜙0 + 𝜙1at−1 + · · · + 𝜙pap + 𝜂t , (7.60c)

where △𝑣t−i = 𝑣t−i − 𝑣t−i−1 in the measurement equation are lagged first differences. The structure
in (7.60c) is an AR(p) process, as studied at length in Section 6.1. In particular, as in (6.11), (7.60c) is
assumed to be stationary, with unconditional mean given by

𝜇a = lim
t→∞

𝔼[at] = 𝜙0 + 𝜙1𝜇a + 𝜙2𝜇a + · · · + 𝜙p𝜇a =
𝜙0

1 − 𝜙1 − 𝜙2 − · · · − 𝜙p
. (7.61)

The GSTUR model reduces to a random walk with 𝛿 = 𝛾 = l = p = 𝜙0 = 𝜎2
𝜂 = 0, while for 𝛾 = l =

p = 𝜎2
𝜂 = 0 and 𝜙0 = −∞, it reduces the linear regression Pt = 𝛾 + 𝛿t + 𝜖t , 𝜖t

i.i.d.∼ N(0, 𝜎2
𝜖 ). Yang and
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Leon-Gonzalez (2010) demonstrate with several financial and economic time series that there is very
strong evidence for a stochastic unit root compared to a random walk model.

7.7.2 Threshold Autoregressive Models

This short section introduces a particular nonlinear autoregressive structure, namely the so-called
threshold autoregressive model, or TAR, as developed and discussed in Tong (1978, 1983, 1990,
2007, 2011), Tong and Lim (1980), andHansen (1997); see also the survey paper by Chen et al. (2011b),
and the festschrift in Tong’s honor, Chan (2009). The TAR model is a piecewise linear autoregres-
sion, similar to the threshold regression briefly discussed in Section 1.6. With two regimes and one
autoregressive term, it is given by

Yt =
{

a0 + a(1)1 Yt−1 + 𝜖t , if qt ⩽ 𝛾,

a0 + a(2)1 Yt−1 + 𝜖t , if qt > 𝛾,
(7.62)

t = 1,… ,T , where threshold variable qt is either exogenous (not involving any Yt) or is based on Yt−d

for some d ⩾ 1, 𝛾 is the threshold, or threshold parameter, and 𝜖t
i.i.d.∼ N(0, 𝜎2). The parameters to be

estimated are a0, a
(1)
1 , a(2)1 , 𝜎, and 𝛾 . If qt is taken to be Yt−d, then it is referred to as a self-exciting

TAR (SETAR) model, and d ⩾ 1 is the delay parameter. In many applications, a range of values of d
will be tried, such as {1, 2,… , dmax}, and most often, d is taken to be one, whether for daily data (e.g.,
Shively, 2003) or quarterly data (e.g., Kapetanios and Shin, 2006).
More generally, with k + 1 threshold values, p autoregressive lags, and different intercept and scale

terms in each regime, the TAR(k, p) model is given by

Yt = x′t𝜽
(j) + 𝜎(j)𝜖t , if 𝛾j−1 < qt ⩽ 𝛾j, j = 1,… , k, (7.63)

where x′t = (1, Yt−1,… ,Yt−p) and −∞ = 𝛾0 < 𝛾1 < · · · < 𝛾k = ∞. The parameters to be estimated are
𝜽(j), 𝜎(j), and 𝛾i, i = 1,… , k − 1.
Yadav et al. (1994) provide a natural setting for the use of a threshold model in the context of the

price differences of equivalent assets. Caner and Hansen (2001),3 Gonzalo and Montesinos (2002),
and Kapetanios and Shin (2006) address testing and the associated distribution theory under various
situations such that the process initially appears I(1), i.e., contains a unit root. The idea is that, while
the Dickey–Fuller and related unit root tests may not reject the null of a unit root, tests that allow
for a TAR or SETAR alternative (with, typically, two or three regimes) often will reject the null. For
example, Gonzalo and Montesinos (2002) propose a so-called threshold autoregressive stochastic
unit root model, or TARSUR, whereby the largest root of the AR polynomial is less than one in some
regimes, larger than one in others, and in such a way that, on average, it is equal to one.The resulting
process is strictly stationary, and such that one regime is stationary and the other is (mildly) explosive.
Several extensions of model (7.63) have been considered. A multivariate threshold model is

developed in Tsay (1998). The (theoretically more challenging) threshold MA and ARMA cases have
been studied; see Tong (1990), Brockwell et al. (1992), Ling (1999), Ling and Tong (2005), Amendola
et al. (2006), Ling et al. (2007), and the references therein. The use of thresholds in conjunction with
GARCH-type structures for modeling the conditional heteroskedasticity in financial asset returns
(see Chapter 10) has been addressed by numerous authors; see, e.g., Li and Li (1996), Brooks (2001),
Chen et al. (2005), Chen et al. (2008a,b), So and Choi (2009), and the references therein.

3 Programs for model estimation and inference are provided (in Gauss, Matlab, and R) by Bruce Hansen on his web page.
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It is also possible to enable a continuous transition between the threshold regimes, giving rise to the
smooth transition autoregressive (STAR)model.The idea goes back to Bacon andWatts (1971), and
was subsequently pursued in the econometric literature; see, e.g., Chan and Tong (1986), Teräsvirta
(1994, 1998), van Dijk et al. (2002), and the references therein. Another extension is from Astatkie
et al. (1997), who examine a nested variation of TAR. Finally, Chen et al. (2012) argue that, in many
applications of interest, there will bemore than one threshold variable, and provide details on the case
with two such variables, each with a single partition, thus giving rise to a model with four regimes.4

7.7.3 Fractionally Integrated ARMA (ARFIMA)

We believe that our work, along with the other recent size and power studies, provide a joint
condemnation of the widespread mechanical application of unit root tests.

(Francis X. Diebold and Glenn D. Rudebusch, 1991, p. 160)

In most applications, the ARIMA(p, d, q) process (7.9) will be postulated with d = 0 or d = 1, and this
behooves the question if there is anything “in between” these two extremes. This can be achieved by
taking d to be a real number, and the lag polynomial (1 − L)d is viewed as an operator whose inverse
can be computed using its Taylor series expansion, as shown below. As the midpoint of zero and one
is 1∕2, one might guess that the resulting process is stationary if 0 ⩽ d < 1∕2, which indeed turns out
to the case, and is in fact more generally true for−1∕2 < d < 1∕2.Themodel can be expressed exactly
as in (7.9), except that the range of d changes, i.e.,

a(L)(1 − L)dZt = c + b(L)Ut, d ∈ ℝ, (7.64)

and is referred to as a (Gaussian) ARFIMA(p, d, q) process where, as usual, Ut
i.i.d.∼ N(0, 𝜎2), and the F

stands for fractional. The process is stationary and invertible if the usual conditions given above on
polynomials a(L) and b(L) are satisfied, and |d| < 1∕2.
Recalling the basic randomwalk process from Section 4.1 and how the effect of innovationUt never

dies out—which we might call “infinite memory”, model (7.64) is referred to as a long memory pro-
cess, and is such that the effect of Ut is not as transient as in a stationary ARMA model, but also
not permanent. More specifically, an ARFIMA(p, d, q) process exhibits long memory for d ∈ (0, 1∕2);
so-called intermediate memory for d ∈ (−1∕2, 0), and is non-stationary for d ∈ (1∕2, 1), but such
that the process is level reverting in the sense that the impact ofUt is not permanent; see, e.g., Granger
and Joyeux (1980), Hosking (1981), Cheung and Lai (1993), Wu and Crato (1995), and the references
therein for further details.
Once one is accustomed to thinking of d as a real number instead of being restricted to taking on

a measure-zero quantity such as zero or one, model (7.64) seems very natural, and the restriction of
d ∈ {0, 1} seems quite unnatural. In particular, for real time-series data that appear to exhibit long
memory (because it somewhat resembles a random walk and the sample autocorrelations are large

4 For this last model, the intrigued reader can work on developing a computer program that estimates the parameters
associated with the general structure, where the inputs include, along with the observed time series Y = (Y1,… ,YT )′,
autoregressive lag order p, and any relevant exogenous variables as, say T × k matrix X, a set of s threshold variables (as, say,
T × smatrixQ), the endpoints of the closed set indicating the support of each (as, say, an s × 2 matrix 𝚪 with the ith row
containing 𝛾

i
and �̄�i, i = 1,… , s), and, for each of the s threshold variables, the number of desired thresholds (say, as

k = (k1,… , ks)′). There are thus R = (k1 + 1)(k2 + 1) · · · (ks + 1) regimes. The fixed value of p can be relaxed, as in Chen et al.
(2012), such that each of the R regimes has its own autoregressive lag length.
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and die off slowly), the use of d = 1 seems rather extreme, as it induces “infinite memory”—the effect
of a shock at period t on future observations never dies off. Chapter 8 is dedicated to studying the
autocorrelation function of stationary, short-memory series, and the reader can have a peak at Figure
8.5 to see the behavior of the sample autocorrelation function of a random walk. The autocorrelation
function of a stationary ARFIMA process dies off very slowly, at a hyperbolic (instead of geometric)
rate depending on d.
If the observed time series is such that use of d = 2might suggest itself, or if it resembles a unit-root

type process with 1∕2 ⩽ d, one can compute first differences and apply the fractionally differenced
model (7.64).That is, the postulatedmodel for {Zt}would be a(L)(1 − L)(1 − L)dZt = c + b(L)Ut with
d ∈ ℝ ∩ (−1∕2, 1∕2).
Long memory models for addressing the hyperbolic decay of sample autocorrelations of certain

data sets have been in use since at least 1950 in fields such as hydrology, meteorology, geophysics, and
climatology. Granger (1980) demonstrates that series with longmemory can arise from aggregation of
short-memory processes, lending some theoretical support to their use in modeling economic data.
Lo (1991) demonstrates lack of long memory in (daily and monthly) stock returns, once the effects of
short-range dependence are accounted for. Longmemory in the absolute or squared returns, however,
is very prominent in asset returns; see Section 10.6.3, in particular, Figure 10.15.
A large review of long memory processes (up to the mid 1990s) can be found in Baillie (1996).

Diebold and Rudebusch (1991) demonstrate, somewhat expectedly, that application of the
Dickey–Fuller unit root tests have very low power against fractional alternatives. The reader is
encouraged confirm this, by simulation, and plotting the power of the various unit root tests from
Section 5.5 over a grid of d-values, for several sample sizes.
Various methods exist for parameter estimation. Exact calculation of the covariance matrix is

tractable, and is used for computing the m.l.e.; see Yajima (1985), Sowell (1992), Chung (1994),
and the references therein. Naturally, the reader is encouraged to implement this and perform
simulations to investigate the small-sample behavior of the m.l.e. Results can be compared to existing
software packages, such as R, which has routines for simulation and various methods of estimation
of ARFIMA models. The Gaussianity assumption can also be relaxed; see, e.g., Scherrer et al. (2007)
and Kwan et al. (2012).
The infiniteMA representationZt = (1 − L)−da−1(L)b(L)Ut of (zero-mean)model (7.64) shows that,

if we can calculate the expansion (1 − L)−d, we obtain a way to simulate an ARFIMA process and also
calculate the covariance matrix, and thus express the likelihood. To this end, let f (z) = (1 − z)−d for|d| < 1∕2, so that f ′(z) = d ⋅ (1 − z)−d−1 and, more generally,

f (j)(z) = (d + j − 1) ⋅ (d + j − 2) · · · (d + 1) ⋅ (d) ⋅ (1 − z)−d−j.

The Taylor series of f around z = 0 is thus

(1 − z)−d = f (0) +
𝜕f
𝜕z

||||z=0 ⋅ z + 1
2!

𝜕2f
𝜕z2

|||||z=0 ⋅ z2 + 1
3!

𝜕3f
𝜕z3

|||||z=0 ⋅ z3 + · · ·

= 1 + dz + (1∕2!)(d + 1)dz2 + (1∕3!)(d + 2)(d + 1)dz3 + · · · ,

suggesting to represent the operator (1 − L)−d as

1 + dL + (d + 1)dL2

2!
+ (d + 2)(d + 1)dL3

3!
+ · · · =

∞∑
j=0

hjLj, (7.65)
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where h0 = 1 and

hj =
(d + j − 1)(d + j − 2)(d + j − 3) · · · (d + 1)(d)

j!
. (7.66)

It can be shown (see, e.g., Hamilton, 1994, Sec. 15.A for a basic and detailed derivation) that, for
d < 1, as j → ∞, hj ≈ (j + 1)d−1. This hyperbolic (as opposed to geometric) behavior gives rise to the
long memory property of an ARFIMAmodel. Sequence

∑∞
j=0 h2j < ∞ (referred to as square summa-

bility) for |d| < 1∕2, but not for d ⩾ 1∕2, and is the reason for the covariance stationarity of an
ARFIMA(0, d, 0) model for |d| < 1∕2.

7.8 Problems

Problem 7.1 Verify (7.3) by simulation, i.e., simulate the infinite AR model and estimate an
ARMA(1,1).

Problem 7.2 Recall the use of o.l.s. for estimating the parameters of anARMA(p, q)model in Section
7.3.2. Kapetanios (2003) suggested extending this method so that it is computed in an iterative
fashion until convergence, referred to as iterative ordinary least squares, or i.o.l.s. The method
begins by estimating an AR(p∗) model and computing the residuals Û(0)

t , t = p∗ + 1,… ,T . In the
second step, these residuals are used as proxies for the true innovation sequence, and the regression

Yt − Û (0)
t =

p∑
i=1

aiYt−i +
q∑
j=1

bjÛ
(0)
t−j + 𝜉t (7.67)

is estimated. Unlike the standard o.l.s. approach, i.o.l.s. makes use of the residuals 𝜉t , t = p∗ +
max(p, q) + 1,… ,T . In particular, they are fed back into the regression (7.67) as the new prox-
ies for the innovation sequence. This procedure can be iterated until the change in residuals is
negligible. At the ith iteration, we set Û (i+1)

t = 𝜉
(i)
t , and the model is estimated anew.

Program this method,5 and conduct simulations as in Section 7.3.2, comparing with kernel den-
sity plots the estimators from the o.l.s. and i.o.l.s. Figure 7.10 shows the results corresponding to
those in Figure 7.2. We see that the iterated method indeed conveys a small advantage.

Problem 7.3 This exercise considers a different strategy for a time-series regression model that puts
more emphasis on the ARMA parameters.
Recall that the ordinary least squares residual vector can be expressed as �̂�LS = MY, where M =
I−X(X′X)−1X′. In the iterative method discussed in the chapter, one would begin by computing
�̂�LS and then treating it as a mean-zero ARMA process. Notice, however, that 𝕍 (�̂�LS) = 𝜎2M𝚺M,
which is neither full rank nor the covariance matrix of the desired ARMA process. The full rank
condition can be alleviated as follows:
Recall from Theorem 1.3 that M may be written as M=G′G, where G is (T − k) × T such that
GG′ = IT−k and GX=𝟎. As Y ∼ N(X𝜷, 𝜎2𝚺), we have W ∶=GY ∼ N(𝟎, 𝜎2G𝚺G′), where W has

5 The author is grateful to master’s students Jan Krepl, Antonio Polino, Anna Stepuk, and Michal Svaton̆ for researching,
programming, and investigating this method, as well as several other (not so good) ideas from the author.
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â1, T = 100 â2, T = 100

b̂1, T = 100 σ̂, T = 100

OLS
IOLS

OLS
IOLS

OLS
IOLS

OLS
IOLS

Figure 7.10 Similar to Figure 7.2, comparing the o.l.s. and i.o.l.s. methods for estimation of ARMA(2,1) parameters for
T = 100 observations, based on 10,000 replications.

length T − k and G𝚺G′ is a (T − k) × (T − k) full rank matrix (provided, of course, that 𝚺 is full
rank). The exact likelihood ofW can then be maximized, as a function of the p + q ARMA param-
eters and 𝜎. This avoids joint estimation of 𝜷 and the ARMA coefficients.

To further eliminate 𝜎 from the maximization, we could maximize the likelihood of W∗ ∶=
W∕�̂�, where, approximately,W∗ ∼ N(𝟎,G𝚺G′). An estimate of 𝜎 could be obtained by estimating
the full model in the usual fashion, say by conditional or exact maximum likelihood. This might
seem to defeat the purpose because one then presumably has the “best” obtainable estimator, but
this is not certain, as demonstrated via simulation:
First consider the AR(1) model with unknown mean. Compare via simulation (with 1,000 repli-

cations and T = 40) the bias andm.s.e. of the estimated autoregressive parameter â based on three
estimators: (i) the exact m.l.e., yielding the three parameter estimates 𝛽ML for the intercept, âML
and 𝜎ML, (ii) the method that maximizes the likelihood of W, assuming knowledge of 𝜎 (so that
only parameter a needs to be estimated), and (iii) maximizing the likelihood ofW∗ = W∕𝜎ML.The
latter also has only one parameter to estimate, but note that 𝜎 is not assumed known. Interest cen-
ters on the difference in performance of the first and third estimators, while the second one (which
is not realistic) serves as a benchmark for the third.
Repeat the simulation, with the same time series, but using a regressor matrix consisting of a

column of ones and a time vector.
Lastly, consider themodelYt = 10 + 0.5t + 𝜖t , t = 1,… ,T , withT = 30 and 𝜖t anMA(2) process

with b1 = −1.2, b2 = 0.8, and 𝜎2 = 10. Use 1,000 replications and compare the m.s.e. of b̂1 and b̂2
based onW∗ and the exact m.l.e.
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Problem 7.4 Via simulation, compute the m.s.e. of ŶT+1∣T for an MA(1) model. Use T = 20, 𝜎2 = 4,
and a grid of values of b. Do so using both the conditional and exact m.l.e. Also compute the m.s.e.
based on b̂ from the exact m.l.e., but using Ût based on use of the conditional m.l.e. What do you
find? Repeat for T = 100 just using the conditional m.l.e.

Problem 7.5 Let K be any full rank symmetric matrix of sizem. Show that

𝟏′(K⊙ K−1)𝟏 = m, (7.68)

using the following two methods:
a) Let A = {aij} and B = {bij} be m ×m matrices, with B symmetric, and show that tr(AB) =

𝟏′(A⊙ B)𝟏.
(Contributed by David Harville)

b) Write

𝟏′(K⊙ K−1)𝟏 =
m∑
i=1

m∑
j=1

[K]ij
[

1|K|Kadj
]
ij
,

where Kadj is the adjoint matrix. Now use the facts that K = K′ and |K| = |K′|.
(Contributed by Ronald Butler)

7.A Appendix: Generalized Least Squares for ARMA Estimation

Recall the ordinary least squares (o.l.s.) method for ARMA estimation in Section 7.3.2. A related,
quickly computed, and potentially more accurate parameter estimator corresponding to the general
stationary and invertible ARMA(p,q) model

Yt =
p∑
i=1

aiYt−i +
q∑
j=1

bjUt−j +Ut (7.69)

is presented in Koreisha and Pukkila (1990).6 As with the o.l.s. method, an AR(p∗) model with p∗

chosen as, say, ⌊√T⌋ is fit to the data. (Paralleling the discussion in Section 7.3.2, a simulation-based
iterative procedure could be developed to determine a better choice of p∗.) The residuals {Ût} from
the AR(p∗) autoregression may then serve as an estimator of the innovation series {Ut} and can be
used as regressors in the model

Yt − Ût =
p∑
i=1

aiYt−i +
q∑
j=1

bjÛt−j + 𝜉t .

It is then assumed that the true innovation series can be written as

Ut = Ût + 𝜖t , 𝜖t
i.i.d.∼ N(0, 1), (7.70)

6 The author is grateful to master’s students Patrick Aschermayr, Dmitrii Dmitriev, Christian Frey, and Shuo Yang, who
cleaned up, improved, augmented, and implemented my initial set of notes on this topic.
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i.e., the residuals equal the true innovation series plus an i.i.d. zero-mean (and known variance) Gaus-
sian error term. Combining (7.69) and (7.70) yields

Yt − Ût =
p∑
i=1

aiYt−i +
q∑
j=1

bjÛt−j + 𝜖t +
q∑
j=1

bj𝜖t−j, (7.71)

which is a regression with moving average errors that can be efficiently estimated by generalized least
squares (g.l.s.). Letm = max(p, q) and 𝜏 = p∗ +m + 1, and define

Zt = Yt − Ût , xt = (Yt−1,… ,Yt−p, Ût−1,… , Ût−q), 𝜉t = 𝜖t +
q∑
j=1

bj𝜖t−j,

for t = 𝜏,… ,T . To enable a matrix representation of (7.71) as Y = X𝜷 + 𝝃, let

Y = (Z𝜏 ,… ,ZT )′, X = (x𝜏 ,… , xT )′,
𝝃 = (𝜉𝜏 ,… , 𝜉T )′, 𝜷 = (a1,… , ap, b1,… , bq)′,

noting that X is (T − p∗ −m) × (p + q), Y is (T − p∗ −m) × 1, 𝝃 is (T − p∗ −m) × 1, and 𝜷 is (p +
q) × 1. Thus,

𝜷GLS = (X′�̂�−1X)−1X′�̂�−1Y, �̂� = 𝚺(b̂0), (7.72)

and b̂0 are the MA parameter estimates from the regression of (7.72) with 𝚺 = I. This is implemented
in Listing 7.10, and uses methods for computing 𝚺−1 that are discussed below. (Note that this g.l.s.
estimator can be used to update �̂�, so that the procedure can be iterated until convergence. Based on
a few simulation experiments, it was found that this added little value, and is not implemented in the
code.)
To illustrate, Figure 7.11 is similar to Figure 7.10, comparing the performance of the baseline o.l.s.

method and the g.l.s. estimator (7.72). As with the i.o.l.s. estimator, use of g.l.s. also conveys a (modest)
advantage for this parameter constellation and sample size, though, given its extra complexity, it may
not be worth the effort. The reader is naturally encouraged to experiment with other ARMA models
and sample sizes, hopefully finding cases for which its advantage is more substantial.

Computation of 𝚺−1

Computing the inverse of aT × T matrix is anO(T3) operation, and is thus the bottleneckwhen evalu-
ating (7.72).The special structure of𝚺 can be capitalized upon to decrease the required computational
time, and some ways of doing so are now detailed.
Let 𝝐 = (𝜖𝜏−q, 𝜖𝜏−q+1,… , 𝜖T )′ be (T − p∗) × 1, so that 𝝃 = M1𝝐, where M1 = M1(b) is a

(T − p∗ −m) × (T − p∗) Toeplitz matrix with first row (bq, bq−1,… , 1, 0,… , 0) and first column
(bq, 0,… , 0)′, i.e.,

M1 =

⎡⎢⎢⎢⎢⎣
bq bq−1 … … … 1 0 … 0
0 bq bq−1 … ⋮ ⋮ 1 0 0
0 0 bq bq−1 … ⋮ ⋮ 1 0
0 0 0 bq bq−1 … … … 1

⎤⎥⎥⎥⎥⎦
. (7.73)

Then 𝚺 = 𝔼[M1𝝐(M1𝝐)′] = M1M1, as 𝝐 ∼ N(𝟎, I).
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1 function param = armaglsSTUDENTS(y,p,q,sigma_inv_method)
2 if nargin<4, sigma_inv_method = 'other'; end
3 T=length(y); L=ceil(sqrt(length(y)));
4 z=y(L+1:end); Z=toeplitz(y(L:end-1),y(L:-1:1));
5 uhat=(eye(length(z))-Z*inv(Z'*Z)*Z') * z; yy=z-uhat;
6 Y=yy(m+1:end); X=[]; m=max(p,q);
7 for i=1:p, X=[X z(m-i+1 : length(z)-i)]; end %#ok<*AGROW>
8 for i=1:q, X=[X uhat(m-i+1 : length(uhat)-i)]; end
9 beta=inv(X'*X)*(X'*Y); b=[1 beta(p+1:end)'];

10 switch sigma_inv_method
11 case 'Cholesky'
12 M1=toeplitz([b(q+1) (zeros(T-L-m-1,1))'], [fliplr(b) (zeros(T-L-m-1,1))']);
13 Sigma = M1*M1'; P=chol(Sigma, 'lower'); invP=inv(P); Xhat=invP*X; %#ok<*MINV>
14 param = inv(Xhat'*Xhat)*(Xhat'*(invP*Y));
15 case 'Recurrent'
16 M = toeplitz([b (zeros(T-L-q-1,1))'], [1 (zeros(T-L-1,1))']);
17 invSigma = inverseM1M1(M,m);
18 param = inv(X'*invSigma*X)*(X'*invSigma*Y);
19 case 'Direct'
20 M1=toeplitz([b(q+1) (zeros(T-L-m-1,1))'], [fliplr(b) (zeros(T-L-m-1,1))']);
21 Sigma = M1*M1'; invSigma = inv(Sigma);
22 param = inv(X'*invSigma*X)*(X'*invSigma*Y);
23 otherwise
24 M1=toeplitz([b(q+1) (zeros(T-L-m-1,1))'], [fliplr(b) (zeros(T-L-m-1,1))']);
25 Sigma = M1*M1'; invSigma = inv(Sigma);
26 param = inv(X'*invSigma*X)*(X'*invSigma*Y);
27 end
28
29 function [M1M1inv]=inverseM1M1(M,r)
30 %tf=istril(M); % Introduced in Version R2014a
31 %assert((tf==1), 'Matrix is not square/lower triangular');
32 [~, n]=size(M);
33 for i=0:-1:(-n+1)
34 d=diag(M,i); assert(all(d == d(1)), 'Matrix not Toeplitz');
35 end
36 MMinv=(invtoeplitz(M))'*invtoeplitz(M); E=MMinv(1:r,1:r);
37 F=MMinv(1:r,(r+1):n);
38 G=MMinv((r+1):n,1:r); H=MMinv((r+1):n,(r+1):n);
39 M1M1inv=H-G*inv(E)*F;
40
41 function [invM]=invtoeplitz(M)
42 c_0=1/M(1,1); c(1)=c_0; [~, n]=size(M);
43 for j=2:n
44 sum=0; for h=1:(j-1), sum=sum+(M(j+1-h,1)*c(h)); end
45 c(j)=-(1/M(1,1))*sum;
46 end
47 b=[M(1,1), zeros(1,n-1)]; invM=toeplitz(c,b);

Program Listing 7.10: Computes the g.l.s. estimator (7.72) for a stationary, invertible ARMA(p, q)
process with choice of method for the inversion of 𝚺.
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Figure 7.11 Similar to Figure 7.10, but comparing the o.l.s. and g.l.s. methods for estimation of the ARMA(2,1)
parameters for T = 100 observations, based on 10,000 replications.

In order to apply the recurrence relation (7.76) below, letM be the square (T − p∗) × (T − p∗)matrix

M =
[
D
M11

]
, D =

⎡⎢⎢⎢⎢⎢⎣

1 0 … … 0 … … … 0
b1 1 0 … 0 … … … 0
b2 b1 1 … 0 … … … 0
⋮ ⋮ ⋱ 1 ⋮ ⋮ ⋮ ⋮ 0

bq−1 bq−2 … b1 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
, (7.74)

where D is q × (T − p∗) Toeplitz, M11 is (T − p∗ − q) × (T − p∗) Toeplitz, the same as M1, but with
(m − q) less rows. Note that, ifm = max(p, q) = q, thenM1 = M11. Then,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 … … 0 … … … 0
b1 1 0 … 0 … … … 0
b2 b1 1 … 0 … … … 0
⋮ ⋮ ⋱ 1 ⋮ ⋮ ⋮ ⋮ 0

bq−1 bq−2 … b1 1 0 0 0 0
bq bq−1 … … … 1 0 … 0
0 bq bq−1 … ⋮ ⋮ 1 0 0
0 0 bq bq−1 … ⋮ ⋮ 1 0
0 0 0 bq bq−1 … b2 b1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7.75)
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Interest centers on (MM′)−1 = (M′)−1M−1 = (M−1)′M−1. By noting that, if M is lower diagonal
Toeplitz, its inverse is also a (T − p∗) × (T − p∗) lower diagonal Toeplitz, there exists a simple explicit
expression for the inverse ofM−1, with first row (1, 0,… , 0) and first column (c0, c1,… , cT−p∗ )′. Define
for simplicity n̄ = T − p∗. Then, as detailed in Vecchio (2003),

c0 =
1
b0

, ck = − 1
b0

k−1∑
i=0

bk−ici, 1 ⩽ k ⩽ n̄, (7.76)

where bi = 0 for i > q.
To see why this holds, note thatM−1 is lower diagonal Toeplitz, given by

M−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 … … 0 … … … 0
c1 1 0 … 0 … … … 0
c2 c1 1 … 0 … … … 0
⋮ ⋮ ⋱ 1 ⋮ ⋮ ⋮ ⋮ 0

cq−1 cq−2 … c1 1 0 0 0 0
cq cq−1 … … … 1 0 … 0
0 cq cq−1 … ⋮ ⋮ 1 0 0
0 0 cq cq−1 … ⋮ ⋮ 1 0
0 0 0 cq cq−1 … c2 c1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7.77)

so that, asMM−1 = In̄, the ck can be obtained by solving

b0c0 = 1
b1c0 + b0c1 = 0

b2c0 + b1c1 + b0c2 = 0
⋮

bn̄c0 + bn̄−1c1 +…+ b0cn̄ = 0. (7.78)

As b0 = 1, it follows that c0 = 1. Solving the second equation for c1 and noting that b1 is given by the
first entry in the second row ofmatrixM, c1 is obtained.This holds similarly for the subsequent terms,
and recurrence formula (7.76) follows.
Having obtained the inverse of M, (MM′)−1 follows by (MM′)−1 = (M−1)′M−1. As an important

remark, note that the product of two Toeplitz matrices is in general not (lower or upper triangular)
Toeplitz. This is easily confirmed by multiplying a lower triangular Toeplitz matrix by a upper tri-
angular Toeplitz matrix such as its transpose. However, the product of two lower (upper) triangular
Toeplitz matrices is Toeplitz. To obtain 𝚺−1, write

MM′ =
[
D
M1

] [
D
M1

]′
=
[
DD′ DM′

1
M1D′ M1M′

1

]
=∶

[
A11

m×m A12
m×(T−p∗−m)

A21
(T−p∗−m)×m A22

(T−p∗−m)×(T−p∗−m)

]
, (7.79)
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and let

(MM′)−1 =∶
[ Em×m Fm×(T−p∗−m)

G(T−p∗−m)×m H(T−p∗−m)×(T−p∗−m)

]
. (7.80)

Then

MM′(MM′)−1 =
[
A11 A12

A21 A22

] [
E F
G H

]
=
[ Im×m 𝟎m×(T−p∗−m)

𝟎(T−p∗−m)×m I(T−p∗−m)×(T−p∗−m)

]
, (7.81)

implying

A11E + A12G = Im×m,

A11F + A12H = 𝟎m×(T−p∗−m),

A21E + A22G = 𝟎(T−p∗−m)×m, (7.82)

A21F + A22H = I(T−p∗−m)×(T−p∗−m). (7.83)

From (7.82), it follows that A21 = −A22GE−1 so that, from (7.83),

(−A22GE−1)F + A22H = I(T−p∗−m)×(T−p∗−m),

and

A22(H −GE−1F) = I(T−p∗−m)×(T−p∗−m). (7.84)

From (7.84),H −GE−1F = (A22)−1, so that, with (A22)−1 = (M1M′
1)

−1,

𝚺−1 = (M1M′
1)

−1 = H −GE−1F, (7.85)

which corresponds to the Schur complement of the block matrixH. Note that expression (7.85) still
contains the computation of the inverse matrix E−1, which is O(m3), and thus far smaller than O(T3).
Another approach to speed up the computation is to make use of the Cholesky decomposition

𝚺 = PP′, (7.86)

which is applicable as𝚺 is a symmetric, positive semi-definitematrix.Moreover, as𝚺 is a bandmatrix,
its Cholesky decomposition can be obtained by a fast computational algorithm. For example, theMat-
lab function chol(A) delivers the Cholesky decomposition of matrix A. The resulting matrix P is
lower triangular and therefore easy to invert, so that, using (7.86), we can rewrite (7.72) as

𝜷GLS = (X̃′X̃)−1X̃′Ỹ
= ((P−1X)′(P−1X))−1(P−1X)′(P−1Y)
= ((X′(P′)−1P−1X))−1X′(P′)−1P−1Y
= (X′𝚺−1X)−1X′𝚺−1Y.

In this way, the computational burden is considerably lowered.
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The latter approach is adopted by Koreisha and Pukkila (1990). A fact overlooked by those authors
is that computation of the Cholesky factors can be entirely avoided. To see this, recall from (6.51) and
(6.52) that 𝚺 can be written as

𝚺 = M2M′
2 +NN′, (7.87)

whereN is (T − p∗ −m) ×mmatrix andM2 is a (T − p∗ −m) × (T − p∗ −m) lower triangular matrix
and thus, by definition, the Cholesky factor ofM2M′

2.The Cholesky decomposition of𝚺 can therefore
be obtained by updating M2, this being an O(T2) operation, as opposed to computing the Cholesky
factors from scratch, which is O(T3). A description of the algorithm for rank(M2) = 1 is given in
Gill et al. (1974), while for rank(M2) = k, k ∈ ℕ, see Davis (2006), where also a specialized algorithm
for sparse matrices is presented that would allow for additional time savings. For MA(1) models,
i.e., q = rank(N) = 1, the Matlab function cholupdate can be used, which unfortunately does not
accept sparse matrices as input arguments. The general case with arbitrary q requires custom pro-
gramming.
From a practical point of view, approaches that make direct use of the Cholesky decomposition for

matrix inversion (even if the computation of the Cholesky factors can be avoided, as given in (7.87))
will often not outperform standard, optimally-coded inversion approaches (such as the function inv
inMatlab) in modern computational software packages.The reason for this is that standard inversion
algorithms already use the most efficient inversion approach for symmetric positive semi-definite (or
even lower triangular) and sparse matrices. However, comparisons show that making use of the lower
triangular Toeplitz structure (or so-called recurrent block matrix approach) are faster than use of the
Matlab function inv for sufficiently large matrices.

7.B Appendix: Multivariate AR(p) Processes and Stationarity,
and General Block Toeplitz Matrix Inversion

In order to emphasize the importance of having fast inversion algorithms for Toeplitz matrices, we
briefly discuss the case of stationarymultivariate AR(p) processes. Consider amodel where the output
Xt of a system connected with the input Yt is given, as in Akaike (1973), by

Xt =
p∑
i=1

AiYt−i +Ut, 𝔼[Ut] = 𝟎, (7.88)

where Xt is e × 1, Ai is e × d, Yt is d × 1, and Ut is e × 1. Vectors Xt , Yt , and Ut are assumed to be
jointly (weak-)stationary stochastic processes.
To be clear, recall that, if it exists, the covariance of two vector random variables X = (X1,… ,Xn)′

and Y = (Y1,… ,Ym)′, with expectations 𝝁X and 𝝁Y, respectively, is given by Cov(X,Y) ∶= 𝔼[(X −
𝝁X)(Y − 𝝁Y)′], an n ×mmatrix with (ij)th element 𝜎Xi,Yj

= Cov(Xi,Yj). From symmetry, Cov(X,Y) =
Cov(Y,X)′. (See, e.g., page II.99, though this definition is standard and appears in numerous book
presentations.)
Now consider another stochastic process Vt of dimension d × 1 with finite second moments such

that 𝔼[Vt] = 𝟎, and let 𝜸j,X = Cov(Xt,Vt−j), of size e × d, 𝜸j−i,Y = Cov(Yt−i,Vt−j) of size d × d, and
Cov(Ut,Vt−j) = 𝟎, where 𝟎 is an e × dmatrix of zeros, j = 1,… , p. Note that all these covariancematri-
ces are not functions of time t, but only of lags i and j.
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From (7.88) and that, by assumption, 𝔼[UtV′
t−j] = 𝟎,

𝔼[XtV′
t−j] =

p∑
i=1

Ai𝔼[Yt−iV′
t−j], j = 1,… , p. (7.89)

As 𝔼[Ut] = 𝟎e and 𝔼[Vt] = 𝟎d, the (weak-)stationarity assumption implies that 𝜸j,X = 𝔼[XtV′
t−j] and

𝜸j−i,Y = 𝔼[Yt−iV′
t−j] are functions only of j and j − i, respectively. Hence, (7.89) yields[

𝜸1,X𝜸2,X … 𝜸p,X
]
=
[
A1A2 …Ap

]
T, where (7.90)

T ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

𝜸0,Y 𝜸1,Y 𝜸2,Y … 𝜸p−1,Y

𝜸−1,Y 𝜸0,Y 𝜸1,Y … 𝜸p−2,Y

𝜸−2,Y 𝜸−1,Y 𝜸0,Y … 𝜸p−3,Y

⋮ ⋮ ⋮ ⋱ ⋮
𝜸−p+1,Y 𝜸−p+2,Y 𝜸−p+3,Y … 𝜸0,Y

⎤⎥⎥⎥⎥⎥⎥⎦
. (7.91)

If 𝜸j−i,Y and 𝜸j,X are given and the inverse of the blockToeplitzmatrixT exists, then (7.90) can be solved
forAi. Setting Xt = Yt+k , k = 1, 2,…, and Vt−i = Yt−i, the solution toAi of (7.90) gives the least mean
square error (k + 1)-step ahead linear predictor based on the past p observations of Yt . Note that this
solution can be considered as the solution to the filtering problem, where Xt = Yt+k +Wt+k and the
process Wt is uncorrelated with the process Yt . Alternatively, if one takes Xt = Yt and Vt−j = Yt−j−q,
(7.90) corresponds to the set of Yule–Walker equations for the d-dimensional mixed autoregressive
moving average process of order q and p.
In order to invert the block Toeplitz matrixT, which in this general setting is not necessarily a sym-

metric matrix, efficient inversion algorithms are needed (see Akaike, 1973). A well-known approach
is the Trench–Durbin algorithm for the inversion of symmetric positive definite Toeplitz matrices
in O(n2) flops. An excellent introductory treatment of this and other algorithms related to Toeplitz
matrices is given in Golub and Loan (2012).
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8

Correlograms

The correlogram is probably the most useful tool in time-series analysis after the time plot.
(Chris Chatfield, 2001, p. 30)

Interpreting a correlogram is one of the hardest tasks in time-series analysis…
(Chris Chatfield, 2001, p. 31)

Among the major tools traditionally associated with univariate time-series analysis are two sample
correlograms that provide information about the correlation structure and, within the ARMA(p, q)
model class, about possible candidates for p and q. These are studied in detail in this chapter.

8.1 Theoretical and Sample Autocorrelation Function

8.1.1 Definitions

Recall the calculation of the autocovariances 𝛾s, or 𝛾(s), s = 0, 1, 2,…, of a stationary, invertible
ARMA(p, q) process, as discussed in Section 7.4.1. It is more common in applications with real data
and the assessment of suitable values of p and q to work with the standardized version, namely the
autocorrelations. They are given by

𝜌s = Corr(Yt,Yt−s) =
Cov(Yt,Yt−s)√
𝕍 (Yt)𝕍 (Yt−s)

=
𝛾s

𝛾0
. (8.1)

The set of values 𝜌1, 𝜌2,… is referred to as the (theoretical) autocorrelation function, abbreviated
TACF (or just ACF). For example, recalling the autocovariances of the AR(1) process, as given in
(4.13), we have

𝜌s =
𝛾s

𝛾0
= a|s|, s ∈ ℤ. (8.2)

Very common in time-series analysis is to plot 𝜌s for s = 1 up to some arbitrary value (that rarely
exceeds 30 for non-seasonal data). This is referred to as a correlogram. Two examples for an AR(1)
process are shown in Figure 8.1.1 Indeed, for the AR(1) model, the shape of the ACF is quite pre-
dictable, given the very simple form of 𝜌s in (8.2).

1 To produce such graphs in Matlab, use the stem function. The correlograms displayed in this chapter were generated by
modifying the stem function to make the lines thicker and remove the circle at the top of each spike.

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Figure 8.1 TACF of the AR(1) process with a = 0.5 (top) and a = −0.9 (bottom).

Figure 8.2 shows the ACF for several stationary AR(3) models, illustrating the variety of shapes that
are possible for the modest value of p = 3.
We state one more definition and a characterization result that are relevant for defining the sample

counterpart to the TACF, and will play an important role when we examine the joint distribution of
the sample autocorrelations in Section 8.1.3.

A function 𝜅 ∶ ℤ → ℝ is said to be positive semi-definite if, for all n ∈ ℕ
n∑

r=1

n∑
s=1

𝜅(tr − ts)zrzs ⩾ 0, (8.3)

for all (sets of time points) t = (t1,… , tn)′ ∈ ℤn and all z = (z1,… , zn)′ ∈ ℝn.

The result we now need is that a function 𝛾 ∶ ℤ → ℝ is the autocovariance function of a weakly sta-
tionary time series if and only if 𝛾 is even, i.e., 𝛾(h) = 𝛾(−h) for all h ∈ ℤ, and is positive semi-definite.
To show ⇒, let t = (t1,… , tn)′ ∈ ℤn and z = (z1,… , zn)′ ∈ ℝn, and let Yt = (Yt1 ,… ,Ytn )

′ be a
set of random variables such that 𝔼[Yt] = 𝟎 and having finite second moments. Then, with
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Figure 8.2 TACF of the stationary AR(3) model with parameters a = (a1, a2, a3) = (0.4,−0.5,−0.2) (top left),
a = (1.2,−0.8, 0) (top right), a = (−0.03, 0.85, 0) (bottom left) and a = (1.4,−0.2,−0.3) (bottom right).

𝚪n = [𝛾(tr − ts)]nr,s=1 the covariance matrix of Yt, the symmetry of 𝚪n implies 𝛾 is even, and

0 ⩽ 𝕍 (a′Yt) = a′𝔼[Y′
tY′

t]a = a′𝚪na =
n∑

r=1

n∑
s=1

𝛾(tr − ts)aras, (8.4)

thus satisfying (8.3). The proof of⇐ is more advanced, and can be found, e.g., in Brockwell and Davis
(1991, p. 27).
Dividing (8.4) by 𝛾(0) shows that the autocorrelation function (8.1) corresponding to a stationary

time series is also positive semi-definite. In particular, with t = (1,… , n)′, Yt = (Y1,… ,Yn)′, and

Rn =
1

𝛾(0)
𝚪n =

⎛⎜⎜⎜⎜⎝
1 𝜌1 · · · 𝜌n−1

𝜌1 1 · · · 𝜌n−2

⋮ ⋱ ⋮

𝜌n−1 · · · 𝜌1 1

⎞⎟⎟⎟⎟⎠
, (8.5)

we require that Rn ⩾ 0.
Assume we have T equally spaced observations from a time series, say Y1,… ,YT , generated by a

stationary, mean-zero model. The obvious “plug-in estimator”, or natural sample counterpart of 𝛾s is
(T − s)−1

∑T
t=s+1 YtYt−s, but it is advantageous to use a divisor of T instead of T − s, i.e.,

�̂�s = T−1
T∑

t=s+1
YtYt−s, (8.6)

which is a form of shrinkage towards zero. As is typical with such shrinkage estimators, (8.6) is biased,
but has a lower mean squared error than its unbiased counterpart; see Priestley (1981, p. 323–324).
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A further compelling reason to use (8.6) is that it yields a positive semi-definite function, a property
that we have just seen also holds for 𝛾s corresponding to a stationary process, but not for its direct
sample counterpart based on data. As in Brockwell and Davis (1991, Sec. 7.2), this easily follows by
expressing, for any 1 ⩽ n ⩽ T ,

�̂�n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�̂�(0) �̂�(1) �̂�(2) · · · �̂�(n − 1)
�̂�(1) �̂�(0) �̂�(1) · · · �̂�(n − 2)
�̂�(2) �̂�(1) �̂�(0) · · · �̂�(n − 3)
⋮ · · · · · · ⋱
�̂�(n − 2) �̂�(n − 3) �̂�(n − 4) · · · �̂�(1)
�̂�(n − 1) �̂�(n − 2) �̂�(n − 3) · · · �̂�(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= 1

n
LL′, (8.7)

where L is the n × (2n − 1) “band matrix” given by

L =

⎛⎜⎜⎜⎜⎜⎝

0 0 · · · 0 Y1 Y2 Y3 · · · Yn−1 Yn
0 · · · 0 Y1 Y2 Y3 · · · · · · Yn 0
⋮ ⋮
0 Y1 Y2 Y3 · · · Yn 0 · · · 0 0
Y1 Y2 Y3 · · · Yn 0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎠
.

Thus, for any z = (z1,… , zn)′ ∈ ℝn, z′�̂�nz = n−1(z′L)(L′z) ⩾ 0.
It is noteworthy that the matrices Rn in (8.5) and �̂�n in (8.7) are symmetric and persymmetric,

where the latter means a square matrix that is symmetric with respect to the northeast-to-southwest
diagonal.
It will be subsequently convenient to express 𝜌s as a ratio of quadratic forms. Use of (8.6) implies

that the sample estimate of 𝜌s is given by

𝜌s = Rs ∶=
�̂�s

�̂�0
=
∑T

t=s+1 YtYt−s∑T
t=1 Y 2

t

=
Y′AsY
Y′Y

, (8.8)

where Y = (Y1,… ,YT )′ and the (i, j)th element of As is given by 𝕀{|i − j| = s}∕2, i, j = 1,… ,T . For
example, with T = 5,

A1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1
2

0 0 0
1
2

0 1
2

0 0
0 1

2
0 1

2
0

0 0 1
2

0 1
2

0 0 0 1
2

0

⎤⎥⎥⎥⎥⎥⎥⎦
and A2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
2

0 0
0 0 0 1

2
0

1
2

0 0 0 1
2

0 1
2

0 0 0
0 0 1

2
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (8.9)

etc. A program to compute the Amatrices is given in Listing 8.1.

1 function A=makeA(T,m) % A = 0.5 * 1( |i-j| = m)
2 v=zeros(T,1); v(m+1)=1; A=0.5*toeplitz(v,v');

Program Listing 8.1: Computes 𝐀m of size T × T .
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Figure 8.3 The SACFs of four simulated AR(1) time series with a = 0.5 and T = 50.

The sample ACF, abbreviated SACF, is given by the random variable Rm = (R1,… ,Rm)′. The upper
limitm can be as high as T − 1 but, practically speaking, can be taken to be, say, min(T∕2, 30).
The observed values of the SACF, say r = (r1,… , rm)′, based on a stationary and invertible ARMA

time-series process, will obviously not exactly resemble the corresponding TACF, but they will be
close for large enough T . To illustrate, Figure 8.3 shows the SACFs of four simulated AR(1) time
series, each with a = 0.5 and T = 50. The two horizontal dashed lines are given by ±1.96∕

√
T and

provide an asymptotically valid 95% c.i. for each individual rs, as will be discussed in Section 8.1.3.2.
For now, it suffices to observe that, at least for sample sizes around T = 50, the SACF does not

strongly resemble its theoretical counterpart. Figure 8.4 is similar but uses T = 500 observations
instead. The SACF is now far closer to the TACF, but can still take on patterns that noticeably differ
from the true values.
In practice, 𝔼[Yt] is unknown and, assuming stationarity, is constant for all t and estimated as the

sample mean, say 𝜇. Then, the sample covariance in (8.6) is computed as

�̂�s = T−1
T∑

t=s+1
(Yt − 𝜇)(Yt−s − 𝜇) = T−1

T∑
t=s+1

𝜖t𝜖t−s, (8.10)

and

Rs =
�̂�
′As�̂�

�̂�
′
�̂�

, (8.11)

where �̂� = (𝜖1,… , 𝜖T )′ = Y − 𝜇. The plotted SACF Rm = (R1,… ,Rm)′ based on (8.11) is one of the
primary graphical tools used in time-series analysis.
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Figure 8.4 The SACFs of four simulated AR(1) time series with a = 0.5 and T = 500.

The statistics {�̂�s} in (8.10) have the interesting property that
T−1∑

s=−(T−1)
�̂�s = 0. (8.12)

To prove (8.12), following Percival (1993), we first construct the T × T symmetric matrix

S =

⎡⎢⎢⎢⎢⎣
(Y1 − Ȳ )(Y1 − Ȳ ) (Y1 − Ȳ )(Y2 − Ȳ ) · · · (Y1 − Ȳ )(YT − Ȳ )
(Y2 − Ȳ )(Y1 − Ȳ ) (Y2 − Ȳ )(Y2 − Ȳ ) (Y2 − Ȳ )(YT − Ȳ )

⋮ ⋱ ⋮

(YT − Ȳ )(Y1 − Ȳ ) · · · (YT − Ȳ )(YT − Ȳ )

⎤⎥⎥⎥⎥⎦
.

The sum of the diagonal elements of S is T �̂�0, while the sum of the elements along the sth sub- or
super-diagonal is T �̂�s, s = 1, 2,… ,T − 1. As �̂�s = �̂�−s, the sum of all T2 elements in S is T

∑T−1
s=−(T−1) �̂�s.

However, each row (and column) sum is easily seen to be zero, so that the sum of all T2 elements in S
is zero, showing (8.12).
Dividing by �̂�0 and using the fact that �̂�s = �̂�−s, (8.12) can also be written as

T−1∑
s=1

Rs = −1
2
, (8.13)

which implies that Rs < 0 for at least one value of s ∈ {1, 2,… ,T − 1}. This helps to explain why, in
each of the four SACF plots in Figure 8.3, several of the spikes are negative, even though the theoretical
ACF (shown in the top panel of Figure 8.1) is strictly positive. As amore extreme case, Figure 8.5 shows
the SACF for a simulated random walk with 200 observations.
A program to compute the sample ACF for a given time series is shown in Listing 8.2.
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Figure 8.5 Sample ACF for a simulated randomwalk with 200 observations.

1 function sacf=sampleacf(Y,imax,removemean,doplot)
2 if nargin<3, removemean=1; end, if nargin<4, doplot=0; end
3 if removemean, Y=Y-mean(Y); end, T=length(Y); a=zeros(imax,1);
4 for i=1:imax, a(i)= sum(Y(i+1:T) .* Y(1:T-i) ); end, sacf=a./ sum(Y.ˆ2);
5 if doplot, stem(sacf), se=1.96/sqrt(T);
6 line([0,imax],[0,0],'linestyle','-','linewidth',1)
7 line([0,imax],[-se,-se],'linestyle',':','linewidth',1)
8 line([0,imax],[ se, se],'linestyle',':','linewidth',1)
9 rm=max(abs(sacf)); rm=1.1*max(rm,0.5); ax=axis; axis([ax(1) ax(2) -rm rm])

10 end

Program Listing 8.2: Computes and plots the sample autocorrelation function for time series Y up
to lag imax.

8.1.2 Marginal Distributions

Generalizing the use of the sample mean, assume now that

Y ∼ N(X𝜷,𝚿−1), (8.14)

where X is a known, full rank T × k matrix of exogenous variables, and 𝜷 and 𝚿−1 are fixed but
unknown. (In Section 8.1.3.3 it will be a bit more notationally convenient to work with 𝚿−1 rather
than 𝚿 as the variance covariance matrix.) Then, �̂�, the o.l.s. regression residuals based on Y and
X, can be computed and used to construct the SACF via (8.11). From Chapter 1, the o.l.s. resid-
ual vector can be expressed as �̂� = MY = M𝝐, where M = IT − X(X′X)−1X′. If 𝝐 ∼ N(𝟎,𝚿−1), then
M𝝐 ∼ N(𝟎,M𝚿−1M). In the “null hypothesis case” of i.i.d. error terms,𝚿 = I andM𝝐 ∼ N(𝟎,M).
From (1.61), if 𝟏T ∈ (X), then∑T

i=1 𝜖i = 0, and (8.13) also holds.

Remark An alternative to the usual o.l.s. residuals is to use the recursive residuals, as discussed in
Section 1.5, to compute the elements of the SACF.They are computed as in (8.11), except that matrix
As is of size T − k and �̂� refers to the recursive residual vector. To distinguish them from the usual
SACF, we denote the elements of the SACF based on the recursive residuals as R̆s. Recall that, if the
true regression model error terms are i.i.d., then so are the T − k recursive residuals. This has the
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advantage that each component of the SACF based on them also has mean zero, which is not the case
for the usual SACF.
Furthermore, their distribution is symmetric (about zero), which is also not true for the usual SACF

components.This fact can be useful when using the SACF formodel identification; see Chapter 9. See
Problem 8.6 for more details and proof. ◾

From (8.11), Rs (or R̆s) is a ratio of quadratic forms in normal variables, so that the methods devel-
oped in Appendix A can be straightforwardly used to compute its distribution, while methods for
computation of its moments are detailed in Appendix B.
To illustrate, Figure 8.6 shows the correlogram of 𝔼[Rm] corresponding to an MA(1) model with

parameter b = 0.5 for three different designmatricesX in (8.14), and two sample sizes.This was com-
puted using the program sacfmom developed in Problem 8.1. Recalling the covariance structure of
an MA(q) model from (6.50), the first spike in the TACF of an MA(1) model is nonzero, while the
remaining are zero. In this case, 𝜌1 = b∕(1 + b2) = 0.4. The top left panel of Figure 8.6 shows the case
for which 𝔼[Yt] is known: We see that 𝔼[Rm] is indeed very close to the shape of the TACF, but the
first spike is only 0.314 instead of 0.4.2
The case of known 𝔼[Yt] is not practical, and serves as a benchmark, with the use of an intercept

model (X = 𝟏) being more realistic for typical univariate time-series analysis. This case is shown in
the middle panel, while the right panel shows the situation with an intercept and time-trend model.
In the top panels, they both deviate markedly from the correct shape, this being due to the unrealistic
small sample size of T = 10. The bottom panels are the same, but with T = 50.
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Figure 8.6 Top: The mean SACF for an MA(1) model with b = 0.5 and T = 10, i.e., the mean of each Rs is shown. Left is
with knownmean, middle is for an intercept term in the model, i.e., with an Xmatrix consisting of a column of ones,
and right is for an intercept and trend model, i.e., with an Xmatrix consisting of a column of ones and the time-trend
vector 1, 2,… , T . Bottom: Same but with T = 50.

2 Had we used the divisor of T − s for the sample analog of 𝛾s, the value would be multiplied by 10∕9, i.e., 0.349, which is
indeed less biased. However, the second spike would also increase in magnitude, by a factor of 10∕8.



Correlograms 367

Figure 8.6 is useful for knowing the expected shape of the SACF for a particular ARMA model. It
would be useful to augment the correlogram of 𝔼[Rm] with intervals reflecting the variance.
Based on 𝔼[Rs] and 𝔼[R2

s ], the variance and standard deviation (std) can be calculated. The top
panel of Figure 8.7 plots the std of R1 through R10 for the MA(1) model with b = 0.5 and intercept,
using sample sizes T = 20, 30, 40 and 50, while the bottom panel is similar but for T = 30 and sev-
eral values of b. Although we can calculate the exact distribution of Rs, it is easier to use the fact
that the asymptotic distribution of each Rs is normal (see Section 8.1.3.2), and plot, for each s, a
line extending from, say, 𝔼[Rs] − 1.645

√
𝕍 (Rs) to 𝔼[Rs] + 1.645

√
𝕍 (Rs), thus providing intervals with

approximate 90% coverage probability for each Rs. This is shown in Figure 8.8 for an AR(2) model
with a1 = 1.2, a2 = −0.8 and an intercept (i.e., with the X matrix in (8.14) consisting of a column of
ones).
This idea could be used with real data by examining the extent to which the R̂s fall within their

respective intervals. This is shown in Figure 8.9 for R̂1,… , R̂10, computed based on X = 𝟏, using 90%
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Figure 8.7 Top panel is the standard deviation of Rs, s = 1,… , 10, for an MA(1) process with b = 0.5, intercept term,
and four sample sizes T = 20, 30, 40, and 50 (top to bottom). The bottom panel is similar but for T = 30 and b = 0, 0.3,
0.6, and 0.9.
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Figure 8.8 𝔼[Rs] and individual 90% intervals for each Rs, corresponding to an AR(2) model with a1 = 1.2, a2 = −0.8,
and X = 𝟏. Top (bottom) panel is based on T = 30 (T = 100).

intervals (so that, on average, one of the ten spikes should be outside of its interval), and four differ-
ent data sets, each of length T = 30, generated from an AR(2) process with a1 = 1.2, a2 = −0.8, and
𝜎 = 1. The usefulness of this exercise is rather limited because, in practice, one does not know the
true parameters!
The obvious thing to do is use an estimate, say the m.l.e., of the ARMA parameters to construct the

intervals. That is, values 𝔼[Rs] and 𝕍 [Rs] are computed based not on the true ARMA parameters, but
on the point estimates obtained via the m.l.e. This was done for the same four time series as used in
Figure 8.9 and is shown in Figure 8.10, whereby the model includes an intercept term. The code to
compute one such graph is given in Listing 8.3.There is now less of a chance that R̂s will lie outside of
the interval because the intervals are—as the R̂s themselves—determined from the actual data. This
is apparent for R̂8 in the lower left panels of the two figures.
More often than not, the “wrong” choices for p and qwill bemade in practice—almost with certainty

in fact, because the true data generating process is unlikely to be precisely given by a stationaryARMA
model. To see what happens when the wrong model is chosen, the previous exercise can be repeated
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Figure 8.9 SACF of four simulated AR(2) time series with T = 30, a1 = 1.2, and a2 = −0.8 (big solid circles) with
overlaid 90% bounds for the SACF based on the true parameters.
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Figure 8.10 SACF of four simulated AR(2) time series with T = 30, a1 = 1.2, and a2 = −0.8 (big solid circles) with
overlaid 90% bounds for the SACF based on the m.l.e. of the parameters.
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1 a=[1.2 -0.8]; T=30; X=[ones(T,1)]; up=10; seed=1;
2 y=armasim(T,1,a,0,seed); param=armareg(y,X,2,0,1); ahat=param(2:3)
3 [mu,m2]=sacfmom(X,leeuwARMA(ahat,0,T),1:up); std=sqrt(m2-mu.ˆ2);
4 lo=mu-norminv(0.95)*std; hi=mu+norminv(0.95)*std;
5 plot(1:up,mu,'ro',1:up,lo,'gˆ',1:up,hi,'gv','linewidth',2)
6 axis([0.5 up+0.5 -1 1])
7 ln=line([1:up ; 1:up],[lo hi]'); set(ln,'color',[1 1 0])
8 ln=line([1 up],[0 0]); set(ln,'linewidth',2), set(gca,'fontsize',20)
9 ss=sampleacf(y,up); hold on, hh=plot(1:up,ss,'ko');

10 set(hh,'linewidth',5), hold off

Program Listing 8.3: Computes a graph as in Figure 8.10. Program leeuwARMA is given in
Listing 7.5, program sacfmom is developed in Problem 8.1., andprogram sampleacf is given in
Listing 8.2.
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Figure 8.11 Same as Figure 8.10, using the same four simulated time series, but based on the wrongmodelMA(2).

with the same four series as before, but (incorrectly) assuming an MA(2) model instead of an AR(2).
The results are shown in Figure 8.11. Notice how only the first q = 2 spikes are flexible, and the others
are condemned to hover around zero. Now, the chance of R̂s falling outside its interval is clearly higher
than 10%.
Of course, as an AR(2) model can be represented as an infinite MA, if we choose q larger, then

the discrepancy between the R̂s and the intervals should decrease. Figure 8.12 shows the result but
having used an MA(6) model. In this case, the intervals indeed “track” the R̂s better than with an
MA(2) model, but outliers are still to be found.

Remark Moments of the Rs in the more general setting such that Y follows an elliptic distribution
(as discussed in Section C.2) are derived in Kan and Wang (2010). ◾
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Figure 8.12 Same as Figures 8.10 and 8.11, using the same four simulated time series, but based on the wrongmodel
MA(6).

8.1.3 Joint Distribution

This section is more advanced, and contains several results that are not fully derived here (albeit with
references).The reader can skim or skip it.The results, however, are very useful, as shown in Section 9.5.
Considerably more challenging than computation of the distribution of the individual Rs is the joint

distribution of the Rs, s = 1,… ,m. For Rm = (R1,… ,Rm)′, we detail its support, its asymptotic dis-
tribution, a saddlepoint approximation, and, based on the latter, an approximation to the conditional
distribution of Rm given (R1,… ,Rm−1)′. While interesting in its own right from a theoretical point of
view, this conditional distribution can be used for identification of the AR lag length p; see Section 9.5.

8.1.3.1 Support
Recall from (8.5) that the autocorrelation function corresponding to a stationary time series is pos-
itive semi-definite. Recall also from the Remark in Section 6.1.1 on leading principle minors how
use of their determinants can confirm the positive definiteness of a matrix. These imply that we can
characterize the support of Rm = (R1,… ,Rm)′ corresponding to a stationary time series as

𝕴m = {ri = (r1, r2,… , ri) ∶ |Si| > 0, i = 1,… ,m}, (8.15)

where Si is the (i + 1) × (i + 1) symmetric and persymmetric band matrix given by

Si =

⎛⎜⎜⎜⎜⎝
1 r1 · · · ri
r1 1 · · · ri−1
⋮ ⋱ ⋮

ri · · · r1 1

⎞⎟⎟⎟⎟⎠
. (8.16)
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Form = 1, |S1| = 1 − r21, so that𝕴1 = {r ∶ |r1| < 1}. Form = 2,

𝕴2 = {(r1, r2) ∶ −1 < r1 < 1, 2r21 − 1 < r2 < 1}. (8.17)

A drawback of expression (8.15) is that it does not immediately provide bounds on the range of
permissible values of a given Rm for m > 1. We use the following approach to resolve this. Let ℑm
denote the conditional support of Rm givenRm−1 = rm−1. In other words, given observed values rm−1 =
(r1,… , rm−1) for the SACF, the support of Rm is an interval given by

ℑm = {r ∶ −1 ⩽ rmin < r < rmax ⩽ 1},

where values rmin and rmax are such that, for rm outside these values, rm does not correspond to the
ACF of a stationary AR(m) process. Values rmin and rmax are now straightforward to determine based
on the inequality constraint |Sm| > 0 from (8.15). To do so, we need the following well-known fact
from matrix algebra (see, e.g., Graybill, 1983, pp. 184–185): For square matrix

A =
[

A11 A12
A21 A22

]
, |A| = |A11| |A22 − A21A−1

11A12|. (8.18)

From (8.16) and (8.18), |Sm| = |Sm−1|(1 − v′mS−1m−1vm), where vm = (rm, rm−1,… , r1)′. Assuming that
rm−1 lies in the support of the distribution of Sm−1, |Sm−1| > 0, and rm ranges over

{rm ∶ 1 − v′mS−1m−1vm > 0}. (8.19)

Letting S−1m−1 = W = [𝑤ij], we have, with 𝑣1 = rm,

v′mWvm =
m∑
i=1

m∑
j=1

𝑤ij𝑣i𝑣j = rm

(
𝑤11rm +

m∑
j=2

𝑤1j𝑣j

)
+ rm

m∑
i=2

𝑤i1𝑣i +
m∑
i=2

m∑
j=2

𝑤ij𝑣i𝑣j,

i.e., the conditional support of Rm is given by the solution to Ar2m + Brm + C = 0, where, using the
symmetry ofW,

A = −𝑤11 , B = −2
m∑
j=2

𝑤1j𝑣j , C = 1 −
m∑
i=2

m∑
j=2

𝑤ij𝑣i𝑣j .

Problem 8.2 shows that this yields

2r21 − 1 < r2 < 1 (8.20)

and
(r1 + r2)2

r1 + 1
− 1 < r3 <

(r1 − r2)2

r1 − 1
+ 1. (8.21)

A program to compute the interval of support of Rm given SACF values (r1,… , rm−1)′ is given in
Listing 8.4.

8.1.3.2 Asymptotic Distribution
Consider the SACF corresponding to a stationary, invertible ARMA(p, q) model with known mean
(say zero). With 𝝆 = (𝜌1,… , 𝜌m)′, Bartlett (1946) showed that, under certain conditions,√

T(Rm − 𝝆) asy∼ N(𝟎,W), or Rm
asy∼ N(𝝆,T−1W), (8.22)
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1 function range=sacfrange(robs)
2 robs=reshape(robs,length(robs),1); m=length(robs)+1;
3 if m==1, lo=-1; hi=1;
4 elseif m==2, lo=2*robsˆ2-1; hi=1;
5 elseif m==3, r1=robs(1); r2=robs(2); lo=(r1+r2)ˆ2/(r1+1)-1; hi=(r1-r2)ˆ2/(r1-1)+1;
6 else
7 W=inv(toeplitz([1 ; robs])); v=[-99 ; robs(end:-1:1)];
8 A=-W(1,1); B=-2*W(1,2:end)*v(2:end); C=1-v(2:end)'*W(2:end,2:end)*v(2:end);
9 wurzel=sort(roots([A B C])); lo=wurzel(1); hi=wurzel(2);

10 end
11 range=[lo hi];

Program Listing 8.4: Computes the conditional support of 𝐑m given R1 = r1,… ,Rm−1 = rm−1, and
robs is the vector of observed SACF values 𝐫m−1 = (r1, r2,… , rm−1)́.

(the latter expression being informal notation), where the (i, j) component of the matrix W is given
by what is usually referred to as Bartlett’s formula,

𝑤ij =
∞∑
k=1

{𝜌k+i + 𝜌k−i − 2𝜌i𝜌k} × {𝜌k+j + 𝜌k−j − 2𝜌j𝜌k}. (8.23)

Proofs of Bartlett’s formula are given in several texts; Priestley (1981, pp. 324–326) and Pollock (1999,
pp. 670–671) offer particularly straightforward and instructive derivations, while Brockwell andDavis
(1991) provide rigorous derivations under two sets of conditions. See also Anderson (1992) for further
discussion of the required conditions for Bartlett’s formula.
If the process is just white noise, then 𝜌i = 0, i = 1, 2,…, and, assuming existence of fourth

moments, W reduces to the identity matrix. That is, in finite samples of white noise (with fourth
moments), the Rs are approximately i.i.d. N(0,T−1). As white noise is the usual initial null hypothesis
when analyzing a time series, it is common to plot individual 95% confidence intervals for each Rs.
These are the dotted lines in Figures 8.4 and 8.5.

Example 8.1 Let 𝜖t follow the AR(1) process 𝜖t = a𝜖t−1 +Ut with |a| < 1.Then 𝜌i is given by a|i| and
𝑤ij can be written as

𝑤ij =
∞∑
k=1

(a|k−i| − a|k+i|)(a|k−j| − a|k+j|)
=

m∑
k=1

(a|k−i| − a|k+i|)(a|k−j| − a|k+j|) + ∞∑
k=m+1

(ak−i − ak+i)(ak−j − ak+j),

wherem = max(i, j). For R1, i = j = 1 and

𝑤11 = (1 − a2)2 +
∞∑
k=2

(ak−1 − ak+1)2 = (1 − a2)2 + (a−2 − 2 + a2)
∞∑
k=2

a2k

= (1 − a2)2 + (a−2 − 2 + a2) a4
1 − a2

= (1 − a2)2 + a2(1 − a2) = 1 − a2.
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Higher-order terms are similarly computed. For (R1,R2,R3)′,

W = (1 − a2)
⎡⎢⎢⎣

1 2a 3a2
2a 3a2 + 1 2a(2a2 + 1)
3a2 2a(2a2 + 1) 5a4 + 3a2 + 1

⎤⎥⎥⎦ .
When evaluated at the modest value of a = 0.25,

W =
⎡⎢⎢⎣
0.9375 ⋅ ⋅
0.4688 1.1133 ⋅
0.1758 0.5273 1.1316

⎤⎥⎥⎦ and Wcorr =
⎡⎢⎢⎣

1 ⋅ ⋅
0.4588 1 ⋅
0.1707 0.4698 1

⎤⎥⎥⎦ ,
where Wcorr denotes the correlation matrix. Observe that the correlation between adjacent spikes is
quite high, and is independent of T . For the moderate value a = 0.5, the variances of the first three Rs
based on its asymptotic distribution are 0.75∕T , 1.31∕T , and 1.55∕T , respectively, and the correlation
between R1 and R2 is 0.76. ◾

One way of evaluating Bartlett’s formula (8.23) is by numerically summing terms until the desired
degree of accuracy is obtained. More convenient methods for computing Bartlett’s formula cor-
responding to a zero-mean stationary ARMA(p, q) process have been given by Kanto (1988) and
Boshnakov (1996); we now summarize the results from Kanto (1988).3 First buffer with zeros either
polynomial a(L) or b(L) so that the model a(L)yt = b(L)𝜖t is an ARMA(m,m) with m = max(p, q),
i.e., ifm > p, then ai = 0 for i = p + 1, p + 2,… ,m. Define a = (1,−a1,… ,−am)′, b = (1, b1,… , bm)′
and let the band-matrix operator Toep(c, r) denote the Toeplitz matrix with first column c and first
row r, and Hank(c) denote the Hankel matrix with first row and column c, for example,

Toep
⎛⎜⎜⎝
⎡⎢⎢⎣
1
2
3

⎤⎥⎥⎦ ,
[
4 5
]⎞⎟⎟⎠ =
⎡⎢⎢⎣
1 4 5
2 1 4
3 2 1

⎤⎥⎥⎦ , Hank
⎛⎜⎜⎝
⎡⎢⎢⎣
1
2
3

⎤⎥⎥⎦
⎞⎟⎟⎠ =
⎡⎢⎢⎣
1 2 3
2 3 0
3 0 0

⎤⎥⎥⎦ .
Then, similar to the results in Mittnik (1988), the firstm + 1 autocovariances can be expressed as

𝜸 = (𝛾0, 𝛾1,… , 𝛾m)′ = C−1NA−1b𝜎2, (8.24)
where A = Toep(a, 𝟎1×m), N = Hank(b), and C is given by A +Hank(a) but with the first column
replaced by the first column of A; higher-order autocovariances can be computed as 𝛾l =

∑p
i=1 ai𝛾l−i,

l ⩾ m + 1. Now define �̃� = C−1
ã Nb̃A−1

ã b̃, where ã=Da, b̃=Eb,

D = Toep
([

−a
𝟎m×1

]
, 𝟎1×m
)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
−a1 1 ⋮

⋮ −a1 ⋱
⋮ ⋱ 0

−am−1 1
−am −am−1 −a1

0 −am ⋱ ⋮
⋮ ⋱

−am−1
0 0 −am

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

3 In Kanto (1988), vector a should be defined as given herein, T in his equation (7) should be Γ, and matrices D and E are
both of size (2m + 1) × (m + 1).
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E = Toep
([

b
𝟎m×1

]
, 𝟎1×m
)
,Aã = Toep(ã, 𝟎1×2m),Nb̃ = Hank(b̃), and Cã is given byAã +Hank(ã), but

with the first column replaced by the first column of Aã. The (ij)th element of W in (8.23) is then
given by

𝑤ij =
�̃�i−j + �̃�i+j − 2𝜌j�̃�i − 2𝜌i�̃�j + 2𝜌i𝜌j�̃�0

𝛾20
, (8.25)

where 𝜌i = 𝛾i∕𝛾0 and �̃�−i = �̃�i. A program to compute 𝝆 andW is given in Listing 8.5.

8.1.3.3 Small-Sample Joint Distribution Approximation
Assume for themoment that there are no regression effects and let 𝝐 ∼ N(𝟎,𝛀−1)with𝛀−1

> 0.While
no tractable exact expression for the p.d.f. of Rm appears to exist, a saddlepoint approximation is
shown in Butler and Paolella (1998) to be given by

f̂Rm
(r) = (2𝜋)−

m
2 |𝛀| 12 |Ĥ𝛀|− 1

2 |P̂𝛀|− 1
2 (tr{P̂−1

𝛀 })m, (8.26)
where r = (r1,… , rm),

P̂𝛀 = P̂𝛀 (̂s) = 𝛀 + 2r′ŝ IT − 2
m∑
i=1

ŝiAi, (8.27)

and Ĥ𝛀 = Ĥ𝛀(̂s) with (ij)th element given by

ĥij = −1
2

𝜕2

𝜕ŝi𝜕ŝj
log(|P̂𝛀|) = 2 tr{P̂−1

𝛀 (Ai − riIT )P̂−1
𝛀 (Aj − rjIT )}, (8.28)

i, j = 1,… ,m. Saddlepoint vector ŝ = (̂s1,… , ŝm) solves

0 = −1
2

𝜕

𝜕ŝi
log|P̂𝛀| = tr{P̂−1

𝛀 (Ai − riIT )}, i = 1,… ,m, (8.29)

1 function [rho,W]=kanto(a,b,dim)
2 % a=(a1,...,ap), b=(b1,...,bq), dim is size of W requested.
3 % EXAMPLE: for model y(t) = 1.2 y(t-1) -0.8 y(t-2) + e(t), a=[1.2 -0.8];
4 p=length(a); q=length(b); a=-a; % Kanto uses other sign convention for AR terms
5 m=max(dim,max(length(a),length(b))); aa=zeros(m,1); bb=zeros(m,1); aa(1:p)=a;
6 bb(1:q)=b; a=[1; aa]; b=[1; bb];
7 A=toeplitz(a,[1 zeros(1,m)]); psi=inv(A)*b; B=hankel(b); C=A+hankel(a);
8 C(:,1)=A(:,1); gamma=inv(C)*B*psi; rho=gamma/gamma(1);
9 D=toeplitz([a; zeros(m,1)] , [1 zeros(1,m)] );

10 E=toeplitz([b; zeros(m,1)] , [1 zeros(1,m)] );
11 atil=D*a; btil=E*b; A=toeplitz(atil,[atil(1) zeros(1,2*m)]);
12 psi=inv(A)*btil; B=hankel(btil); C=A+hankel(atil); C(:,1)=A(:,1);
13 gtil=inv(C)*B*psi;
14 for k=1:dim
15 for l=1:dim
16 W(k,l) = gtil(abs(k-l)+1) + gtil(k+l+1) - 2*rho(l+1)*gtil(k+1) ...
17 - 2*rho(k+1)*gtil(l+1) + 2*rho(k+1)*rho(l+1)*gtil(1);
18 W(k,l) = W(k,l) / (gamma(1))ˆ2;
19 end
20 end

Program Listing 8.5: Computes 𝝆 via (8.24) and𝐖 via (8.25).
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and, in general, needs to be numerically obtained. In the null setting for which 𝛀 = IT , tr{P̂−1
I } = T

so that the last factor in (8.26) is just Tm.
The extension of (8.26) for use with regression residuals based on (8.14), i.e., Y ∼ N(X𝜷,𝚿−1), is not

immediately possible because the covariance matrix of �̂� is not full rank and a canonical reduction of
the residual vector is required. AsM is an orthogonal projection matrix, Theorem 1.3 showed that it
can be expressed asM=G′G, where G is (T − k) × T and such that GG′ = IT−k and GX=𝟎. Then

Rs =
�̂�
′As�̂�

�̂�
′
�̂�

=
𝝐′MAsM𝝐

𝝐′M𝝐
=

𝝐′G′GAsG′G𝝐
𝝐′G′G𝝐

=
w′Ãsw
w′w

, (8.30)

where w = G𝝐 and Ãs = GAsG′ is a (T − k) × (T − k) symmetric matrix.
By setting 𝛀−1 = G𝚿−1G′, approximation (8.26) becomes valid using w ∼ N(𝟎,𝛀−1) and GAsG′ in

place of 𝝐 and As, respectively. Note that, in the null case with Y ∼ N(X𝜷, 𝜎2IT ), 𝛀−1 = 𝜎2IT−k . A
program to compute (8.26) based on regression residuals corresponding to regressormatrixX is given
in Listing 8.6.

1 function [f,s,Pi,H]=sacfpdf(rvec,X,Psiinv,sstart)
2 global amat Omega r m n
3 r=rvec; m=length(r); r=reshape(r,m,1);
4 [T,k]=size(X); if k==0, T=length(Psiinv); G=eye(T); else, G=makeG(X); end
5 Omega=inv( G*Psiinv*(G') ); n=length(Omega);
6 amat=zeros(n,n,m); for i=1:m, amat(:,:,i) = G*makeA(T,i)*(G'); end
7 if nargin<4, sstart=zeros(m,1); end
8 options = optimset('Display','iter','Tolfun',1e-6,'MaxIter',10,...
9 'LevenbergMarquardt','off','LargeScale','on');

10 [s,fval,exitflag]=fsolve(@spe,sstart,options);
11 if exitflag<=0, f=0; Pi=-1; return, end % det(Pi)<0. Signal failure to the caller
12 Pi=poi(s); H=makeH(Pi);
13 f = (2*pi)ˆ(-m/2) * sqrt(det(Omega)) / sqrt(det(H)) * sqrt(det(Pi)) * (trace(Pi))ˆm;
14
15 function f=spe(s)
16 global amat r m n
17 for i=1:m, tt=poi(s) * (amat(:,:,i) - r(i)*eye(n)); f(i)=trace(tt); end
18
19 function Pi = poi(s) % Pi is inverse of matrix P
20 global amat Omega r m n
21 S=zeros(n,n); for i=1:m, S=S+s(i)*amat(:,:,i); end
22 Pi = inv( Omega + 2*r'*s*eye(n) - 2*S );
23
24 function H = makeH(Pi)
25 global amat r m n
26 for i=1:m, for j=i:m
27 tt=Pi*(amat(:,:,i) - r(i)*eye(n))*Pi*(amat(:,:,j) - r(j)*eye(n));
28 H(i,j) = 2*trace(tt); H(j,i) = H(i,j);
29 end, end

Program Listing 8.6: Computes the saddlepoint joint density f̂𝐑m
(𝐫), where 𝐫 is passed as rvec,

based on o.l.s. regression residuals from model (8.14), i.e., 𝐘 ∼ N
(
𝐗𝜷,𝚿−1), with 𝚿−1 passed as

Psiinv. Function makeG is given in Listing 1.2 and makeA is given above in Listing 8.1.
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Figure 8.13 Simulated joint density (based on 500,000 replications) of R1 (x-axis) and R2 (y-axis) with T = 10 and
𝛀 = IT .

Remark ThematrixG used in (8.30) is not unique and can be replaced, for example, byGK, whereK
is a realT × T matrix such thatKK′ = IT ,K′MK=M andGKX=𝟎. Another choice is the (T − k) × T
matrix C associated with the recursive regression residuals, as discussed in Section 1.5. Recall that
CX=𝟎, CC′ = IT−k , and C′C = M.
Certainly, the true distribution ofRm does not depend onwhetherG orC is used, but the saddlepoint

density approximation might when applied in this context through the values of {Al}, l = 1,… ,m,
and also through 𝛀 in the non-null setting. Conveniently, use of G or C yields exactly the same
density calculations, as was verified numerically for numerous cases but remains to be algebraically
proven. ◾

Example 8.2 To examine the accuracy of the approximation under the null setting of white noise,
we compute fR2

and f̂R2
, the joint distribution of R1 and R2, for 𝔼[Yt] known (no regressor case) and

𝔼[Yt] constant but unknown (so X = 𝟏). The very small sample size of T = 10 is used to ensure the
non-normality of the distribution and thus provide a challenge to the quality of the approximation
(recall that both fRm

and f̂Rm
are asymptotically normal). Figure 8.13 shows a contour plot of the true

joint density, obtained via simulation, with and without mean removal, using the Matlab code given
in Listing 8.7.
In both cases, but particularly for the (almost always more relevant) case with mean removal, we

see that the joint density deviates greatly from the asymptotic bivariate normal density. The joint
saddlepoint densities (8.26) for these two cases are shown in the top panel of Figure 8.14, produced
using the code in Listing 8.8. Comparing these to the plots in Figure 8.13, it is clear that the saddlepoint
approximation is quite accurate. Figure 8.14 also shows the case with T = 30. It is closer to, though
still deviates from, its asymptotic T−1∕2N(𝟎, I2) distribution. ◾

Example 8.3 To illustrate the non-null setting, Figure 8.15 shows the s.p.a. (8.26) and the simulated
p.d.f. fR2

corresponding to anAR(1) process with a1 = 0.5, sample sizeT = 10, and constant, unknown
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1 up=500000; T=10; pair=zeros(up,2);
2 for i=1:up, e=randn(T,1); pair(i,:)=sampleacf(e,2,1)'; end
3 [ heights, xycoord ] = hist3(pair,[10,10]);
4 contour(xycoord{1}, xycoord{2}, heights', 9)
5 grid, set(gca,'fontsize',14), axis([-0.7 0.7 -0.7 0.7])

Program Listing 8.7: Generates the left plot in Figure 8.13. Program sampleacf is given in
Listing 8.2. Function hist3 generates the values of a bivariate histogram (and plots it if no output is
specified). The optional second argument is the number of bins of the two dimensions and defaults
to 10 for both. The accuracy of the contour plot can be enhanced by increasing the number of sim-
ulations and the number of bins. The first output of hist3 given by heights is a matrix of values
proportional to the joint p.d.f., and the second output, xycoord, is called a cell structure in Matlab.
In this case, it has two elements, xycoord{1} and xycoord{2}, which are vectors giving the r1
and r2 ordinates of the p.d.f.
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Figure 8.14 Saddlepoint density (8.26) of R1 (x-axis) and R2 (y-axis) for𝛀 = IT and sample sizes T = 10 (top) and
T = 30 (bottom).
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1 T=30; X=ones(T,1); a1=0; a2=0; Psiinv=inv(leeuwAR([a1 a2],T));
2 c1=1; for r1=-0.7:0.1:0.7
3 c2=1; for r2=-0.7:0.1:0.7
4 rvec=[r1 r2]; c1c2=[c1 c2], f(c1,c2)=sacfpdf(rvec,X,Psiinv);
5 c2=c2+1;
6 end
7 c1=c1+1;
8 end
9 contour([-0.7:0.1:0.7],[-0.7:0.1:0.7],f')

10 grid, set(gca,'fontsize',14), axis([-0.7 0.7 -0.7 0.7])

Program Listing 8.8: Code used to compute the plots in Figures 8.14 and 8.15. Program sacfpdf
is given above in Listing 8.6 and leeuwAR is given in Listing 6.1 (recall that leeuwAR returns the
inverse of the variance covariance matrix).
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Figure 8.15 The left graph is saddlepoint density (8.26) of R1 (x-axis) and R2 (y-axis) for T = 10, X = 𝟏 and𝛀
corresponding to an AR(1) model with a1 = 0.5. The right graph is the corresponding density based on 1,000,000
simulations of the SACF (R1, R2). The code in Listing 8.7 was used for the simulation, but with simulated AR(1) time
series instead of i.i.d. normal sequences, produced from the program armasim given in Listing 7.1. In both graphs, the
dotted line to the right of the contour plot is the lower endpoint of the support of R2, based on (8.20). It might happen
in the simulated p.d.f. that the density appears to go beyond the allowed support, but this is just an artifact of Matlab’s
plotting procedure; executing r1=pair(:,1); r2=pair(:,2); sum(r2 <= (2*r1.*r1-1)) yields
precisely zero, i.e., all SACF pairs are in the support𝕴2 given in (8.17).

mean (X = 𝟏). Aswith the null setting, the s.p.a. density appears quite accurate, even for this very small
sample size. ◾

Example 8.4 Another way of judging the accuracy of the s.p.a. density approximation is via the Box
and Pierce (1970) Q-statistic, given byQm = TS, where T is the sample size and S =

∑m
i=1 R2

i . It can be
shown that Qm

asy∼ 𝜒2
m under the null of white noise.4 The transformation from f̂R(m)

to fQm
will involve

an (m − 1)-dimensional integration, which prohibits use of the calculation for even moderatem. For
m = 2, we can proceed as follows.
First let X1 and X2 be continuous random variables with joint pdf fX1,X2

. To derive an expression
for the density of S = X2

1 + X2
2 , start by letting S = X2

1 + X2
2 , Z = X2

1 , X1 = ±
√
Z, and X2 = ±

√
S − Z.

4 A small-sample improvement to the distribution of Qm that is commonly used in practice was given by Ljung and Box
(1978), known as as the Ljung–Box statistic.
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Then, considering each of the four possible sign configurations on the xi,

fS,Z(s, z) = |det J|fX1,X2
(x1, x2)𝕀(−∞,0)(x1)𝕀(−∞,0)(x2) + · · ·

with

J =
(

𝜕x1∕𝜕z 𝜕x1∕𝜕s
𝜕x2∕𝜕z 𝜕x2∕𝜕s

)
=

(
± 1

2
z−1∕2 ⋅

0 ± 1
2
(s − z)−1∕2

)
and, as z and s − z are both positive, all |det J| are the same, namely

|det J| = 1
4
z−1∕2(s − z)−1∕2.

Thus

fS,Z(s, z) =
1
4
z−1∕2(s − z)−1∕2 × [fX1,X2

(−
√
z,−
√
s − z) + · · · ]𝕀(0,s)(z), (8.31)

where the term in brackets has the form f (−,−) + f (−,+) + f (+,−) + f (+,+) and

fS(s) = ∫
s

0
fS,Z(s, z) dz.

Remark For the special case of i.i.d. standard normal random variables, fX1,X2
(x1, x2) = exp{− 1

2
(x21 +

x22)}∕(2𝜋), so that all four terms in (8.31) are the same, yielding

fS,Z(s, z) =
1
4
z−1∕2(s − z)−1∕2 4

2𝜋
e−

1
2
(z+(s−z)) = 1

2𝜋
z−1∕2(s − z)−1∕2e−

1
2
s𝕀(0,s)(z).

Observe that, to compute

I = ∫
s

0
xa(s − x)b dx, s ∈ (0, 1), a, b > 0,

use u = 1 − x∕s (so that x = (1 − u)s and dx = −s du) to get

I = ∫
s

0
xa(s − x)b dx

= −s∫
0

1
((1 − u)s)a(s − (1 − u)s)b du = sa+b+1 ∫

1

0
(1 − u)aub du

= sa+b+1B(b + 1, a + 1), (8.32)

Then,

fS(s) =
1
2𝜋

e−
1
2
s ∫

s

0
z−1∕2(s − z)−1∕2 dz = 1

2𝜋
e−

1
2
sB
(1
2
,
1
2

)
= 1

2
e−

1
2
s𝕀(0,∞)(s),

so that S ∼ Exp(1∕2) and also S ∼ 𝜒2
2 . ◾

In our case here, fS(s) = ∫ min(s,1)
0 fS,Y1

(s, y1) dy1, where

f̂S,Y1
(s, y1) =

1
4
y−1∕21 (s − y1)−1∕2[̂fR1,R2

(−
√
y1,−
√
s − y1) + · · · ], (8.33)
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Figure 8.16 Density of S = R21 + R22 based on (8.33) (solid), simulation (dashed), and asymptotic (dotted). Top panel is
for T = 10; bottom is for T = 30. The decline of the kernel density in the left tail is an artifact of the method; further
simulation reveals that the true density indeed increases upwards.

and the term in square brackets is the sum of the fR1,R2
evaluated at the four sign combinations of the

arguments.
Figure 8.16 shows the density in (8.33) forX=𝟏,𝛀 = I and the two sample sizesT = 10 andT = 30,

overlaid with a kernel density estimate computed from 5,000 simulated replications, as well as the
asymptotic distribution. Even for T = 10, the agreement between the saddlepoint approximation and
the simulated density is extremely high, further indicating the accuracy of (8.26). Nevertheless, for
the more practical sample size of T = 30, the asymptotic distribution is quite accurate as well. ◾

8.1.4 Conditional Distribution Approximation

Interest in this section centers on the distribution of the scalar random variableRm givenRm−1 = rm−1,
where Rm−1 = (R1,… ,Rm−1)′ and rm−1 = (r1,… , rm−1)′. Following the methodology developed
in Barndorff-Nielsen and Cox (1979), Butler and Paolella (1998) derive a conditional double
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saddlepoint density computed as the ratio of two single p.d.f. approximations (8.26), or, with
rm = [r′m−1 rm]

′,

f̂Rm∣Rm−1
(rm | rm−1) =

f̂Rm
(rm)

f̂Rm−1
(rm−1)

(8.34)

=

√√√√|Ĥm−1| |P̂m−1|
2𝜋|Ĥm| |P̂m| (tr{P̂−1

m })m(tr{P̂−1
m−1})

1−m,

where P̂m−1 and Ĥm−1 are the P̂𝛀 and Ĥ𝛀 matrices, respectively, associated with the
(m − 1)-dimensional saddlepoint ŝm−1 of the denominator determined by rm−1, as given in (8.27) and
(8.28), and likewise for P̂m and Ĥm, and explicit dependence on𝛀 has been suppressed. Note that the
denominator in (8.34) does not vary with rm and is just a normalizing constant. For higher accuracy,
it could be replaced by ∫ f̂Rm

, computed by numeric integration.

Example 8.5 The accuracy of (8.34) is more difficult to verify with simulation because we have to
condition on a measure-zero quantity. For the p.d.f. of R2 ∣ R1, this is straightforward to approximate
by simulating pairs (R1,R2) and keeping only those such that R1 ≈ r1; the resulting set of R2 values is
a sample from the distribution of R2 ∣ (R1 = r1). While this is conceptually straightforward for gen-
eral Rm, the amount of simulation required will become prohibitive as m grows. Figure 8.17 shows
fR2∣R1

(r2 ∣ r1) for r1 = 2∕3 (top) and r1 = 1∕3 (bottom) using this method of simulation (dashed lines)
and the s.p.a. (8.34) (solid lines).
Observe how the simulated conditional density involves a tradeoff between the choice of how close

R1 ≈ r1 (we used the interval (2∕3 − 𝜖, 2∕3 + 𝜖) for 𝜖 = 0.0005) and the number of resulting observa-
tions ofR2 that are input into the algorithm to compute the kernel density. (From 100,000 replications,
325 were contained in the interval). As such, it is not clear how accurate the s.p.a. is in this context,
and, as mentioned, it will be more problematic to determine asm increases. ◾

We now turn to the conditional c.d.f. for which we define

𝜏1 = P̂r(R1 < r1) and 𝜏m = P̂r(Rm < rm ∣ Rm−1 = rm−1), m > 1, (8.35)

where P̂r anticipates that these quantities can only be approximated.Whenm = 1, 𝜏1 can be computed
as discussed in Section 8.1.2. Form > 1, the p.d.f. (8.34) can be integrated (and normalized for higher
accuracy) to give the approximation

𝜏m =
∫ℑ′

m
f̂Rm∣Rm−1

(x | rm−1) dx

∫ℑm
f̂Rm∣Rm−1

(x | rm−1) dx
,

where ℑ′
m = ℑm ∩ (−1, rm] andℑm is the conditional support of Rm given Rm−1 = rm−1, as detailed in

Section 8.1.3.1. Using this, the denominator in (8.34) cancels, so that

𝜏m =
∫ℑ′

m
f̂Rm

(rm) dx

∫ℑm
f̂Rm

(rm) dx
, rm = [r′m−1 x]

′. (8.36)
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Figure 8.17 The conditional p.d.f. of R2 given R1 = 2∕3 (top) and R1 = 1∕3 (bottom) for an AR(2) model with constant,
unknownmean (X=𝟏) and parameters a1 = 1.2 and a2 = −0.8. The solid line is the s.p.a. (8.34) and the dashed line is
based on simulation. The Matlab code to generate the plots is developed in Problem 8.4.

While computation of (8.36) is straightforward, it is possible to derive an approximation to the
integral similar in spirit to the Lugannani and Rice (1980) saddlepoint approximation to the c.d.f. of
a univariate random variable. Using the method of Temme (1982) and Barndorff-Nielsen and Cox
(1989, Sec. 3.9), a double saddlepoint c.d.f. approximation is shown in Butler and Paolella (1998) to be

𝜏m = Φ(𝑤0) + 𝜙(𝑤0)
(

1
𝑤0

− 1
𝑣0

)
, (8.37)

for ŝm ≠ 0, where, as usual, Φ and 𝜙 denote the c.d.f. and p.d.f. of the standard normal distribution,
respectively, and

𝑤0 = sgn(̂sm)
√

log(|P̂m|∕|P̂m−1|),
𝑣0 = ŝm(|Ĥm| ∕ |Ĥm−1|) 1

2 [tr(P̂−1
m−1) ∕ tr(P̂−1

m )]m−1.

(8.38)
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See Butler (2007, Sec. 2.3.2) for further discussion on the accuracy of this approximation.This will be
used in Section 9.5 to develop a powerful method of selecting the autoregressive lag order for a given
time series and Xmatrix.

8.2 Theoretical and Sample Partial Autocorrelation Function

Recall that the sth element of the ACF, 𝜌s, measures the correlation between Yt and Yt−s. Themeasure
is unconditional in the sense that it does not condition on any random variables, in particular, those
lying between Yt and Yt−s. Take the zero mean AR(1) model, for example, with Yt = aYt−1 +Ut : It
is clear from the construction of the Yt that, if a ≠ 0, then Y1 and Y3 will not be independent; they
are jointly normally distributed with correlation a2 from (8.2). If, however, we condition on Y2, then
the conditional correlation between Y1 and Y3 will indicate their (linear) association over and above
the association resulting from their mutual relationship with Y2. This is referred to as the partial
autocorrelation at lag s = 2.

8.2.1 Partial Correlation

Recall that Y is an (n-variate, non-degenerate) multivariate normal random variable if its density is
given by

fY(y) =
1|𝚺|1∕2(2𝜋)n∕2 exp{−1

2
((y − 𝝁)′𝚺−1(y − 𝝁))

}
, (8.39)

denoted Y ∼ N(𝝁,𝚺), where 𝝁 = (𝜇1,… , 𝜇n)′ ∈ ℝn and 𝚺 > 0 with (ij)th element 𝜎ij, 𝜎2
i ∶= 𝜎ii. The

mean is 𝝁 = 𝔼[X] ∶= 𝔼[(X1,… ,Xn)′], and the variance covariance matrix is given by

𝚺 = 𝕍 (X) ∶= 𝔼[(X − 𝝁)(X − 𝝁)′] =

⎡⎢⎢⎢⎢⎣
𝜎2
1 𝜎12 · · · 𝜎1n

𝜎21 𝜎2
2 𝜎2n

⋮ ⋱ ⋮

𝜎n1 𝜎n2 𝜎2
n

⎤⎥⎥⎥⎥⎦
.

With A ∈ ℝm×n a full rank matrix withm ⩽ n, the set of linear combinations

L = (L1,… , Lm)′ = AY ∼ N(A𝝁,A𝚺A′),

using the fact that 𝕍 (AX + b) = A𝚺A′, and A𝚺A′ > 0.
Now suppose that Y = (Y1,… ,Yn)′ ∼ N(𝝁,𝚺) is partitioned into two subvectors Y = (Y′

(1),Y
′
(2))

′,
where Y(1) = (Y1,… ,Yp)′ and Y(2) = (Yp+1,… ,Yn)′ with 𝝁 and 𝚺 partitioned accordingly such that
𝔼[Y(i)] = 𝝁(i), 𝕍 (Y(i)) = 𝚺ii, i = 1, 2, and Cov(Y(1),Y(2)) = 𝚺12, i.e., 𝝁 = (𝝁′

(1),𝝁
′
(2))

′ and

𝚺 =

[𝚺11 ⋮ 𝚺12…………
𝚺21 ⋮ 𝚺22

]
, 𝚺21 = 𝚺′

12.

Using the previous partition notation, two very important properties of the multivariate normal
distribution are as follows.

1. Y(1) and Y(2) are independent iff 𝚺12 = 𝟎, i.e., zero correlation implies independence.
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2. The conditional distribution of Y(1) given Y(2) is normal. In particular, if 𝚺22 > 0 (which is true if
𝚺 > 0), then

(Y(1) ∣ Y(2) = y(2)) ∼ N
(
𝝁(1) + 𝚺12𝚺−1

22 (y(2) − 𝝁(2)), 𝚺11 − 𝚺12𝚺−1
22𝚺21
)
. (8.40)

Example 8.6 Let

Y =
⎡⎢⎢⎣
Y1
Y2
Y3

⎤⎥⎥⎦ ∼ N(𝝁, 𝚺), 𝝁 =
⎡⎢⎢⎣
2
1
0

⎤⎥⎥⎦ , 𝚺 =
⎡⎢⎢⎣
2 1 1
1 3 0
1 0 1

⎤⎥⎥⎦ .
Because det(𝚺) = 2 ≠ 0, Y is not degenerate. To derive the distribution of Y2 ∣ (Y1,Y3), first rewrite
the density as⎡⎢⎢⎣

Y2
Y1
Y3

⎤⎥⎥⎦ ∼ N
([

𝜇(1)
𝝁(2)

]
,

[
Σ11 𝚺12
𝚺21 𝚺22

])
,

where 𝜇(1) and Σ11 are scalars, with

[
𝜇(1)
𝝁(2)

]
=
⎡⎢⎢⎢⎣

1
· · ·
2
0

⎤⎥⎥⎥⎦ ,
[

Σ11 𝚺12
𝚺21 𝚺22

]
=
⎡⎢⎢⎣
3 1 0
1 2 1
0 1 1

⎤⎥⎥⎦ .
Then, from (8.40),

Y2 ∣ (Y1,Y3) ∼ N
(
𝜇(1) + 𝚺12𝚺−1

22 (y(2) − 𝝁(2)), Σ11 − 𝚺12𝚺−1
22𝚺21
)
,

i.e., substituting and simplifying,

𝔼[Y2 ∣ (Y1,Y3)] = 𝜇(1) + 𝚺12𝚺−1
22 (y(2) − 𝝁(2))

= 1 +
[
1 0

] [ 2 1
1 1

]−1([ y1
y3

]
−
[
2
0

])
= y1 − y3 − 1

and

𝕍 (Y2 ∣ (Y1,Y3)) = Σ11 − 𝚺12𝚺−1
22𝚺21

= 3 −
[
1 0

] [ 2 1
1 1

]−1 [ 1
0

]
= 2,

so that Y2 ∣ (Y1,Y3) ∼ N(y1 − y3 − 1, 2). ◾

Let Y = (Y1,Y2,… ,Yn)′ ∼ N(𝝁,𝚺), with 𝚺 > 0 and, as usual, the (ij)th element of 𝚺 denoted by 𝜎ij.
Let indices i and j be such that 1 ⩽ i < j ⩽ n. LetY(1) = (Yi,Yj)′ andY(2) = Y\Y(1), i.e.,Y(2) isY but with
the elements Yi and Yj removed. Let 𝚺11 = 𝕍 (Y(1)), 𝚺22 = 𝕍 (Y(2)), and 𝚺12 = 𝚺′

21 = Cov(Y(1),Y(2)), so
that, with Y∗ = (Y′

(1),Y
′
(2))

′ = (Yi,Yj,Y′
(2))

′,

𝕍 (Y∗) =
[

𝚺11 𝚺12
𝚺21 𝚺22

]
.
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Using (8.40), let C be the 2 × 2 conditional covariance matrix given by

C =
[

𝜎ii∣Y(2)
𝜎ij∣Y(2)

𝜎ji∣Y(2)
𝜎jj∣Y(2)

]
= 𝚺11 − 𝚺12𝚺−1

22𝚺21 .

The partial correlation of Yi and Yj, given Y(2), is defined by

𝜌ij∣Y(2)
= 𝜌ij∣({1,2,…,n}\{i,j}) =

𝜎ij∣Y(2)√
𝜎ii∣Y(2)

𝜎jj∣Y(2)

=
𝜎ij∣Y(2)√
𝜎2
i∣Y(2)

𝜎2
j∣Y(2)

. (8.41)

Example 8.7 (Example 8.6 cont.) To compute 𝜌13∣2, first write

⎡⎢⎢⎣
Y1
Y3
Y2

⎤⎥⎥⎦ ∼ N
([

𝝁(1)
𝜇(2)

]
,

[
𝚺11 𝚺12
𝚺21 Σ22

])
,

where

[
𝝁(1)
𝜇(2)

]
∶= 𝔼
⎡⎢⎢⎢⎣
Y1
Y3
· · ·
Y2

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝜇1
𝜇3
· · ·
𝜇2

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

2
0
· · ·
1

⎤⎥⎥⎥⎦
and

[
𝚺11 𝚺12
𝚺21 Σ22

]
∶= 𝕍
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
Y1
Y3
· · ·
Y2

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ =
⎡⎢⎢⎣
𝜎11 𝜎13 𝜎12
𝜎31 𝜎33 𝜎32
𝜎21 𝜎23 𝜎22

⎤⎥⎥⎦ =
⎡⎢⎢⎣
2 1 1
1 1 0
1 0 3

⎤⎥⎥⎦ ,
so that

C = 𝚺11 − 𝚺12𝚺−1
22𝚺21 =

[
2 1
1 1

]
−
[
1
0

] [
3
]−1 [ 1 0

]
=
[

5∕3 1
1 1

]
and

𝜌13∣(2) =
1√

5∕3 ⋅ 1
=
√
3∕5.

In general terms,

C = 𝚺11 − 𝚺12𝚺−1
22𝚺21

=
[

𝜎11 𝜎13
𝜎31 𝜎33

]
−
[
𝜎12
𝜎32

] [
𝜎22
]−1 [

𝜎12 𝜎32
]

=
[

𝜎11 − 𝜎2
12∕𝜎22 𝜎13 − 𝜎12𝜎32∕𝜎22

𝜎31 − 𝜎32𝜎12∕𝜎22 𝜎33 − 𝜎2
32∕𝜎22

]
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and

𝜌13∣(2) =
𝜎13 − 𝜎12𝜎32∕𝜎22√

(𝜎11 − 𝜎2
12∕𝜎22) (𝜎33 − 𝜎2

32∕𝜎22)
=

𝜎22𝜎13 − 𝜎12𝜎32√
𝜎22𝜎11 − 𝜎2

12

√
𝜎22𝜎33 − 𝜎2

32

=
𝜎22𝜎13 − 𝜎12𝜎32√

𝜎22𝜎11

(
1 −

𝜎2
12

𝜎22𝜎11

)√√√√ 𝜎22𝜎33

(
1 −

𝜎2
32

𝜎22𝜎33

) ,

or

𝜌13∣(2) =
𝜎22𝜎13 − 𝜎12𝜎32√

𝜎22𝜎11𝜎22𝜎33

√
(1 − 𝜌212)(1 − 𝜌223)

=

𝜎13√
𝜎11𝜎33

−
𝜎12√
𝜎22𝜎11

𝜎32√
𝜎22𝜎33√

(1 − 𝜌212)(1 − 𝜌223)

=
𝜌13 − 𝜌12𝜌23√

(1 − 𝜌212)(1 − 𝜌223)
. (8.42)

Using the previous numbers, 𝜌13 = 1∕
√
2, 𝜌12 = 1∕

√
6, and 𝜌23 = 0, so that (8.42) gives

𝜌13∣(2) =
𝜌13 − 𝜌12𝜌23√

(1 − 𝜌212)(1 − 𝜌223)
=

1∕
√
2√

(1 − (1∕
√
6)2)

=
√

3
5
,

as before. ◾

Example 8.8 Let Y = (Y1,… ,Y4)′ ∼ N(𝟎,𝚺) with

𝚺 = 1
1 − a2

⎡⎢⎢⎢⎣
1 a a2 a3
a 1 a a2
a2 a 1 a
a3 a2 a 1

⎤⎥⎥⎥⎦
for a value of a such that |a| < 1, so that⎡⎢⎢⎢⎢⎣

Y1
Y3
Y4
Y2

⎤⎥⎥⎥⎥⎦
∼ N(𝟎,𝛀), 𝛀 = 1

1 − a2

⎡⎢⎢⎢⎢⎣
1 a2 a3 a
a2 1 a a
a3 a 1 a2

a a a2 1

⎤⎥⎥⎥⎥⎦
.

Then, with the appropriate partitions for 𝝁 and 𝛀,

(Y1,Y3,Y4 ∣ Y2)′ ∼ N(𝝂, C),

where

𝝂 = 𝝁(1) +𝛀12Ω−1
22 (y(2) − 𝜇(2)) =

⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦ +
⎡⎢⎢⎣
a
a
a2

⎤⎥⎥⎦ [1]−1(y2 − 0) =
⎡⎢⎢⎣
ay2
ay2
a2y2

⎤⎥⎥⎦
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and

C =𝛀11 −𝛀12Ω−1
22𝛀21

= 1
1 − a2

⎡⎢⎢⎢⎣
1 a2 a3

a2 1 a
a3 a 1

⎤⎥⎥⎥⎦ −
1

1 − a2

⎡⎢⎢⎢⎣
a
a
a2

⎤⎥⎥⎥⎦ [1]
−1 [ a a a2

]

= 1
1 − a2

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
1 a2 a3

a2 1 a
a3 a 1

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣
a2 a2 a3

a2 a2 a3

a3 a3 a4

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

= 1
1 − a2

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
1 − a2 0 0

0 1 − a2 a − a3

0 a − a3 1 − a4

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ =
⎡⎢⎢⎢⎣
1 0 0
0 1 a
0 a a2 + 1

⎤⎥⎥⎥⎦ . (8.43)

It follows that

𝜌13∣(2) =
𝜎13∣(2)√

𝜎11∣(2) 𝜎33∣(2)

= 0
1
= 0, 𝜌14∣(2) =

𝜎14∣(2)√
𝜎11∣(2) 𝜎44∣(2)

= 0√
1 + a2

= 0

and

𝜌34∣(2) =
𝜎34∣(2)√

𝜎33∣(2) 𝜎44∣(2)

= a√
1 + a2

. (8.44)

Equivalently, from (8.42),

𝜌13∣(2) =
𝜌13 − 𝜌12𝜌23√

(1 − 𝜌212)(1 − 𝜌223)
=

𝜌2 − 𝜌1𝜌1√
(1 − 𝜌21)(1 − 𝜌21)

= a2 − a2
1 − a2

= 0,

because 𝜌13 = Corr(Yt,Yt−2) = 𝜌2 = a2 and 𝜌12 = 𝜌23 = Corr(Yt,Yt−1) = 𝜌1 = a. That is, Yt and Yt−2
are conditionally uncorrelated after having taken into account their correlation with Yt−1. Observe
how it was critical to condition on the observation(s) between the two random variables of interest.
Conditional on Y2, Y3 = (aY2 +U3) ∼ N(aY2, 𝜎

2) and

Y4 = aY3 +U4 = a(aY2 +U3) +U4 = (a2Y2 + aU3 +U4) ∼ N(a2Y2, 𝜎
2(a2 + 1)).

The covariance between Y3 and Y4 conditional on Y2 is then, from basic principles,

𝜎34∣(2) = Cov(Y3,Y4 ∣ Y2) = 𝔼[(Y3 − 𝔼[Y3 ∣ Y2])(Y4 − 𝔼[Y4 ∣ Y2]) ∣ Y2]

= 𝔼[(Y3 − aY2)(Y4 − a2Y2) ∣ Y2] = 𝔼[Y3Y4 − Y3a2Y2 − aY4Y2 + a3Y 2
2 ∣ Y2]

= 𝔼[(aY2 + U3)(a2Y2 + aU3 +U4) ∣ Y2]

−𝔼[Y3a2Y2 ∣ Y2] − 𝔼[aY4Y2 ∣ Y2] + 𝔼[a3Y 2
2 ∣ Y2]

= a3Y 2
2 + a𝜎2 − a2Y2aY2 − aY2a2Y2 + a3Y 2

2 = a𝜎2,
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so that the conditional correlation is given by

𝜌34∣(2) = Corr(Y3,Y4 ∣ Y2) =
Cov(Y3,Y4 ∣ Y2)√

𝕍 (Y3 ∣ Y2)𝕍 (Y4 ∣ Y2)
= a𝜎2√

𝜎2𝜎2(a2 + 1)
= a√

1 + a2
,

which is only zero if a = 0 (in which case all the observations are i.i.d.). Note that this expression for
𝜌34∣(2) agrees with the derivation in (8.44). ◾

8.2.2 Partial Autocorrelation Function

Above we said that the partial autocorrelation at s = 2 is the conditional correlation between Y1 and
Y3 “over and above the association resulting from their mutual relationship with Y2.” This informal
statement is now made more precise, so that we can define the theoretical partial autocorrelation
function, or TPACF.

8.2.2.1 TPACF: First Definition
Let X = (X1,… ,Xn)′ have zero mean and full rank covariance matrix 𝚺. For a constant integer p, 1 <

p < n, define X(1) = (X1,… ,Xp)′ and X(2) = (Xp+1,… ,Xn)′. Let  be the subspace of all linear combi-
nations of the subsetX(2). (For our purposes here,Xwill be a rearrangement of a subset of time series
Y = (Y1,… ,YT ), which has a joint multivariate normal distribution, such as was done in Examples
8.7 and 8.8.) By the ProjectionTheorem 1.1, each Xi, i = 1,… , p, can be expressed as

Xi = Xi,1 + Xi,2 , where Xi,2 ∈  , Xi,1 ∈ ⟂.

In particular, there exists a real vector of coefficients a′i for each Xi,2 such that Xi,2 = a′iX
(2), i.e.,

⎛⎜⎜⎜⎝
X1,2

⋮

Xp,2

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
a′1
⋮

a′p

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
Xp+1

⋮

Xn

⎞⎟⎟⎟⎠ =∶ AX(2)
. (8.45)

Because of the orthogonality,

𝚺12 = Cov(X(1),X(2)) = Cov
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
X1,1

⋮

Xp,1

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
X1,2

⋮

Xp,2

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
Xp+1

⋮

Xn

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

= Cov
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
X1,2

⋮

Xp,2

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
Xp+1

⋮

Xn

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ = Cov(AX(2)

,X(2)) = A𝚺22 .

Thus, A=𝚺12𝚺−1
22 and, from (8.45),

𝕍
⎛⎜⎜⎜⎝
X1,2

⋮

Xp,2

⎞⎟⎟⎟⎠ = 𝕍 (AX(2)) = A𝚺22A′ = 𝚺12𝚺−1
22𝚺22𝚺−1

22𝚺
′
12 = 𝚺12𝚺−1

22𝚺21 .
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Problem 8.5 verifies that

𝚺11 = 𝕍
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
X1,1

⋮

Xp,1

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
X1,2

⋮

Xp,2

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ = 𝕍

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
X1,1

⋮

Xp,1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ + 𝕍

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
X1,2

⋮

Xp,2

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ , (8.46)

from which it follows that

𝕍
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
X1,1

⋮

Xp,1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ = 𝚺11 − 𝕍

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
X1,2

⋮

Xp,2

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ = 𝚺11 − 𝚺12𝚺−1

22𝚺21 .

Recalling the definition of partial correlation in (8.41), this shows that, for 1 ⩽ i < j ⩽ p,

Cov(Xi,1,Xj,1) = 𝜌ij∣(p+1,…,n), (8.47)

i.e., that 𝜌ij∣(p+1,…,n) is the correlation coefficient of the residuals of Xi and Xj after removing the parts
of Xi and Xj that lie in  .
The theoretical partial autocorrelation function, or TPACF, is given by the set of coefficients

(𝛼11, 𝛼22,… , 𝛼mm), where typical element 𝛼ss is defined to be the partial correlation between Yt and
Yt−s conditional on the Yi between the two, i.e., 𝛼11 = 𝜌1 and

𝛼ss = 𝜌t,t−s∣(t−1,…,t−s+1) = 𝜌1,1+s∣(2,…,s), s > 1. (8.48)

8.2.2.2 TPACF: Second Definition
In light of the projection theory result (8.47) and the implications of Example 1.9, an equivalent def-
inition of element 𝛼ss is the last coefficient in a linear projection of Yt on its most recent s values,
i.e.,

Ŷt = 𝛼s1Yt−1 + 𝛼s2Yt−2 + · · · + 𝛼ssYt−s. (8.49)

This definition explains the use of the double subscript on 𝛼.
For the AR(1) model, this implies that 𝛼11 = 𝜌1 = a and 𝛼ss = 0, s > 1. When this PACF is plot-

ted as correlogram, it will look like those in Figure 8.1 but with only the first spike; the others are
zero. For the AR(p) model, this implies that 𝛼ss = 0 for s > p. Figure 8.18 is the PACF counterpart to
Figure 8.2. Notice how the value of the last nonzero “spike” is always equal to the value of the last
nonzero autocorrelation coefficient.
The definition (8.49) can also be viewed as resulting from the computation of regression (6.32) for an

infinite sample size. But asymptotically, the matrices in (6.32) approach the theoretical counterparts
illustrated in the Yule–Walker equations (6.34). Thus, 𝛼ss can be computed by solving the system of
equations

⎡⎢⎢⎢⎢⎣
𝜌1

𝜌2

⋮

𝜌s

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝜌0 𝜌1 · · · 𝜌s−1

𝜌1 ⋱ ⋱ ⋮

⋮ 𝜌1

𝜌s−1 𝜌s−2 · · · 𝜌0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝛼s1

𝛼s2

⋮

𝛼ss

⎤⎥⎥⎥⎥⎦
=∶ Cs

⎡⎢⎢⎢⎢⎣
𝛼s1

𝛼s2

⋮

𝛼ss

⎤⎥⎥⎥⎥⎦
, (8.50)
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Figure 8.18 TPACF of the stationary AR(3) model with parameters a = (a1, a2, a3) = (0.4,−0.5,−0.2) (top left),
a = (1.2,−0.8, 0) (top right), a = (−0.03, 0.85, 0) (bottom left), and a = (1.4,−0.2,−0.3) (bottom right).

where Cs is so defined.The 𝜌i could be obtained from (6.20) for a pure AR process, or from (7.21) and
(7.23) for an ARMA process. In fact, because only value 𝛼ss is required from (8.50), Cramer’s rule (see,
e.g., Trench, 2003, p. 374; or Munkres, 1991, p. 21) can be used, i.e.,

𝛼ss =
∣ C∗

s ∣
∣ Cs ∣

, s = 1, 2,… , (8.51)

where matrix C∗
s is obtained by replacing the last column of matrix Cs by the column vector

(𝜌1, 𝜌2,… , 𝜌s)′, i.e.,

C∗
s =

⎡⎢⎢⎢⎢⎢⎢⎣

1 𝜌1 · · · 𝜌s−2 𝜌1
𝜌1 1 𝜌s−3 𝜌2
𝜌2 𝜌1 𝜌s−4 𝜌3
⋮ ⋮ ⋮

𝜌s−2 1 𝜌s−1
𝜌s−1 𝜌s−2 · · · 𝜌1 𝜌s

⎤⎥⎥⎥⎥⎥⎥⎦
.

Applying (8.51), the first three terms of the PACF are given by

𝛼11 =
∣ 𝜌1 ∣|1| = 𝜌1, 𝛼22 =

|||| 1 𝜌1
𝜌1 𝜌2

|||||||| 1 𝜌1
𝜌1 1

||||
=

𝜌2 − 𝜌21

1 − 𝜌21
, (8.52)
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and

𝛼33 =

||||||
1 𝜌1 𝜌1
𝜌1 1 𝜌2
𝜌2 𝜌1 𝜌3

||||||||||||
1 𝜌1 𝜌2
𝜌1 1 𝜌1
𝜌2 𝜌1 1

||||||
=

𝜌3 + 𝜌1𝜌2(𝜌2 − 2) − 𝜌21(𝜌3 − 𝜌1)
(1 − 𝜌2) − (1 − 𝜌2 − 2𝜌21)

. (8.53)

Notice that, for an AR(1) model with parameter a, the numerator of the expression for 𝛼22 is zero, and
for 𝛼33 the numerator simplifies to a3 + a5 − 2a3 − a3(a2 − 1) = 0. For an AR(2) process with param-
eters a1 and a2, the 𝜌i are given in (6.18), with 𝜌3 = a1𝜌2 + a2𝜌1. A symbolic computing package such
as Maple can then be used to verify that the numerator of 𝛼33 is identically zero.

8.2.2.3 Sample Partial Autocorrelation Function
The sample partial ACF, or SPACF, is just the finite sample counterpart of the theoretical PACF. For
its computation, (8.51) can be used with the sample values 𝜌i, though a computationallymore efficient
method of computing the 𝛼ss from a set of correlations is given by the so-called Durbin–Levinson
algorithm; see, e.g., Brockwell and Davis (1991) and Pollock (1999) for clear derivations and original
references. A matrix-based implementation of this is given in Listing 8.9.
Alternatively (but not equivalent numerically for finite samples), the regression method based on

(8.49) and fitting the coefficientswith least squares can be used.Matlab’s functionparcorr computes
it this way. Recall Examples 1.1 and 1.9 on the Frisch–Waugh–Lovell theorem. In particular, as we are
interested in only one of the coefficients, it can be expressed as the ratio of quadratic forms in (1.23),
and is thus amenable to eliciting its small-sample distribution. The small-sample distribution of the
joint density of the SPACF can be obtained by transforming the density of the SACF; see Butler and
Paolella (1998) and the references therein for details on the required Jacobian. It can be shown that,
for i.i.d. normal data (and other uncorrelated processes that relax the normality assumption), T1∕2𝛼ii
is asymptotically standard normal; see, e.g., Priestley (1981) and Brockwell and Davis (1991).
The SPACF for the time series that were used in generating the SACFs in Figure 8.3 are shown

in Figure 8.19. The dashed lines indicate asymptotic 95% c.i.s for the individual spikes assuming a
white-noise model.

1 function pacf = pacfcomp(acf)
2 n=length(acf); acf1 = acf(2:n); n=n-1;
3 [t,p] = chol(toeplitz(acf(1:n)));
4 if p>0, q=p-1; else q=n; end
5 r = acf1(1:q);
6 for k=1:q
7 r(k) = r(k)/t(k,k);
8 if k<q, r((k+1):q) = r((k+1):q) - t(k,(k+1):q)'*r(k); end
9 end

10 pacf = r./diag(t);
11 if p>0, pacf((q+1):n) = zeros((n-q),1); end

Program Listing 8.9: Computes the SPACF based on the SACF, using the Cholesky decomposition
of the sample correlation matrix; see, e.g., Pourahmadi (2001, Ch. 7).
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Figure 8.19 The SPACFs of the four simulated AR(1) time series with a = 0.5 and T = 50 as were used in Figure 8.3.

Example 8.9 Consider the AR(5) process with parameters a1 = 1.1, a2 = 0, a3 = −0.6, a4 = 0, and
a5 = 0.4. In this case, some of the coefficients are zero; this is referred to as a subset autoregressive
model. The ACF and PACF are shown in Figure 8.20. Observe that it is not the case that the second
and fourth spikes in the PACF are zero, but only that it cuts off after lag 5. ◾

Recall from (6.44) that 𝜌1 for anMA(1)model has a supremumof 1/2. As such, the ACF of anMA(1)
process will have a single spike at lag 1 bounded by 1/2, and all other spikes are zero. Knowing that the
ACF spikes corresponding to a (stationary) AR(p)model are nonzero and exponentially decay after lag
p, it might appear strange that theMA(1) model, which, from (6.39), can be represented as an infinite
AR, has correlations (6.44). This apparent paradox is explained by noting the special structure of the
AR coefficients in (6.39). When chosen exactly in such a way, the correlation structure (6.44) arises.
Regarding the PACF, one might think that, on the one hand, as the MA(1) can be expressed as

an AR(∞), the PACF should never cut off; or that, on the other hand, because the unconditional
correlation is zero after lag 1, the PACF should also be zero after lag one. To directly see that the latter
is wrong, note that, either from the partial correlation in (8.42) with 𝜌ij = Corr(Yi,Yj) or directly from
the latter expression in (8.52),

𝛼22 = 𝜌13∣(2) =
𝜌13 − 𝜌12𝜌23√

(1 − 𝜌212)(1 − 𝜌223)
=

𝜌2 − 𝜌1𝜌1√
(1 − 𝜌21)(1 − 𝜌21)

=
𝜌2 − 𝜌21

1 − 𝜌21

or, recalling (6.44),

𝛼22 =
−
(

b
1+b2

)2
1 −
(

b
1+b2

)2 = −b2
1 + b2 + b4

.
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Figure 8.20 The theoretical ACF (top) and PACF (bottom) of the subset AR(5) model with a1 = 1.1, a3 = −0.6, and
a5 = 0.4.

From (8.52), 𝛼33 = b3∕(1 + b2 + b4 + b6) which, for b = 0.5, is 8∕85. The pattern for 𝛼kk suggests that

𝛼kk =
(−b)k(b2 − 1)
1 − b2(k+1)

,

which is indeed true; see, e.g., Brockwell and Davis (1991, Sec. 3.4). Figure 8.21 plots the theoretical
ACF and PACF corresponding to theMA(1) model with b = 0.5, so that 𝜌1 = 0.4, showing that, while
the ACF cuts off after lag 1, the PACF dies out exponentially. Similarly, for an MA(q) process, (6.50)
implies that the TACF cuts off after lag q. But, just as in the MA(1) case, the TPACF for an MA(q)
process with q ⩾ 1 does not cut off and dies off exponentially instead.

Remark Students sometimes have difficulty explaining exactly why the ACF cuts off but the PACF
does not for MA(q) models. To help understand this more fully, note that a regression of Yt − c onto
Yt−2 − c (for an infinite sample size) would yield a value of zero because Yt and Yt−2 are uncorrelated.
However, now taking c = 0 for simplicity, in the regression of Yt on Yt−1 and Yt−2, it is not the case that
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Figure 8.21 The theoretical ACF (top) and PACF (bottom) for the MA(1) model with b = 0.5.

the coefficient of Yt−2 will be zero because regressors Yt−1 and Yt−2 are correlated and Yt is correlated
with Yt−1.
To verify this outside of a time series context, let

⎛⎜⎜⎝
Y
X1
X2

⎞⎟⎟⎠ ∼ N(𝟎, 𝚺), 𝚺 =
⎡⎢⎢⎢⎣
𝜎2
1 𝜎12 0

𝜎12 𝜎2
2 𝜎23

0 𝜎23 𝜎2
3

⎤⎥⎥⎥⎦ , (8.54)

for 𝜎12 and 𝜎23 nonzero (and, of course, such that 𝚺 > 0). Then Cov(Y ,X1) ≠ 0, Cov(X1,X2) ≠ 0, but
Cov(Y ,X2) = 0. By simulating a large sample from this multivariate normal density, we can (i) regress
the values of Y onto those of X1 and should find a nonzero coefficient, (ii) regress Y onto X2 and
should find a zero coefficient, and (iii) regress Y onto both X1 and X2 and should find both regression
coefficients to be nonzero. The code in Listing 8.10 performs this with a “data set” of one million
observations, and confirms the claim. ◾
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1 s1=1; s2=1; s3=1; s12=0.4; s23=-0.7; S=[s1ˆ2 s12 0; s12 s2ˆ2 s23; 0 s23 s3ˆ2]
2 [V,D]=eig(S); C=V*sqrt(D)*V'; T=1e6; z=randn(3,T); N=(C*z)';
3 cov(N) % just as a check: It should be approx S
4 Y=N(:,1); X1=N(:,2); X2=N(:,3);
5 inv(X1'*X1)*X1'*Y % should be nonzero
6 inv(X2'*X2)*X2'*Y % should be zero
7 inv(X'*X)*X'*Y % both coefficients should be nonzero!

Program Listing 8.10: Simulates from (8.54) and computes regression coefficients.

Summing up, for a (stationary) AR(p) process, p ⩾ 1, the TACF decays exponentially,5 but the
TPACF “cuts off” after the pth spike, i.e., it is zero. Matters are reversed for an MA(q) process: The
TACF cuts off after the qth spike, while the TPACF is nonzero and decays exponentially.
For an ARMA(p, q) process with p > 0 and q > 0, neither the TACF or the TPACF cut off. The

practical side of this result is that the sample ACF and PACF can be inspected and, if one of them
appears to “cut off”, then p and q can be guessed. Of course, in practice, with real data that may not
even be from a stationary model, let alone a stationary ARMAmodel, let alone a pure AR or pureMA
model, matters are not always so clear cut.

8.3 Problems

Problem 8.1 Write a program that computes the values in Figures 8.6 and 8.7, i.e., computes the
first two raw moments of Rs based on o.l.s. residuals for a given X matrix, and such that the true
residuals have a given ARMA covariance matrix.

Problem 8.2 Show (8.20) and (8.21).

Problem 8.3 Let Yt follow the AR(2) model Yt = 1.2Yt−1 − 0.8Yt−2 +Ut , where Ut
i.i.d.∼ N(0, 𝜎2) and

𝜎 > 0. For the SACF, show that

Wcorr =
⎡⎢⎢⎣

1 ⋅ ⋅
0.873 1 ⋅
0.531 0.865 1

⎤⎥⎥⎦
and, asymptotically,(

R1 − 2∕3
R2 − 0

)
∼ N
[(

0
0

)
,T−1
(

0.0617 0.1481
0.4667

)]
.

Similar to Example 8.3, calculate and plot contour plots of the simulated and saddlepoint densities
for T = 20 and X=𝟏, and also the asymptotic distribution.

Problem 8.4 Write a Matlab program to generate the plots in Figure 8.17.

5 It is, however, not true that all the spikes are nonzero. As an example, for the AR(2) model with a1 = 1.2 and a2 = −0.8,
𝜌2 = 0. See Figure 8.2.
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Problem 8.5 Verify (8.46). It is enough to take p = 2.

Problem 8.6 Assume that Y = X𝜷 + 𝝐, with 𝝐 ∼ N(𝟎, 𝜎2I), and X full rank, of size T × k. Let
R̆1,… , R̆m be the elements of the SACF computed from the regression residuals based on X, but
using the recursive residuals, as discussed in Section 1.5. That is,

R̆s =
�̂�
′As�̂�

�̂�
′
�̂�

,

whereAs is given in (8.9), but is of size (T − k) × (T − k), and �̂� = CY = C𝝐 are the T − k recursive
residuals. Show analytically that the density of R̆s is symmetric about zero. Verify this computation-
ally by comparing FR̆s

(z) with 1 − FR̆s
(−z) over a grid of z values. Similarly, show computationally

that the Rs, i.e., the SACF elements based on the usual regression residuals, are not symmetric
about their mean (which is nonzero).

8.A Appendix: Solutions

Solution to Problem 8.1 There are two ways of setting up the ratio of quadratic forms pertaining
to Rs such that program sawa in in Listing B.4 can be used. Common to both is to write

Rs =
�̂�
′As�̂�

�̂�
′
�̂�

=
𝝐′M′AsM𝝐

𝝐′M′M𝝐
=

𝝐′MAsM𝝐

𝝐′M𝝐
,

as in (B.22). The first way uses the Cholesky decomposition of the variance–covariance matrix to
get

Rs =
𝝐′𝚺−1∕2𝚺1∕2MAsM𝚺1∕2𝚺−1∕2𝝐

𝝐′𝚺−1∕2𝚺1∕2M𝚺1∕2𝚺−1∕2𝝐
= W′AW

W′BW
,

where W = 𝚺−1∕2𝝐 ∼ NT (𝟎, I), A = 𝚺1∕2MAsM𝚺1∕2, and B = 𝚺1∕2M𝚺1∕2. The program in
Listing 8.11 implements this when the value the_method is set to 1.

The second way is the rest of (B.22), i.e.,

Rs =
𝝐′G′GAsG′G𝝐

𝝐′G′G𝝐
=

Z′ÃsZ
Z′Z

,

where Ãs = GAsG′ is (T − k) × (T − k), but now Z = G𝝐 ∼ NT−k(𝟎,G𝚺G′). Listing 8.11 imple-
ments this when the value the_method is set to any other value than 1. In this case, the Matlab
variable A refers to the numerator matrix of the quadratic form, and is the matrix Ãs, while the
denominator matrix is just the T − k identity matrix.

The reader should verify that these two methods indeed yield identical numerical values for the
moments of Rs.

Solution to Problem 8.2 Form = 2,

W =
[
1 r1
r1 1

]−1
= 1

1 − r21

[
1 −r1
−r1 1

]
, 𝑣 =

[
r2
r1

]
,
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1 function [mu,mom2]=sacfmom(X,Sigma,svec)
2 mu=zeros(length(svec),1); mom2=mu; T=length(Sigma);
3 if isempty(X)
4 M=eye(T); k=0;
5 else
6 M=eye(T)-X*inv(X'*X)*X'; [garb,k]=size(X);
7 end;
8 the_method=1; % set either to 1, or something else.
9 if the_method==1

10 [V,D]=eig(0.5*(Sigma+Sigma')); Q = V*sqrt(D)*V';
11 for j=1:length(svec)
12 s=svec(j); A=Q'*M*makeA(T,s)*M*Q; B=Q'*M*Q;
13 if nargout==1, mu(j)=sawa(A,B,eye(T));
14 else, [s1,s2]=sawa(A,B,eye(T)); mu(j)=s1; mom2(j)=s2;
15 end
16 end
17 else
18 if isempty(X), G=eye(T); else G=makeG(X); end
19 varcov=G*Sigma*G';
20 for j=1:length(svec)
21 s=svec(j); A=G*makeA(T,s)*G';
22 if nargout==1, mu(j)=sawa(A,eye(T-k),varcov);
23 else, [s1,s2]=sawa(A,eye(T-k),varcov); mu(j)=s1; mom2(j)=s2;
24 end
25 end
26 end
27
28 function A=makeA(T,m) % A = 0.5 * 1( |i-j| = m)
29 v=zeros(T,1); v(m+1)=1; A=0.5*toeplitz(v,v');

Program Listing 8.11: Returns the first two raw moments of Rs based on regression residuals with
full rank T × k design matrix𝐗. For no𝐗matrix, pass the empty matrix [ ]. The function parameter
svec is a vector of s values and Sigma is the covariance matrix of the true residuals, usually from
an ARMA process, as computed via program leeuwARMA in Listing 7.5. Program sawa is given in
Listing B.4.

so that

A = − 1
1 − r21

, B = −2
−r1
1 − r21

r1, C = 1 − 1
1 − r21

r1r1,

and the roots of Ar22 + Br2 + C are (−B ±
√
B2 − 4AC)∕(2A), or, as 1 − r21 > 0,

− 2r21
1−r21

±
√(

2r21
1−r21

)2
+ 4

1−r21

1−2r21
1−r21

− 2
1−r21

=
−2r21 ±

√
(2r21)2 + 4(1 − 2r21)

−2
= (2r21 − 1), 1.

That is, given R1 = r1,

2r21 − 1 < R2 < 1. (8.55)
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Form = 3, 𝑣 =
[
r3 r2 r1

]′,
W =
⎡⎢⎢⎢⎣
1 r1 r2
r1 1 r1
r2 r1 1

⎤⎥⎥⎥⎦
−1

= 1
(1 − r2)(r2 − 2r21 + 1)

⎡⎢⎢⎢⎣
1 − r21 −r1 + r1r2 −r2 + r21

−r1 + r1r2 1 − r22 −r1 + r1r2
−r2 + r21 −r1 + r1r2 1 − r21

⎤⎥⎥⎥⎦ ,
A = −𝑤11 = −

1 − r21
(1 − r2)(r2 − 2r21 + 1)

,

B = −2(𝑤12𝑣2 +𝑤13𝑣3) = −
2r1(r21 − 2r2 + r22)

(1 − r2)(r2 − 2r21 + 1)
,

and

C = 1 −
m∑
i=2

m∑
j=2

𝑤ij𝑣i𝑣j = 1 − (𝑤22𝑣
2
2 + 2𝑤23𝑣2𝑣3 +𝑤33𝑣

2
3)

= 1 −
r21(1 − r1)(1 + r1) + r2(1 − r2)(r22 − 2r21 + r2)

(1 − r2)(r2 − 2r21 + 1)

=
r41 − 3r21 + 4r21r2 − 2r21r

2
2 + 1 − 2r22 + r42

(1 − r2)(r2 − 2r21 + 1)
.

With

W = (2r1(r21 − 2r2 + r22))
2 + 4(1 − r21)(r

4
1 − 3r21 + 4r21r2 − 2r21r

2
2 + 1 − 2r22 + r42)

= 4(1 − r2)2(r2 − 2r21 + 1)2

and the facts that 1 − r2 > 0 and

r2 − 2r21 + 1 > 0 ⇐⇒ r2 > 2r21 − 1,

where r2 > 2r21 − 1 is the constraint obtained for them = 2 case from (8.55), we have

W 1∕2 = 2(1 − r2)(r2 − 2r21 + 1).

Then (−B ±
√
B2 − 4AC)∕(2A) simplifies to (noting that A,B,C all have the same denominators)

2r1(r21 − 2r2 + r22) ±
√
W

−2(1 − r21)

=
r1(r21 − 2r2 + r22) ± (1 − r2)(r2 − 2r21 + 1)

−(1 + r1)(1 − r1)
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=
2r1r2 − r1 + r21 + r22 − 1

1 + r1
,

−(r1 − 2r1r2 + r21 + r22 − 1)
1 − r1

=
2r1r2 + r21 + r22

1 + r1
− 1,

−(−2r1r2 + r21 + r22)
1 − r1

+ 1 =
(r1 + r2)2

1 + r1
− 1,

(r2 − r1)2

r1 − 1
+ 1,

and computation with some values of r1 and r2 shows that the ordering is

(r1 + r2)2

r1 + 1
− 1 < r3 <

(r1 − r2)2

r1 − 1
+ 1.

Solution to Problem 8.3 For the AR(2) model Yt = 1.2Yt−1 − 0.8Yt−2 +Ut , the methods in Section
6.1.2 lead to 𝜌1 = 2∕3, 𝜌2 = 0, and 𝜌3 = −8∕15, and (8.25) yields

W =
⎡⎢⎢⎣
0.0617 ⋅ ⋅
0.1481 0.4667 ⋅
0.1284 0.5748 0.9471

⎤⎥⎥⎦ or Wcorr =
⎡⎢⎢⎣

1 ⋅ ⋅
0.873 1 ⋅
0.531 0.865 1

⎤⎥⎥⎦ ,
i.e., asymptotically,(

R1 − 2∕3
R2 − 0

)
∼ N
[(

0
0

)
,T−1
(

0.0617 0.1481
0.4667

)]
. (8.56)

The code in Listing 8.12 produces the graphs shown in Figure 8.22.

Solution to Problem 8.4 The program is given in Listing 8.13.

Solution to Problem 8.5 With p = 2, to simplify matters, we eliminate the double subscript and let
X1, X2, Y1 and Y2 be mean zero, finite variance random variables such that Xi ⟂ Yj, for all combi-
nations of i, j ∈ {1, 2}.

Thus, we wish to show that

𝕍
([ X1 + Y1

X2 + Y2

])
= 𝕍
([ X1

X2

])
+ 𝕍
([ Y1

Y2

])
.

Let Zi = Xi + Yi, so that

𝕍
([

Z1
Z2

])
= 𝔼
[[

Z1
Z2

] [
Z1 Z2

]]
=
[

𝔼[Z2
1] 𝔼[Z1Z2]

⋅ 𝔼[Z2
2]

]
or

𝕍
([

X1 + Y1
X2 + Y2

])
=
[ 𝔼[(X1 + Y1)2] 𝔼[(X1 + Y1)(X2 + Y2)]

⋅ 𝔼[(X2 + Y2)2]

]
=
[ 𝔼[X2

1 + 2X1Y1 + Y 2
1 ] 𝔼[X1X2 + X1Y2 + Y1X2 + Y1Y2]

⋅ 𝔼[X2
2 + 2X2Y2 + Y 2

2 ]

]
.
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1 % The simulated pdf
2 % Note use of the larger number of bins in hist3. Using the
3 % the default leads to a poor looking contour plot.
4 clear all, up=1000000; T=20; pair=zeros(up,2);
5 X=[ones(T,1)]; M=makeM(X); % this is the general setup
6 for i=1:up
7 if mod(i,1000)==0, i, end
8 y=armasim(T,1,[1.2 -0.8],[],i); resid=M*y;
9 pair(i,:)=sampleacf(resid,2)';

10 end
11 [ heights, xycoord ]=hist3(pair,[20,20]);
12 contour(xycoord{1},xycoord{2},heights',7)
13 grid, set(gca,'fontsize',14), axis([0.47 0.77 -0.3 0.3])
14
15 r2b=[]; for r1=0.47:0.01:0.77, r2b=[r2b 2*r1ˆ2-1]; end
16 hold on, h=plot(0.47:0.01:0.77,r2b,'r:'), set(h,'linewidth',2), hold off
17 % These two lines get repeated in each segment below too
18
19 % The SPA pdf
20 clear all, T=20; X=[ones(T,1)]; a1=1.2; a2=-0.8;
21 Psiinv=inv(leeuwAR([a1 a2],T));
22 c1=1; for r1=0.47:0.01:0.77
23 c2=1; for r2=-0.3:0.01:0.3
24 rvec=[r1 r2]; c1c2=[c1 c2], f(c1,c2)=sacfpdf(rvec,X,Psiinv);
25 c2=c2+1;
26 end
27 c1=c1+1;
28 end
29 contour([0.47:0.01:0.77],[-0.3:0.01:0.3],f')
30 grid, set(gca,'fontsize',14), axis([0.47 0.77 -0.3 0.3])
31
32 % Asymptotic pdf
33 clear all, T=20; a1=1.2; a2=-0.8;
34 mu=[2/3 0]'; Sigma=[0.0617 0.1481; 0.1481 0.4667] / T;
35 c1=1; for r1=0.47:0.01:0.77
36 c2=1; for r2=-0.3:0.01:0.3
37 rvec=[r1 r2]; fasy(c1,c2)=mvnpdf(rvec',mu,Sigma); c2=c2+1;
38 end, c1=c1+1;
39 end
40 contour([0.47:0.01:0.77],[-0.3:0.01:0.3],fasy')
41 grid, set(gca,'fontsize',14), axis([0.47 0.77 -0.3 0.3])

Program Listing 8.12: Generates the graphs in Figure 8.22.
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Figure 8.22 Similar to Figure 8.15 but based on T = 20 and an AR(2) model with a1 = 1.2 and a2 = −0.8. The left graph
is based on simulation, the middle graph is the SPA, and the right graph is the asymptotic distribution given in (8.56).
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1 % Simulation
2 clear all, up=100000; T=10; a1=1.2; a2=-0.8; pair=zeros(up,2);
3 X=[ones(T,1)]; % M=makeM(X);
4 for i=1:up
5 if mod(i,1000)==0, i, end
6 y=armasim(T,1,[a1 a2],[],i); resid=y; % resid=M*y;
7 pair(i,:)=sampleacf(resid,2)';
8 end
9 eps=0.0005; targ=2/3; lo=targ-eps; hi=targ+eps;

10 pp=pair(:,1); bool = find((pp<hi) & (pp>lo));
11 use=pair(bool,2); length(use) % do we have enough data?
12 [simpdf,grd] = kerngau(use);
13
14 % SPA
15 Psiinv=inv(leeuwAR([a1 a2],T));
16 r1=targ; r2vec=-0.05:0.01:0.45; f=zeros(length(r2vec),1);
17 for i=1:length(r2vec)
18 r2=r2vec(i); rvec=[r1 r2];
19 f(i)=sacfpdf(rvec,X,Psiinv); % not yet normalized.
20 end
21 denom1 = sacfpdf(r1,X,Psiinv);
22 denom2 = sum(f)*0.01; % approximate the area under the pdf.
23 f = f / denom2;
24
25 plot(grd,simpdf,'r--', r2vec,f,'b-')
26 set(gca,'fontsize',14), axis([-0.05 0.45 0 6.1])

ProgramListing 8.13: Thefirst segment of code simulates the SACF (R1,R2) for anAR(2)model with
unknownmean and parameters a1 = 1.2 and a2 = −0.8, and produces a set ofR2 realizations such that
R1 ≈ 2∕3. Accuracy can be enhanced by increasing the number of replications (parameter up) and
decreasing the width of the interval for R1 (parameter eps). The second segment computes the SPA
(8.34) but uses simple numeric integration to get the integration constant instead of the denominator
in (8.34). In this case, with R1 = 2∕3, denom1 is 2.70 and denom2 is 3.06. For R1 = 1∕3, denom1 is
0.845 and denom2 is 0.850.

From the orthogonality, 𝔼[X1Y1] = 𝔼[X1]𝔼[Y1] = 0 ⋅ 0 = 0, and, similarly, 𝔼[X1Y2] = 𝔼[X2Y1] = 0,
so that

𝕍
([

X1 + Y1
X2 + Y2

])
=
[ 𝔼[X2

1 ] + 𝔼[Y 2
1 ] 𝔼[X1X2] + 𝔼[Y1Y2]

⋅ 𝔼[X2
2 ] + 𝔼[Y 2

2 ]

]
=
[ 𝔼[X2

1 ] 𝔼[X1X2]
⋅ 𝔼[X2

2 ]

]
+
[ 𝔼[Y 2

1 ] 𝔼[Y1Y2]
⋅ 𝔼[Y 2

2 ]

]
= 𝕍
([ X1

X2

])
+ 𝕍
([ Y1

Y2

])
,

as was to be shown.

Solution to Problem 8.6 From Section 1.5, �̂� ∼ N(𝟎, 𝜎2IT−k). From the structure of the Amatrices
for the SACF, as shown in (8.9), we see immediately that tr(As) = 0, and so it follows from (B.5)
that 𝔼[R̆s] = 0.
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To show symmetry, note that the numerator of R̆s is

�̂�
′As�̂� =

T−k∑
t=s+1

𝜖t𝜖t−s. (8.57)

This has expectation zero, from (A.6). Observe that, from (B.22), the structure in (8.57) is not pre-
served for the Rs, i.e., for the elements of the SACF based on the usual regression residuals. It is
the structure in (8.57) that implies symmetry. To illustrate, take s = 2 as an example. Then the
numerator of R̆2 is

�̂�
′A2�̂� =

T−k∑
t=3

𝜖t𝜖t−2 = 𝜖3𝜖1 + 𝜖4𝜖2 + 𝜖5𝜖3 + · · · + 𝜖T−k𝜖T−k−2

and

−�̂�′A2�̂� = (−𝜖3)𝜖1 + (−𝜖4)𝜖2 + 𝜖5(−𝜖3) + 𝜖6(−𝜖4) + · · ·

= (S2�̂�)′A2(S2�̂�),

where S2 ∶= diag(1, 1,−1,−1, 1, 1,…). As S2S′2 = IT−k , S2�̂� ∼ N(𝟎, 𝜎2IT−k), showing that �̂�
′A2�̂� and

−�̂�′A2�̂� have the same distribution, i.e., the distribution of �̂�′A2�̂� is symmetric about zero. Using
the facts that �̂�′�̂� is always positive and that R̆s has mean zero, it follows that the distribution of R̆2
is also symmetric about zero. A similar argument can be applied to each R̆s, s = 1, 2,….

As a numerical illustration, let X have an intercept and trend, and take the sample size to be T = 8.
The following code uses programs makeA from Listing 8.1 and cdfratio from Listing A.3 to
compute the cdf of R̆1 through R̆4 at zero.

1 T=8; X=[ones(T,1) (1:T)']; k=2;
2 for s=1:4, A=makeA(T-k,s); cdfratio(0,A,eye(T-k),1), end

We indeed get 0.5000 as the answer for each s. To check for symmetry, use the following code, which
compares FR̆s

(z) with 1 − FR̆s
(−z) over a grid of z values.

1 s=2; A=makeA(T-k,s); z=0:0.01:1; f1= cdfratio( z,A,eye(T-2),1);
2 f2=1-cdfratio(-z,A,eye(T-2),1); plot(z,f1-f2)

The difference f1-f2 is zero for all values of z.
This will not be the case for the SACF based on the usual regression residuals.This can be seen numer-

ically by comparing FRs
(m + z) with 1 − FRs

(m − z) over a grid of z values, wherem = 𝔼[Rs], which
we know is not zero in general. The setup is that in (B.22), and the following code is used for com-
putation:

1 G=makeG(X); s=2; Atilde = G*makeA(T,s)*G'; m=mean(diag(Atilde))
2 f1= cdfratio(m+z,Atilde,eye(T-2),1);
3 f2=1-cdfratio(m-z,Atilde,eye(T-2),1);
4 plot (z,f1-f2)

This results in a plot clearly showing that the density is not symmetric.



405

9

ARMAModel Identification

There are two things you are better off not watching in the making: sausages and econometric
estimates.

(Edward Leamer, 1983, p. 37)

Establishing plausible values of p and q associated with an ARMA(p, q) model corresponding to a
given set of time-series data constitutes an important part of what is referred to as (univariate time
series) model identification, a term and procedure popularized by the highly influential book on
time-series analysis by the prolific George Box and Gwilym Jenkins, the first of which appeared in
1970; see Box et al. (2008).1 Other aspects of the Box and Jenkins paradigm include parameter esti-
mation and out-of-sample forecasting, which were covered in previous chapters.

9.1 Introduction

One reason why Akaike does not accept the problem of ARMA order selection as that of esti-
mating an unknown true order, (m0, h0), say, is that there is no fundamental reason why a time
series need necessarily follow a ‘true’ ARMAmodel.

(Raj J. Bhansali, 1993, p. 51)

Before proceeding with methods for choosing p and q, it is important to emphasize that the term
“model identification” includes a former, and important, step concernedwith deciding if andwhat data
transformations are required to induce stationarity, such as removing a time trend or other regres-
sor effects, taking logs, or first differences, or even difference of logs, etc. Pankratz (1983, Ch. 7),
Lütkepohl and Krätzig (2004, Ch. 2), and Box et al. (2008), among others, discuss appropriate data
transformations for inducing stationarity. In what follows, we will assume that the initial series has
been appropriately transformed, and the resulting series is not only (weak) stationary, but also a real-
ized sample path from a stationary, invertible ARMA(p, q) model.

1 As for a bit of historical trivia, Box’ doctoral thesis advisor was Egon Pearson, son of Karl Pearson. Pearson senior and
Ronald Fisher had a longstanding rivalry that ultimately prevented Fisher from ever formally having an academic chair in
statistics. In 1978, George Box married Joan Fisher, one of Fisher’s (five) daughters.

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.



406 Linear Models and Time-Series Analysis

Emphasizing the message in the above quote from Bhansali (1993), it is essential to realize that
an ARMA(p, q) model is nothing but an approximation to the actual, unknown data generating pro-
cess, and there are no “true” values of p and q that need to be determined. Instead, values of p and
q are selected (and the corresponding parameters are then estimated) that provide an acceptable
approximation to the true, but unknown (and almost always unknowable) data generating process.
The ARMA class of models is quite rich in the sense that, even with p + q relatively small, a very wide
variety of correlation structures are possible.The goal of identification is to select themost appropriate
choice (or choices) of p and q.
Given the flexibility of the autocorrelation structure possible with ARMA models, it might seem

tempting to just pick large enough values of p and q, perhaps as a function of the available sample size,
so as to ensure that the autocorrelation structure of the given data set is arbitrarily closely replicated by
the ARMAmodel. We learned via the demonstration in Figure 8.12 that this is possible just by fitting
anMA(q) model with large enough q, even if the data are not generated by anMAmodel. (Of course,
a high order AR model will also work, and is easier to estimate.) The problem with such a strategy is
that the parameters need to be estimated, and the more there are, the lower will be their accuracy.
Furthermore, when such a model is used to make forecasts, it tends to perform inadequately, if not

disastrously. Such a model is said to be overfitted. A better model will embody the principle of parsi-
mony, recalling the discussion at the beginning of Section 6.2.1:The goal is to find the smallest values
of p and q that capture “an adequate amount” or the “primary features of”, the correlation structure.
The reader is correct in having the feeling that there is a considerable amount of subjectivity involved
in this activity! Fortunately, some of this subjectivity is removable. The remainder of this chapter dis-
cusses several ways of model identification; they need not be used exclusively, but can (and usually
are) combined.
As mentioned, it is important to keep in mind that the d.g.p. of most real phenomena are compli-

cated, and a stationary, Gaussian ARMA process is just an approximation. Numerous variations of
this model class have been proposed that involve adding nonlinearity aspects to the baseline ARMA
model, though their efficacy for forecasting has been questioned. As is forcefully and elegantly argued
in Zellner (2001) in a general econometric modeling context, it is worthwhile having an ordering of
possible models in terms of complexity (a term only informally defined), with higher probabilities
assigned to simpler models. Moreover, Zellner (2001, Sec. 3) illustrates the concept with the choice
of ARMA models, discouraging the use of MA components in favor of pure AR processes, even if it
entails more parameters, because “counting parameters” is not necessarily a measure of complexity
(see also Keuzenkamp and McAleer, 1997, p. 554). This agrees precisely with the general findings of
Makridakis and Hibon (2000, p. 458), who state that “statistically sophisticated or complex models do
not necessarily produce more accurate forecasts than simpler ones”.
We begin in Section 9.2 by discussing the classic method, which, like reading palms of hands, or

tea leaves at the bottom of the cup, involves visual inspection on behalf of the modeler and “analysis”
of the sample correlograms. Section 9.3 considers the standard frequentist paradigm of significance
testing. Section 9.4 presents the use of penalty criteria, this being the most used, and arguably most
useful method in terms of general applicability, ease of implementation, and effectiveness. Section 9.5
considers the aforementioned aspect of complexity, restricting the model class (initially at least) to
just AR(p), and develops a near-exact testing paradigm that explicitly supports the use of exogenous
regressors. It is shown to outperform the penalty criteria in several cases. Section 9.6 shows a simple,
fastmethod for selectingp for anAR(p)model. Finally, Section 9.7 briefly discussesmore sophisticated
pattern recognition methods of determining p and q in the ARMAmodeling framework.
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9.2 Visual Correlogram Analysis

The list of individuals and firms that have been badly hurt financially by inadequate “reading of
the tea leaves” is daunting, including Sir Isaac Newton, and more recently, Long-Term Capital
Management…

(Steve Pincus and Rudolf E. Kalman, p. 13713, 2004)

Computation and visual inspection of the sample correlograms was popularized in the 1960s, and
showcased in the pioneering 1970monograph byGeorge Box andGwilym Jenkins (see the subsequent
fourth edition, Box et al., 2008). In light of the lack of computing power that is now ubiquitously avail-
able, the technique had its merits, and is still instructional and taught in the ARMA model building
framework. It involves examining the sample ACF (SACF) and sample PACF (SPACF) to get candi-
date values for p and q. As discussed at the end of Section 8.2, if the SACF appears to “cut off”, then one
can postulate that the model is an MA(q), where q is taken to be the number of spikes before “cutoff”.
Similarly, if the SPACF cuts off, then an AR(p) model would be declared. Numerous examples of this,
with real data, are provided in (the arguably now outdated, but well-written and, at the time, useful)
Abraham and Ledolter (1983). Both authors were doctoral students of George Box.
The idea is illustrated in Figures 8.3 and 8.19, which show the SACF and SPACF of four simulated

AR(1) time series with parameter a = 0.5 and based on T = 50 observations. In particular, note from
Figure 8.19 that the SPACF is not exactly zero after the first spike, but most of them are indeed within
the asymptotic one-at-a-time 95% confidence interval band. Keep in mind the nature of these bands:
They are only asymptotically valid, so that in small samples their accuracy is jeopardized. Further-
more, if the time series under investigation consists of regression residuals, then, as was illustrated in
Figure 8.6 and those in Section 8.1.3.3, the X matrix can play a major role in the actual distribution
of the elements of the SACF and SPACF, particularly for sample sizes under, say, T = 100. Secondly,
as these are one-at-a-time 95% intervals, one expects one spike in 20, on average, to fall outside the
interval when the null hypothesis of no autocorrelation is true.
What one typically does in practice (and is one of the reasons giving rise to the famous quote by Ed

Leamer above) is add some personal, subjective, a priori beliefs into the decision of which spikes to
deem significant (based presumably on the culmination of experience on behalf of themodeler).These
beliefs typically include considering low-order spikes to be more important (for non-seasonal data of
course), so that, for example, in the bottom left panel of Figure 8.19, onemight well entertain an AR(3)
model. If, however, a “lone spike” appears, of high order (say, larger than 8) and of length not greatly
exceeding the edge of the confidence band, then it would be dismissed as “probably arising just from
sampling error”. Further complicating matters is the correlation of the spikes in the correlograms, so
that “significant” spikes tend to arise in clusters.
Of course, if the true process comes from a mixed ARMA model, then neither correlogram cuts

off. Figure 9.1 provides an example with artificial data, consisting of 100 points generated from an
ARMA(2,2) model with parameters a1 = 1.1, a2 = −0.4, b1 = −0.5, b2 = 0.7, c = 0, and 𝜎2 = 1. The
top two panels show the theoretical ACF (TACF) and theoretical PACF (TPACF) corresponding to
the process. The second row shows a time plot of the actual data.
This particular realization of the process is interesting (and not unlikely), in that certain segments

of the data appear to be from a different process. A researcher confronted with this data might be
inclined to find out what (say, macroeconomic) event occurred near observation 35 that reversed
a downward trend to an upward one, amidst clear periodic behavior, only to change again to a
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Figure 9.1 Top panels are the theoretical correlograms corresponding to a stationary and invertible ARMA(2,2) model
with parameters a1 = 1.1, a2 = −0.4, b1 = −0.5, b2 = 0.7, c = 0, and 𝜎2 = 1. The second row shows a realization of the
process, with its sample correlograms plotted in the third row. The last row shows the theoretical ACF and PACF but
based on the estimated ARMA(2,2) model of the data.

downward trend without periodic behavior, and, finally, “crash” near observation 90, but bounce back
abruptly in a rallying trend. Of course, having generated the process ourselves, we know it is indeed
stationary and what appear to be anomalies in the data are just artifacts of chance.This illustrates the
benefit of parsimonious modeling: If we were to introduce dummy exogenous variables to account
for the handful of “outliers” in the data, and/or use more sophisticated structures to capture the
apparent changes in the model, etc., it would all be for nought: The model arrived at after hours
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or days of serious academic contemplation and work would be utterly wrong, and while able to fit
the observed data well, would produce unreliable forecasts, not to mention a false understanding of
causal economic relationships.
The reader should not get the impression that most, if not all, data sets are actually stationary; on

the contrary, most real data sets aremost likely not stationary! But the nature of the non-stationarities
is so difficult to guess at that simple, parsimonious models are often preferred, as mentioned above in
Section 9.1, with respect to forecasting prowess.
Returning to the identification step, the third row of Figure 9.1 shows the sample correlograms,

which do indeed somewhat resemble the theoretical ones. Based on the decay of the sample ACF and
the cutoff of the PACF at lag 3, it would seem that an AR(3) model would be appropriate.The last row
shows the theoretical correlograms that correspond to the estimated ARMA(2,2) model (assuming
a known mean of zero). The m.l.e. values (and approximate standard errors in parentheses) are â1 =
0.946(0.12), â2 = −0.245(0.12), b̂1 = −0.364(0.076), b̂2 = 0.817(0.078), and �̂� = 0.966(0.069). Notice
that these correlograms are closer to the true ones than are the sample correlograms. This is quite
reasonable because more information is used in their construction (in particular, knowledge of the
parametric model being an ARMA(2,2) and maximum likelihood estimation, as opposed simply to
sample moments). Of course, this knowledge of p and q is not realistic in practical settings.
In practice, it is also a good idea to compute the correlograms for different segments of the data, the

number of segments depending on the available sample size. If the data are from a stationary process,
then the SACFs and SPACFs for the different segments should be similar in appearance. Figure 9.2
shows the sample correlograms corresponding to the two halves of the data under investigation.While
they clearly have certain similarities, notice that the SACF from the first half appears to cut off after
two large spikes (suggesting an MA(2) model), while the SACF for the second half dies out gradually,
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Figure 9.2 An informal graphical test for covariance stationarity is to compute the sample correlograms for
non-overlapping segments of the data.
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indicative of an AR or ARMA process with p > 0. Assuming stationarity, we add to our collection of
tentative models an MA(2) and an ARMA(1,1).
Once a handful of candidate p, q values are decided upon, the models are estimated and the residu-

als are computed. Then the SACF and SPACF correlograms of the residuals can be inspected, which
we denote as RSACF and RSPACF, respectively. Ideally, we would find the smallest values of p and q
such that the RSACF and RSPACF appear to correspond to white noise. The true sampling distribu-
tions of the RSACF and RSPACF are far more difficult than those of the SACF and RPACF—which
are themselves intractable and can only be approximated, recalling the discussion in Section 8.1.3.
As such, we only consider their asymptotic distribution: Assuming an ARMA(p, q) model was fit to
the data, using consistent estimators, and such that the true data generating process is indeed an
ARMA(p, q), the asymptotic distributions of the RSACF and RSPACF are the same as those of the
SACF and SPACF under the null hypothesis of white noise. Thus, the usual bounds corresponding
to asymptotically valid one-at-a-time 95% confidence intervals can be overlaid onto the RSACF and
RSPACF correlograms.
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Figure 9.3 The RSACF (left) and RSPACF (right) for models AR(3) (top), MA(2) (middle), and ARMA(1,1) (bottom).
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Figure 9.3 shows these plots for the three candidatemodels (based on residuals from the exactm.l.e.,
and estimated without any regressors, not even an intercept). Each of the three entertained models
considerably violates the white noise hypothesis (each for different reasons) and so must be deemed
inappropriate. One could ponder these further and come up with a second round of candidate values
of p and q that attempts to take into account the deficiencies brought out here. Based on their RSACF
and RSPACF plots, this process could be iterated until “convergence”. (And lendingmore ammunition
to Leamer’s above quote.)
Below, we will introduce the method of penalty criteria for the determination of p and q. Their use

suggests either anARMA(1,2) or anARMA(2,2). So, Figure 9.4 is similar to Figure 9.3, but corresponds
to these twomixedmodels. In addition, because of the significant spikes at lags 4 and 5 of the previous
RSPACFs, we also consider an AR(5) model. Of course, we know that the true model is ARMA(2,2),
but the AR(5) could indeed be competitive because (i) it contains only one more parameter than the
truemodel, (ii) the infinite AR representation of the truemodel might be adequately approximated by
an AR(5), and (iii) ARmodels are, in general, easier to estimate and have lower “complexity” thanMA
or ARMAmodels, recalling the discussion in Section 9.1. Inspection of the plots shows that all of the
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Figure 9.4 The RSACF (left) and RSPACF (right) for models ARMA(1,2) (top), ARMA(2,2) (middle), and AR(5) (bottom).
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models appear adequate.The “lone spike” at lag 8 that is slightly significant for the ARMA(1,2) model
should not be any cause for alarm, recalling that we expect one out of 20 spikes to be statistically
significant at the 95% level when using one-at-a-time confidence intervals.

9.3 Significance Tests

The three golden rules of econometrics are test, test, and test.
(David Hendry, 1980, p. 403)

[E]conometric testing, as against estimation, is not worth anything at all. Its marginal product
is zero. It is a slack variable.

(Deirde [formerly Donald] McCloskey, 2000, p. 18)

I had been the author of unalterable evils; and I lived in daily fear, lest the monster whom I had
created should perpetrate some new wickedness.

(Mary Shelley’s scientist, Victor Frankenstein)

In this context, and within the Neyman–Pearson hypothesis testing framework for model selection,
it would seem appropriate to conduct a hypothesis test on a parameter in question, where the null
hypothesis is that it is zero and the alternative is that it is nonzero. This is very straightforward when
assuming the validity of the asymptotic normal distribution in small samples. In particular, let T̂i =
�̂�i∕ŜE(�̂�i), i = 1,… , p + q, be the ith standardized parameter estimate. Then the hypothesis test H0 ∶
𝜃i = 0 versus H1 ∶ 𝜃i ≠ 0 with significance level 𝛼 would reject the null if the p-value associated with
T̂i, as computed based on a standard normal distribution, is less than 𝛼. Equivalently, one checks if
zero is contained in the 100(1 − 𝛼)% confidence interval of 𝜃i.
The problem is how, if possible, to link the choice of 𝛼 to the purpose of the analysis, not to

mention that significance testing was not initially proposed for model selection; see the discussion
in Section III.2.8 for more detail. This is also brought out in the above first two fully conflicting
quotes (from two highly respected scientists). The blind use of hypothesis testing for model selection
arose out of a historical quirk, misunderstanding, and convenience and strength of precedence. Its
Shelleyian wickedness manifests itself in giving applied data researchers a false sense of scientific
integrity and a childish algorithm for model creation: Check the p-value, and make a dichotomous
decision based on 𝕀(p < 0.05), without any concern for the lack of ability for replication, and the
connection to the purpose of studying the data.
To assess the performance of this method, for 500 simulated series, the model Yt = 𝜇 + 𝜖t , with

𝜖t = a1𝜖t−1 + a2𝜖t−2 + a3𝜖t−3 +Ut , Ut
iid∼N(0, 𝜎2), t = 1,… ,T , and 𝜇 = a1 = a2 = a3 = 0 was esti-

mated using exact maximum likelihood with approximate standard errors of the parameters obtained
by numerically evaluating the Hessian at the m.l.e. Figure 9.5 shows the empirical distribution of the
𝜏i = F(ti), where ti is the ratio of the m.l.e. of ai to its corresponding approximate standard error,
i = 1, 2, 3, and F(⋅) refers to the c.d.f. of the Student’s t distribution with T − 4 degrees of freedom.
The use of the Student’s t distribution is of course not exact, but can be motivated by recalling that
the conditional m.l.e. is equivalent to the use of least squares, in which case the t distribution is
correct. Indeed, the use of the Student’s t was found to be slightly better than the standard normal
for the smaller sample sizes.
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Figure 9.5 Empirical distribution of F(ti), i = 1, 2, 3 (left, middle, and right panels), where ti is the ratio of the m.l.e. of ai
to its corresponding approximate standard error and F(⋅) is the Student’s t cdf with T − 4 degrees of freedom. Rows
from top to bottom correspond to T = 15, T = 30, T = 100, and T = 200, respectively.

The top two rows correspond toT = 15 andT = 30.While indeed somewhat better forT = 30, it is
clear that the usual distributional assumption (normality, or use of a t distribution) does not hold.The
last two rows correspond to T = 100 and T = 200, for which the asymptotic distribution is adequate.

Remark The most numerically sensitive part associated with the m.l.e. is the computation of the
approximate standard errors. The single bootstrap can be deployed for improving their quality, as
discussed in Section 7.4.3. This was done for each of the simulated time series in the T = 15 case
using B = 100 bootstrap replications, the jth of which being formed as Y(j) = X𝜷 + 𝜎�̂�−1∕2𝝃(j), where
the hatted terms denote the m.l.e. values and 𝝃(j) was formed by with-replacement sampling from
the residual vector 𝜎−1�̂�1∕2(y − X𝜷). The standard error of the m.l.e. is then taken to be the sample
standard deviation of the B bootstrap m.l.e. values. The performance of the resulting t-statistics are
shown in Figure 9.6. Compared to the top row of Figure 9.5, there is indeed some improvement, but
they are still quite far from being uniformly distributed. Qualitatively similar results were obtained by
use of the parametric bootstrap, taking 𝝃(j) to be i.i.d. standard normal draws.
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Figure 9.6 Similar to the top row of Figure 9.5 but having used m.l.e. standard errors computed from B = 100
bootstrap iterations.
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Figure 9.7 Similar to Figure 9.6 but based on the bootstrapped t-statistics under the null.

Thus, and not surprisingly, it is not the estimated standard error from the Hessian that gives rise to
the problem, but rather the assumption on the distribution of the t-statistic. To verify and accommo-
date this, the bootstrap procedure was repeated, but using Y(j) = X𝜷 + 𝜎𝚿−1∕2

0 𝝃(j), where 𝚿0 = IT is
the null assumption, j = 1,… ,B, and collecting the B t-statistics t(j). The reported p value 𝜏i is then
computed with respect to the empirical c.d.f. of the t(j), i.e., 𝜏i = B−1 ∑B

j=1 𝕀(t
(j)
i < ti), i = 1, 2, 3. The

results are shown in Figure 9.7. The bootstrap method is clearly reliable in this context.
Its drawback is the time required for computation, especially as B should be considerably larger

than 100. In particular, the CACF testing paradigm, as discussed below in Section 9.5, is far faster. ◾

Continuing with the data set shown in Figure 9.1, the 95% confidence intervals for the estimated
ARMA(2,2)model based on the asymptotic normality of them.l.e. are (0.705 < a1 < 1.187), (−0.487 <

a2 < −0.0024), (−0.513 < b1 < −0.216), (0.665 < b2 < 0.969), and (0.832 < 𝜎 < 1.100). It is impera-
tive to keep in mind that these are one-at-a-time intervals, and not simultaneous. From these, there
is “some evidence” that a2 might not differ from zero. This is also in agreement with the results from
Figure 9.4, which suggest that an ARMA(1,2) is adequate, compared to an ARMA(2,2). Of course,
the intervals presented are based on asymptotic theory, which is not always reliable in small sam-
ples.The bootstrap can be used, as discussed directly above, to obtain more accurate intervals. Doing
so with B = 2,000 replications yielded (0.309 < a1 < 1.158), (−0.441 < a2 < 0.423), (−0.521 < b1 <
0.346), (0.308 < b2 < 0.999), and (0.824 < 𝜎 < 1.158). Some of these intervals are much larger in size
and could well be too large (recall the results in Example 7.4). Nevertheless, the evidence that a2 could
be zero is now quite large (and the significance of b1 could also be drawn into question).
Another statistic that can be used to assess if parameter 𝜃i is significantly different from zero is the

likelihood ratio, or

r2i = −2(𝓁res − 𝓁unr)
asy∼ 𝜒2

1 , (9.1)
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where 𝓁res refers to the log-likelihood of the restricted model (i.e., with the parameter of interest, 𝜃i,
restricted to zero) evaluated at the m.l.e., and 𝓁unr is that for the unrestricted model. We can also use
the signed likelihood ratio statistic, given by

ri = sgn(𝜃i − 𝜃i0)
√

r2i = sgn(𝜃i)
√
−2(𝓁res − 𝓁unr)

asy∼ N(0, 1), (9.2)

where 𝜃i0 is the value of 𝜃i under the null hypothesis, which in this case is just zero. Use of (9.1)
or (9.2) has two advantages over the use of a confidence interval (or p-value). First, (9.1) is easily
extendable for testing the significance of a set of coefficients, with the degrees of freedom equal to
the number of imposed restrictions. Second, it will usually be more accurate in the sense that (9.2)
will be closer to normally distributed than T̂i. This is intuitively plausible because more information
goes into the calculation of ri than T̂i via the estimation of two models instead of one. Furthermore,
T̂i makes use of the approximate standard error of 𝜃i, which is difficult to estimate accurately, whereas
finding the maximum of the likelihood of the restricted model to a high degree of accuracy is usually
quite straightforward.
Their differences in accuracy can be quickly assessed via simulation. For illustration purposes,

we consider the ARMA(1,1) model with a1 = 0.7 and b1 = −0.2. For simulated processes from this
ARMA(1,1) model, we calculate T̂ = 𝜃∕ŜE(𝜃) and the signed likelihood ratio statistic r from (9.2)
corresponding to a2, i.e., we estimate an ARMA(1,1) and an ARMA(2,1). Similarly, T̂ and r are
calculated for b2 by additionally estimating an ARMA(1,2). Figure 9.8 shows the results in the form
of a normal qqplot using a sample size of T = 40 and based on 300 replications. We see immediately
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Figure 9.8 QQ plot of 300 simulated values of the statistic T̂ = 𝜃∕ŜE(𝜃) (denoted t stat) and the signed likelihood ratio
statistic r (denoted LRT stat) for testing ARMA(2,1) and ARMA(1,2) when the true model is an ARMA(1,1) with a = 0.7
and b = −0.2, based on T = 40 observations.
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Figure 9.9 Same as Figure 9.8 but using T = 100 observations.

that the statistic T̂ for testing either a2 or b2 is far from normally distributed, whereas r is much
closer. Furthermore, while r for testing a2 = 0 is still not accurate enough for inferential use, r
corresponding to testing b2 = 0 is almost exactly normally distributed. Figure 9.9 is similar, but
uses 100 observations. All four measures improve in terms of normality, though T̂ for a2 is still
unacceptable and r for a2 is now almost exactly normally distributed. In summary, (i) for a given
sample size, r appears to be more reliable with respect to its asymptotic distribution, (ii) matters
improve as the sample size increases, and (iii) the quality of the normality approximation to the
distribution of r depends on the true model, and, for a given model and sample size, can differ across
parameters.
Returning to the ARMA(2,2) data set we are working with, the likelihood ratio statistic r2 for com-

paring an ARMA(1,2) to an ARMA(2,2) is 3.218, with a p-value of 0.927. As this is just under 0.95, we
would (just barely) “accept” (better: not reject) the null hypothesis of a2 = 0, whereas the 95% con-
fidence interval (based on the asymptotic normal distribution and not the bootstrap analysis) would
have led us to (just barely) reject the null hypothesis.
In general, when the coefficient under investigation is not the pth AR term or the qth MA term,

setting it to zero gives rise to a subset ARMA(p, q) model, which will have less than p + q ARMA
coefficients. If the “true” parameter is genuinely (or close enough to) zero, then restricting it to zero
and re-estimation of the other coefficients will result in different andmore accurate values, and amore
parsimonious model.
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9.4 Penalty Criteria

Unthinking approaches have been the commonmodus operandi and using “all possiblemodels”
are frequently seen in the literature. “Let the computer find out” is a poor strategy and usually
reflects the fact that the researcher did not bother to think clearly about the problem of interest
and its scientific setting.
The hard part, and the one where training has been so poor, is the a priori thinking about the

science of the matter before data analysis—even before data collection.
(Kenneth P. Burnham and David R. Anderson, 2002, p. 147 and p. 144)

We turn now to themethod of order selection based on penalty functions.While there are several, the
most popular penalty methods are (i) the Akaike information criterion, or AIC, (ii) the corrected
AIC, or AICC, and (iii) the (Schwarz’s) Bayesian information criterion, or BIC (or SBC), given,
respectively, by

AIC = ln 𝜎2 + 2z
T
, AICC = ln 𝜎2 + T + z

T − z − 2
, BIC = ln 𝜎2 + z lnT

T
, (9.3)

where z = p + q + k, with k being the number of regressors in the mean equation, and 𝜎2 is the
(preferably exact) m.l.e. of 𝜎2. Other methods include the final prediction error (FPE) and the
Hannan–Quinn (HQ) criterion,

FPE = 𝜎2T + z
T − z

, HQ = ln 𝜎2 + 2z ln lnT
T

. (9.4)

Details on the origins, justification, derivation, and asymptotic properties of these and other criteria,
as well as original references, can be found in Konishi and Kitagawa (2008), Brockwell and Davis
(1991), Choi (1992, Ch. 3), and McQuarrie and Tsai (1998). Lütkepohl (2005) discusses their use for
identification with multivariate time series. An excellent source of information on these measures is
BurnhamandAnderson (2002), which, in addition to covering the technicalities of the penalty criteria,
is mostly concerned with the underpinnings of model selection and their realistic use in data analysis.
One chooses the model that gives rise to the smallest criterion value. Observe the tradeoff between

the first term in each criteria, ln 𝜎2, which can only get smaller as successively more terms are added
to the model (much like the R2 statistic in regression analysis, which increases even when noise vec-
tors are included in the exogenous variable set), and the second term, which is increasing in z but
tempered by the sample size. The decision of which models to include in the “contest” is, of course, a
subjective one.
While not strictly necessary, calculation of these measures typically involves maximum likelihood

estimation of numerous ARMA models and is, thus, somewhat computationally intensive. For
example, one might consider all 36 ARMA(p, q) constellations for 0 ⩽ p ⩽ 5 and 0 ⩽ q ⩽ 5. This
computational burden is no longer a relevant issue with modern computing power, but was not
routinely feasible before, say, 1980.
Very briefly and informally, the AIC tends to overfit, while the AICC corrects this problem and has

better small-sample and asymptotic properties than the AIC. The BIC also enjoys good asymptotic
properties and has the tendency to select fewer parameters than the AICC.
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Penalty function methods have at least three advantages over other methods, such as the
significance testing paradigm of Section 9.3, the informal assessment of the sample ACFs of
Section 9.2, and various pattern identification methods, as discussed below in Section 9.7. First,
they are considerably simpler to understand, at least with respect to the tradeoff argument just
discussed. Second, they are easily used in modeling contexts for which correlogram inspection or
pattern identification methods are either far more complicated or not applicable, such as seasonal
ARMA, subset ARMA, periodic ARMA, fractional integrated ARMA, time-varying parameter
ARMA, multivariate ARMA, as well as other nonlinear time-series models such as threshold,
bilinear, GARCH and Markov switching models. Third, they are more easily implemented in a
computer algorithm to choose the best model automatically (notwithstanding the above quote by
Burnham and Anderson, 2002). A final and compelling reason to prefer penalty function methods is
that they work well; see the above references and also Koreisha and Yoshimoto (1991), Choi (1992,
Ch. 3), and Koreisha and Pukkila (1995).
For the data set shown in Figure 9.1, when based on all 15 possible ARMA(p, q) models with 0 ⩽ p ⩽

3 and 0 ⩽ q ⩽ 3, the AIC and AICC chose an ARMA(2,2) (the correct specification), while the BIC
chose an ARMA(1,2).This agrees with the known behavior of BIC to prefer more parsimonious mod-
els, and also coincides with the results from the significance test on â2. This exercise also emphasizes
the point that, for the model chosen by a particular criterion (in this case, the AIC or AICC), not all
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Figure 9.10 Simulation-based performance of the AICC and BIC criteria (9.3) for an AR(1) model as a function of
parameter a, with T = 50 and pmax = 5.
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estimated parameter values from that selected model will necessarily be significantly different from
zero when using the common significance level of 𝛼 = 0.05.
To further illustrate the performance of the AICC and BIC, Figure 9.10 shows the results of a simu-

lation study of an AR(1) model with known mean over a grid of values of parameter a, using T = 50,
exact maximum likelihood estimation, and based on 1,000 replications. The second panel shows the
percentage of correct selections.We see that the AICC is better for the range |a| < 0.4.This is because
the BIC has a higher probability of under-selection than the AICC, which becomes acute near a = 0.
This is made clearer in the top panel, which shows the percentage of p = 0 selections. The reader is
encouraged to replicate this study and also consider the other criteria in (9.4).
We now turn to theAR(2)model, and first useT = 25.With two parameters, the performance of the

selection criteria cannot be as easily plotted as for the AR(1) case. To accommodate this, Figure 9.11
plots, for various a1 and a2 combinations spanning their support given in (6.8), one of seven symbols,
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Figure 9.11 Simulation-based performance of AICC (left) and BIC (right) criteria in terms of percentage of
under-selection (top), correct selection (middle), and over-selection (bottom) for an AR(2) model as a function of
parameters a1 (y–axis) and a2 (x–axis), with T = 25 and pmax = 4. Legend is, for k = 100∕7, dots 0–k%, circles k–2k%,
plus 2k–3k%, star 3k–4k%, square 4k–5k%, diamond 5k–6k%, pentagram 6k–7k%.
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Figure 9.12 Same as Figure 9.11 but based on T = 100 and pmax = 8.

each of which indicates an interval into which the simulated percentage fell. A clear pattern emerges
that is in agreement with the results for the AR(1)model: Performance is poorest near the origin (a1 =
a2 = 0), improves as a1 and/or a2 move away from zero, and worsens near the edge of the support,
where the probability of over-selection increases.
Also, as with the AR(1) case, the BIC is more conservative and has a lower rate of over-selection

(and higher rate of under-selection) compared to the AICC. Figure 9.12 is similar, but forT = 100 and
pmax = 8. For the AICC, it appears that the probability of selecting p = 2 has not changed remarkably,
so that the benefit of increased sample size is cancelled by the increase in pmax. This increase in pmax
has, however, clearly increased the probability of over-selection. Quite different is the performance
of the BIC: Unlike the AICC, the probability of both under-selection and over-selection has actually
gone down for some sets of parameters, and the probability of correct selection has increased by a
large margin.
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9.5 Use of the Conditional SACF for Sequential Testing

It can be said that, like most problems of statistical inference, the choice of the order of the
autoregressive model to be fitted to the time series data has been basically formulated until
now as that of estimation or as that of testing of hypotheses. Neither of these two formulations
suit the objectives of the experimenter in many situations when it is recognized that no unique
model can describe satisfactorily the true underlying process and that more than one model
should be retained for further consideration.

(Quang Phuc Duong, 1984)

Several sequential testing procedures for ARMA model order selection have been proposed in the
time-series academic literature. For example, Jenkins and Alevi (1981) and Tiao and Box (1981) con-
sider methods based on the asymptotic distribution of the SPACF under the null of white noise. More
generally, Pötscher (1983) considers determination of optimal values of p and q by a sequence of
Lagrange multiplier tests. In particular, for a given choice of maximal orders, P and Q, and a chain of
(p, q)-values (p0, q0) = (0, 0), (p1, q1),… , (pK , qK ) = (P,Q), such that either pi+1 = pi and qi+1 = qi + 1
or pi+1 = pi + 1 and qi+1 = qi, i = 0, 1,… ,K = P + Q, a sequence of Lagrange-multiplier tests are per-
formed, and this for each possible chain.The optimal orders are obtainedwhen the test does not reject
for the first time. As noted by Pötscher (1983, p. 876), “strong consistency of the estimators is achieved
if the significance levels of all the tests involved tend to zero with increasing size…”
This forward search procedure is superficially similar to the method proposed herein, and also

requires specification of a sequence of significance levels. Our method differs in two important
regards. First, near-exact small-sample distribution theory is employed by use of conditional saddle-
point approximations. Second, we explicitly allow for, and account for, a mean term in the form of a
regression X𝜷 .
There are two crucial results that allow for the development of this method. The first is the follow-

ing: Anderson (1971, Sec. 6.3.2) has shown for the regression model with circular AR(m) errors (so
𝜖1 ≡ 𝜖T ) and the columns of X restricted to Fourier regressors, i.e.,

Yt = 𝛽1 +
(k−1)∕2∑
s=1

{
𝛽2s cos

(2𝜋st
T

)
+ 𝛽2s+1 sin

(2𝜋st
T

)}
+ 𝜖t, (9.5)

that the uniformly most powerful unbiased (UMPU) test of AR(m − 1) versus AR(m) disturbances
rejects for values of rm falling sufficiently far out in either tail of the conditional density

fRm∣R(m−1)
(rm | r(m−1)), (9.6)

where r(m−1) = (r1,… , rm−1)′ denotes the observed value of the vector of random variables R(m−1). A
p-value can be computed as min{𝜏m, 1 − 𝜏m}, where, as in (8.35),

𝜏1 = Pr(R1 < r1) and 𝜏m = Pr(Rm < rm ∣ R(m−1) = r(m−1)), m > 1. (9.7)

The m = 1 case was discussed in detail in Section 5.3. The optimality of the test breaks down in
either the non-circular model and/or with arbitrary exogenous X, but does provide strong motiva-
tion for an approximately UMPU test in the general setting considered here. This is particularly so
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for economic time series, as they typically exhibit seasonal (i.e., cyclical) behavior that can mimic the
Fourier regressors in (9.5) (see, e.g., Dubbelman et al., 1978; King, 1985a, p. 32).
The second crucial result involves the tractability of the small-sample distribution via a condi-

tional saddlepoint approximation. Recall Section 8.1.4 on approximating the distribution of the scalar
random variable Rm given Rm−1 = rm−1, where Rm−1 = (R1,… ,Rm−1)′ and rm−1 = (r1,… , rm−1)′. The
conditional p.d.f. fRm∣Rm−1

(rm | rm−1) is given in (8.34), while the conditional c.d.f. (9.7) is given in (8.37)
and (8.38). With the ability to calculate these distributions, this model selection strategy was opera-
tionalized and studied in Butler and Paolella (2017). In particular, the sequential series of tests

Hm ∶ am = 0, Hm−1 ∶ am = am−1 = 0, … , H1 ∶ am = · · · = a1 = 0 (9.8)

is performed. Testing stops when the first hypothesis is rejected (and all remaining are then also
rejected). A natural way of implementing the sequence of p-values for selecting the autoregressive
lag order p is to take the largest value j ∈ {1,… ,m} such that 𝜏j < c or 𝜏j > 1 − c, or set it to zero if no
such extreme 𝜏j occurs. We refer hereafter to this as the conditional ACF testing method, or CACF.
The CACF method (9.8) is implemented in the program in Listings 9.1 and 9.2.

1 function [pvaluevec, phat]=ButPao(Y,X,c)
2 % INPUT
3 % Time series column vector Y
4 % Regression matrix X, if not passed, defaults to a column of ones.
5 % Pass [] for no X matrix
6 % c is an maxp-length vector of significance levels, with default
7 % maxp=7 and c=[c_1,..,c_maxp]=[0.175 0.15 0.10 0.075 0.05 0.025]
8 % OUTPUT:
9 % pvaluevec is the vector of p-values, starting with AR(1).

10 % phat is the estimated AR(p) order, based on the p-values, and c.
11 global Omega G T k r maxp
12 if nargin<3
13 maxp=7; c=[0.175 0.15 0.125 0.10 0.075 0.05 0.025];
14 else
15 maxp=length(c);
16 end
17 T=length(Y); if nargin<2, X=ones(T,1); end
18 if isempty(X), k=0; else [~,k]=size(X); end
19 pvaluevec=NaN(maxp,1); r=NaN(maxp,1);
20 if isempty(X), M=eye(T); else M=makeM(X); end
21 if isempty(X), G=eye(T); else G=makeG(X); end % G is such that M=G'G and I=GG'
22 e=M*Y; for i=1:maxp, r(i)=(e'*makeA(T,i)*e)/(e'*e); end
23 pvaluevec(1)=cdfratio(r(1),G*makeA(T,1)*G',eye(T-k),eye(T-k),[],2);
24 Omega=eye(T-k); % For pure AR(p) case, null is Identity.
25 % Omegai=G*Psii*G'; Omega=inv(Omegai); % More general varcov
26 options = optimset('Display','off');
27 phat=-1; m=1; sinit=0; s=fsolve(@spe,sinit,options);
28 P=makeP(s); [V,D]=eig(P); D=diag(D); tol=1e-6;
29 if any(D)<tol, disp('P<=0'), D(D<tol)=tol; P=V*diag(D)*V'; end
30 Pi=inv(P); H=makeH(m,Pi); [V,D]=eig(H); D=diag(D); tol=1e-6;
31 if any(D)<tol, disp('H<=0'), D(D<tol)=tol; H=V*diag(D)*V'; end

Program Listing 9.1: The CACF sequential testing methodology (9.7) and (9.8) using the saddle-
point approximation. Functions makeM, makeG, and makeA are given in Listings B.2, 1.2, and 8.1,
respectively. Continued in Listing 9.2.
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1 for m=2:maxp
2 Pm1=P; Pim1=Pi; Hm1=H;
3 sinit=zeros(m,1); s=fsolve(@spe,sinit,options);
4 P=makeP(s); [V,D]=eig(P); D=diag(D); tol=1e-6;
5 if any(D)<tol, disp('P<=0'), D(D<tol)=tol; P=V*diag(D)*V'; end
6 Pi=inv(P); H=makeH(m,Pi); [V,D]=eig(H); D=diag(D); tol=1e-6;
7 if any(D)<tol, disp('H<=0'), D(D<tol)=tol; H=V*diag(D)*V'; end
8 sm=s(end); w0=sign(sm)*sqrt( log( det(P)/det(Pm1) ) );
9 v0=sm*sqrt(det(H)/det(Hm1)); v0=v0*( tr(Pim1)/tr(Pi) )ˆ(m-1);

10 if (isreal(w0) && isreal(v0))
11 pvaluevec(m)=normcdf(w0) + normpdf(w0)*(1/w0 - 1/v0);
12 end
13 end
14 if all(isreal(pvaluevec))
15 phat=0;
16 for i=1:maxp
17 if (pvaluevec(i)<c(i)) || (pvaluevec(i)>(1-c(i))), phat=i; end
18 end
19 end
20
21 function f=spe(s), global G k T r
22 m=length(s); f=zeros(m,1);
23 for i=1:m
24 Pi=inv(makeP(s)); GAG=G*makeA(T,i)*G'; f(i)=tr(Pi*(GAG-r(i)*eye(T-k)));
25 end
26
27 function P = makeP(s), global Omega G k T r
28 m=length(s); Sum=zeros(T-k,T-k);
29 for i=1:m, GAG=G*makeA(T,i)*G'; Sum=Sum+s(i)*GAG; end
30 rr=r(1:m); P = Omega + 2*(rr'*s)*eye(T-k) - 2*Sum;
31
32 function H = makeH(m,Pinv), global G T k r
33 H=zeros(m,m); I=eye(T-k);
34 for i=1:m, Ai=G*makeA(T,i)*G';
35 for j=1:m, Aj=G*makeA(T,j)*G';
36 H(i,j)=2*tr( Pinv*(Ai-r(i)*I)*Pinv*(Aj-r(j)*I) );
37 end
38 end
39
40 function t=tr(Z), t=sum(diag(Z));

Program Listing 9.2: Continued from Listing 9.1.

Observe how this hypothesis-test-driven strategy, similar to the use of model estimation and the
penalty-based criteria, is subject to the critique spelled out in the above quote by Duong (1984). We
will see, however, that this method does allow some subjectivity from the modeler to be incorporated
into the selection, as well as being able to generate a set of candidate models, as opposed to the binary
result of a typical hypothesis test, or the mechanical procedure of choosing the model with the small-
est penalty-based criteria. This is done via allowing c to be a vector, c, instead of a scalar, as will be
subsequently discussed, chosen to incorporate prior knowledge on behalf of the modeler, and this c
can be changed to possibly result in different order selections.
The effectiveness of this strategy will clearly be quite dependent on the choices of m = pmax and

(so far, scalar) c, as well as on the accuracy of the conditional saddlepoint approximation used. Note
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Figure 9.13 Histograms of 𝜏1,… , 𝜏4, based on 10,000 replications with true data being iid normal, and taking X = 𝟏. Top (bottom) panels are for T = 15
(T = 30).
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that, while penalty function methods also require an upper limit m, the CACF has the extra “tuning
parameter” c that can be seen as either a blessing (for a more Bayesian-oriented researcher interested
in inference for a specific data set) or a curse (for a hardcore frequentist who assumes the d.g.p. is
actually correctly specified, and interested strictly in asymptotic consistency and behavior in fictitious
infinite repeated trials). A natural value might be c = 0.025, so that, under the null of zero autocor-
relation, p assumes a particular wrong value with approximate probability 0.05, and p = 0 is chosen
approximately with probability 1 − 0.05m, i.e.,

Pr{choose p = 0 ∣ white noise} = Pr{𝜏j ∈ (0.025, 0.975), j = 1,… ,m}
= (1 − 0.05)m ≈ 1 − 0.05m, (9.9)

from the binomial expansion.
To assess the accuracy of the conditional saddlepoint approximation to (9.6), consider its distri-

bution under the null of no autocorrelation. That is, when 𝚿−1 = IT in (1.3) for the linear model
Y = X𝜷 + 𝝐. We expect 𝜏i

iid∼Unif(0, 1). This was empirically tested by computing 𝜏1,… , 𝜏4 in (9.7)
for 10,000 time-series replications, each consisting of T independent standard normal simulated ran-
dom variables, for T = 15 and T = 30, but with mean removal, i.e., taking X = 𝟏. Histograms of the
resulting 𝜏i, as shown in Figure 9.13, are in agreement with the uniform assumption. Furthermore,
the absolute sample correlations between each pair of the 𝜏i were all less than 0.02 for T = 15 and less
than 0.013 for T = 30. The program to generate these plots is given in Listing 9.3. These results are
in stark contrast to the empirical distribution of the “t-statistics” and the associated p-values, shown
above in Figure 9.5.
As a first case for illustration, the optimal AR lag orders among the choices p = 0 through p = 4

(i.e., m = pmax = 4) were determined via the CACF method for each of 1000 simulated AR(1) series
of length T = 30 and AR parameter a, using a = 0, 0.1, 0.3,… , 0.9,2 and the regression model based
on X=𝟏. The cutoff value c = 0.025 was used.The results are shown in Figure 9.14. Observe that, for
a = 0, about 5% select either p = 1 or p = 2 or p = 3 or p = 4, exactly as the theory suggests.The code
to create the plots is given in Listing 9.4.
Next, consider comparing the performance of the CACF method to the various penalty criteria in

(9.3) and (9.4), using the same setup except (m = 4, c = 0.025) with the constant and time-trendmodel
X = [𝟏, t]. Figure 9.15 show the results. The CACF method dominates in the null model, while for

1 T=15; sim=1e4; pmat=zeros(sim,4);
2 for i=1:sim, disp(i), Y=randn(T,1); p=ButPao(Y)'; pmat(i,:)=p; end
3 for i=1:4
4 if i==1, ec=[1 0 0]; elseif i==2, ec=[0 1 0];
5 elseif i==3, ec=[0 0 1]; else ec=[0.5 0.3 0]; end
6 use=pmat(:,i); ok=(use>0 & use<1); use=use(ok); length(use)
7 figure, [histcount, histgrd] =hist(use,40); h1=bar(histgrd,histcount);
8 set(h1,'facecolor',[0.9 0.9 0.9],'edgecolor',ec,'linewidth',1.2)
9 set(gca,'fontsize',16)

10 title(['\tau_',int2str(i),': T=',int2str(T),' Under Null, X=1'])
11 end

Program Listing 9.3: Code for generating the bar plots in Figure 9.13.

2 Negative values of a were also considered; the results essentially paralleled their positive counterparts.
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Figure 9.14 Bar plots corresponding to the chosen value of AR lag length p, based on the CACF method, a true AR(1) process with parameter a, T = 30,
and X = 𝟏, using c = 0.025 andm = 4.
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1 T=30; sim=1e3; phivec=[0 0.1 0.3 0.5 0.7 0.9]; pvec=zeros(sim,1);
2 for philoop=1:length(phivec)
3 phi=phivec(philoop);
4 for i=1:sim
5 disp(i), Y=armasim(T,1,phi); X=ones(T,1); c=ones(4,1)*0.025;
6 [~, phat]=ButPao(Y,X,c); pvec(i)=phat;
7 end
8 tt=tabulate(pvec); figure, set(gca,'fontsize',16)
9 h=bar(tt(:,1),tt(:,2)); set(h,'barwidth',0.2,'facecolor','r')

10 title(['T=',int2str(T),', X=[1], AR(1), a=',num2str(phi)])
11 xlim([-0.2 4.2]), ylim([0 sim])
12 end

Program Listing 9.4: Code for generating the bar plots in Figure 9.14.
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Figure 9.15 Performance of the various methods in the AR(1) case using X = [𝟏, t], T = 30,m = 4, c = 0.025, and true
AR(1) parameter denoted as 𝜙 in the graphics.



428 Linear Models and Time-Series Analysis

small absolute values of a the CACF under-selects more than the penalty-based criteria. For a ⩾ 0.5,
the CACF is blatantly superior. This emphasizes the benefit of explicitly taking the regressors into
account when computing (9.7).
A potential concern with the CACF method is what happens if m is much larger than the true p.

To investigate this, we stay with the AR(1) example, but consider only the case with a = 0.5, and use
three choices ofm, namely 2, 6, and 10. We first do this with a larger sample size of T = 60 and no X
matrix, which should convey an advantage to the penalty-based measures relative to CACF. For the
former, we use only the AICC and BIC. Figure 9.16 shows the results, based on 1,000 replications.
Withm = 2, all three methods are very accurate, with CACF and BIC being about equal with respect
to the probability of choosing the correct p of one, and slightly beating AICC. With m = 6, the BIC
dominates. The nature of the CACF methodology is such that, when m is much larger than p, the
probability of overfitting (choosing p too high) will increase, according to the choice of c.Withm = 10,
this is apparent. In this case, the BIC is superior, and also substantially stronger than the more liberal
AICC.The code in Listing 9.5 was used to generate Figure 9.16, as well as the subsequent Figure 9.17.
We now conduct a similar exercise, but using conditions for which the CACFmethodwas designed,

namely a smaller sample size of T = 30 and a more substantial regressor matrix of an intercept and
time-trend regression, i.e., X = [𝟏, t]. Figure 9.17 shows the results. For m = 2, the CACF clearly
outperforms the penalty-based criteria, while for m = 6, which is substantially larger than the true
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Figure 9.16 Histograms corresponding to the chosen value of AR lag length p, based on the CACF, AICC, and BIC,
using three values of tuning parameterm (2, 6, and 10, from a to c), and 1,000 replications. True model is Gaussian
AR(1) with parameter a = 0.5, sample size T = 60, and knownmean (no Xmatrix). The CACF method uses c = 0.025.
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1 T=30; phi=0.5; % sample size and AR(1) parameter
2 % X=[]; k=0;
3 X=[ones(T,1) , (1:T)']; [~,k]=size(X);
4 pmaxvec=2:4:10; mleexact=1; q=0;
5 sim=1e3; pvecCACF=zeros(sim,1); pvecAICC=zeros(sim,1); pvecBIC=zeros(sim,1);
6 for pmaxloop=1:length(pmaxvec)
7 pmax=pmaxvec(pmaxloop);
8 c=ones(pmax,1)*0.025; % use for scalar c
9 % vv=0:(pmax-1); c=pmax/80 - 0.0125*vv; % use for vector c

10 for i=1:sim, disp([pmax, i])
11 Y=armasim(T,1,phi); [~, phat]=ButPao(Y,X,c); pvecCACF(i)=phat;
12 AICCmin=1e20; BICmin=1e20;
13 for p=0:pmax
14 param=armareg(Y,X,p,q,mleexact); lsig2=log(param(end)ˆ2);
15 K=p+k; AICC=lsig2+(T+K)/(T-K-2); BIC=lsig2 + K*log(T)/T;
16 if AICC<AICCmin, AICCmin=AICC; pvecAICC(i)=p; end
17 if BIC<BICmin, BICmin=BIC; pvecBIC(i)=p; end
18 end
19 end
20 pmat=[pvecCACF pvecAICC pvecBIC];
21 figure, hist(pmat,0:pmax), set(gca,'fontsize',16), legend('CACF','AICC','BIC')
22 str=['AR(1): T=',int2str(T),', a_1=0.5, X=[1,t], m=',int2str(pmax)]; title(str)
23 xlim([-0.5 pmax+0.5]), ylim([0 sim]), drawnow
24 end

Program Listing 9.5: Code for generating the histograms in Figures 9.16 and 9.17.

p = 1, the CACF chooses the correct p with the highest probability of the three selection methods,
though the AICC is very close. For the very largem = 10 (which, for T = 30, might be deemed inap-
propriate), CACF and BIC perform about the same with respect to the probability of choosing the
correct p of one, while AICC dominates. Thus, in this somewhat extreme case (with T = 30 and
m = 10), the CACF still performs competitively, due to its nearly exact small-sample distribution
theory and the presence of an Xmatrix.
An aspect of the CACF method that greatly enhances its ability and is not applicable with

penalty-based model selection methods is the use of different significance levels for the sequential
tests. This allows an objective way of incorporating prior notions of preferring low order, parsimo-
niously parameterized models. For non-seasonal AR models, Butler and Paolella (2017) suggest the
use of a simple linear sequence of significance level values, such as, form = 7,

c = [0.175, 0.15, 0.125, 0.10, 0.075, 0.05, 0.025], (9.10)

This was found to work remarkably well in many situations, compared to the penalty-based methods.
As an illustration, consider an AR(4) model with parameters a1 = 0.4, a2 = −0.3, a3 = 0.2, and a4
takes on the six values −0.1 through −0.6. In an attempt to use a more complicated regression matrix
that is typical in econometric applications, anXmatrix corresponding to an intercept and time-trend
model with structural break is used, i.e., for T = 30,

X′ =

⎡⎢⎢⎢⎢⎣
1 1 1 · · · 1 · · · 1
1 2 3 · · · 16 · · · 30
0 0 0 · · · 1 · · · 1
0 0 0 · · · 1 · · · 15

⎤⎥⎥⎥⎥⎦
. (9.11)
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Figure 9.17 Similar to Figure 9.16, but for sample size T = 30 and X = [𝟏, t].

Figure 9.18 shows the resulting selection of p, based on 1,000 replications and a sample size ofT = 30.
Figure 9.19 is similar, but having used T = 100. The reader is encouraged to compare these results to
those obtained using the various penalty criteria.
Based on further simulations, this model selection paradigm was demonstrated in Butler and

Paolella (2017) to be competitive with, and often superior to, the use of penalty criteria, with the
reasons being that (i) it is based on a sequence of tests that are (not exactly, but as close as possible
to) UMP and (ii) the small-sample distribution theory explicitly accounts for the X matrix, and
this is enabled by use of the highly accurate conditional saddlepoint approximation. Those findings
are based on the assumption that the true model is known to be a linear regression with correctly
specified X matrix, error terms are from a Gaussian AR(p) process, tuning parameter m is chosen
such that m ⩾ p, and parameters p, a1,… , ap, 𝜷 , and 𝜎2 are fixed but unknown. It is appropriate to
challenge these heroic assumptions somewhat.
We modify this setup by assuming, similarly, that the true data generating process is Y = X𝜷 + 𝝐,

with 𝜖t = a1𝜖t−1 +Ut a stationary AR(1) process, but now such that Ut
iid∼ t𝜈(0, 𝜎), t = 1,… ,T , i.e.,

Student’s t with 𝜈 degrees of freedom, location zero, and scale 𝜎 > 0.
Figures 9.20 and 9.21 are similar to Figure 9.10, again based on the true p = 1, a sample size ofT = 50

(and taking m = 5 and c = 0.025), but using four different values of degrees of freedom parameter
𝜈, and for all methods falsely assuming Gaussianity. Figure 9.20 is for the known mean case, while
Figure 9.21 assumes the constant and time-trend model X = [𝟏, t]. We see that none of the methods
are substantially affected by use of even very heavy-tailed innovation sequences, notably the CACF,
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Figure 9.18 Based on the CACF method, bar plots corresponding to the chosen value of AR lag length p, in percent, based on 1,000 replications, using a
true AR(4) process with parameters a1 = 0.4, a2 = −0.3, a3 = 0.2, and a4 taking on the six values −0.1 through −0.6, as indicated in the titles of the plots.
The sample size is T = 30 and X is given in (9.11). The CACF tuning parameters arem = 7 and c as given in (9.10).
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Figure 9.19 Similar to Figure 9.18 but based on T = 100.
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Figure 9.20 Similar to Figure 9.10: Performance of the three indicated AR order selection methods as a function of
autoregressive parameter a, for sample size T = 50, knownmean (denoted by X = [ ]), and pmax = m = 5, when the
true AR order is p = 1 and (falsely) assuming Gaussianity. The true innovation sequence consists of i.i.d. Student’s t(𝜈)
realizations, with df = 𝜈 indicated in the titles (from top to bottom, 𝜈 = 1, 𝜈 = 2, 𝜈 = 5, and 𝜈 = 200). Left (right) panels
indicate the percentage of the 1,000 replications that resulted in choosing p = 0 (p = 1).

which explicitly uses the normality assumption in the small-sample distribution theory.However, note
from the top left panel of Figure 9.20 (which corresponds to 𝜈 = 1, or Cauchy innovations) that, for
p = a = 0, instead of 0.774 = (1 − 0.05)m ≈ 1 − 0.05m = 0.75 from (9.9), the null of p = 0 is chosen
about 86% of the time, while from the third and fourth rows (for 𝜈 = 5 and 𝜈 = 200), it is about 78%.
Similarly, the choice of p = 1when p = a = 0 should occur about 5% of the time for theCACFmethod,
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but, from the right panels of Figure 9.20, it is lower than this, decreasing as 𝜈 decreases. However, for
𝜈 = 5, it is already very close to the nominal of 5%. Interestingly, with respect to choosing p = 0, the
behavior of the CACF for all choices of 𝜈 is virtually identical to the AICC near a = 0, while as |a|
grows, the behavior of the CACF coincides with that of the BIC. (Note that this behavior is precisely
what we do not want: Ideally, for a = 0, the method would always choose p = 0, while for a ≠ 0, the
method would never choose p = 0.)
Figure 9.21 is similar to Figure 9.20, but having used X = [𝟏, t]. Observe how, for all values of

𝜈, unlike the known mean case, the performance of the AICC and BIC is no longer symmetric
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Figure 9.21 Same as Figure 9.20 but having used X = [𝟏, t].
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about 𝜙 = 0, but the CACF is still virtually symmetric. Fascinatingly, we see from the left panels of
Figure 9.21 that the CACF probability of choosing p = 0 virtually coincides with that of the AICC for
𝜙 ⩾ 0, while for 𝜙 < −0.2, it virtually coincides with that of the BIC.
The reader is encouraged to replicate this study of the behavior of the methods amid

non-Gaussianity, and also consider asymmetric innovations, such as via use of the asymmetric
stable Paretian or noncentral t. Different values of p and a variety of AR(p) coefficients could also
be investigated. Finally, it also makes sense to allow the penalty-based selection criteria to use the
information about the true innovation process, i.e., model parameter estimation is conducted using
the true d.g.p., this being a feature that the CACF method does not (currently) have as the theory
was developed under the assumption of Gaussianity. In this case, exact maximum likelihood is not
straightforward, but the conditional m.l.e. based on a non-Gaussian distributional assumption is
easily programmed, and serves as a great exercise for the motivated student. (Far more challenging
would be an attempt at deriving the conditional saddlepoint approximation for the sample autocor-
relation function for innovations coming from an elliptic class of distributions such as symmetric
stable Paretian.)

Remarks
a) Note that the CACF method can be used for determining p, but does not indicate which of the p

AR parameters (except the last) are “significant” and which are not, as might arise in a subset AR
model. If the data analyst believes that some of the p coefficients could be zero, then one could
use (9.8) for determining p, and then, for example, use the information criteria AIC and/or BIC
applied to all 2p−1 subset AR(p) models, as well as possibly the signed likelihood ratio statistic (9.2)
for assessing which AR coefficients can be set to zero. In general, this author frowns upon such
procedures (recall, again, the opening quote by Ed Leamer), viewing instead an AR(p) model as a
simple approximation to a much more complicated underlying reality, though the idea of a subset
model could be of use if, say, p is relatively high, but many ai coefficients might realistically be zero.
This would occur, for example, in a seasonal autoregressive model.

b) A partial extension to the ARMA(p, q) model is possible. We assume that the regression error
terms follow a stationary, invertible ARMA(p, q) process with q known, but the MA parameters
𝜽 = (𝜃1,… , 𝜃q) and p are not known. A possible method for eliciting p using the SACF method is
as follows. Iterate the two steps starting with p1 = 0:
1) Estimate the ARMAX(pi, q) model to obtain �̂�,
2) Compute 𝜏1,… , 𝜏m with𝚿−1 corresponding to theMA(q)modelwith parameters �̂�, fromwhich

pi+1 is determined.
Iteration stops when pi+1 = pi (or i exceeds some preset value), and pi+1 is set as before for a given
value or vector of c. Butler and Paolella (2017) provide simulation studies showing the effectiveness
of this strategy (assuming Gaussianity), and that the CACF results in being often among the best
methods, along with AICC and BIC.

c) What emerges from the various simulation studies is the known (but—we believe—not
well-known) fact that the small-sample performance of all the penalty-based criteria is highly
dependent on the actual autoregressive model parameters; see, e.g., Rahman and King (1999) and
the references therein. The same result turns out (unfortunately) to also be true for the CACF
method. ◾
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9.6 Use of the Singular Value Decomposition

This section was written with Patrick Walker

Another method to determine the optimal order of an AR(p) process (without covariates) is based
on the singular value decomposition (SVD) of either a data matrix or an autocorrelation matrix of
the observed process. SVD is a matrix factorization that generalizes the eigenvalue decomposition
of symmetric positive semi-definite matrices to any real or complex matrix. It has many applications
in statistics and signal processing, and can generally be used for determining the rank of a matrix.
More formally, let M be any real or complex m × n matrix. There exists a factorization M = USV∗,
where U is a unitary m ×m and V a unitary n × n matrix, V∗ is the conjugate transpose of V, and S
is an m × n rectangular diagonal matrix (though note it is not necessarily a square matrix) with real
diagonal entries 𝛼1 ⩾ … ⩾ 𝛼r ⩾ 0, where r is the rank of matrixM; see the references given just above
Theorem 5.1.
A computationally efficient iterative algorithm to determine the order of an autoregressive process

based on the SVD is presented in Konstantinides (1991); see also Dickie and Nandi (1994). Let n be
larger than the order of the process, p. Then, for somem ⩾ n, anm × nmatrix Xn is formed from the
data sample as follows. (For this method, we use the notation more common in the engineering liter-
ature.) Given an observed data sequence (x(1), x(2),… , x(N)) of length N , construct the data matrix
Xn as

Xn = [X(N − 1), X(N − 2), … X(N − n)],

where X(N − k), k = 1, 2,… , n, is anm-dimensional column vector defined as

X(N − k) = [x(N − k), x(N − k − 1), … , x(N − k −m + 1)]′.

Analogously define the vector X(N) as

X(N) = [x(N), x(N − 1), … , x(N −m + 1)]′.

The optimal order of the autoregressive process is then determined as the so-called effective rank
of matrix Xn, defined as the number of singular values that are larger than a certain threshold. The
calculation of this threshold requires one to distinguish between significantly small and insignifi-
cantly large singular values. For this reason, the iterative algorithm proposed in Konstantinides (1991)
makes use of the confidence bounds for perturbed singular values of noisy data matrices derived in
Konstantinides and Yao (1988). The algorithm of Konstantinides (1991) for order determination of
autoregressive processes is given as follows.

1) Choose n larger than an initial guess of the process order. Choosem ⩾ n, for examplem = 2n + 1.
Build matrix Xn and vector X(N).

2) Perform the SVD of data matrix Xn to get singular values 𝛼1 ⩾ · · · ⩾ 𝛼n.
3) Compute the least squares solution a(n) = [a1, … , an]′ of the problem Xna(n) = X(N). Esti-

mate the noise variance 𝜎2
e = MSEx∕m = ||X(N) − Xna(n)||22∕m.

4) Compute the threshold 𝛿 =
√
c(m)𝜎e, where c(m) = 𝜒2

1−𝛼(m) is the (1 − 𝛼)-percentile of the
𝜒2-distribution withm degrees of freedom. Determine the rank k such that 𝛼k > 𝛿 ⩾ 𝛼k+1.

5) Repeat steps 1–4 with n = k + 1 to find the rank l of the new data matrix Xk+1. If 1 < l < k, then
set k = l and repeat step 5; else stop and return l as the optimal order.
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1 function order = ARorderKonst(x,n,siglevel)
2 % x = time series of observed data (vector of size N x 1)
3 % n = largest value of p to try.
4
5 if nargin<3, siglevel= 0.05; end;
6 N = length(x); m = 2*n+1; X = zeros(N,m);
7 X(N,:) = x(N:-1:N-m+1);
8 for i = 1:n, X(N-i,:) = x(N-i:-1:N-i-m+1); end
9 boldX = flipud(X(N-n:1:N-1,:))';

10
11 % Iterative algorithm: initial step
12 % 2.) Singular value decomposition of data matrix
13 alpha = svd(boldX);
14
15 % 3.) Calculate error variance
16 an = (boldX' * boldX) \ (boldX' * X(N,:)'); % OLS solution of X_n * a(n) = X(N)
17 sigmaE = sqrt(norm(X(N,:)' - boldX*an)ˆ2/m); % error variance
18
19 % 4.) Calculate threshold epsilon_L and find effective rank of data matrix
20 c = chi2inv(1-siglevel,m);
21 epsilonL= sqrt(c)*sigmaE;
22 k = length(find(alpha > epsilonL));
23
24 % 5.) Iterate the following steps until break criteria fulfilled
25 while 1
26 n= k+1; m = 2*n+1;
27 clear X
28 X = zeros(N,m); X(N,:) = x(N:-1:N-m+1);
29 for i = 1:n, X(N-i,:) = x(N-i:-1:N-i-m+1); end
30 clear boldX
31 boldX = flipud(X(N-n:1:N-1,:))';
32 % 5.2.)
33 alpha = svd(boldX);
34 % 5.3.)
35 an = (boldX' * boldX) \ (boldX' * X(N,:)'); % OLS solution
36 sigmaE = sqrt(norm(X(N,:)' - boldX*an)ˆ2/m);
37 % 5.4.)
38 c = chi2inv(1-siglevel,m); epsilonL= sqrt(c)*sigmaE;
39 k2= length(find(alpha > epsilonL));
40 if (k2<k && k2>1)
41 k = k2;
42 else
43 order = k2;
44 break
45 end
46 end

Program Listing 9.6: AR order selection algorithm based on the singular value decomposition from
Konstantinides (1991).
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Figure 9.22 Histograms, based on 1,000 replications and sample size T = 30, corresponding to the chosen value of AR lag length p, for an AR(1) model
with parameter a = 0.5, for the CACF, AICC, BIC, and SVDmethods, using pmax = 6. The top panels correspond to a pure AR(1) model with no regressor
matrix, while the bottom panels use X = [𝟏, t], and the SVDmethod is applied to the ordinary least squares residuals based on this Xmatrix. From left to
right, the three values 𝛼 = 0.01, 𝛼 = 0.05, 𝛼 = 0.10, as the tuning parameter of the SVDmethod, are used.
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The choice of m = 2n + 1 is arbitrary and is a tuning parameter of the model. One needs N ⩾ n +m
observations for the algorithm to work. For n between 4 and 8, the minimum number of observations
is thus between 13 and 25 under this choice ofm.While other iterative order determination algorithms
evaluate the testing criterion for all values n = 1,… , p + 1, the algorithm of Konstantinides (1991)
does not need this and is thus much faster. The program in Listing 9.6 implements the method.
The value of 𝛼 = 0.05 imposed in Konstantinides (1991) is certainly a natural choice in light of the

ubiquitous nature of its use as the type I error rate in hypothesis testing. Nevertheless, it is also a
tuning parameter of the method, and the value of 0.05 may not be optimal with respect to a more
typical “loss function” regarding the choice of p.
The first simulation experiment uses an AR(1) model with parameter a = 0.5. Figure 9.22 is similar

to Figures 9.16 and 9.17, but includes the use of the SVDmethod, and only considers pmax = 6. Three
values of tuning parameter 𝛼 are used, 0.01, 0.05, and 0.10. It appears that, for this model and sample
size, in the case with no X matrix, the use of 𝛼 = 0.01 is inferior to use of 𝛼 = 0.05, with the latter
having a much lower chance of choosing p = 0, and a slightly higher chance of choosing the correct
p = 1. The AICC and BIC are clearly superior in the no X case, while the CACF method is (very
slightly) preferred with X = [𝟏, t], as in Figure 9.17.
The next experiment uses an AR(4) model with a1 = 0.4, a2 = −0.3, a3 = 0.2, and two values of a4,

namely a4 = −0.1 and a4 = −0.6 (which is stationary, with maximummodulus of the AR polynomial
roots being 0.91), sample size T = 90, and no X matrix. The upper lag order is pmax = 7. Two sets of
tuning parameters for the CACF and SVD methods are used. Figure 9.23 shows the results. For the
case with a4 = −0.1 (upper panels), no method performs well, noting that the BIC and the SVD with
𝛼 = 0.05 have a high preponderance of choosing a lag length of 0, 1, or 2. With a4 = −0.6 (bottom
panels), matters look somewhat better, with the BIC, followed by AICC, being blatantly superior to
the other methods.

9.7 Further Methods: Pattern Identification

Doing econometrics is like trying to learn the laws of electricity by playing the radio.
(Guy Orcutt, cited by Leamer, 1983, p. 31)

Optical inspection of the SACF and SPACF, as discussed in Section 9.2, is a special case of more
general “pattern recognition” methods. There are other correlograms available that exhibit different
properties than the SACF and SPACF and so provide a fuller picture of the correlation structure. The
most popular of these are the two inverse correlograms, named the sample inverse ACF, or SIACF,
and the sample inverse partial ACF, or SIPACF. These mimic the SACF and SPACF but essentially
reverse the roles of p and q, so that, for example, both the SPACF and SIACF should “cut off” for an
AR(p) model.3
Another set of complementary correlograms to the SACF and SPACF are the modified SACF

and SPACF, which have the convenient property that they cut off even for stationary and invert-
ible ARMA(p, q) models such that both p and q are nonzero. See, e.g., Choi (1992) and the references

3 The SIACF was introduced by Cleveland (1972) in the context of the spectral analysis of time series, and Chatfield (1979)
provided the time-domain definition. Abraham and Ledolter (1984) have demonstrated that, for full-order AR processes (all
coefficients are non-zero), the SPACF is more powerful than the SIACF, while Etuk (2000) showed via simulation that, for
identification of subset autoregressive models (at least one of the ai = 0, i < p), the SIACF is often better.
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Figure 9.23 Top: Similar to Figure 9.22, but based on an AR(4) model with a1 = 0.4, a2 = −0.3, a3 = 0.2, and a4 = −0.1, no Xmatrix, sample size T = 90,
pmax = 7, and two sets of tuning parameters. The left panels use 𝛼 = 0.05 for the SVD and c = 0.125 for the CACF, while right panels use 𝛼 = 0.2 and
c = 0.075. Bottom: Same but a4 = −0.6.
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therein. While appealing, the sampling distributions are complicated, and they tend to not work well
in practice.
There are also other procedures that produce a set of data that is patterned in some way depending

on p and q. As a brief demonstration of a possible pattern identification-type method that could be
used to elicit p and q, recall matrix𝚷 defined in (7.19).There it was used with the true values of p and
q and is full rank. Let us see what happens when p and q are arbitrary. We compute the determinant
of 𝚷 for all combinations of p = 0, 1,… , pmax and q = 0, 1,… , qmax, based on the true 𝜋i, and record
in a pmax × qmax matrix, say D, a zero if the absolute value of the determinant is less than 10−7 and a
one otherwise. Using pmax = qmax = 7, the left matrix in (9.12) corresponds to an ARMA(1, 3) model
(with a1 = 0.5, b1 = −1.1, b2 = 0.7, and b3 = −0.3) and the right matrix to an ARMA(2, 5) model with
a = [0.3 0.2] and b = [−0.4 0.4 −0.3 −0.1 −0.3].

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.12)

A clear pattern emerges: The value of p is the number of rows with all ones, and q is the number
of rows with any ones. As long as pmax and qmax are chosen large enough, trial and error appears to
confirm that this rule holds for all stationary and invertible ARMA models, but it would need to be
(and probably has been; see Beguin et al., 1980) algebraically proven.4 A method for determining p
and q from a sample time series immediately suggests itself: Compute estimates 𝜋i using o.l.s., i =
1,… , pmax + qmax, compute D, and look (hope?) for a clear pattern. Tuning parameters include pmax,
qmax and the threshold for declaring if the determinant is zero.
For the data set in Figure 9.1, the “determinant matrix” D, computed using pmax = qmax = 5, takes

the form

D =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
, (9.13)

which suggests an ARMA(1,2) model. If the second row ended in a one instead of a zero, we could
have claimed anARMA(2,2)model instead.Thesemodel choices are in agreementwith those from the
other methods. However, matrixD was obtained using a threshold (for deciding if the determinant is
zero) around 0.2, which is quite far from zero in this context, illustrating the sensitivity of the method
to the choice of tuning parameters.

4 See Choi (1992), Chan (1999), and the references therein for related methods and discussion of other pattern methods for
the mixed ARMA case.
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The book by Choi (1992) is dedicated to the topic of ARMAmodel selection and provides the best
starting place for further information and research in this area. In particular, Choi (1992, Ch. 5) pro-
vides detail on various pattern identification methods. Anderson (1994) is well worth looking at as
well. He writes in his introduction “[Choi’s chapter 5] presents about a dozen methods proposed by
several statisticians. The purpose of the present chapter is to organize these methods coherently and
relate them to each other.” Further, good reading about ARMA modeling in general is provided by
(a different) Anderson (1995).
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Part III

Modeling Financial Asset Returns
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10

Univariate GARCHModeling

Thegoal of this chapter is to develop the primary topics associatedwith the class of univariateGARCH
models, as well as some less common but highly useful methods for estimation. One of their pri-
mary applications is for risk prediction of financial portfolios of assets, and this will be detailed in
Chapter 11. This basic univariate GARCH framework is not as limited as it might seem: It can be
used to form multivariate models of financial asset returns and as an important application in the
context of portfolio optimization. We save that discussion also for Chapter 11, concentrating herein
on several core aspects of the univariate case.
The outline of this chapter is as follows. After some introductory remarks in Section 10.1,

Section 10.2 presents the fundamental properties of the baseline Gaussian GARCH model and
details its estimation. Section 10.3 builds on this by discussing some simple but important exten-
sions. Section 10.4 is concerned with estimation of GARCH models when the underlying i.i.d.
process is specifically noncentral Student’s t, denoted NCT-GARCH. Section 10.5 is dedicated to
the GARCH model with a stable Paretian distributional assumption, denoted S𝛼,𝛽-GARCH, and
discusses testing the stability and i.i.d. assumptions of the filtered innovations process. Section 10.6
details a GARCH-type model that does not fit into the class of extensions from Section 10.3, but
embodies a richer dynamic structure based on a discrete normal mixture distribution that leads to
improved out-of-sample forecasts.

10.1 Introduction

People in the academic world often do well, not because they are smarter than others, but
because they have chosen somehow sexier fields to research.

(Emanuel Parzen, in Newton, 2002)

Volatility clustering is one of several so-called stylized facts—typically observed empirical
characteristics and regularities of financial asset price changes, or returns. This clustering is perhaps
best defined as stated in Mandelbrot (1963): “large changes tend to be followed by large changes,
of either sign, and small changes tend to be followed by small changes”, where “changes” refer to
differences in the underlying price. Instead of price changes, we will model the returns, as were
defined in Section 7.7.1. The returns on many, if not virtually all, financial assets measured at the
weekly, daily, and higher frequency levels exhibit volatility clustering, such as currency exchange

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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rates, stock and futures prices, crude oil (see, e.g., Baumeister and Peersman, 2013), convertible
bonds (see, e.g., Wang and Li, 2011), fixed-income exchange traded funds (ETFs),1 etc.
The other primary stylized facts of asset returns are high leptokurtosis and mild asymmetry. See

Granger et al. (2000), Cont (2001), Teräsvirta and Zhao (2011), and the references therein for discus-
sion of these and further stylized facts.
The autoregressive conditional heteroskedasticity (ARCH) model, and particularly its general-

ized form, hereafter GARCH, are now cornerstone structures for addressing the volatility clustering
in financial time series, with their origins in the works of Engle (1982), McCulloch (1985a), Bollerslev
(1986, 1987), and Taylor (1986), followed by an enormous subsequent growth in model exten-
sions, applications, and theoretical underpinnings. There are now many variations of the GARCH
idea—arguably too many—culminating in an amusing “alphabet soup” of associated acronyms,
including the tongue-in-cheek YAARCH (Yet Another ARCH). A (much-needed) overview can be
found in Bollerslev (2010). Aspiring academics may wish to admonish the remark fromMoosa (2017,
Sec. 1.6): “There have been more sequels to ARCH than to Jaws, Rocky, Rambo, and Die Hard put
together. As for ‘better’ models, it is not obvious to me in what ways the extensions and alternative
are better—it has been an extravaganza that served no purpose whatsoever, apart from providing the
means whereby students get their PhDs and academics get their promotions.”
The econometric term “heteroskedasticity” just means that the variance is not constant.2 In this

context, “volatility” is typically defined as the square root of the variance, which, in the Gaussian case,
is the scale term of the normal distribution, 𝜎. We define volatility as the (time-varying) scale term,
and thus it will make sense to speak of (conditional) volatility also for models in which the variance
of the underlying i.i.d. random variables, also referred to as the innovation process or innovation
sequence, does not exist, such as in the stable Paretian case, or Student’s t with degrees of freedom
less than or equal to two.
A clear illustration of pronounced volatility clustering is given in Figure 10.1, showing the daily

returns on the exchange rate of various currencies compared to theU.S. dollar around theAsian Finan-
cial Crisis (AFC) commencing inThailand in July 1997, as analyzed by Mittnik and Paolella (2000).

Remark The massive devaluation in July 1997 of the Thai bhat is considered to have triggered the
financial crisis that led to the collapse of foreign exchange and equity prices in many East Asian coun-
tries. During the 1980s, Thailand’s capital markets became increasingly liberalized and opened up
for foreign investors. As in other countries in the region, the Thailand economy experienced high
economic growth and large inflows of private capital throughout the 1990s, while maintaining an
effectively pegged nominal exchange rate.The capital inflow led to an appreciation of the real exchange
rate that, in turn, negatively affected firms’ exports and profit margins and, ultimately, led to cash
flow shortages. From 1990 to 1997, Thai companies increased the U.S. dollar-denominated foreign
debt outstanding from international bond market activities by a factor of about 10, to $12.9 billion
(Harvey and Roper, 1999).

1 Investing in the fixed-income (bond) market is quite different from investing in (liquid) stocks because of the
over-the-counter (OTC) nature of the markets, lack of liquidity, high markups, bond maturities, etc. An ETF eliminates most
of these problems, as well as providing diversification, so that the instrument can be bought and sold similar to a liquid stock.
2 While simple as a concept, the word’s spelling was, for quite some time, not, with the decision of using a “k” or a “c”
becoming a serious and divisive issue among otherwise pleasant econometricians, culminating in the argument in McCulloch
(1985b) for use of “k”. Research continues on this fascinating topic; see, e.g., Paloyo (2011).
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Figure 10.1 The returns Rt = 100 × (ln Pt − ln Pt−1), where Pt is the exchange rate at time t, of various Asian currencies
versus the USD, from 1 January 1990 to 31 December 1998 (with the exception of the Indian rupee, which extends
only until 2 July 1998).

In February 1997, Somprasong became the first Thai company that failed to serve foreign debt. In
May of that year, the Thai bhat came under heavy attacks from speculators acting on the economic
slowdown as well as political instability. The largest finance company, Finance One, failed shortly
thereafter. In June, Thailand’s finance minister, who had strongly resisted a devaluation of the bhat,
resigned. On July 2, the Bank of Thailand announced a managed float of the bhat and requested
“technical assistance” from the International Monetary Fund. The resulting devaluation from 24.5
to 30.2 bhat per U.S. dollar is considered to have triggered the East Asian crisis. Subsequent to that,
negative news from the Thai economy as well as from other countries in the region led to violent
swings for the bhat, reaching a low point on January 12, 1998 with an exchange rate of 56.1 bhat per
U.S. dollar.
For a more detailed account of the AFC, see, e.g., Corsetti et al. (1999a,b) and Harvey and Roper

(1999). ◾

Almost precisely a decade later, enormous increases and fluctuations in volatility arose again, due
to the U.S. banking and liquidity crisis, sometimes referred to as the sub-prime crisis, or the Global
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Financial Crisis (GFC) starting around mid 2007.3 For a study of the volatility during this period, see,
e.g., Banulescu et al. (2016) and the references therein, notably also their graphics of the (annualized,
so-called realized) volatility annotated with some of the major events that occurred during the GFC,
one graphic of which, using a type of robust GARCH estimation based on methodology from Creal
et al. (2011, 2013) and Harvey (2013a), is shown in Figure 10.2.
We will see below in Example 10.1 the rather remarkable result that a simple GARCHmodel (albeit

driven by a heavy-tailed innovation process) canmimic the behavior of the returns on currency, stock,
and other asset prices even during extrememarket periods and crisis conditions, such as the AFC and
GFC. In particular, this is accomplished without the need for more elaborate models, such as those
incorporating “structural breaks” or “regime switching”, these being two examples of models with
time-varying parameters.This is not to bemisunderstood as implying that simple GARCH-typemod-
els cannot be improved upon in terms of forecasting ability by accounting for structural breaks and/or
regime switching. Quite on the contrary, they can, and this should not come as a surprise, given that
most GARCH-type models used are very simplistic time-series structures that have between three
and five parameters for describing what is in reality a complicated phenomenon. See, for example, the
discussion of the autocorrelation function below in Section 10.6.3 regarding structural breaks, and
Section 10.6.5 regarding the use of regime switching models.
The basic GARCH model is a simple, ARMA-type structure as was developed in Part II, applied

not to the mean, but to the variance (or, more generally, the scale term, as discussed above, or its
square) of the innovation sequence. Like ARMA models in classic time-series analysis, GARCH and
all its variations are stochastic processes that do not purport to address the reason for conditional
heteroskedasticity or claim to be the true data generating process (d.g.p.) of what is most surely a
very complicated underlying phenomenon. However, due to the nature of financial asset returns and
their highly persistent volatility, simple GARCHmodels turn out to be very effective for modeling and
predicting the scale terms. Possible economic explanations as to why financial return series exhibit
volatility clustering and heavy tails are discussed in Kirchler and Huber (2007) and the references
therein.

Remarks
a) GARCH-type processes are not the only stochastic models that can mimic the volatility clustering

and other stylized facts of asset returns. For example, recall the stochastic unit root model (7.57),
namely

Pt = (1 + 𝛿t)Pt−1 + 𝜖t, 𝛿t
i.i.d.∼ N(0, 𝜎2

𝛿
) indep. of 𝜖t

i.i.d.∼ N(0, 𝜎2
𝜖 ). (10.1)

It can generate data that strongly resemble a financial price process and whose returns exhibit
“GARCHeffects”; see, e.g., Yoon (2003). For example, Figure 10.3 shows a simulated (price) process
{Pt} from (10.1), their log percentage returns, and the SACF of the returns and the squared returns,
using the code in Listing 10.1.

b) Another stochastic process that gives rise to GARCH effects and has numerous other appeal-
ing properties is the multifractal model. Its use often results in superior forecasts compared to
GARCH and is gaining in popularity. See Lux (2008), Wang et al. (2016), Lux et al. (2016), Segnon
et al. (2017), Lux and Segnon (2018), and the references therein.

3 The starting date for the sub-prime crisis is often taken to be early August, 2007; see Covitz et al. (2013) and the references
therein.
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Figure 10.2 Annualized volatility during the GFC based on a robustified GARCHmodel and marked with occurrences of several major events. This
graphic, courtesy of Peter Hansen, is Figure 4 in Banulescu et al. (2016).
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Figure 10.3 Realization of (10.1) from the code in Listing 10.1.

1 T=1e3; a=randn(T,1)/10; e=0.005+randn(T,1)/1;
2 P=zeros(T,1); P(1)=100; for t=2:T, P(t)=(1+a(t))*P(t-1)+e(t); end
3 if any(P<=1e-3), P=P+abs(min(P))+1e-2; end
4 lP=log(P); R=100*(lP(2:end)-lP(1:(end-1)));

Program Listing 10.1: Generates a simulated realization of (10.1) and the corresponding returns.

c) For further reading and earlier references on GARCH processes, the surveys by Bollerslev et al.
(1994) and Palm (1997) are still highly relevant; introductory accounts can be found in Patterson
(2000a, Ch. 16), Morimune (2007), Alexander (2008, Ch. II.4), and Jondeau et al. (2007, Ch. 4), the
latter also having an associated web site with Matlab codes, while more technical and overarch-
ing (pun intended) book-length presentations are provided by Gourieroux (1997) and Francq and
Zakoïan (2010). ◾

10.2 Gaussian GARCH and Estimation

Let the time series {Rt}, t ∈ ℤ, be an equally spaced sequence of random variables, forming a stochas-
tic process. This will invariably be used with a finite set of observed data, these being the (percentage
log) returns on some underlying financial asset.The process given by Rt = 𝜖t = Zt𝜎t , where {Zt} refers
to a sequence of i.i.d. randomvariables from location-zero, scale-one density fZ(⋅), and scale parameter
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𝜎t being computed from the recursion

𝜎2
t = c0 +

r∑
i=1

ci𝜖2t−i +
s∑

j=1
dj𝜎2

t−j, (10.2)

is referred to as a (discrete time) GARCH(r,s) process.
While we will use (10.2) throughout this chapter, the reader should know that different notations

will be found in the (large) GARCH literature. For example, a common one is to denote the scale term
as ht , and the parameters in (10.2) as 𝜔, 𝛼i, and 𝛽i, respectively, i.e.,

ht = 𝜔 +
r∑

i=1
𝛼i𝜖

2
t−i +

s∑
j=1

𝛽jht−j. (10.3)

If Zt
i.i.d.∼ N(0, 1), then we can be more specific and say that {Rt} follows a GARCH(r,s) process with

normal innovations, or, in short, a normal (or Gaussian) GARCH(r,s) model. In this case, 𝔼[Z2
t ] = 1.

The reason for defining the seemingly superfluous 𝜖t instead of just usingRt is because themodel could
be augmented with a location term, such as Rt = 𝜇 + 𝜖t , with 𝜖t = Zt𝜎t , or a time-series structure for
the mean, such as an ARMAmodel, as will be done in (10.18) below.

10.2.1 Basic Properties

Let Ωt denote the information set at time t, or the set of observed random variables available
about the process generating the returns up to time t. For the discrete time GARCH process (10.2),
Ωt is taken to be (… ,Rt−1,Rt), i.e., infinitely many past returns, from which the GARCH model
parameters 𝜽 = (c′,d′)′, where c = (c0, c1,… , cr)′ and d = (d1, d2,… , ds)′, and past scale terms
(𝜎t , 𝜎t−1,…), could (in principle) be exactly elicited. The following aspect is one of the defining
features of GARCH-type models and differentiates them from a competing class referred to as
stochastic volatility, or SV, models:

Given Ωt−1, 𝜎t is a known constant, computed from (10.2). It is not stochastic.

The calculation of the one-step ahead forecast 𝜎t ∣ Ωt−1 is discussed in Section 10.3.3 in a somewhat
more general context. Obviously, in practice, one does not have an infinite number of past observa-
tions, so thatΩT is just (R1,R2,… ,RT−1,RT ), and (r + s + 1)-length parameter vector 𝜽 and the s past
scale terms (𝜎0, 𝜎−1,… , 𝜎1−s) need to be estimated from the available data. This will be dealt with
below in detail.
For the moment, let Ωt = (Rt,Rt−1,…), so that, with normal innovations, the conditional variance

of Rt , given Ωt−1, is

𝔼[R2
t ∣ Ωt−1] = 𝔼[𝜎2

t Z2
t ∣ Ωt−1] = 𝜎2

t 𝔼[Z2
t ∣ Ωt−1] = 𝜎2

t 𝔼[Z2
t ] = 𝜎2

t . (10.4)

Now consider the unconditional variance of Rt . First, let 𝔼[𝜎2
◾] denote the unconditional expectation

of 𝜎2
t . Then, from (10.2), and that the {Zt} are i.i.d.,

𝔼[𝜎2
◾] = c0 + 𝔼

[ r∑
i=1

ci𝜖2t−i

]
+ 𝔼

[ s∑
j=1

dj𝜎2
◾

]
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= c0 +
r∑

i=1
ci𝔼[Z2

t−i]𝔼[𝜎
2
◾] +

s∑
j=1

dj𝔼[𝜎2
◾] (Zt is independent of 𝜎2

t )

= c0 + 𝔼[Z2
t ]

r∑
i=1

ci𝔼[𝜎2
◾] +

s∑
j=1

dj𝔼[𝜎2
◾] = c0 + 𝔼[𝜎2

◾]

(
𝔼[Z2

t ]
r∑

i=1
ci +

s∑
j=1

dj

)
=

c0
1 − 𝔼[Z2

t ]
∑r

i=1 ci −
∑s

j=1 dj
. (10.5)

Thus, unconditionally, 𝕍 (Rt) = 𝕍 (Zt)𝔼[𝜎2
◾], which, for Zt

i.i.d.∼ N(0, 1), is

𝕍 (Rt) = 𝔼[𝜎2
◾] =

c0
1 − VN

, VN ∶=
r∑

i=1
ci +

s∑
j=1

dj. (10.6)

Observe that 𝕍 (Rt) does not exist if VN ⩾ 1 (where the N denotes normality) and is such that, the
closer VN is to one, the larger is the unconditional variance (or volatility) of Rt . This is sometimes
referred to as the “sum to one” condition. In practice, once the model is estimated, the statistic V̂N =∑r

i=1 ĉi +
∑s

j=1 d̂j gives a measure of the extent of persistence of shocks to the volatility of the series.
Formulae for higher moments of Rt can also be obtained. For example, in the GARCH(1,1) case

(with normal innovations), the kurtosis of Rt = 𝜖t = Zt𝜎t , and the autocorrelation function of R2
t , if

they exist, are given, respectively, by

kurt(Rt) = 3
1 − (c1 + d1)2

1 − (3c21 + 2c1d1 + d2
1)

> 3, r(𝜏) = (c1 + d1)𝜏−1
c1(1 − d2

1 − c1d1)
1 − d2

1 − 2c1d1
, (10.7)

see e.g., Bollerslev (1988) and He and Teräsvirta (1999a,b). These are generalized (10.24) and (10.25).
As scale terms, all 𝜎t need to be positive, so that constraints on the parameters 𝜽 are required. It is

easy to see that it is sufficient if ci > 0, i = 0,… , r, and dj ⩾ 0, j = 1,… , s. In the very important r =
s = 1 case, this is also a necessary condition (that needs to be imposed during estimation). Necessary
and sufficient conditions in the general r, s case are given in Nelson and Cao (1992) and are such that
some coefficients can be negative. These conditions can be done away with by expressing the model
in terms of ln 𝜎2 instead of 𝜎2, giving rise to the so-called EGARCHmodel by Nelson (1991), and the
log-GARCH model; see Francq et al. (2013) and the references therein.
We next consider the choice of r and s. In the classic time-series literature on ARMA(p, q) models,

much intellectual effort has been expended on how best to determine the orders p and q of the AR and
MA components, respectively; recall Chapter 9. Fortunately, whenmodeling financial return series, it
is almost always adequate simply to take r = s = 1. Notice one could use the AIC and BIC information
criteria to determine the optimal r and s, though most empirical work just assumes r = s = 1. In this
case, (10.2) reduces to 𝜎2

t = c0 + c1𝜖2t−1 + d1𝜎2
t−1, which can be interpreted as the variance at time t

being decomposed into three simple pieces: A baseline value c0, a fraction, d1, of the previous period’s
variance, and a fraction, c1, of the squared magnitude of the previous period’s return.

10.2.2 Integrated GARCH

It would appear from (10.6) that, if VN = 1, the model would give rise to an explosive process, such
that the magnitude of the Rt increases on average without bound. This is not the case: The normal
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GARCHmodel (10.2) withVN = 1 is called the integrated GARCH, or IGARCH, and yields a strictly
stationary process; see Nelson (1990) and the book referencesmentioned above.This also serves as an
example of a process that is strictly stationary but not covariance stationary. Besides being a common
process for modeling actual data (and such that there is one less parameter to estimate), the IGARCH
construction is useful for emphasizing an important empirical aspect of GARCHmodeling applied to
financial returns or any (economic or other) time series whose d.g.p. is, as mentioned, undoubtedly
not actually given by such a simple model:

For genuine financial returns data, as the sample size is allowed to increase, the estimated (nor-
mal) GARCH parameters tend towards the IGARCH border (or exceed it, if not constrained),
this being typically attributed to model mis-specification.

For further discussion of this point, and empirical evidence, see Diebold and Lopez (1996), Hille-
brand (2005), Chavez-Demoulin et al. (2014), and the references therein. An analogy can be made to
a more classical aspect of econometric modeling, namely unit root testing, from Section 5.5. In par-
ticular, as the true underlying d.g.p. is surely more complicated than the simple structure (5.1)–(5.2)
assumed there, possibly because of structural breaks, time-varying parameters, a stochastic unit root,
or other forms of model mis-specification, it is the case that, for a stationary process (in particular,
without a unit root) and, as the sample size T increases, the power of unit root tests can drop to zero.
Recall the example in Figure 5.12.

10.2.3 Maximum Likelihood Estimation

We now turn to parameter estimation of the normal GARCH model (10.2), but augment it with
a location term as Rt = 𝜇 + 𝜖t , 𝜖t = Zt𝜎t , t = 1,… ,T . While moment-based methods are available
(see, e.g., Baillie and Chung, 2001; Prono, 2016; and the references therein), we concentrate on use of
the likelihood. Observe that, by construction, the likelihood is just the product of the location- and
scale-transformed random variables 𝜎−1

t fZ((Rt − 𝜇)∕𝜎t). Basic code for computing them.l.e. is given in
Listing 10.2. For actual application, in order to help avoid inferior local maxima of the log-likelihood,
we suggest using the method of profile likelihood for estimation discussed below.
Francq and Zakoïan (2004) prove the consistency and asymptotic normality of the maximum likeli-

hood estimator of the GARCHmodel parameters. To assess the small-sample properties of the m.l.e.,
we use simulation. Such a study obviously requires being able to simulate a GARCH process, and the
reader is encouraged to write a simple function to accomplish this.4 Figure 10.4 shows the results of
such a simulation, based on 1,000 replications, via histograms of the estimated parameters, for gener-
ated series with T = 1,000 observations, and using c0 = 0.04, c1 = 0.05, and d1 = 0.8. Also shown are
histograms of ĉ1 + d̂1, as a measure of the persistence, as well as the sample variance of the filtered
innovations, say 𝕍 (Ẑt). The reader should reproduce the graphics in Figure 10.4 using own code for
simulation and estimation, as well as those via the built-in Matlab routines (and similarly for users of
R, Python, etc.). More ambitious readers can conduct a simulation involving use of various estima-
tion procedures, including those in canned packages such as EViews, SAS, etc., and compare their
performance (in terms of bias, variance, m.s.e., etc.), and differences of the resulting estimates.

4 Matlab as of version R2012a has functions to do this, aptly named garch and simulate, as well as estimate and
forecast; see the respective help files. Users of R will have a variety of such packages available, notably fGarch, from
DiethelmWuertz and Yohan Chalabi.
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1 function [param,stderr,loglik,zvec] = babygarch(y)
2 % normal-GARCH(1,1) with power=2. y is vector of log percentage returns
3 initvec= [0 0.04 0.05 0.8];
4 % mu c_0 c_1 d_1
5 bound.lo= [-4 0 0 0 ];
6 bound.hi= [ 4 0.5 1 1 ];
7 bound.which=[ 1 1 1 1 ];
8 opt=optimset('Display','None', 'Maxiter',500, 'TolFun',1e-6, ...
9 'TolX',1e-6,'LargeScale','off');

10 init=einschrk(initvec,bound);
11 [pout,~,~,~,~,hess] = fminunc(@(param) like(param,y,bound),init,opt);
12 [loglik,zvec]=like(pout,y,bound);
13 V=pinv(hess)/length(y);
14 [param,V]=einschrk(pout,bound,V); stderr=sqrt(diag(V));
15
16 function [loglik,zvec]=like(param,y,bound)
17 param=einschrk(real(param),bound,999);
18 meanterm=param(1); c0=param(2); c1=param(3); d1=param(4);
19 e=y-meanterm; [zvec,sigvec]=ungarch(e,c0,c1,d1);
20 K=sqrt(2*pi); ll = -0.5 * zvec.ˆ2 - log(K) - log(sigvec);
21 loglik = -mean(ll);
22
23 function [eout,sigvec]=ungarch(e,c0,c1,d1)
24 sigvec=zeros(length(e),1); e2=e.ˆ2;
25 denom=1-c1-d1; if denom>0.001, sinit=c0/denom; else sinit=mean(e2); end
26 einit=sinit;
27 % do the recursion in sigvecˆdelta because it is faster
28 sigvec(1)=c0+c1*einit+d1*sinit;
29 for t=2:length(e), sigvec(t)=c0 + c1 *e2(t-1) + d1*sigvec(t-1); end
30 sigvec=sigvec.ˆ(1/2); eout=e./sigvec;

Program Listing 10.2: Calculates the m.l.e. of the normal-GARCH(1,1) model (10.2) with added
location term for the returns. Function einschrk, for imposing simple box constraints on the
parameters, is given and discussed in Section III.4.3.2.

When the model is correctly specified, 𝕍 (Ẑt) should be unity, and this is the case. Except for
estimated location term �̂�, the distributions of the parameters are not Gaussian, even for the
relatively large sample size used. Further simulations with larger T confirm that they all appear to
approach Gaussianity and are unbiased.
The choice of starting values for ĉ0, ĉ1, and d̂1 are important, as the log-likelihood can exhibit more

than one local maxima. In the previous simulation, we used the true values as starting values—a
luxury obviously not available in real life. This issue of multiple maxima has been noted by Ma
et al. (2006), Winker and Maringer (2009), and Paolella and Polak (2015a), though seems to be often
ignored, and can lead to inferior forecasts and jeopardize results in applied work.5 This unfortunate
observation might help explain the results of Brooks et al. (2001) in their extensive comparison of
econometric software. In particular, they find that, with respect to estimating just the simple normal

5 When the SAS system, hailed as the industry standard and absolute benchmark in the 1980s, introduced GARCH
estimation, they obviously used what would appear to be intelligent starting values: If there are no “GARCH effects”, then in
the normal-GARCH model, c0 will be the unconditional variance, estimated as the sample variance, and c1 and d1 are zero.
This can often be a local inferior maximum of the likelihood, and the method failed.
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Figure 10.4 Results of m.l.e. estimation of a normal GARCH(1,1) process with T = 1,000 observations, using 1,000 replications. True parameters are
indicated by vertical dashed lines.
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GARCH model, “the results produced using a default application of several of the most popular
econometrics packages differ considerably from one another” (Brooks et al., 2001, p. 54). Another
reason for discrepant results is the choice of 𝜖0 and 𝜎0 to start the GARCH(1,1) recursion, for which
several suggestions exist in the literature. For the Gaussian-GARCH(1,1) model, we take �̂�2

0 to be the
sample unconditional variance of the Rt , and 𝜖20 = 𝜅�̂�2

0 , where 𝜅 is given in (10.13) in the context of
the more general APARCH model.
As in Paolella and Polak (2015a), we illustrate the phenomenon of multiple maxima with a real (and

typical) data set, and propose a solution that is simple to implement. We use the 250, 500, 750, and
1,000 daily (percentage log) returns on AT&T, starting on December 16, 1996, and estimate model
(10.2) and also model (10.9) given below (which just changes the exponent in (10.2) from 𝛿 = 2 to
𝛿 = 1). The solid lines in Figure 10.5 (with the y-axis given on the right of the figures) show the pro-
file log-likelihood (p.l.) obtained by fixing the value of c0, and based on a grid of 100 points of c0
between zero and 1.1 times the sample variance of the series. That is, for a fixed value of c0, and with
R = (R1,… ,RT ), we compute

�̂�p.l.(c0) = argmax
𝜽p.l.

𝓁(𝜽p.l.;R), 𝜽p.l. = (c1, d1)′. (10.8)

For example, in the case withT = 500 observations and 𝛿 = 1, themaximumoccurs for the fixed value
of c0 (this being one of the 100 points of the grid) of 0.6338, with the estimated values of the other
model parameters obtained as ĉ1 = 0.1308 and d̂1 = 0.2174, and a log-likelihood value of −671.0185.
Using these as starting values and optimizing over the three model parameters yields ĉ0 = 0.6345, the
same value of ĉ1, d̂1 = 0.2166, and (to 7 digits) the same log-likelihood value. The dashed line (with
the y-axis given on the left of each figure) shows the value V̂N = ĉ1 + d̂1 corresponding to each of the
100 �̂�p.l.(c0) values. Its essential linearity for the 𝛿 = 1 case, and piecewise linearity for the 𝛿 = 2 case,
is noteworthy.
Our goal is to demonstrate that multiple maxima of the likelihood exist. To show this, we do the

following. For each of the 100 values of c0 in the grid, we estimate the three GARCH parameters
jointly, using as starting values [c0,𝜽p.l.(c0)], and plot the resulting log-likelihood as a circle. In each
of the figures there are clearly far fewer than 100 circles, but not just one—each one corresponds to a
localmaximumof the log-likelihood.Worse, some of themdo not lie on the profile log-likelihood line.
Thus, we see that, particularly for smaller sample sizes, there are many local maxima, and the choice
of starting value plays a substantial role in determining to which local maximum the optimization
routine will converge.6
To obtain (with high probability) the global maximum, the following procedure suggests itself:

(i) Based on a set of n equally spaced c0-values that span its possible range, compute (10.8), (ii) take the
value of c0 from the set, say c∗0, and its corresponding �̂�p.l.(c∗0) that results in the largest log-likelihood
as starting values, to (iii) estimate the full model. The larger is n (hence, the finer the grid), the higher
the probability of reaching the global maximum; some trials suggest that a grid of length n = 10 is
adequate for most applications. The use of more parameters, such as for the mean equation (10.18),
or more elaborate GARCH structures such as the APARCH formulation given next, or additional

6 It might be thought that use of different optimization algorithms could be beneficial, but this is not necessarily the case if
they are given a single starting value. For example, the qualitatively same graphical result was obtained when using the usual
quasi-Newton, simplex (Matlab’s function fminsearch), and other heuristic optimization algorithms discussed in Section
III.4.4.
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Figure 10.5 The profile log-likelihood (solid) in c0, for the returns on AT&T, and the local maxima of the log-likelihood (circles). Left panels correspond to
model (10.9) given below (and indicated with 𝛿 = 1), while the right panels correspond to model (10.2) (indicated with 𝛿 = 2).
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shape parameter(s) of a non-Gaussian distribution (e.g., Student’s t, GAt, NCT, stable Paretian, NIG,
etc.), also subsequently discussed, can further exacerbate the problem of multiple local maxima of the
likelihood.

10.2.4 Variance Targeting Estimator

Recall that the unconditional variance, 𝕍 (Rt), when {Rt} follows a normal-GARCH(r, s) process, is
given by (10.6), if it exists. When it is computed with the GARCH parameter point estimates, it
results in what is referred to as the implied variance (or implied volatility, though the latter term
is more often associated with the volatility of an underlying financial derivative instrument, notably
an option), though the term “parametric fitted implied variance” is arguably more precise. Assum-
ing 𝕍 (Rt) < ∞, the usual sample variance S2T , where T denotes the sample size, is a consistent (albeit
not necessary efficient) estimator of it, and both variance estimators are asymptotically normal. The
asymptotic distribution of the difference of the two estimators is developed in Horváth et al. (2006).
In the typical case of r = s = 1, (10.6) reduces to 𝕍 (Rt) = c0∕(1 − c1 − d1), so that an estimator for

c0 is ĉ∗0 = (1 − ĉ1 − d̂1)S2T . As S
2
T is a trivially computed, closed-form, non-parametric estimator, max-

imum likelihood needs to be conducted only over two, instead of three, dimensions, to obtain, say, ĉ∗1
and d̂∗

1, and this, besides being faster, can also help avoid the local likelihood maxima situation dis-
cussed above.The set {ĉ∗0, ĉ

∗
1, d̂

∗
1} is referred to as the variance targeting estimator, or VTE.The idea

appears to have been first explicitly used and discussed in Engle andMezrich (1996). Observe that the
VTE is not applicable in the IGARCH setting, which also has only two free parameters, though if one
is willing to impose that, say, ĉ∗1 + d̂∗

1 = 0.99, then there is only one free parameter to be estimated.
Theoretical properties and simulation-based results for the finite-sample performance of the VTE

versus the full m.l.e. can be found in Francq et al. (2011), Hill and Renault (2012), Vaynman and Beare
(2014), and Anatolyev and Khrapov (2015). In particular, Francq et al. (2011) give conditions under
which the VTE is asymptotically normal, which include that fourth moments of Rt exist. They show,
unsurprisingly, that “variance targeting may result in a serious deterioration of the asymptotic pre-
cision when the moment condition is close to be violated”. Anatolyev and Khrapov (2015) find that
parameter estimates and associated model forecasts are less accurate with the VTE, notably so when
the innovations process is heavy-tailed; see Section 10.3.1.They conclude that “if computational costs
are not prohibitive, variance targeting should probably be avoided.” As a contrast, Francq et al. (2011)
show that, when the model is mis-specified, the VTE can be better than the use of the QMLE, i.e., the
use of the normal distribution when the actual innovations process is not normal; see Section 10.3.2
for more discussion of the QMLE.

10.3 Non-Gaussian ARMA-APARCH, QMLE, and Forecasting

10.3.1 Extending the Volatility, Distribution, and Mean Equations

As a first alternative to the law ofmotion for the volatility (10.2), we can use an exponent of one instead
of two, i.e.,

𝜎t = c0 +
r∑

i=1
ci|𝜖t−i| + s∑

j=1
dj𝜎t−j, (10.9)
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as advocated by Taylor (1986) and Schwert (1989b). This formulation tends to provide a better fit, in
line with the results of Nelson and Foster (1994), who demonstrate that this model is a more efficient
filter of the unconditional variance in the presence of leptokurtic error distributions. A further benefit
of (10.9) is that it is applicable if the innovation sequence does not possess second moments, such as
for some of the non-Gaussian extensions considered below.
A formulation that generalizes (10.2) and (10.9) is the asymmetric power ARCH, abbreviated

APARCH(r, s), from Ding et al. (1993), given by

𝜎𝛿
t = c0 +

r∑
i=1

ci(|𝜖t−i| − 𝛾i𝜖t−i)𝛿 +
s∑

j=1
dj𝜎𝛿

t−j, 𝛿 > 0, |𝛾i| < 1. (10.10)

Its benefit is that it nests, with only two additional parameters over the usual Bollerslev (1986)
GARCH(1, 1) model (10.2), at least five previously proposed GARCH extensions at that time (Ding
et al., 1993, p. 98), notably the popular so-called GJR-GARCH model of Glosten et al. (1993). In the
r = s = 1 case, it is necessary and sufficient that c0 > 0, c1 > 0, d1 ⩾ 0, along with 𝛿 > 0, |𝛾1| < 1.
Parameter 𝛾i ≠ 0 allows 𝜎t to respond asymmetrically to positive and negative shocks 𝜖t−i, with its
use often leading to improved forecasts. This extension is also useful for describing the so-called
news impact curve; see Engle and Ng (1993). It turns out that, for daily financial asset returns data,
the likelihood is often relatively flat in parameter 𝛿, with its maximum between one and two. We
advocate just setting it equal to one. The APARCH model has been well-studied; see, e.g., He and
Teräsvirta (1999b,a), Ling and McAleer (2002), Karanasos and Kim (2006), and Francq and Zakoïan
(2010, Ch. 10).
Another extension of (10.2) is the (generalized) quadratic ARCH, or Q-GARCH, structure, intro-

duced in Sentana (1995).The idea ofQ-ARCH is to view the law ofmotion as a Taylor series of the true
d.g.p. in terms of the past 𝜖t , and include a second-order term. By (i) augmenting the Q-ARCH struc-
ture with the past 𝜎t terms as in the GARCH extension of ARCH and (ii) similar to (10.10) relaxing
the usual exponent of two, the (power) Q-GARCH(r, s)model is given by

𝜎𝛿
t = c0 +

r∑
i=1

ci𝜖t−i +
r∑

i=1
cii|𝜖t−i|𝛿 + 2

r∑
i=1

r∑
j=i+1

cij𝜖t−i𝜖t−j +
s∑

j=1
dj𝜎𝛿

t−j. (10.11)

See also Mittnik et al. (2000) and Park et al. (2011) for applications of the Q-GARCH model.
Other such formulations exist, notably the class of fractionally integrated, or FIGARCH mod-

els, to account for the very slow decay in the absolute or squared autocorrelations; see, e.g., Boller-
slev and Mikkelsen (1996), Baillie et al. (1996), Conrad and Haag (2006), Caporin (2003), Tayefi and
Ramanathan (2012), and the references therein. See Harvey (2013b) for a detailed account and appli-
cations of dynamic conditional score, or DCS, models, often in conjunction with skew-t type dis-
tributions. DCS models involve a modification of traditional GARCH models and their estimation.
Their application is highlighted in Gao and Zhou (2016).The survey in Teräsvirta (2009) discusses yet
more GARCH-type constructions.
The next aspect of the Gaussian GARCH model that is often extended is the distribution of the

i.i.d. innovation sequence. A natural starting point for the innovations distribution assumption (and
this having been the assumption in the original ARCH and GARCH formulations) is to take the Zt
to be i.i.d. Gaussian, though this was soon realized to be highly inadequate. The computed residuals
(filtered innovations) of a normal-GARCHmodel applied to daily or higher-frequency data tend to be
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non-Gaussian, notably with substantial leptokurtosis andmild asymmetry, similar to the asset returns
themselves. This will have implications for risk prediction and asset allocation; see Sections 11.1 and
11.3, respectively. In fact, it turns out that the choice of distributional assumption is of more impor-
tance with respect to risk and density prediction than the functional form of the GARCH recursion;
see, e.g., Mittnik and Paolella (2000), Bao et al. (2006, 2007), and Kuester et al. (2006). Many candidate
distributions suggest themselves; see Palm (1996), McDonald (1997), and Broda and Paolella (2011)
for overviews of relevant distributions.
As examples of non-Gaussian distributions used in conjunction with GARCH-type models,

Bollerslev (1987), Nelson (1991), and Granger and Ding (1995) proposed the use of the Student’s
t, the GED (see Example II.7.2), and the Laplace, respectively. The normal inverse Gaussian (NIG)
distribution (see Section II.9.4) in conjunction with univariate GARCHmodeling is studied in Jensen
and Lunde (2001), and in the multivariate setting by Aas et al. (2005) and Broda and Paolella (2009a).
The use of the (asymmetric) stable Paretian in the univariate case was investigated by several authors,
including Liu and Brorsen (1995), Rachev and Mittnik (2000), Mittnik et al. (2002), Mittnik and
Paolella (2003), and Paolella (2016); see Broda et al. (2013) and the references therein for extensions
to the multivariate setting.
Perhaps the most used distributional assumption in conjunction with GARCHmodels for forecast-

ing VaR and ES is an asymmetric Student’s t, for which there are several variations, including the GAt
(Mittnik and Paolella, 2000; Kuester et al., 2006; Problem II.7.7 and Section III.A.8) and related con-
structions (Theodossiou, 1998; Giot and Laurent, 2003; Zhu and Galbraith, 2010, 2011; Diamandis
et al., 2011; Harvey and Sucarrat, 2014), a limiting asymmetric case of the generalized hyperbolic dis-
tribution (Aas and Haff, 2006; Paolella and Polak, 2015b), and the noncentral Student’s t (Harvey and
Siddique, 1999; Krause and Paolella, 2014). In Section 10.4 we will detail the APARCH model with
noncentral t innovations.
Analogous to (10.5) and (10.6), the APARCH model (10.10) gives rise to a strictly stationary series

for parameter values such that

V ∶=
r∑

i=1
𝜅ici +

s∑
j=1

dj ⩽ 1, (10.12)

where

𝜅i ∶= 𝔼[(|Z| − 𝛾iZ)𝛿] (10.13)

depends on the density specification fZ(⋅) of the i.i.d. innovation sequence. The integrated APARCH
model results for parameter constellations satisfying V = 1, while, for V > 1, the model will be
explosive.
The (power) Q-GARCH model can also be endowed with an i.i.d. non-Gaussian innovation

sequence. Taking iterated expectations of (10.11) shows that 𝔼[𝜖t−i𝜖t−j] = 0 for i ≠ j, so that
𝔼[𝜎𝛿] = c0∕(1 − VQ), where

VQ =
r∑

i=1
cii𝔼[|Z|𝛿] + s∑

j=1
dj. (10.14)

Note that 𝔼[|Z|𝛿] in (10.14) is just the 𝜅 defined in (10.13) with 𝛾i = 0.
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Besides being necessary for calculating the volatility persistence measureV , the 𝜅i are also required
for generating correct starting values for recursions (10.10) and (10.11) when evaluating the likeli-
hood. For Z ∼ N(0, 1), the reader should confirm that

𝔼[(|Z| − 𝛾Z)𝛿] = 1√
2𝜋

[(1 + 𝛾)𝛿 + (1 − 𝛾)𝛿]2(𝛿−1)∕2Γ
(
𝛿 + 1
2

)
.

Note that, with 𝛿 = 2 and 𝛾 = 0, this reduces to 𝜅 = 𝔼[|Z|2] = 1, so that (10.12) reduces to the sta-
tionarity condition (10.6).
For Z ∼ t𝜈 , i.e., Student’s t with 𝜈 degrees of freedom and 𝜈 > 𝛿, a straightforward integral calcula-

tion (that the reader should also verify) yields

𝔼[(|Z| − 𝛾Z)𝛿] = 𝜈𝛿∕2
1

2
√
𝜋
[(1 + 𝛾)𝛿 + (1 − 𝛾)𝛿]Γ

(
𝛿 + 1
2

)
Γ
(
𝜈 − 𝛿

2

)/
Γ
(
𝜈

2

)
.

For 𝛿 = 2 and 𝛾 = 0, this reduces to 𝜅 = 𝔼[|Z|2] = 𝕍 (Z) = 𝜈∕(𝜈 − 2).
For the asymmetric stable Paretian distribution, the expression for (10.13) in the 𝛾 = 0 case is shown

via some lengthy calculations in Section II.8.3 to be

𝔼[|X|r] = 𝜅−1Γ
(
1 − r

𝛼

)
(1 + 𝜏2)r∕2𝛼 cos

( r
𝛼
arctan 𝜏

)
, −1 < r < 𝛼, (10.15)

where, noting that, for 𝜖 not a negative integer, Γ(−1 + 𝜖) = Γ(𝜖)∕(−1 + 𝜖),

𝜏 = 𝛽 tan(𝜋𝛼∕2), 𝜅 =
{

Γ(1 − r) cos(𝜋r∕2), if r ≠ 1,
𝜋∕2, if r = 1.

For Z ∼ t′(k, 𝜃), i.e., the noncentral t distribution with degrees of freedom k > 𝛿 > 0, noncentrality 𝜃,
and 𝛾 = 0 in (10.13),

𝔼[|Z|𝛿] = k𝛿∕2
Γ((k − 𝛿)∕2)Γ((1 + 𝛿)∕2)

Γ(k∕2)
√
𝜋

1F1
(
−𝛿

2
,
1
2
; 𝜃

2

2

)
; (10.16)

see Chapter II.10. For k = 4, 𝜃 = 0, and 𝛿 = 1, 𝔼[|Z|] = 1. As k = 4 is considered to be the best gen-
eral compromise value for many financial return series under a Student’s t distributional assumption
(see, e.g., Platen and Rendek, 2008), and also in light of the large confidence intervals associated with
its estimation, we can, without any substantial loss of accuracy, just use the value of one in place of
computing 𝔼[|Z|𝛿] for Z ∼ t′(k, 𝜃).
Finally, for the GAt distribution, Problem II.7.7(b) shows that, for 𝜈d > 𝛿 > 0,

𝔼[(|Z| − 𝛾Z)𝛿] = (1 + 𝛾)𝛿𝜃−(𝛿+1) + 𝜃𝛿+1(1 − 𝛾)𝛿

𝜃−1 + 𝜃

B
(

𝛿+1
d
, 𝜈 − 𝛿

d

)
B
(

1
d
, 𝜈

) 𝜈𝛿∕d. (10.17)

Example 10.1 Wementioned above that a simple GARCHmodel can give rise to realized processes
that resemble the seemingly rather non-stationary returns in Figure 10.1.7 Figure 10.6 shows three

7 Whether or not the returns corresponding to the various Asian currencies before, during, and after the crisis are actually
from a strictly stationary process is neither definitively answerable, nor necessary. What is relevant in our setting is to find a
model that can deliver accurate forecasts of volatility and tail risk measures. What one could reasonably say is that, over long
periods of time, of course the process is not stationary, given the highly complex nature of the global financial system,
changing economic and political conditions, changing technology and legal structures in the financial industry, etc.
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Figure 10.6 Three realizations of a simulated t4-IGARCH(1, 1) process with c0 = 0.01 and c1 = 0.02.

sample path realizations of a simulated IGARCH model with Student’s t4 innovations. The first one
looks like “business as usual”, the second appears to have a consistently decreasing conditional and
unconditional variance, while the third appears, like the genuine Asian currency returns, to suddenly
change in structure.
The reason for these seemingly disparate behaviors is that the sample size is finite: Longer runs

would eventually begin to resemble each other in terms of the actual process behavior. The use of
IGARCH ensures that the volatility is maximally persistent without being explosive, while use of the
heavy-tailed innovations causes the process to exhibit possibly sudden changes in volatility and very
heavy tails of the unconditional process. ◾

The third augmentation of the baseline GARCHmodel is to endow the mean term with a statistical
time-series structure, such as a (stationary and invertible) ARMA model, in which case we replace
Rt = 𝜖t = Zt𝜎t with

Rt − a0 =
p∑
i=1

ai(Rt−i − a0) + 𝜖t +
q∑
j=1

bj𝜖t−j, 𝜖t = Zt𝜎t , (10.18)

yielding what is often referred to as an ARMA(p, q)-GARCH(r, s) model.The concept of efficientmar-
kets, combined with modern ease of trading and low transaction costs, high liquidity, and extensive
use of trading algorithms by large financial institutions, render attempts at finding exploitable sig-
nals in the mean of daily returns via (10.18) nearly a waste of time, though for short windows of
data the parameter a0 could be estimated instead of taking it to be zero because of the so-called
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momentum effect.8 Further terms could be added to the mean and/or volatility equation, such as
exogenous variables (macroeconomic, trading volume, intraday volatility measurements, etc.).

10.3.2 Model Mis-specification and QMLE

Recall that estimation of a mis-specified GARCH model, such as using (10.2) when the true model
has, for example, time-varying parameters or omits relevant exogenous variables, often results in the
estimated GARCHmodel parameters approaching the IGARCH border as the sample size increases.
This also occurs if the distributional assumption on the innovation sequence is mis-specified. By way
of illustration based on simulation, Figure 10.7 is similar to Figure 10.4, and shows the results of fitting
the normal-GARCH(1,1) model when the true d.g.p. is t3-GARCH(1,1) (with the same 𝜇, c0, c1, and d1
as used previously, and V = [3∕(3 − 2)]c1 + d1 = 0.95). We see that ĉ0 and ĉ1 are substantially larger
than their true values, resulting in ĉ1 + d̂1 often exceeding its true value of 0.85, with an average value
of 0.931, this being close to the true V .
This finding might entice one to always use a GARCH model with a non-Gaussian innovations

distribution assumption that nests (or yields as a limiting case) the normal distribution, such as the
Student’s t, in order tomitigate this effect. However, this issue opens a wider discussion.The use of the
quasi-maximum likelihood estimator, or QMLE (see the remark below), whereby a GARCHmodel
is fit under the so-called synthetic assumption of Gaussian innovations, can still result in consistent
estimates of the GARCH parameters if the innovations distribution is not Gaussian (see, e.g., Hall and
Yao, 2003; Berkes et al., 2003a; Francq and Zakoïan, 2004). This requires that the process is strictly
stationary. More restrictively, in order for consistency and that the asymptotic distribution of the
QMLE is Gaussian, the existence of fourth moments of the true innovations distribution is required,
which may not be fulfilled and, as seen in Sections III.9.1 and III.9.2, is anyway difficult to verify. (The
situation when the tail index, i.e., the supremum of the maximally existing moment, say 𝛼, of the true
innovations distribution is such that 𝛼 ∈ (2, 4) has been considered inMikosch and Straumann, 2006,
Thm. 4.4. They show that, in addition to being consistent, the estimator possesses a non-Gaussian
stable Paretian limiting distribution.)
To shed some light on the behavior of the estimator in finite samples, we repeat the previous exercise

that generated Figure 10.7, but using t5 instead of t3 innovations, so that fourth moments exist, and
doing so for a sample size ofT = 10,000, with the hope that the consistency and asymptotic normality
of the estimator is sufficiently engaged. As seen from Figure 10.8, this appears to not be the case.
Similar to the simulation based on t3 innovations, the mean (over the 1,000 replications) of ĉ1 + d̂1 is
0.880, which is very close to V = [5∕(5 − 2)]c1 + d1 = 0.883.
Further complicatingmatters is that, unless the distribution (up to the unknown parameters) is cor-

rectly specified, the GARCH parameters can be inconsistent. See Fan et al. (2014) and the references
therein for further details and a possible resolution to this issue, and Anatolyev and Khrapov (2015)
for further empirical confirmation of this.
One could further argue that the entiremodel ismis-specified: Surely the true d.g.p. of financial asset

returns is not abiding truly by a (possibly non-Gaussian) strictly stationary GARCH-type process.

8 This is the observed tendency, across time and markets, for falling (rising) asset prices to fall (rise) further. An internet
search will reveal the large literature on this issue, with a good starting point being Bali et al. (2016a, Ch. 11) and the
references therein. A possible explanation of this violation of market efficiency is that it is a self-fulfilling prophesy:
Uninformed traders (gamblers) following a spurious trend literally induce and propagate it, thus giving rise to the momentum
effect. Put colloquially, “the trend is your friend”.
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Figure 10.7 Similar to Figure 10.4, but showing the m.l.e. of a fitted (mis-specified) normal-GARCH(1,1), when using a t3-GARCH(1,1) process as the
d.g.p., with T = 1,000 observations, using 1,000 replications.
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Figure 10.8 Similar to Figure 10.7, but based on a t5-GARCH(1,1) process, and having used a sample size of T = 10,000 observations.
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Notice this implies, among other things, that the innovation distribution parameters and the GARCH
parameters are constant through time, which does not seem realistic for many years of data. We take
the viewpoint that all models, in most endeavors, particularly empirical finance, are mis-specified,
and the best judge of a model in this context is its ability to deliver accurate (say, risk, or density)
forecasts, or portfolio allocations, better than all competing models.

Remark In general, the QMLE maximizes a simpler, usually Gaussian, likelihood, in place of the
genuine, and most likely unknown one. See White (1982), Bollerslev and Wooldridge (1992), White
(1994), and the references therein for theoretical discussions. As stated by Bollerslev andWooldridge
(1992, p. 144), “Taken literally, the assumption of conditional normality can be quite restrictive. The
symmetry imposed under normality is difficult to justify in general, and the tails of even conditional
distributions often seem to be fatter than that of the normal distribution. The extensive use of max-
imum likelihood under the assumption of normality is almost certainly due to its relative simplicity
and the widespread familiarity with its properties under ideal conditions. Because maximum likeli-
hood under normality is so widely used, it is important to investigate its properties in a setting general
enough to include most cases of interest to applied researchers.”
It is not clear where the first usage of the termQMLE comes from. One idea is, in his response to the

discussion of his paper, Nelder (1968, p. 328) writes “I take Mr. Fisk’s point that Gaussian estimation
is free of distributional assumptions, and perhaps should have used a term such as ‘quasi-likelihood’
for the quantity to be maximized.”
QMLE is related to pseudo-likelihood estimation, which omits certain dependency structures from

the likelihood that are not necessarily important to the analysis; see Cox and Reid (2004) and the
references therein. ◾

10.3.3 Forecasting

For a given specification of the innovation p.d.f. fZ(⋅), say GAt, along with estimates of the distribu-
tional parameters, in this case �̂�, d̂, and �̂�, and APARCH parameters �̂�, the h-step ahead density fore-
cast f̂t+h∣t(⋅) conditional onΩt is the p.d.f. of the random variable given by �̂�t+h∣tZ̃, for Z̃ ∼ GAt(�̂�, d̂, �̂�).
The volatility term �̂�t+h∣t is recursively evaluated from (10.10) with

�̂�𝛿

t+𝓁∣t = ĉ0 +
r∑

i=1
ĉiE

(i)
t+𝓁−i +

s∑
j=1

d̂j�̂�
𝛿

t+𝓁−j∣t, 𝓁 = 1,… , h,

where �̂�k∣t , k = 1,… , t, are the filtered in-sample volatilities, �̂�k∣t , k > t, denote recursively computed
out-of-sample forecasts,

E(i)
k =

{
(|𝜖k| − �̂�i𝜖k)𝛿, if k ⩽ t,
𝔼(|𝜖k| − �̂�i𝜖k)𝛿 = �̂�𝛿

k𝜅i, if k > t,

𝜖k , k ⩽ t, denote the filtered 𝜖-values, and 𝜅i is given by (10.13) evaluated with the appropriate esti-
mated parameters. For example, with GAt innovations, 𝜅i = 𝜅(�̂�, d̂, �̂�, �̂�i, 𝛿). Density forecasts using
the Gaussian-GARCH(1,1) model (10.2) are clearly a special case. Similar calculations apply to the
Q-GARCH construction.
For the more general location-scale model, the forecast distribution is that of �̂�t+h∣t + �̂�t+h∣tZ̃, where

�̂�t+h∣t might be given by, say, an AR(p) model as in (10.18).
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10.4 Near-Instantaneous Estimation of NCT-APARCH(1,1)

Here we showcase use of the APARCH(1,1) model (10.10) coupled with an i.i.d. noncentral t (NCT)
innovations process.This is a flexible model that can capture the leptokurtosis inherent in the filtered
Gaussian-GARCH residuals, as well as asymmetry. The APARCH(1,1) formulation allows a different
type of asymmetry, namely in volatility at time t, depending on the sign of (filtered) 𝜖t−1 and the value
of parameter 𝛾1.
It is preferred to have a mean-zero innovations process driving the GARCH-type model, so we

express it, with a location term, as (using here a0 as the location term, anticipating possible usage of
autoregressive parameters)

Rt = a0 + Z∗
t 𝜎t , Z∗

t = Zt − 𝜇, Zt
iid∼NCT(k, 𝜃), (10.19)

where

𝜇 = 𝔼[Zt] = 𝜃

(
k
2

)1∕2Γ(k∕2 − 1∕2)
Γ(k∕2)

, k > 1,

with k ∈ ℝ>1 being the degrees of freedom parameter (and such that we require the mean of the
process to exist) and 𝜃 ∈ ℝ being the NCT noncentrality parameter. Joint maximum likelihood esti-
mation of all sevenmodel parameters (assuming 𝛿 in (10.10) is fixed) is straightforward, and the reader
is encouraged to program this, though observe that estimation will be rather slow, due to the nature
of the p.d.f. of the NCT; see Sections III.A.14 and II.10.4.
Our goal is to develop a method to deliver accurate parameter estimates of the NCT-APARCH(1,1)

model (for typical daily stock return data) requiring as little computational time as possible, so that,
among other things, it can be used for portfolio optimization via the method in Paolella (2017), which
requires its computation thousands of times.Themethod, as developed in Krause and Paolella (2014)
and now described, involves fixing the APARCH parameters to judiciously chosen values, and using
an estimation procedure for the remaining parameters that does not require computing the likelihood.
As 𝔼[Rt] = a0 in (10.19), assume for the moment that we can estimate the intercept parameter

a0 by taking the median (as a robust estimator) of the Rt . Next, with a fixed set of values for the
APARCH(1,1) parameters (the choice of which is subsequently discussed), the APARCH filter is
applied to the location-adjusted returns Rt − â0, yielding a (presumed) set of i.i.d. location-zero,
scale-one NCT residuals. For the third step, to elicit k̂ and �̂�, we use the fast table lookup method
developed in Section III.9.3.3. Observe that this procedure requires computing a median of a vector
of data, one run of the APARCH filter, and then applying the quantile-based table lookup procedure
to obtain the NCT shape parameters. It is thus conducted on the order of microseconds.
However, the estimator of a0 can be improved with little effort, and it is worthwhile in the context

of portfolio optimization, as its performance is very sensitive to the predictive mean of the returns.
In particular, instead of using the median, we use the trimmedmean procedure discussed in Example
III.4.3 for Student’s t data (and ignoring the NCT asymmetry). This requires knowing k, as elicited in
the third step of the procedure, and so an iterative procedure suggests itself, as follows:

1) Take a0 to be the sample median of the returns data, say â(1)0 = median({Rt}).
2) Apply the fixed APARCH filter (its choice of parameters being discussed below) to the

location-adjusted returns Rt − â(1)0 . This results in a set of data, say Z(1) = (Z(1)
1 ,… ,Z(1)

T ), which
are (presumed close to) i.i.d., with unit scale term.
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3) Based on Z(1), compute the estimators of k and 𝜃 via the table lookup procedure from Section
III.9.3.3.

4) Based on k̂, determine the optimal trimming value 𝛼, say 𝛼(1)
∗ , as discussed in Example III.4.3.

5) Let â(2)0 = trim({Rt}, 𝛼
(1)
∗ ).

Steps 2 through 5 can be repeated, applying the APARCH filter to Rt − â(2)0 to get Z(2). Then obtain
k̂ and �̂� from the table lookup, get 𝛼(2)

∗ , and set â(3)0 = trim({Rt}, 𝛼
(2)
∗ ), etc.Themethod converged after

three or at most four iterations in numerous studies conducted with real and simulated data, and
two iterations are usually enough. If speed is critical, then only one pass could be conducted, using,
instead of median({Rt}), the trimmed mean for a typical value of k for conditional (i.e., APARCH
scale-adjusted) returns, such as k = 6.
One of the three core ideas in this procedure is the fixing of the APARCH parameters instead of

estimating them. This is done by choosing a typical set of values associated with daily stock returns
data. This works because the fitted parameters tend to be similar across various asset returns at the
daily level.This idea is not new, and goes back at least to the RiskMetricsTM technical document from
J.P. Morgan/Reuters (1996, pp. 80–81), in which an integrated GARCH(1,1) model with d1 = 0.94
(and c0 = 0) is proposed. A similar idea was discovered in Lux and Kaizoji (2007) for FIGARCHmod-
els, such that volatility predictions improve across a group of financial time-series returns when the
individually estimated time-series parameters are averaged.
With maximum likelihood estimation straightforward to conduct and available in many economet-

ric software packages, most academic researchers tended to “let the data speak for themselves”, and
did not embrace the idea of just fixing the parameters, though the forecasting results between the two
models are virtually the same for short horizons (and slightly better for long-term horizons, with the
fixed parameters); see, e.g., Neely and Weller (2002) in the context of currency exchange rates. One
can view both the fitted GARCH model and the RiskMetricsTM fixed-parameter suggestion as spe-
cial cases of shrinkage-based maximum likelihood estimation, with the optimal amount of shrinkage
most likely not at either of these two extremes.
We now provide a different argument that supports the use of fixed GARCH/APARCH coefficients

instead of estimation, and also shows how to determine the optimal fixed values. We compare (i) the
variation of the m.l.e. of the NCT-GARCH parameters based on typical financial returns data with
(ii) the variation of the m.l.e. from simulation of the NCT-GARCH process using a typical parameter
vector as the true values. If the variation in (i) is smaller than that in (ii), then it stands to reason that
estimation of the GARCH parameters can be forgone without great loss of accuracy and replaced by
typical values obtained in (i) (for which we choose c0 = 0.04, c1 = 0.05 and d1 = 0.90, based approxi-
mately on the median values shown in Figure 10.9).9
We have already seen in Figure 10.4 that the dispersion of the estimated parameters is, even for

a sample size of T = 1,000, rather high, indicating that this conjecture might have merit. To add
verification, we consider the daily percentage log returns of the 30 components of the Dow Jones
Industrial Index (DJIA) from Wharton/CRSP (as used in April 2013), from January 1, 1993 until

9 This choice of parameters assumes a certain “uniformity” of the estimates. In particular, focusing on one of the three
parameters, say c0, if its mean or median value from Figure 10.9 (approximately 0.05, though we found use of 0.04 to be
better) is used, then it could be the case that, for many of the data sets used to construct the figure, the values of ĉ1 and d̂1
corresponding to ĉ0 ≈ 0.04 are not close to their respective median values in the figure. Some investigation and use of
different fixed sets of {c0, c1, d1} revealed that this is conveniently not the case, and the set of values obtained as the medians
of the parameters, individually, are close to optimal.
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Figure 10.9 The m.l.e. parameter estimates corresponding to the NCT-GARCHmodel for the 30 assets of the DJIA,
from January 1, 1993 until December 31, 2012, using non-overlapping windows of length T = 1,000. The circle on the
x-axis indicates the median of the data. The thin vertical lines refer to the average parameter value for each of the 30
assets. (In the lower right panel, the NCT noncentrality parameter is denoted as 𝛾 .)

December 31, 2012. For (i), we use non-overlapping windows of length 1,000 (yielding 150 sets of
parameter estimates), and the results are shown in Figure 10.9. (Although we are only concerned with
the GARCH parameters, we show all six parameters for completeness.)
This can be compared to Figure 10.10, which shows the computation corresponding to (ii), i.e.,

the m.l.e. simulation results based on series of length T = 1,000, generated from an NCT-GARCH
process with parameters a0 = 0.06, c0 = 0.04, c1 = 0.05, d1 = 0.90, degrees of freedom k = 7, and non-
centrality parameter 𝜃 = 0.05. We see that the variation of (i) is indeed smaller than that of (ii), for
GARCH parameters c0 and c1, though it is not quite the case for parameter d1 because of the elon-
gated left tail in the distribution for d1 in Figure 10.9. However, most of the mass is indeed centered
around the value 0.90.
We now address the asymmetry parameter 𝛾1 in the APARCH(1,1) formulation. When estimating

all the parameters of the NCT-APARCHmodel for sample sizes of T = 1,000, and particularly so for
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Figure 10.10 The m.l.e. parameter estimates corresponding to the NCT-GARCHmodel for simulated NCT GARCH data,
using length T = 1,000 and 1,000 replications. The circle on the x-axis indicates the median of the data. (In the lower
right panel, the NCT noncentrality parameter is denoted as 𝛾 .)

T = 250, it was found that �̂�1 is rather erratic, when viewed over moving windows through time, and
often approaches (and touches) its upper boundary value of one.10
Given the problematic asymmetry parameter in small sample sizes, Krause and Paolella (2014) fix

the three parameters associated with the traditional GARCHmodel (as stated above), and then, con-
ditional on those, choose the optimal value of 𝛾1 with respect to out-of-sample value-at-risk (VaR)

10 Many applied research papers use, and advocate, larger sample sizes when fitting GARCH-type models, justified from
simulation results such as those shown in Figure 10.4. However, if, as we claim, the d.g.p. is changing through time, then use
of shorter windows of data makes sense (to optimally address the bias-variance tradeoff) for forecasting applications, or use
of weighted likelihood, as discussed in Chapter 13. With respect to the APARCH asymmetry parameter 𝛾1, to rule out any
computational errors, simulations were conducted. When using a sample size of 250, it was found that the final m.l.e.s are
very sensitive to the choice of starting values, and appear to result in biased estimates of 𝛾1. However, when using very large
sample sizes (e.g., 25,000), the estimator looks as one would expect, namely virtually Gaussian and centered around the true
parameter values, and this having been achieved using any reasonable set of starting values, not just the true ones.
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Figure 10.11 Illustration of the effect of varying the APARCH asymmetry parameter 𝛾1 on the number of VaR
violations (top) and the sum of the predicted log-likelihood values (bottom). Results are out-of-sample (4,787
forecasts) for the period January 4, 1993, to December 31, 2012, obtained from a rolling window exercise with window
size T = 250. The data set under study is the 20-year sequence of daily (percentage log) returns of the equally
weighted portfolio of DJIA-30 components (as of April 2013). The dashed lines refer to the NCT-GARCH(1,1) model and
the solid lines to the NCT-APARCH(1,1) model with 𝛾1 being varied. The dotted lines in the left panel depict the
expected number of VaR violations at the 1% (lower lines; blue), 2.5% (middle lines; green) and 5% (upper lines; red)
significance level, respectively.

and density forecast quality, the latter measured by evaluating the log predicted NCT density at
the realized returns, as done in Paolella (2015) and Paolella and Polak (2015a). Figure 10.11 shows the
results of this exercise for T = 250. (The results for T = 1,000 were also computed and were qualita-
tively very similar.)
We see that the NCT-APARCH model (with fixed GARCH parameters) performs in a superior

way for most choices of 𝛾1, with the number of VaR violations being closer to its expected value.
A similar result is observed in terms of density prediction: For 0.25 ⩽ 𝛾1 ⩽ 0.55 the NCT-APARCH
model outperforms the GARCH case. From these plots, it appears that taking 𝛾1 = 0.4 is the optimal
choice to improve the forecast quality.
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Thus, we advocate fixing the APARCH parameters as

c0 = 0.04, c1 = 0.05, d1 = 0.90, and 𝛾1 = 0.4, (10.20)

to be used in the iterative (or one-pass) scheme for estimation of the NCT-APARCH(1,1) process
(10.19).

10.5 S𝜶,𝜷-APARCH and Testing the IID Stable Hypothesis

The method described for fast estimation of the NCT-APARCH(1,1) model in Section 10.4 can be
adapted for use with an S𝛼,𝛽-APARCH(1,1), i.e., use of asymmetric stable Paretian innovations instead
of NCT. It requires constructing a table lookup estimator for the two shape parameters 𝛼 and 𝛽 for
location-zero, scale-one i.i.d. stable data, as well as developing the trimmed-mean estimator for a0
based on the assumption of (symmetric) stable data and a fixed value of 𝛼.
This was done in Paolella (2016), with two goals. First, for developing a fast and numerically

reliable method for estimating the S𝛼,𝛽-APARCH(1,1) model not requiring use of the stable likelihood
and, second, to assess the appropriateness of the conditional stable assumption for asset returns
data—an issue that has been debated and researched since the 1960s. The idea is to obtain the
S𝛼,𝛽-APARCH(1,1) filtered innovations, and then apply the (also numerically fast) tests for stability
developed in Section III.9.5, namely the so-called ALHADI, 𝜏20, and A + 𝜏20 tests. All these tests
use particular features of the stable Paretian distribution, and have correct size and good power
properties (with the latter having the best). It appears more difficult to design a powerful test for the
null of i.i.d. NCT.
Detailed analysis for several individual (percentage log) stock return series is presented in Paolella

(2016), along with summary histograms of the p-values from three tests for stability, formed by using
numerous data sets. The latter are reproduced in Figures 10.12 and 10.13, based, respectively, on 957
and 4100 time series of stock returns, from the DJIA and S&P500 stock indexes. Note that the ability
to very quickly compute parameter estimates of the S𝛼,𝛽-APARCH(1,1) model, as well as statistics and
their respective p-values for testing the i.i.d. stable Paretian distribution assumption, is what allows
these histograms to be rapidly produced.
Under the null of stability of the innovations (and, implicitly, that theAPARCH(1,1) filter is adequate

for inducing a near-i.i.d. process), the p-values should be uniformly distributed on (0, 1). We see this
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Figure 10.12 Histograms of the p-values of the three tests for stability, based on 957 data sets formed from 33
windows of data using T = 500, and 29 stocks comprising the DJIA.
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Figure 10.13 Same as Figure 10.12 but having used the 100 largest market-cap stocks from the S&P500 index,
resulting in 4100 data sets and p-values.

is not the case, providing strong evidence against the hypothesis that all, or most, stock returns are
conditionally stable Paretian.

Remarks
a) There have been numerous critiques of the use of the stable Paretian distribution for modeling

real phenomena, notably financial asset returns, most of which can be dismissed as false or no
longer applicable; see the discussion in Section III.9.2.3. The above test results provide evidence
that, more often than not, the (conditional) stable distribution for stock returns is not true. In
particular, the 𝜏20 test is based on the summability property of the stable Paretian distribution, so
that, from themiddle panels of Figures 10.12 and 10.13, the large pileup of p-values on the left (and
clear violation of uniformity) indicates that the filtered S𝛼,𝛽-APARCH(1,1) residuals do not obey
summability: As consecutive observations are summed, the tail tends to becomes thinner. This is
sometimes taken to be one of the stylized facts of asset returns, thus ruling out the stable Paretian
being the actual distribution.This does not, however, detract from deploying it as an excellent and
useful approximation for risk forecasting purposes (see the next remark). Models that can account
for the (often but not always observed) stylized fact of decreasing tail thickness as the frequency of
themeasured returns decreases (from, say, daily, toweekly, tomonthly) are considered inGrabchak
and Samorodnitsky (2010).

b) One should differentiate in this context between the use of formal testing procedures for a distribu-
tional assumption and the appropriateness, or lack thereof, of using that distribution. In particular,
use of the stable distribution in conjunctionwithGARCH-typemodels for risk prediction has been
shown to be quite successful (see, e.g., Mittnik and Paolella, 2003; Broda et al., 2013; and the ref-
erences therein). This lends evidence that, at least from a purely practical point of view, the model
has merit. This point is also made in Nolan (1999).

c) A very large number of empirical studies exist that use a GARCH-type model with Student’s t
or generalized exponential (GED) innovations, these being available in many software packages.
Rarely, if ever, is the distributional assumption questioned or tested in a formal way. Methods for
GARCH residual distributional testing are proposed in Horváth et al. (2001), Bai (2003), Berkes
and Horváth (2003), and Berkes et al. (2003b, 2004).
If powerful tests existed for distributions such as the t and GED, as they do now for the stable

Paretian, it might be the case that they are also rejected for the majority of stock return series.
Instead of formal testing, some studies will (correctly) compare the forecasting performance of
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several competitive models. The usual finding is that the use of a GARCH-type model allow-
ing for asymmetric shocks to volatility, in conjunction with (almost any) leptokurtic, asymmetric
distribution, such as the NCT or stable, but also one with semi-heavy tails, such as the NIG (for
which the m.g.f. exists), and even a thin-tailed distribution, such as the mixed normal, delivers
competitive risk and density forecasts.
It is important keep inmind that all models and distributions employed formodeling non-trivial

real data are nothing but approximations and are necessarily wrong, and, in the context of finan-
cial asset returns and other heavy-tailed phenomena, without an infinite amount of i.i.d. data,
tail measurements will always be inaccurate; see Sections III.9.1 and III.9.2 for discussion of this
issue. This is the reason why non-Gaussian (asymmetric and) leptokurtic distributions with dif-
fering tail behaviors (heavy or thin) can lead to good forecasting performance. As such, at least in
finance, while distributional testing is an important diagnostic, a crucial measure of the utility of
a model is in the application to forecasting, such as downside risk, or portfolio optimization—for
which different (non-Gaussian) models can be compared and ranked. In the context of portfolio
construction and out-of-sample performance, see Section 11.3.

d) Both in-sample and out-of-sample diagnostics and (some) testing procedures can have value for
assessing the appropriateness of a model, but the purpose of themodel must always be considered.
For example, if a forecast of tomorrow’s VaR is required on 100,000 client portfolios, then speed,
numeric reliability, and practicality will play a prominent role. In the complicated game of finan-
cial risk forecasting and asset allocation, it is highly unlikely that a single model will be found to
consistently outperform all others in every regard, but the appropriate use of distributional testing,
out-of-sample performance diagnostics, and some “informed common sense” can lead to a model
that reliably fulfils its intended purpose. ◾

The other “half” of the null hypothesis of i.i.d. stable innovations of stable-GARCH filtered data is
that they are i.i.d. We discuss two tests in this regard, and investigate the performance of one of them.
A popular test for the i.i.d. hypothesis of a univariate time series was proposed in Brock et al. (1996),

usually referred to as BDS, from the first three authors (and the associatedworking paper version from
them in 1987). Under the null, the test statistic is asymptotically standard normal, though deviates
from this in small samples; see Kanzler (1998) for tabulated cutoffs and a publicly available Matlab
implementation of the BDS test. According to Brock et al. (1996), their test does not require existence
of “higher moments”. It was extended to the multivariate case in Baek and Brock (1992). Its effec-
tiveness for GARCH-type effects has been investigated by several authors; see Brooks and Heravi
(1999), Chen and Kuan (2002), Caporale et al. (2005), Zivot and Wang (2006, Ch. 18), and the refer-
ences therein.The BDS test requires a choice of the so-called embedding dimension,m, and different
choices can lead to different test outcomes. This issue is addressed in Matilla-García et al. (2014).
Based on Kanzler’s (1998) implementation and default settings, we confirm via simulation that the

distribution of the BDS test statistic appears non-Gaussian and heavy-tailed for i.i.d. stable data with
𝛼 < 2. One possibility is to apply the non-parametric bootstrap for a given set of data to determine
the p-value of the test, as implemented in the Eviews software package, though we do not pursue
this. The interested reader is encouraged to investigate the extension by Matilla-García et al. (2014)
and, possibly in conjunction with the bootstrap, construct a BDS-based test with correct size, and
investigate its performance under the null of heavy-tailed i.i.d. data and the power against alternatives
of interest, such as (stable-)GARCH.
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We next consider the two tests for the i.i.d. hypothesis, based on generalized runs distributions, by
Cho andWhite (2011), denotedGR-L1 andGR-sup.11 These tests do not have anymoment conditions,
and so are appropriate for testing the i.i.d. assumption for stable data.
As a demonstration, Figure 10.14 shows p-values of the two tests for sets of i.i.d. normal and stable

data, and normal GARCH processes. We see that, under the null of normal and stable i.i.d. data (first
two rows), or their absolute values (third row), the p-values of both tests deviate somewhat from the
uniform distribution, so that, for normal data, or a given value of 𝛼 for stable data, and sample size
T , simulation is required to determine the appropriate cutoff values for tests with the usual levels of
significance. From the fourth row, we see that, with normal-GARCH data, both tests have little power,
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Figure 10.14 Histograms of p-values of the GR-L1 (left) and GR-sup (right) tests, based on 5000 replications for sample
size T = 500, of i.i.d. normal data (top row); S1.6,0(0, 1) data (second row); absolute value of i.i.d. S1.6,0(0, 1) data (third
row); normal-GARCH data with c0 = 0.05, c1 = 0.05, and d1 = 0.90 (fourth row); and absolute value of same
normal-GARCH data (last row).

11 Matlab code has been kindly provided to the author by Jin Seo Cho, which delivers also p-values of both tests.
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Figure 10.14 (Continued)

though taking absolute values of the simulatedGARCHdata does lead to the tests having some power,
as seen from the pile-up of the p-values towards zero in the bottom panels.
Based on this short analysis, we can conclude that testing for i.i.d.-ness appears difficult, and further

investigations will be necessary to obtain tests with high power.

10.6 Mixed Normal GARCH

10.6.1 Introduction

As we have seen above, different generalizations of the baseline GARCHmodel (10.2), such as (10.10)
and (10.11), can be devised, serving as better filters for the unknown actual law of motion underlying
the scale term through time, and allowing for asymmetric effects of shocks on volatility. Addition-
ally, and more importantly for risk and density prediction, the distribution of the i.i.d. innovation
sequence {Zt} can be changed to a non-Gaussian one. Both of these enhancements to the original
Gaussian-GARCH formulation are valuable, but are still limited in the extent to which they can cap-
ture additional dynamics in the underlying process.
We now discuss a class of GARCH-type models, referred to asmixed normal GARCH, that devi-

ates in an important way from the previous structures, though still nests (10.2) as a special case. This
class of models is beneficial because it gives rise to more complicated dynamics that result in better
in-sample fits and, crucially, better risk and density forecasts. What this mixed normal GARCH class
is not is the usual GARCH equation (10.2) driven by an innovation process from a k-component dis-
crete mixture of normals distribution, but rather a matrix-based structure that essentially embodies
k Gaussian GARCH equations, allowing for “interactions” between them.
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10.6.2 The MixN(k)-GARCH(r, s) Model

The k-component mixed normal distribution, denoted MixN(𝝎,𝝁,𝝈), is detailed in Section III.5.1
and Frühwirth-Schnatter (2006); its p.d.f. is given by

fMN(y;𝝎,𝝁,𝝈) =
k∑
j=1

𝜔j𝜙(y;𝜇j, 𝜎
2
jt), (10.21)

where𝜙 is the Gaussian p.d.f.,𝝁 = (𝜇1,… , 𝜇k)′ ∈ ℝk , 𝝈 = (𝜎1,… , 𝜎k)′ ∈ ℝk
>0, and𝝎 = (𝜔1,… , 𝜔k)′ ∈

(0, 1)k such that
∑k

j=1 𝜔j = 1. Throughout the following, we impose 𝜇k = −
∑k−1

j=1 (𝜔j∕𝜔k)𝜇j to ensure
that the associated random variable has zero mean.
Independently and concurrently, Haas et al. (2004a) and Alexander and Lazar (2006) proposed and

studied the following construction. As inHaas et al. (2004a), we say that time series 𝜺 = (𝜀1, 𝜀2,… , 𝜀T )
is generated by a k-component mixed normal GARCH(r, s) process, denoted MixN(k)-GARCH(r, s),
if the conditional distribution of 𝜀t is a k-component mixed normal with zero mean,

𝜀t ∣ t−1 ∼ MixN(𝝎,𝝁,𝝈t), (10.22)

where 𝝎 and 𝝁 are as above, 𝝈t = (𝜎1,t,… , 𝜎k,t)′, and t represents the information available at date t.
The component variances 𝜎2

i,t , i = 1,… , k, follow the GARCH-like structure

𝝈
(2)
t = 𝜸0 +

r∑
i=1

𝜸i𝜀
2
t−i +

s∑
j=1

𝚿j𝝈
(2)
t−j, (10.23)

where 𝜸i = (𝛾i,1, 𝛾i,2,… , 𝛾i,k)′, i = 0,… , r, are k × 1 vectors, 𝚿j, j = 1,… , s, are k × k matrices, and
𝝈
(𝛿)
t = (𝜎𝛿

1,t, 𝜎
𝛿
2,t,… , 𝜎𝛿

k,t)
′, for 𝛿 ∈ ℝ>0. The parameters of the model need to be such that 𝝈(𝛿)

t > 0,
where, in case of non-scalars,> indicates element-wise inequality. As above, a (possibly time-varying)
mean term can be incorporated, so that the model becomes (using ct instead of 𝜇t as above for the
mean) Rt = ct + 𝜖t .
Special cases of model (10.22)–(10.23) had been proposed earlier, and include the formulations

by Vlaar and Palm (1993) and Bauwens et al. (1999), with their relationships to the general model
detailed in Haas et al. (2004a). Parameter conditions for the non-negativity of all elements of 𝝈(2)

t
could be derived by writing the model in ARCH(∞) form and applying the results in Nelson and Cao
(1992) and Conrad and Karanasos (2009), but in the case of the (practically most relevant) first-order
diagonal model discussed next, it follows from the GARCH(1, 1) analogy that the conditions 𝜸0 > 0,
𝜸1 ⩾ 0, and𝚿1 ⩾ 0 are required.
As with the simple GARCHmodel (10.2), in most applications r = s = 1 suffices, so in the following

we take r = s = 1 and denote the (i, j)th element of𝚿1 by 𝜓i,j. As discussed and demonstrated in Haas
et al. (2004a), it is reasonable to restrict the 𝚿j to be diagonal, so in this case we refer to the diagonal
elements of 𝚿1 as 𝜓i, i = 1,… , k. Even with r = s = 1 and diagonal 𝚿1 (but with k > 1), the model is
able to generate pseudo-long memory in the autocorrelation function of the squares of the returns,
as illustrated below.
In this special but very useful case of r = s = 1, k unrestricted, and diagonal 𝚿1, which we then

denote as 𝜷 , we obtain the following reasonably palatable expressions for the moments and autocor-
relation function (see Haas et al., 2004a, App. B). Defining

C11 = 𝜸1𝝎
′ + 𝜷,
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C21 = (𝜸1𝝎′)⊗ 𝜸0 + 𝜸0 ⊗ (𝜸1𝝎′) + 𝜸0 ⊗ 𝜷 + 𝜷 ⊗ 𝜸0 + (𝜷 ⊗ 𝜸1)𝝎′𝝁(2)

+(𝜸1 ⊗ 𝜷)𝝎′𝝁(2) + 6(𝜸1 ⊗ 𝜸1)(𝝎⊙ 𝝁(2))′,
C22 = 3(𝜸1 ⊗ 𝜸1)vec [diag(𝝎)]′ + 𝜷 ⊗ (𝜸1𝝎′) + (𝜸1𝝎′)⊗ 𝜷 + 𝜷 ⊗ 𝜷,

d1 = 𝜸0 + 𝜸1𝝎
′𝝁(2),

d2 = 𝜸0 ⊗ 𝜸0 + (𝜸0 ⊗ 𝜸1 + 𝜸1 ⊗ 𝜸0)𝝎′𝝁(2) + (𝜸1 ⊗ 𝜸1)𝝎′𝝁(4),

we have

𝔼[𝝈(2)
t ] = (Ik − C11)−1d1,

𝔼[𝝈(2)
t 𝝈

(2)′
t ] = [(Ik2 − C22)−1C21(Ik − C11)−1, (Ik2 − C22)−1]

[
d1
d2

]
,

and

𝔼[𝜀2t ] = 𝝎′𝔼[𝝈2
t ] + 𝝎′𝝁(2), (10.24a)

𝔼[𝜀4t ] = 3vec [diag(𝝎)]′ vec(𝔼[𝝈(2)
t 𝝈

(2)′
t ]) + 6𝝎′(𝝁(2) ⊙ 𝔼[𝝈(2)

t ]) + 𝝎′𝝁(4), (10.24b)

from which the kurtosis can be computed. Further defining

𝝂 =
𝜸0𝔼[𝜀2t ] + 𝜸1𝔼[𝜀4t ] + 𝜷(𝔼[𝝈(2)

t 𝝈
(2)′
t ] + 𝔼[𝝈(2)

t ]𝝁(2)′ )𝝎 − 𝔼[𝝈(2)
t ]𝔼[𝜀2t ]

𝔼[𝜀4t ] − 𝔼2[𝜀2t ]
,

the autocorrelation function of 𝜀2t is given by

r(𝜏) =
Cov(𝜀2t−𝜏𝜀2t )

𝕍 (𝜀2t )
=

𝔼[𝜀2t 𝜀2t−𝜏] − 𝔼2[𝜀2t ]
𝔼[𝜀4t ] − 𝔼2[𝜀2t ]

=

{
𝝎′𝝂, 𝜏 = 1,
𝝎′(𝜸1𝝎′ + 𝜷)𝜏−1𝝂, 𝜏 > 1,

(10.25)

generalizing the results in (10.7).

10.6.3 Parameter Estimation andModel Features

The price to pay for having such an elaborate structure and the enhanced dynamics is, of course,
more parameters to estimate. For example, with k = 3 components, there are 14 free parameters to
estimate.This behooves discussion. From a numeric point of view, the larger number of parameters is
not necessarily problematic, as the likelihood is easily expressed and quickly evaluated, and numerous
applications with real and simulated data indicate that generic Hessian-based optimization routines
are usually effective in locating a plausible maximum of the likelihood. There are two related caveats
to be mentioned here. The first is that, as with the i.i.d. mixed normal model as discussed in Section
III.5.1, and with the plain Gaussian-GARCHmodel (10.2) as discussed in Section 10.2, there can exist
several plausible maxima of the likelihood function, and only via use of various starting values can
one obtain what is likely to be the global maximum.
The second caveat involves avoidingmaxima that are not plausible but, due to the nature of mixture

models, can arise and plague estimation.This mixture degeneracy problem is unfortunately germane
to all mixture models. In the i.i.d. case, several ways of dealing with this problem are discussed in
Section III.5.1, including use of simple box constraints and quasi-Bayesian shrinkage priors. Within
the mixed normal GARCH framework, such solutions are not as straightforward, with its elabo-
rate structure and high parameterization. A solution has been proposed in Broda et al. (2013) that
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deals with this problem elegantly, generally, and effectively, and is also applicable in the i.i.d. case.
The method works by appending to the log-likelihood two judiciously chosen penalty and shrinkage
terms, and thus does not entail any more numeric work than is involved in directly maximizing the
likelihood.
While significantly more complicated and numerically more intensive, a full Bayesian approach is

also possible, as pursued by Bauwens and Rombouts (2007b). Similar to the use of the quasi-Bayesian
prior of Hamilton (1991) in the i.i.d. normal mixture, by specifying an “informative prior” (even if
very weak), the degeneracy issue evaporates. Another method for estimation is pursued by Lee and
Lee (2009), but that approach does not solve the mixture degeneracy problem.
Another feature of mixture GARCHmodels is their ability to allow for conditional as well as uncon-

ditional component models. With (say, daily) financial returns data, the component of the mixture
that captures the most volatile observations can often be adequately modeled with a relatively high,
but constant, variance—it does not require a GARCH structure. This is notably the case with the
MixN(3)-GARCH(1,1) model: the third component (the one associated with the highest volatility) is
capturing a few scattered outlying observations, and no GARCH structure is required for it, whereas
the dynamics in the volatility are being driven by the first two components of the model. We label this
construction as MixN(k, g)-GARCH(r, s) or, in short, for r = s = 1, just MixN(k, g), to indicate that
only g, g ⩽ k, components follow a GARCH(1,1) process dictated by (10.23).
Any reasonably intelligent model with enough parameters will generate an excellent in-sample fit.

We are thus concerned with the possibility that the mixed normal GARCH model is over-fitting the
data.This appears to not be the case.With g = k = 3 (and 14 parameters), the conservative likelihood
penalty measure, BIC (and certainly the less conservative AIC) favors it over the use of competitive
models in the location-scale class (10.2), in almost all cases, with real data. Between the MixN(3,3)
and the MixN(3,2), the latter is favored. Moreover, and perhaps the most important reason for its
use in modeling asset returns, the mixed normal GARCH model delivers excellent out-of-sample
forecasts (quantile and density) relative to genuine (as opposed to, and of course also against, straw
man) competitors, as demonstrated in Kuester et al. (2006), Paolella and Steude (2008), Paolella and
Taschini (2008), and Broda et al. (2013).
Part of the reason for this strong performance is that normal mixture distributions have been found

in numerous studies to fit the distribution of asset returns under an i.i.d. assumption very well; see
the discussion and references in Haas et al. (2004a) and Paolella (2015). Another benefit involves
skewness: A feature of the model not possible with the formulation in (10.2) and its APARCH and
Q-GARCH extensions is time-varying skewness. A growing amount of literature indicates that not
only are there asymmetries in the reaction of the volatility of the process and the innovations dis-
tribution, but that this asymmetry is time varying, and is relevant for asset allocation; see Rockinger
and Jondeau (2002), Jondeau and Rockinger (2003, 2009, 2012), Haas et al. (2004a), and the references
therein. With more than one component, time-varying skewness is automatically accommodated in
the mixed normal GARCH model, i.e., it is inherent in the model without requiring an explicit, ad
hoc specification of a conditional skewness process appended to (10.2). The relevant equations and
graphical illustrations of the time-varying skewness are given in Haas et al. (2004a). One could also
use asymmetric densities instead of the normal, with the skew-normal of Azzalini (1985) being a nat-
ural suggestion; see the discussion of the skew-normal distribution in Section III.A.8, andHaas (2010)
and Geweke and Amisano (2011) for its use in the context of (mixture and regime switching) GARCH
models.
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Another reason for the strength of the model involves the autocorrelation function: One of
the stylized facts of asset returns is a slow, hyperbolic decline of the autocorrelation function
of the absolute or squared returns. The FIGARCH model construct, as mentioned in Section 10.3.1,
was proposed precisely to capture this feature, though open issues remain regarding stationarity and
parameter estimation; see Caporin (2003) and Tayefi and Ramanathan (2012). Their use, in turn,
has been criticized because the aforementioned apparent hyperbolic behavior can be induced by
ignoring model or parameter structural breaks; see, e.g., Lamoureux and Lastrapes (1990), Lux and
Kaizoji (2007), Lux (2008), Lee et al. (2010), Hillebrand and Medeiros (2016), Wang et al. (2016), and
the references therein.
A benefit of the mixed normal GARCH model is that it can give rise to a pseudo long-memory pro-

cess, by which we mean that the autocorrelation function of the squared returns exhibits a decay that
mimics long-memory behavior, though the process is not a genuine long-memory one, and even-
tually exhibits exponential decay. To illustrate, Figure 10.15 shows the improvement in the match
between theoretical and sample autocorrelations, based on the squared returns, for the (diagonal)
MixN(k)-GARCH(1, 1) model over the plain GARCH(1,1) model, where the theoretical values are
computed from (10.25), based on the fitted parameters. The advantage of the model (with k > 1)
arises from the structure of the roots of the ARMA representation of the 𝜀2t process (see Haas et al.,
2004a), and is not shared by traditional GARCH(1,1) models or the special, “linear” cases of themixed
normal GARCHmodel with r = s = 1, diagonal𝚿1 and k = 2, as proposed by Vlaar and Palm (1993),
Bauwens et al. (1999), and Bai et al. (2003).
Yet another advantage of the mixed normal GARCH framework, as compared to, say, a Student’s t

GARCH model, is in its applicability to (univariate and multivariate) option pricing, as discussed in
Alexander and Lazar (2006), and developed further in Badescu et al. (2008), Rombouts and Stentoft
(2009, 2011), and the references therein. This also holds for continuous mixtures of normals in the
multivariate setting; see Paolella and Polak (2015b).
Several (still univariate) generalizations of the MixN(k)-GARCH(r, s) model (10.22)–(10.23) exist.

First, one can replace the normal distribution with a more general one, such as the aforementioned
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Figure 10.15 Left: Sample autocorrelation function (SACF) in lag 𝜏 , 𝜏 = 1, 2,… , 200, of the squared returns from the
20 years of daily NASDAQ Composite returns from January 1, 1990 to December 31, 2010, overlaid with their
theoretical counterparts, given in (10.25), for the fitted plain GARCH(1,1) and various fitted MixN(k)-GARCH(1,1)
models. Right: Same but based on the 4000 daily NASDAQ Composite returns until March 16, 2011.
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skew-normal. The benefits of using the (symmetric and asymmetric) stable Paretian is detailed in
Broda et al. (2013). Second, in light of the leverage effect (see below), a fruitful method of introducing
asymmetries into the structure of the model is developed in Alexander and Lazar (2004). Third, a
method that also addresses the leverage effect, but in a conceptually very different way, is to allow the
weights of the components to vary with time, as illustrated next in Section 10.6.4. A fourth way is the
extension to a Markov-switching framework, as briefly discussed in Section 10.6.5.

10.6.4 Time-VaryingWeights

An extension of the class of MixN(k)-GARCH(r, s) models that results in further improved forecast
accuracy is to allow for time-varying mixing weights. These are related, though not equivalent, to
Markov-switching models, such as that of Hamilton (1989), which have found many applications in
macroeconomics and finance (see Section 10.6.5). The conditional densities of such mixture models
are endowedwith great flexibility. As illustrated inHaas et al. (2006b), the predictive densitymay even
become bimodal, depending on the expected jump size.
Mixture models with mixing weights depending on lagged process values and/or exogenous vari-

ables have been employed quite successfully throughout the literature. An example is the modeling of
exchange rate behavior in target zones, where a jump component reflects the probability of realign-
ments, and the probability of a jump depends on interest differentials and, possibly, further explana-
tory variables incorporating market expectations; see, e.g., Vlaar and Palm (1993), Bekaert and Gray
(1998), Neely (1999), Klaster and Knot (2002), and Haas et al. (2006a). Another example is modeling
the nonlinear relation between hedge fund returns and market risk factors; see Tashman and Frey
(2009) and Tashman (2010).
Some of the models used in the previously mentioned references have some similarities to the class

of smooth transition GARCH (STGARCH) models (see Teräsvirta, 2009; Medeiros and Veiga, 2009)
and the component GARCH specification of Bauwens and Storti (2009). The difference is that, in the
latter models, the weighting applies to the volatility parameters directly (as compared to the densities
as in (10.21)), so that the conditional distribution is not a mixture. See also Wong and Li (2001),
Alexander and Lazar (2005), Bauwens et al. (2006b), Lange and Rahbek (2009), and Cheng et al. (2009)
for further examples of models that incorporate dynamics of the mixing weights depending on a set
of predetermined variables.
We illustrate the approach in Haas et al. (2013). There, the current mixture weights are related to

past returns via sigmoidal response functions given through the weighting function in (10.26). This
leads to an empirically reasonable representation of the Engle and Ng (1993) news impact curve such
that an asymmetric impact of unexpected return shocks on future volatility is obtained. While in
empirical applications of the MixN(k)-GARCH model with constant weights, negative component
means, and higher component volatilities coincide, there is no dynamic asymmetry in the sense that
negative shocks tend to increase future volatility more than positive shocks. This type of dynamic
asymmetry, referred to as the leverage effect, is attributed to Black (1976), and is a characteristic, or
stylized fact, of stock returns.
The general model structure in Haas et al. (2013) takes the form

𝜔j,t =
𝜆j

1 +
∑k−1

i=1 𝜆i

, j = 1,… , k − 1, 𝜔k,t = 1 −
k−1∑
i=1

𝜔i,t, (10.26)
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where, mimicking the structure of an asymmetric GARCH-type model,

𝜆j = exp

(
𝛾0,j +

u∑
i=1

𝛾i,j𝜀t−i +
𝑣∑
i=1

𝜅i,j𝜔j,t−i +
𝑤∑
i=1

𝛿i,j|𝜀t−i|d) , (10.27)

denoted, say, TV(u, 𝑣, 𝑤)-MixN(k)-GARCH(r, s), where u, 𝑣 and 𝑤 are the orders of the lagged
𝜀t , lagged 𝜔j, and lagged |𝜀t|d, d > 0, respectively. A more parsimonious version of this general
structure still capable of capturing the time variation in the mixing weights is obtained by setting
𝑣 = 𝑤 = 0, along with r = s = 1, and we abbreviate this as TV(u)-MixN(k) or, recalling the above
restricted (k, g) formulation such that k − g components are not endowed with a GARCH structure,
as TV(u)-MixN(k, g).
The choice of sigmoidal weighting functions in (10.26) was inspired from the resulting shape of

the fitted non-parametric weighting function, given as follows. Letm > 0 be the number of intervals,
and let 𝜽 = (𝜃1,… , 𝜃m−1) denote the sorted vector of interval bounds, where 𝜃i < 𝜃i+1.Then, for k = 2
components, the non-parametric weighting function is given by

𝜔1,t(𝜀t−1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

b1, if 𝜀t−1 < 𝜃1,

b2, if 𝜃1 ⩽ 𝜖t−1 < 𝜃2,

b3, if 𝜃2 ⩽ 𝜖t−1 < 𝜃3,

⋮
bm−1, if 𝜃m−2 ⩽ 𝜖t−1 < 𝜃m−1,

bm, if 𝜀t−1 ⩾ 𝜃m−1,

(10.28)

where 𝜔2,t(𝜀t−1) = 1 − 𝜔1,t and bi ∈ (0, 1), i = 1,… ,m, are parameters to be estimated. The choice of
m involves the usual bias-variance tradeoff and should be chosen at least as a function of the length
of the return series. For choosing the intervals in (10.28) defined by 𝜽 = (𝜃1,… , 𝜃m−1), we recom-
mend simply an equally spaced grid. The two intercepts b1 and bm, corresponding to the ends of the
innovation range, may not be measured accurately due to the sparseness of observations in this area.
To illustrate, the left and middle panels of Figure 10.16 show the estimated weight intercepts,

b̂i, for the TV-MixN(2)-GARCH(1,1) model with non-parametric weighting function (10.28),
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Figure 10.16 Left: Estimate of the non-parametric mixture weights according to (10.28) for the two-component
mixture GARCH(1,1) model based on about 10 years (2,500 data points) of NASDAQ Composite returns (April 6, 2011 to
March 3, 2011). The chosen weighting function consists ofm = 6 linear functions, each with zero slope and estimated
intercept. The first and last are very close to zero. Superimposed is a scaled histogram of the fitted innovations.Middle:
Same but form = 10 (some of estimated weights are essentially zero); ignore the y axis label with 𝜋. Right: The fitted
sigmoidal mixing weights based on (10.26) and (10.27) with 𝑣 = 𝑤 = 0, u = 1, and k = 2, i.e.,
𝜔1t = (1 + exp{−𝛾0 − 𝛾1𝜖t−1})−1.
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for two choices of m. Indeed, the “staircase formation”, as the theory predicts, is obtained and
encourages the use of the sigmoidal structures. The right panel shows the estimated weight func-
tion based on (10.26) and (10.27) with 𝑣 = 𝑤 = 0, u = 1, and k = 2, i.e., TV(1)-MixN(2), with
𝜔1t = (1 + exp{−𝛾0 − 𝛾1𝜖t−1})−1. As the first mixture component represents the low-volatility regime,
this reveals that negative and positive shocks have an asymmetric impact on future volatility in the
sense that negative news surprises increase volatility more than positive news surprises. Note that,
for the original, constant-weight MixN(k) model, the graph would be a straight line.
By allowing for the asymmetric news impact curve, it is expected that the time-varying weights

extension should convey significant out-of-sample forecast improvements over and above the already
admirable ones delivered by the MixN(k) model. This indeed turns out to be the case, as detailed in
Haas et al. (2006b, 2013), highlighting the importance of incorporating the leverage effect into the
mixed normal GARCH framework.

10.6.5 Markov Switching Extension

Since the work of Hamilton (1989), the use and development of models in economics and finance
based on aMarkov switching structure continues to grow. See, notably, the survey of Hamilton (2008)
and the various articles in the special issue dedicated to the topic in Dufrénot and Jawadi (2017).
The two major formulations in the GARCH context such that there is a fixed and finite number

of states are due to Gray (1996) and Haas et al. (2004b). The latter has several advantages over the
former, including (i) ease of estimation, (ii) tractability of stationarity conditions, and (iii) improved
out-of-sample forecast performance. A survey of, further empirical evidence on, and details regarding
the stationarity conditions and moments of the Markov-switching GARCH extension are given in
Haas and Paolella (2012). This model has been implemented as the MSGtool toolbox for Matlab by
Chuffart (2017), and as theMSGARCH package for R byArdia et al. (2017b). See alsoArdia et al. (2017a)
on the forecasting performance of Markov-switching GARCHmodels using a variety of asset classes.
A yet further richer dynamic structure is possible by allowing for an infinite number of states; see

the detailed developments and encouraging results in Dufays (2016) and Shi and Song (2016).

10.6.6 Multivariate Extensions

Another possible generalization is to extend the model to the multivariate framework.This was done
by Bauwens et al. (2007) and Haas et al. (2009), the latter model allowing for asymmetries. Both show
that themultivariatemodel clearly identifies the existence of two components with distinctly different
volatility dynamics, and that the low (high) volatility component is associated with positive (negative)
means, implying that the low and high volatility components can be interpreted as bull and bear mar-
kets, respectively. In the asymmetric multivariate mixture model, a leverage effect is shown to be
present in the high-volatility component.
While these multivariate extensions are very rich in their ability to model the stochastic behavior

of multivariate asset returns, their drawback is, similar to many multivariate GARCH models, the
curse of dimensionality, rendering them inapplicable for more than a handful of assets. There are (at
least) two ways of dealing with the general multivariate case with a large number of assets, but still
having the benefit of discrete mixture structures. The first is to use the so-called technique of inde-
pendent components analysis (ICA) with each univariate component modeled by a mixed normal
(or mixed stable) GARCH model (see Broda et al., 2013) or other non-Gaussian processes, whether
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i.i.d. or with GARCH; see Broda and Paolella (2009a), Chen et al. (2015), Ghalanos et al. (2015), and
the references therein.The second way is to forgo GARCH structures in favor of a multivariate mixed
normal (or Laplace) i.i.d. model, and use short windows of estimation, and parameter shrinkage, as
detailed in Paolella (2015), Gambacciani and Paolella (2017), and Chapter 14, possibly in conjunction
with weighted likelihood; see Chapter 13.
A third, somewhat related, way is using principle components analysis (PCA) in the context of the

so-called COMFORT model discussed in Section 11.2.4, which involves use of a continuous normal
mixture distribution; see Paolella et al. (2018b) for details.



487

11

Risk Prediction and Portfolio Optimization

Building on the framework from Chapter 10, we now consider some applications of univariate
GARCHmodeling when working with weekly, daily, or higher frequency financial asset returns data.
Section 11.1 overviews their use in conjunction with prediction of value at risk (VaR) and expected
shortfall (ES), along with a description of other methods designed for that purpose. Section 11.2
scratches the surface of multivariate GARCH modeling by presenting four such methods, all of
which are such that estimation is primarily based on univariate GARCH, thus avoiding the curse of
the dimensionality issue in estimation and other problems associated with some high-dimensional
(and highly parameterized) multivariate GARCH models that have been proposed. The most basic
one is the constant-conditional-correlation GARCH, referred to as CCC, and its popular extension,
dynamic CC, or DCC.These are used in Section 11.3 to introduce the basics of portfolio optimization,
where also the so-called univariate collapsing method for portfolio allocation is discussed, along with
the concept of ES span.

11.1 Value at Risk and Expected Shortfall Prediction

The value-at-risk (VaR) and expected shortfall (ES) are among the most popular tail risk measures
used in quantitative risk management. For continuous random variable X with finite expected value,
the 𝜉-level ES of X, denoted ES(X, 𝜉), can be expressed as the tail conditional expectation

ES(X, 𝜉) = 1
𝜉 ∫

qX,𝜉

−∞
u fX(u) du = 𝔼[X ∣ X ⩽ qX,𝜉], 𝜉 ∈ (0, 1), (11.1)

where the 𝜉-quantile of X is denoted qX,𝜉 and is such that VaR(X, 𝜉) = qX,𝜉 is the 𝜉-level value-at-risk
corresponding to one unit of investment. In some presentations, VaR and ES are the negatives of the
definitions above, so that the riskmeasures are positive numbers. Section III.A.8 provides a discussion
of several important issues concerning VaR and ES, derives the ES for several common distributions
used in empirical finance, and gives a large number of references to the literature.
One of the primary uses of GARCH modeling is for generating accurate short-term predictions

of tail risk measures, based often on daily (or higher frequency) financial asset returns data. The
NCT-APARCH(1,1) model from Section 10.4, and the MixN(k), MixN(k, g), and TV(u)-MixN(k)
models from Section 10.6, perform very well in this regard. The first of these belongs to the class
of models in which a parametric non-Gaussian distribution is coupled with a GARCH-type law of
motion for the scale term, for which many variations exist. That class can be extended by further

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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allowing for dynamics in the shape parameters of the distribution; see Hansen (1994), Gerlach et al.
(2013), and Gabrielsen et al. (2015). In addition to these fully parametric specifications, there are sev-
eral other methods of VaR and ES prediction for univariate financial return series that were explicitly
designed for this purpose. Some of these include:

1) The weighting method of Boudoukh et al. (1998).
This treats the returns as i.i.d., thus ignoring, among other things, the volatility clustering, but
places more weight on recent returns than ones further in the past. Boudoukh et al. (1998) do
this by assigning weights that sum to one and decay with a geometric rate. The VaR forecast is
determined from the empirical c.d.f. of the weighted returns, i.e., the appropriate sample quan-
tile. This method is appealing because one can argue that the recent past is more important than
events further back in time for generating a forecast for one, or a small number of, periods in
the future, and thus there is a preference for shorter windows. When done without weighting
or accounting for GARCH effects, resulting in what is called the method of (simple) histori-
cal simulation, past crisis and high-volatility periods are possibly not included in the window
for estimation, resulting in the risk for the next period being highly under-estimated. See the
following discussion on FHS.
The idea of weighting observations through time, or, more generally, the assumed underlying i.i.d.
sequence of innovations in the likelihood of the data, to account for the fact that the observed
data are not i.i.d., or, more generally, that the assumed model is mis-specified, is elaborated upon
in Chapter 13.

2) The use of filtered historical simulation, or FHS, fromHull andWhite (1998) and Barone-Adesi
et al. (1999, 2002).1
Thismethod fits a GARCHmodel to (as with all models, a past window of specified length of) the
time series of returns, such as (10.2) or (10.10), to generate the deterministic GARCH forecast of
the scale term, �̂�t+1, and also the filtered innovation sequence {Ẑt}. A VaR forecast is then given
by �̂�t+1 times the relevant sample quantile, say q, from the {Ẑt}, and an ES forecast can also be
generated based on the {Ẑt} that exceed q. Pritsker (2006) and Kuester et al. (2006) demonstrate
the viability of the method, notably compared to use of (simple) historical simulation.
While the performance of all empirical methods for generating a VaR forecast are dependent on
the choice of window size, this is particularly acute for (simple) historical simulation because it
ignores the stochastic and highly changing nature of the volatility. In particular, if the recent past
is “calm” and the chosen window length is such that the most recent high volatility period is not
included, then the VaR forecast will tend to be too liberal, underestimating the risk. Or, imagine
the window length is such that it just covers a highly volatile period in the past. As the window is
progressed, the crisis period will exit the window, and the VaR prediction drops (in magnitude)
severely fromone day to the next. FHS is less sensitive to this issue because of the use of aGARCH
filter.
Observe how the non-parametric bootstrap can be applied to the {Ẑt} and thus used to generate
confidence intervals of the VaR and ES. See also Gao and Song (2008), the textbook presentations
in Dowd (2005) and Christoffersen (2011), and the references therein, for further information
on FHS.

1 See the associated web site http://filteredhistoricalsimulation.com/. Use of FHS is also detailed on the Matlab help page for
the topic: Using Bootstrapping and Filtered Historical Simulation to Evaluate Market Risk.
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3) The EVT-GARCH approach from McNeil and Frey (2000) and the related considerations in
Chavez-Demoulin et al. (2014).
This method is similar to FHS in that it first uses a GARCH filter to (i) obtain the filtered innova-
tions and (ii) generate a prediction of the scale 𝜎t+1 based on the information set up to time t (this
prediction being deterministic, recalling the discussion near the beginning of Section 10.2), and
then fits a generalized Pareto distribution (GPD) to the tails of the filtered innovations (this being
motivated by extreme value theory and the so-called peaks-over-threshold method, or POT),
from which a VaR and ES forecast can be computed. See also Rocco (2014).
As with FHS, the choice of GARCH filter and also the innovations assumption for the chosen
GARCHmodel play a role in the accuracy of the forecasts, as detailed in Kuester et al. (2006).The
fact that the GPD is fit to the filtered innovations to obtain the predictive quantile, as opposed to
using the fully specified parametric structure of the GARCH model with a non-Gaussian inno-
vations assumption, would seem to imply that the choice of innovation distribution used in the
GARCH filter should not play a role. In fact, according to quasi maximum likelihood theory, the
choice should be Gaussian: Recall the discussion in Section 10.3.2 and the findings of Fan et al.
(2014) and Anatolyev and Khrapov (2015).
However, if the (non-Gaussian)-GARCH model is just viewed as an approximate, mis-specified
filter to the underlying d.g.p., then use of a flexible one accounting for all the stylized facts of the
data should result in the filtered innovation sequence being closer to i.i.d. This appears to be the
case, as shown in Kuester et al. (2006). The use of an GAt-APARCH(1,1) model in conjunction
with the EVTmethod of McNeil and Frey (2000) results in excellent out-of-sample performance
of VaR forecasts.

4) The robustified semiparametric GARCH method of Mancini and Trojani (2011).
This method is related to FHS and EVT-GARCH, but employs robust statistical methods for esti-
mation of the filtered scale terms from the GARCH equation, as well as a robustified resampling
scheme for the GARCH residuals that controls bootstrap instability due to outlying observations.
This leads to improved VaR forecasts and also smoother prediction intervals for VaR over time.

5) Quantile regression methods, namely the so-calledCAViaRmethod, initiated in Engle andMan-
ganelli (2004).
Thismethod is notable because it directlymodels the quantity of interest, using various functional
forms for the VaR. One of its strengths is that use of a GARCH filter is not required, though this
method does not fair as well as other methods in horse-race comparisons. Some variations of
the method are proposed in Kuester et al. (2006), and an extension allowing for incorporation of
implied volatility estimates is considered in Jeon and Taylor (2013). The CAViaR framework has
been extended to the multivariate setting in White et al. (2015).

6) Use of conditional autoregressive logit (CARL) models, from Taylor and Yu (2016).
Several variations of the proposed CARL model class are used in Taylor and Yu (2016) for mod-
eling and forecasting the exceedance probability, i.e., the probability that the realization at time
t + 1 exceeds a specified value, in either the left or right tail. This is the opposite of VaR predic-
tion, which is a quantile, for a given probability. Taylor and Yu (2016) also propose a time-varying
POTmethod building on the CARLmodel for VaR and ES prediction, and demonstrate its strong
forecasting performance.2

2 The authors provide code in GAUSS; see http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1467-985X/homepage/
179_4.htm.
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7) Use of so-called expectiles and the resulting conditional autoregressive expectile (CARE)models;
see Taylor (2008), Kuan et al. (2009), Gerlach and Chen (2016), Bellini and Di Bernardino (2017),
and the references therein.

8) The use of the Gaussian-GARCH model (10.2) in conjunction with the bootstrap and a bias
correction adjustment for improved VaR prediction; see Christoffersen and Gonçalves (2005),
Giamouridis (2006), Pascual et al. (2006), and Hartz et al. (2006).
The benefit of this method is its simplicity, given the very low number of parameters and ease
of estimation of the Gaussian-GARCH model compared to more elaborate formulations, as dis-
cussed in Section 10.2. See also Chen et al. (2011a).

9) Further non-parametricmethods; seeChen andTang (2005), Cai andWang (2008),Martins-Filho
et al. (2016), Wang and Zhao (2016), and the references therein.

10) Use of realized volatility.
Based on high-frequency intra-day data, when available, daily realized volatility can be “observed”
(i.e., independent of a model and essentially error free) and then used for daily prediction pur-
poses; see Martens (2001), Giot and Laurent (2004), Galbraith and Kisinbay (2005), Koopman
et al. (2005), and the references therein. Giot and Laurent (2004) demonstrate with a variety of
data sets that the method does not lead to improvements in forecast quality when compared to
use of a skewed-t A-PARCH model for daily returns.

11) Use of implied volatility induced from option prices.
A detailed account of volatility prediction based on option prices is given in Poon and Granger
(2003). From their review, there is favorable evidence that this model class produces competitive
volatility forecasts. See also Cesarone and Colucci (2016), Barone-Adesi (2016), and the refer-
ences therein.

While the modeling techniques in the above list have been demonstrated to yield competitive VaR
forecasts, they do not deliver an entire parametric density forecast for the future portfolio return.
Having this density is of value for at least two reasons. First, interest might center not just on pre-
diction of a particular tail risk measure, but rather on the entire distribution. Density forecasting has
grown in importance in finance and other areas of econometrics because of its added value when
working with asymmetric loss functions and non-Gaussian data; see Timmermann (2000) and Tay
andWallis (2000) for surveys, and Amisano and Giacomini (2007) for some associated tests. The sec-
ond reason for preferring models that deliver an entire (parametric) density forecast is that univariate
density predictions for (what turns out to be linear combinations of ) individual assets can be analyti-
cally combined to yield the density of a portfolio of such assets, thus allowing portfolio optimization;
see the discussion below in Section 11.3.
Typically, when backtesting a model for VaR prediction, i.e., estimating it over moving windows

of a large time-series sample and computing, for each window, an h-step-ahead VaR prediction, one
computes the resulting sequence of indicator functions (0 or 1) representing whether or not the actual
return at time t + h exceeded the forecasted VaR based on the model and the information set up to
and including time t. For VaR backtesting, the nonzero components of this sequence are sometimes
referred to as (VaR) violations or hits. If a nominal probability for the VaR quantile of, say, 𝜉 = 0.01
is chosen, then, based on a set of 𝑤moving windows, one hopes to obtain 𝑤∕100 hits. The resulting
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Figure 11.1 Examples of deviation plots for illustrating the unconditional coverage of VaR predictions. The x-axis is
the VaR level (the tail probability) in percent, with 1, 2.5, and 5 being commonly checked values. The y-axis shows the
deviation, so that a value of zero is ideal. Instead of showing tables of results for several VaR levels, such a graphic is
more appealing and contains more information. The graphics are taken from Kuester et al. (2006), and pertain to VaR
forecasts based on moving windows of 500 observations, from the log percentage returns of the daily closing prices of
the NASDAQ composite index, from its inception on February 8, 1971, to June 22, 2001, yielding a total of 7,681
observations. The index itself is a market value-weighted portfolio of more than 5,000 stocks. The various models
depicted are described in detail in Kuester et al. (2006).

number is obviously a random variable that follows a binomial distribution with parameters 𝑤 and 𝜉

under the null hypothesis that the model is correct.
Thedeviation of the actual number of hits compared to the expected number of𝑤𝜉 is ameasure that,

based on the Bin(𝑤, 𝜉) distribution, is used to assess the quality of the unconditional coverage proba-
bility associated with themodel.While the proportion of hits can be tabulated for various models and
probability levels, the use of a graphic is far more appealing and revealing. For example, Figure 11.1
shows the “deviation plots” for several VaR models and a large range of probabilities (from 0.001 to
0.10), as were initiated and used in Kuester et al. (2006). The VaR levels can be read off the horizontal
axis, while the vertical axis depicts, for eachVaR level, the excess of percentage violations over the VaR
level. The goal here is not to compare the models for that particular data set (NASDAQ returns), but
to illustrate the use of the deviation plot, and also demonstrate the varying performance of different
models.The actual models used include some of the ones discussed above, and are described in detail
in Kuester et al. (2006).
While the unconditional coverage is clearly very important, also of strong relevance is the condi-

tional coverage, taking into account that the hits should be i.i.d. Bernoulli. For example, if a backtest
based on a certain model and number of moving windows 𝑤 results in precisely 𝑤𝜉 hits, then the
unconditional coverage is perfect, but if the hits tend to cluster together, then the model is clearly
not generating i.i.d. realizations, and there would be predictability in them (and a sequence of severe
losses close in time, which is highly undesirable for financial institutions and investors). For tests that
address both unconditional and conditional coverage, see Christoffersen (1998, 2009), Haas (2005,
2009), Francioni and Herzog (2012), Abad et al. (2014), Pelletier and Wei (2016), and the numerous
references therein.
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Such tests are used in numerous empirical studies, as well as in comparisons of new and existing
univariate and multivariate models for VaR prediction; see, e.g., Kuester et al. (2006), Bao et al. (2006,
2007), Santos et al. (2013), Slim et al. (2016), and Paolella and Polak (2017). As an example from the
latter paper, Figure 11.2 shows the returns on the equally weighted portfolio through time based on the
30 stocks of the Dow Jones Industrial Index (DJIA), overlaid with the one-step-ahead VaR predictions
and the realized hit sequences from several models. Use of an i.i.d. but non-Gaussian model results
in both too many hits (though less than obtained with an i.i.d. Gaussian model) and also clustering
of the hits, while use of the Gaussian DCC model results in too many hits, but less clustering. The
use of the non-Gaussian GARCH so-called COMFORTmodel, discussed in 11.2.4, results in the best
unconditional performance (number of hits) as well as the best conditional performance, i.e., less
clustering of realized hits compared to the other models.
Backtesting the performance of the predicted ES is less straightforward, and is an ongoing research

topic at the time of writing. See Section III.A.8 for references on backtesting ES amid the fact that it
is not elicitable.
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Figure 11.2 Center black lines are the returns on the equally weighted portfolio constructed from the 2,767 daily
returns of K = 30 components of the DJIA from January 2, 2001, to December 30, 2011 (based on the index
composition as of June 8, 2009). Overlaid as colored lines are the associated one-day-ahead 1% (top) and 5% (bottom)
VaR forecasts, using: (i) one of the non-Gaussian GARCH COMFORT models (dashed red line), (ii) a non-Gaussian but
i.i.d. model (solid magenta line), and the Gaussian DCCmodel (solid blue line). Further overlaid are the VaR violations,
depicted by + signs on the top and bottom of the graphs, using the same color as corresponds to the lines for the VaR
predictions.
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11.2 MGARCH Constructs Via Univariate GARCH

11.2.1 Introduction

While direct extensions of (10.2) are possible, giving rise to various types of multivariate GARCH
(hereafter MGARCH) models, the proliferation of parameters and thus the ensuing estimation prob-
lems, for even modest number of assets d, renders many such constructions virtually useless for
applications in risk assessment or portfolio management (asset allocation). Several alternative for-
mulations for MGARCH have been proposed that either substantially reduce the number of param-
eters that require numeric optimization, or, possibly while embodying a potentially large number of
parameters, are such that the number of parameters to be simultaneously estimated by a generic opti-
mization routine is very small. One fruitful and popular avenue in this latter direction is to build an
MGARCHmodel by use of univariate GARCHmodels applied to each of the constituent series, some-
times referred to as equation by equationmodeling, followed by a subsequent step that models the
joint correlation structure. This estimation framework is explicitly considered in Francq and Zakoïan
(2016),who prove its strong consistency and asymptotic normality in a general framework, includ-
ing DCC-type models. The subsequent sections illustrate several methods of doing so, though before
proceeding, we provide some important remarks.

Remarks
a) Other popular multivariate models include the so-called VEC model of Bollerslev et al. (1988);

the BEKK model of Engle and Kroner (1995), so named after the authors of an earlier version,
namely Baba, Engle, Kraft, and Kroner (see also Caporin and McAleer, 2008, 2012); the model
of Kroner and Ng (1998), which is a weighted average of the CCC and (diagonal) BEKK models;
the GARCC random coefficient model of McAleer et al. (2008), which generalizes the BEKK; the
factor-GARCHmodels of Engle et al. (1990), Alexander and Chibumba (1996), Chan et al. (1999),
Alexander (2001), Vrontos et al. (2003), and Santos andMoura (2014); and the generalized orthog-
onal GARCH, or GO-GARCH, models of van der Weide (2002), Lanne and Saikkonen (2007),
Zhang and Chan (2009), Broda and Paolella (2009a), Boswijk and van der Weide (2011), and Gha-
lanos et al. (2015).The GO-GARCH construction is related to the so-called class of rotated ARCH
models of Noureldin et al. (2014), which include a variant of the DCCmodel discussed below, and
such that there are only 2d or even only d + 1 parameters requiring numeric optimization.
A multivariate extension of the Q-GARCH model (10.11) is given in Sentana (1995), while, as
mentioned above, multivariate generalizations of the univariate model in Section 10.6 have been
proposed and investigated by Bauwens et al. (2007) andHaas et al. (2009).While these yieldmodels
that allow for a very rich dynamic structure, because of parameter proliferation, they are useful for
only a small number of assets (though they could be used to drive the factors in a factor-GARCH
setup). See the survey articles of Bauwens et al. (2006a) and Silvennoinen and Teräsvirta (2009) for
discussions of many of these, and further multivariate model constructions.

b) Asymptotic properties of the variance targeting estimator (VTE) in the multivariate setting have
been studied by Pedersen and Rahbek (2014) for the BEKK-GARCH model, and in Francq et al.
(2016) for the CCC-GARCH model, while Burda (2015) uses covariance targeting in the general
BEKK-GARCH model.
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c) All multivariate time-seriesmodels share the problem that historical prices for some of the current
assets of interest may not be available in the past, such as bonds with particular maturities, private
equity, new public companies,merger companies, etc.; see Andersen et al. (2007, p. 515) for discus-
sion and some resolutions to this issue. As our concern herein is on the statistical methodology, we
skirt this important issue by considering only equities frommajor indexes (such as the components
of the DJIA). We also ignore the issue of survivorship bias, whereby, based on the current date,
we obtain past stock prices of the firms in the index, ignoring the fact that, in the past, some com-
panies exited the index (and possibly went bankrupt), and new ones entered. See, e.g., Shumway
(1997) and the references therein. This is a form of hindsight bias, and can result in analyses of
model performance being exaggerated. When used for actual investment purposes, forecasting
applications should attempt to incorporate the probability of bankruptcy. ◾

11.2.2 The Gaussian CCC and DCCModels

…, joint distributions estimated over periods without panics will mis-estimate the degree of
correlation between asset returns during panics. Under these circumstances, fear and disen-
gagement by investors often result in simultaneous declines in the values of private obliga-
tions, as investors no longer realistically differentiate among degrees of risk and liquidity, and
increases in the values of riskless government securities. Consequently, the benefits of portfo-
lio diversification will tend to be overestimated when the rare panic periods are not taken into
account.

(Alan Greenspan, 1999)

Arguably the most popular method of generating an MGARCH model via univariate GARCH is
the constant conditional correlation, or CCC, model of Bollerslev (1990). For each of the compo-
nent series, a univariate GARCHmodel is fit and the filtered innovations are ordered as columns in a
matrix.The sample correlation of thismatrix is used to estimate the correlations.Thus, thisMGARCH
model fulfils the desired aspect of ease of estimation in two ways. First, with respect to the univari-
ate GARCH models, these require only joint estimation of two (in the Gaussian IGARCH case) to
five (Gaussian APARCH) parameters each, and the optimization could be parallelized across assets,
for further time savings. Second, via use of the sample correlation estimator applied to the matrix of
filtered innovations, this large set of correlation parameters is trivially and nearly instantaneously
estimated. This assumes, however, that the correlations are constant through time. Observe that,
via the time-varying volatility from the individual fitted GARCH recursions, the covariance matrix
itself is changing over time. The dynamic conditional correlation, or DCC, model of Engle (2002,
2009), and the varying correlation, or VC, model of Tse and Tsui (2002), augments this basic struc-
ture with a simple, two-parameter addition that allows for motion also in the correlations, as will be
shown below.
We limit our discussion herein to the Gaussian DCC model (of which CCC is a special case)

and a semi-parametric variant of it. See Remark (b) below and the subsequent subsections for
some discussion of the non-Gaussian CCC, DCC, and other GARCH-type model settings. Let
Yt = (Yt,1,Yt,2,… ,Yt,d)′ be a d-dimensional vector of asset returns, equally spaced through time
(where we use the letter Y instead of R for the asset returns because R will be used to designate a
correlation matrix, mimicking the notation in Engle, 2002). The ith univariate series, i = 1,… , d, is
assumed to follow the Gaussian GARCH(1,1) model (10.2) with possibly unknown mean, given by

Yt,i − 𝜇i = Zt,i𝜎t,i, 𝜎2
t,i = c0,i + c1,i(Yt−1,i − 𝜇i)2 + d1,i𝜎2

t−1,i, Zt
i.i.d.∼ N(0, 1). (11.2)



Risk Prediction and Portfolio Optimization 495

Differing from the notation in (10.2) (and to be consistent with that used in Engle, 2002), let 𝜖t = Zt ,
with 𝝐t = (𝜖t,1,… , 𝜖t,d)′.
We abbreviate Yt∣Ωt−1

, where Ωt is, as in Section 10.2.1, the information set at time t, as just Yt∣t−1.
The DCC model can then be expressed as

Yt∣t−1 ∼ Nd(𝝁,Ht), Ht = DtRtDt, (11.3)

in conjunction with (11.2), where𝝁 = (𝜇1,… , 𝜇d)′,D2
t = diag([𝜎2

t,1,… , 𝜎2
t,d]), and {Rt} the set of d × d

matrices of time-varying conditional correlations with dynamics specified by

Rt ∶= 𝔼[𝝐t𝝐′t ∣ Ωt−1] = diag (Qt)−1∕2Qt diag (Qt)−1∕2, (11.4)

t = 1,… ,T . Observe that

𝝐t = D−1
t (Yt − 𝝁). (11.5)

The {Qt} form a sequence of conditional matrices parameterized by

Qt = S(1 − a − b) + a(𝝐t−1𝝐′t−1) + bQt−1, (11.6)

with S the d × d unconditional correlationmatrix (Engle, 2002, p. 341) of the 𝝐t , and parameters a and
b are estimated viamaximum likelihood conditional on estimates of all other parameters, as discussed
next. Matrices S and Q0 can be estimated with the usual plug-in sample correlation based on the
filtered 𝝐t ; see also Bali and Engle (2010) and Engle and Kelly (2012) on estimation of the DCCmodel.
Observe that the resultingQt from the update in (11.6) will not necessarily be precisely a correlation
matrix; this is the reason for the standardization in (11.4). The CCC model is a special case of (11.3),
with a = b = 0 in (11.6).
The mean vector, 𝝁, can be set to zero (and considered to be an extreme shrinkage estimator, with

target determined from the economic theory of efficient markets) as done, e.g., in Kroner and Ng
(1998, Sec. 5), or estimated using the sample mean of the returns, as in Engle and Sheppard (2001)
andMcAleer et al. (2008). If estimation is to be used, then, in a more general non-Gaussian context, it
is best estimated jointly with the other parameters associated with each univariate return series. This
is particularly important amid heavy-tails, in which case the sample mean has relatively low efficiency
compared to the m.l.e.; see Paolella and Polak (2017) for some details in this regard.
Let Y = [Y1,… ,YT ]′, and denote the set of parameters as 𝜽. The log-likelihood of the remaining

parameters, conditional on 𝝁, is given by

𝓁(𝜽;Y,𝝁) = −1
2

T∑
t=1

(d ln(2𝜋) + ln(|Ht|) + (Yt − 𝝁)′H−1
t (Yt − 𝝁))

= −1
2

T∑
t=1

(d ln(2𝜋) + 2 ln(|Dt|) + ln(|Rt|) + 𝝐′tR−1
t 𝝐t). (11.7)

Then, as in Engle (2002), adding and subtracting 𝝐′t𝝐t , 𝓁 = 𝓁(𝜽;Y,𝝁) can be decomposed as the sum
of volatility and correlation terms, say 𝓁 = 𝓁V + 𝓁C , where

𝓁V = −1
2

T∑
t=1

(d ln(2𝜋) + 2 ln(|Dt|) + 𝝐′t𝝐t), (11.8)
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and

𝓁C = −1
2

T∑
t=1

(ln(|Rt|) + 𝝐′tR−1
t 𝝐t − 𝝐′t𝝐t). (11.9)

In this way, a two-step maximum likelihood estimation procedure can be applied. First, estimate
the GARCH model parameters for each univariate returns series as discussed in Section 10.2.3, and
construct the standardized residuals. Second, maximize the conditional likelihood with respect to
parameters a and b in (11.6) based on the filtered residuals from the previous step. Note that, in
the CCC model, the correlation matrix is assumed to be constant over time, with Rt = R, and the
standardization step in (11.4) is not necessary.

Remarks
a) See Caporin and McAleer (2013) for several critiques of the DCC construction (including the

standardization step (11.4)), and Aielli (2013) for a modified DCC model, termed cDCC, with
potentially better small-sample properties. Fermanian andMalongo (2017) provide conditions for
the existence and uniqueness of strictly stationary solutions of the DCC model. An interesting
alternative to the DCC model is discussed in Section 11.2.3.

b) One might argue that having only two parameters for modeling the evolution of an entire correla-
tion matrix will not be adequate. While this is certainly true, the models of Engle (2002) and Tse
and Tsui (2002) have two strong points: First, their use is perhaps better than no parameters (as
in the CCC model) and, second, it allows for easy implementation and estimation. Matrix gener-
alizations of the simple DCC structure that allow the number of parameters to be a function of
d, and also introducing asymmetric extensions of the DCC idea, are considered in Engle (2002)
and Cappiello et al. (2006), though with a potentially very large number of parameters, the usual
estimation and inferential problems arise.
Bauwens and Rombouts (2007a) consider an approach in which similar series are pooled into one
of a small number of clusters, such that their GARCH parameters are the same within a cluster. A
related idea is to group series with respect to their correlations, generalizing the DCC model; see,
e.g., Vargas (2006), Billio et al. (2006), Zhou and Chan (2008), Billio and Caporin (2009), Engle and
Kelly (2012), So and Yip (2012), Aielli and Caporin (2013), and the references therein.
An alternative approach is to assume aMarkov switching structure between two (ormore) regimes,
each of which has a CCC structure, as first proposed in Pelletier (2006), and augmented to the
non-Gaussian case in Paolella et al. (2018a). Such a construction implies many additional param-
eters, but their estimation makes use of the usual sample correlation estimator, thus avoiding the
curse of dimensionality, and shrinkage estimation can be straightforwardly invoked to improve
performance.The idea is that, for a given time segment, the correlations are constant, and take on
one set (of usually two, or at most three sets) of values. This appears to be better than attempt-
ing to construct a model that allows for their variation at every point in time. The latter, notably
with the aforementioned matrix asymmetric DCC extensions, might be “asking too much of the
data” and inundatedwith toomany parameters requiring joint numeric optimization. Paolella et al.
(2018a) demonstrate strong out-of-sample performance of their non-Gaussian Markov switching
CCC model with two regimes, compared to the Gaussian CCC case, the Gaussian CCC switch-
ing case, the Gaussian DCC model, and the non-Gaussian single component CCC of Paolella and
Polak (2015a).
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c) CCC- and DCC-type MGARCH models that support non-Gaussian innovation processes have
been proposed by various researchers. These include Aas et al. (2005), using the multivariate
normal inverse Gaussian (NIG); Jondeau et al. (2007, Sec. 6.2) and Wu et al. (2015), using
the multivariate skew-Student density; Santos et al. (2013) using a multivariate Student’s t;
Virbickaite et al. (2016) using a Dirichlet location-scale mixture of multivariate normals; and
Paolella and Polak (2015b,c, 2017) using the multivariate generalized hyperbolic, the latter in a
full maximum-likelihood framework applicable for large d because of the availability of an EM
algorithm; see Section 11.2.4 below. ◾

11.2.3 Morana Semi-Parametric DCCModel

Morana (2015) proposes a variation of the DCC model that incorporates a semi-parametric aspect,
and denotes it SP-DCC. See also Morana (2017) and Morana and Sbrana (2017) for further details,
applications, and simulation results. Similar to (11.3), let

Yt = 𝝁 + 𝜺t, and 𝜺t = H1∕2
t Zt, (11.10)

where 𝜺t = (𝜀t,1,… , 𝜀t,d)′ and Zt is i.i.d. with first two moments 𝔼[Zt] = 𝟎d and 𝕍 (Zt) = Id. Observe
the difference between 𝝐t in (11.5) as used for the DCC construction, and 𝜺t as used here, this arising
as it was deemed desirable to keep the notations used in the original works. They are related by 𝝐t =
D−1

t 𝜺t . The mean term 𝝁 is estimated as in the DCC model, namely via the sample averages of the
return series.
Denote the (ij)th element of Ht by ht,ij, i, j = 1,… , d, and assume that the conditional variances

ht,i ∶= ht,ii = 𝕍 (Yt,i ∣ Ωt−1) respectively follow the strictly stationary GARCH(1,1) process (11.2)
(using the notation of Morana, 2015, which is the same as shown in (10.3), but now for the ith series)

ht,i = 𝜔i + 𝛼i𝜀
2
t−1,i + 𝛽iht−1,i, i = 1,… , d. (11.11)

Differing from the usual DCC construction, the conditional covariances are determined by use of the
polarization identity

4 ⋅ Cov(A,B) = 𝕍 (A + B) − 𝕍 (A − B), (11.12)

arising from the simple fact given in (III.A.62) that 𝕍 (A ± B) = 𝕍 (A) + 𝕍 (B) ± 2Cov(A,B), for any
two random variables A and B with existing second moments.The off-diagonal elements ofHt , ht,ij =
Cov(Yt,i,Yt,j ∣ Ωt−1), can then be represented as

4 ⋅ ht,ij = 𝕍t−1(Yt,i + Yt,j) − 𝕍t−1(Yt,i − Yt,j), i, j = 1,… , d, i ≠ j, (11.13)

where 𝕍t−1(Yt,i) is shorthand for 𝕍 (Yt,i ∣ Ωt−1). Next, define the aggregate variables

Y+
t,ij ∶= Yt,i + Yt,j, Y−

t,ij ∶= Yt,i − Yt,j, 𝜀+t,ij ∶= 𝜀t,i + 𝜀t,j, 𝜀−t,ij ∶= 𝜀t,i − 𝜀t,j, (11.14)

and assume the conditional variance processes h+t,ij ∶= 𝕍t−1(Y+
t,ij) and h−t,ij ∶= 𝕍t−1(Y−

t,ij) are given,
respectively, by the GARCH(1,1) specifications

h+t,ij = 𝜔+
ij + 𝛼+

ij 𝜀
+2
t−1,ij + 𝛽+

ij h
+
t−1,ij, i, j = 1,… d, i ≠ j, (11.15)

and

h−t,ij = 𝜔−
ij + 𝛼−

ij 𝜀
−2
t−1,ij + 𝛽−

ij h
−
t−1,ij, i, j = 1,… , d, i ≠ j. (11.16)
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By substituting (11.15) and (11.16) into (11.13), the implied parametric structure for the conditional
covariance hij,t can be expressed as

4 ⋅ ht,ij = 𝜔+
ij + 𝛼+

ij 𝜀
+2
t−1,ij + 𝛽+

ij h
+
t−1,ij − 𝜔−

ij − 𝛼−
ij 𝜀

−2
t−1,ij − 𝛽−

ij h
−
t−1,ij

= 𝜔+
ij − 𝜔−

ij + 𝛼+
ij (𝜀t−1,i + 𝜀t−1,j)2 − 𝛼−

ij (𝜀t−1,i − 𝜀t−1,j)2

+ 𝛽+
ij h

+
t−1,ij − 𝛽−

ij h
−
t−1,ij. (11.17)

Note that, by assuming constant GARCH parameters across aggregate series, i.e., 𝛼+
ij = 𝛼−

ij =∶ 𝛼 and
𝛽+
ij = 𝛽−

ij =∶ 𝛽, and rearranging (11.17) with 𝜔ij ∶= (𝜔+
ij − 𝜔−

ij )∕4,

ht,ij = 𝜔ij + 𝛼𝜀t−1,i𝜀t−1,j + 𝛽ht−1,ij,

showing how the SP-DCC model is more flexible than the usual DCC construct.
The log-likelihood can be expressed as in (11.7), decomposed similarly, as 𝓁 = 𝓁V + 𝓁C , and a

two-step procedure can be used. The volatility part of the likelihood is the same as in (11.8), namely
(and recalling 𝝐t = D−1

t 𝜺t)

𝓁V = −1
2

T∑
t=1

(d ln(2𝜋) + 2 ln(|Dt|) + 𝜺′tD−1
t D−1

t 𝜺t). (11.18)

Differing from the DCC model, SP-DCC does not maximize (11.9), but rather the sum of individual
GARCH likelihoods for the aggregate series Y+

t,ij and Y−
t,ij, i.e., 𝓁SP = 𝓁+

SP + 𝓁−
SP, where

𝓁+
SP = −1

2

T∑
t=1

2
d∑
i=1

d∑
j>i

(
ln(2𝜋) + ln h+t,ij +

𝜀+2t,ij

h+t,ij

)
,

and similarly for 𝓁−
SP.This is jointlymaximized by separatelymaximizing each term. Hence, the condi-

tional variances for the aggregates h+t,ij and h
−
t,ij, i, j = 1,… , d, i ≠ j, are estimated equation by equation

by means of quasi-maximum likelihood using the aggregated conditional mean residuals 𝜀+t,ij and 𝜀−t,ij
from (11.14).
Through the polarization identity, the ht,ij, i, j = 1,… , d, i ≠ j, are estimated non-parametrically via

4 ⋅ ĥt,ij = ĥ+t,ij − ĥ−t,ij, i, j = 1,… , d, i ≠ j. Finally, the estimator of the conditional correlation matrix Rt

is given by R̂t = D̂−1
t ĤtD̂−1

t , where D̂2
t = diag([ĥ1,t ,… , ĥd,t]).

As in Morana (2015), an ex-post correction to ensure that R̂t is positive definite at each point in
time can be implemented as follows. First, if required, the estimated conditional correlations in R̂t ,
�̂�ij,t , i ≠ j, are bounded to lie within the range−1 ⩽ �̂�t,ij ⩽ 1 by applying the so-called sign-preserving
bounding transformation

�̂�∗t,ij = �̂�t,ij(1 + �̂�kt,ij)
−1∕k , k ∈ {2, 4,…}, (11.19)

where k is selected optimally by minimizing the sum of squared Frobenious norms over the temporal
sample

argmin
k

T∑
t=1

‖R̂t − R̂∗
t ‖2F = argmin

k

T∑
t=1

d∑
i=1

d∑
j=1

|�̂�ij,t − �̂�∗ij,t|2. (11.20)

Second, if required, positive definiteness is enforced by means of nonlinear shrinkage of the negative
eigenvalues of the R̂∗

t matrix toward their corresponding positive average values over the temporal
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sequence in which they are positive. Denote the spectral decomposition as R̂∗
t = ÊtV̂tÊ′

t , where V̂t is
the diagonal matrix of sorted eigenvalues and the columns of Êt are the associated orthogonal eigen-
vectors, and let V̂∗

t be the diagonal matrix with adjusted eigenvalues. The adjusted estimators are
then

R̂∗∗
t = ÊtV̂∗

t Ê′
t , and Ĥ∗∗

t = D̂tR̂∗∗
t D̂t. (11.21)

An implementation of the SP-DCCmethod is available as part of the set of programs associated with
the book.3 Function SPDCC1step is such that, for an input set of returns data, the mean vector and
variance-covariance matrix corresponding to the one-step-ahead predictive density are output, and
thus can be used for portfolio optimization, as described below in Section 11.3.2.

11.2.4 The COMFORT Class

Recall from Section 10.3.1 that, in the univariate GARCH setting, whenmodeling daily (or higher fre-
quency) financial asset returns with interest centering on density or VaR forecasting, the assumption
on the innovations distribution almost always plays a more important role than does the functional
form of the law of motion for the scale term. It is, unsurprisingly, also the case in the multivariate set-
ting, notably amid non-ellipticity of the returns, and with portfolio allocation applications in mind. It
thus suggests itself to use a CCC or DCC structure with a non-Gaussian distribution, though this is
not so trivial in terms of estimation.
A common, simple way of attempting to address this has been to employ a two-step procedure,

whereby first, via an appeal to quasi maximum likelihood (recall Section 10.3.2), a Gaussian CCC or
DCCmodel is fit to the data, and, based on the ensuing residuals, a non-Gaussian distribution, such as
themultivariate Student’s t, is fit (see, e.g., Santos et al., 2013, and the references therein). Conveniently
for applied researchers, both steps are available in numerous canned econometrics packages such as
Eviews. However, use of this ad hoc method is certainly inferior to full m.l.e., and is not obvious if
the resulting parameters are consistent. Its use is also compounded by the possibility of incorrectly
accounting for how the dispersion matrix in the assumed non-Gaussian multivariate distribution is
estimated; see Paolella and Polak (2017) for details.
The latter authors also show that use of joint maximum likelihood estimation, enabled by use

of an EM algorithm developed in Paolella and Polak (2015b) for a CCC model with a multivariate
generalized hyperbolic distribution (of which Student’s t is a limiting case), results in superior
out-of-sample density and value-at-risk forecasting performance. It also delivers impressive portfolio
performance—far better than use of Gaussian DCC; see Paolella and Polak (2015c). The price to pay
for using this common market factor non-Gaussian returns model, or COMFORT, is having to
understand a more complicated stochastic process and the required estimation technique.
The starting point of the model is the multivariate normal mean-variance mixture distribu-

tion or MNMVM. The d-dimensional random vector Y is said to have such a distribution if Y =
m(G) +H1∕2

√
GZ, where Z ∼ N (𝟎, Id), where G ⩾ 0 is a non-negative, univariate random variable,

independent ofZ,H is a d × d symmetric and positive definite matrix, andm ∶ [0,∞) → ℝd is a mea-
surable function.The nameMNMVMcomes from the fact thatY ∣ (G = g) ∼ N (m( g), gH).Themul-
tivariate generalized hyperbolic (MGHyp) distribution, as introduced by Barndorff-Nielsen (1977),

3 The author is grateful to Claudio Morana and Matthias Hartmann for supplying their original codes, and to Marco
Gambacciani for adapting them for use with the profile likelihood method of univariate GARCH estimation from Section
10.2.3 and generating the one-step-ahead forecasts, as required for the predictive density.
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is a special case of MNMVM with m(G) = 𝜇 + 𝜸G, for d × 1 vector 𝜸 ∈ ℝd and G ∼ GIG (𝜆, 𝜒, 𝜓),
i.e., generalized inverse Gaussian. A highly detailed presentation in the univariate case, with links to
the many special cases, and details on the GIG distribution, is given in Chapter II.9. (We will see this
form again, and go intomore detail, in Section 12.2, for the special case of the multivariate noncentral
Student’s t distribution, and further generalize the structure in Section 12.6.)
One of the benefits of use of the MGHyp for applications to portfolio optimization in finance is

that, if Y ∼ MGHyp(𝝁, 𝜸,H, 𝜆, 𝜒, 𝜓), where 𝝁 is a location vector and H is a dispersion matrix, then
the weighted sums of margins (the portfolio distribution), say w′Y, is univariate GHyp, i.e., w′Y ∼
GHyp(w′𝝁,w′𝜸,w′Hw, 𝜆, 𝜒, 𝜓). See, e.g., McNeil et al. (2015) for a proof. Different choices of shape
parameters 𝜆, 𝜒 , and𝜓 give rise to different tail behavior, from thin tails (the Gaussian and Laplace are
limiting and special cases), to so-called semi-heavy tails such that the distribution is leptokurtic but
still possesses amoment generating function, to genuinely heavy tailed (the Student’s t being a limiting
case). While the parameters of the MGHyp, notably the shape parameters 𝜆, 𝜒 , and 𝜓 , are identified,
certain parameter restrictions are required; see McNeil et al. (2015) and Paolella and Polak (2015b)
for details. Furthermore, use of all three shape parameters with typically sized data sets results in a
rather flat likelihood, so one usually restricts one or two of them, giving rise to the numerous known
special cases of the distribution.
The COMFORT model uses the MGHyp distribution with a CCC or DCC augmentation of the

dispersionmatrix.That is, for a set of d financial assets, with associated (percentage log) return vector
Yt = (Yt,1,Yt,2,… ,Yt,d)′, for time t = 1,… ,T , the model is given by

Yt = 𝝁 + 𝜸Gt + 𝜺t , 𝜺t = H1∕2
t

√
GtZt , (11.22)

whereHt = St𝚪tSt , such that St = diag(s1,t,… , sd,t) is a scale matrix, and sk,t > 0, k = 1,… , d, are the
scale terms driven by the modified GARCH equation dynamics

s2k,t = 𝜔k + 𝛼k( yt−1,k − 𝜇k − 𝛾kGt−1)2 + 𝛽ks2k,t−1. (11.23)

The dependencymatrix 𝚪t can be assumed time invariant, 𝚪t = 𝚪, as in the CCCmodel, or structured
analogous to the DCC model.
Asmentioned above, despite the large parameterization as d increases, estimation by full (joint with

all parameters) maximum likelihood estimation is feasible and fast via use of an EM algorithm; see
Paolella and Polak (2015b) for details.
This modeling paradigm turns out to yield some remarkable results and insights:

1) The required incorporation of a sequence of univariate latent (positive, continuous) random vari-
ables, denoted {Gt}, can be endowed with the interpretation as a common market factor, and
is able to account for information arrivals and jumps in such a way that, conditional on it, the
returns distribution is Gaussian. This allows for two, essentially orthogonal, structures to model
the data: A univariate “jump process” for modeling aberrations and news arrivals, and a GARCH
structure for modeling the persistence in volatility. Even for very large d, as is typical for portfolios
of major financial institutions, all model parameters are quickly and simultaneously estimated via
joint maximum likelihood, enabled by an EM algorithm. This results in the {Gt} sequence being
imputed (filtered), and it can be plotted.
As an example, the COMFORT model was fit to 11 years of daily data consisting of the d = 30
stocks that comprise the DJIA index. The top panel of Figure 11.3 plots the returns for Merck &
Co. Inc., with the second and third rows showing the filtered {Gt} sequence and the filtered scaled
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Figure 11.3 The (log percentage) returns on Merck & Co. Inc. for the dates indicated (top) and several filtered time
series associated with the COMFORT model.

terms, denoted St , from the conditional Gaussian GARCH equation associated with Merck. The
fourth panel shows the volatilities, as computed by appropriately combining the {Gt} and {St} (see
Paolella and Polak, 2015b, for details). Observe how there is little relation between {Gt} and {St}:
As a first example, at the return below −20%, the filtered Gt value “picks this up”, though (because
of the bad news arrival) it was also the onset of a high volatility period, as seen in {St}.
As a second example, around the time of the global financial crisis in 2008 and 2009, the volatility
of Merck, as seen from the returns in the top panel, is clearly relatively very high, as is, corre-
spondingly, the {St} around that period, but the {Gt} sequence is rather quiet because, while the
volatility is persistent and being adequately modeled by GARCH, there were no “major surprises”
that needed to be caught by Gt . There are a handful of very large Gt “spikes” outside of the one
associated with the over −20% drop, and these are not associated with any particular increase in
the filtered St , but do influence the volatility via the combination of {Gt} and {St}. The idea is that
the latter two quantities are somewhat orthogonal and each is “doing its job”. WithoutGt , all there
would be is the GARCH-induced volatility, and, from the visible enormous variation in {Gt}, it is
clear that without {Gt}, the model would be rather mis-specified.
Figure 11.4 is similar, but shows all 30 series overlaid. The graphic emphasizes that {Gt} is a uni-
variate sequence, and also shows that the various {St} are highly correlated through time, as are
the COMFORT volatilities in the last panel, though they exhibit more variation than just the {St}
because of the influence of {Gt}.
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Figure 11.4 Similar to Figure 11.3, but overlaying the results for all 30 series associated with the DJIA.

2) It is worth contrasting the aforementioned ad hoc method of using the Gaussian CCC or
DCC residuals to fit an i.i.d. multivariate Student’s t distribution, with the COMFORT class
of models: The former estimates the univariate series as Gaussian-GARCH, and then fits the
degrees of freedom parameter of a multivariate Student’s t, while COMFORT also fits univariate
Gaussian-GARCH models to each margin, but conditional on the filtered {Gt} sequence, in an
iterative fashion, via the EM algorithm. This implies that there is feedback during estimation
between the filtered {Gt} sequence and the conditional Gaussian GARCH parameters. There is
obviously no such feedback in the ad hocmethod.
Somewhat fascinatingly, by disentangling these two effects, the estimated, conditionally Gaussian
univariate GARCH processes from (11.23) yield essentially the same parameters across assets, i.e.,
the �̂�0,i, when freely estimated for each of d assets, i = 1,… , d, are virtually the same (and this
having been confirmed by using numerous starting values in the estimation, and conducted also
on numerous data sets), and similarly for �̂�1,i and 𝛽1,i.This is far from the case in the Gaussian CCC
or DCC setting and, thus, in the ad hoc Student’s t DCCmodel. In light of the COMFORTmodel,
this variation in GARCH parameters can be interpreted as the result of model mis-specification:
The GARCH(1,1) structure is inadequate for capturing all the features of the individual series, as
was discussed earlier, in Section 10.2.2, with theGARCHparametersmoving towards the IGARCH
border as the sample size increases.
This implies that, conditional on the latent sequence describing the common market factor, per-
sistence in volatility, as captured by a GARCH(1,1) process, is the same across all assets. While of
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great theoretical interest, this feature has the useful practical implication that the estimation of the
univariate GARCH models (11.23) can be foregone (this being the most time-consuming part of
the estimation process), replaced either by one joint estimation, or just fixing the three GARCH
parameters to values that consistently arise for various sets of daily stock returns data. We term
this Fast ReducEd Estimation, or FREE-COMFORT.

3) A third benefit of the COMFORT model class is that an extension to a pseudo type of stochastic
volatility (SV) model is possible. Recalling the brief discussion at the beginning of Section 10.2.1,
SV models are considered more realistic, as the volatility at time t is not simply a deterministic
function of information up to time t − 1.The price to pay for allowing a further source of random-
ness to enter into the volatility at time t is intractability of the likelihood and the requirement of
more sophisticated methods for parameter estimation. In the COMFORT context, it was found
that there is some predictability in the (otherwise i.i.d.) univariate latent sequence {Gt}, and a
model extension was proposed that has some elements of an SV model, but such that the likeli-
hood is still accessible, allowing for straightforward parameter estimation; see Paolella and Polak
(2015b) for details on the formal connection to SV models, along with an application to multi-
variate option pricing. A different model in the univariate case that builds on the classic GARCH
structure but allows for elements of an SV model and is such that it still is amenable to traditional
likelihood optimization is proposed and studied in Smetanina (2017).

4) The incorporation of the univariate {Gt} sequence allows one to move from the Gaussian
CCC-GARCH model to the non-Gaussian COMFORT model, and its ensuing enhanced ability
for risk assessment and portfolio allocation. The former can be thought of as the COMFORT
model with constant Gt for all time periods. However, this single {Gt} sequence is latent to all
d (say) stocks, and that may not be realistic. One might argue that each industry sector should
be endowed with its own such sequence. Such a construction no longer enjoys the convenient
distribution theory associated with the MGHyp, and simulation from the predictive distribution
would be required. Models that make use of this idea and reap benefits in terms of forecasting
and portfolio construction ability are pursued in Näf et al. (2018b,a), with an introduction to the
latter given in Section 12.6.

11.2.5 Copula Constructions

The development and use of copula-based models for various phenomena in finance continues to
grow unabated. Part of the reason for their appeal is that they allow the (possibly time-varying, such
as via GARCH) univariate series to be modeled separately, and independently of the copula structure
that links them into a multivariate distribution.
Basic knowledge of copula theory, and some experience with the methodology, is now considered

essential for financial econometricians. Informally, a copula is amultivariate distribution such that the
univariate margins are Unif (0, 1), and fully describes the dependence among themargins.The copula
(as its name suggests, for those skilled in Latin) can be viewed as a structure to tie, or join, a set of
univariatemarginal distributions.Their use and applicability have grown in various fields, particularly
quantitative risk management and empirical finance. Detailed accounts can be found in Bradley and
Taqqu (2003), Nelsen (2006), McNeil et al. (2015), Joe (2015), and Ibragimov and Prokhorov (2017),
while Fermanian (2017) provides (at the time of writing) a recent overview of their use in financial
econometrics. Surveys of the use of copula-basedmodels for financial time series and volatilitymodels
are given by Patton (2009), Genest et al. (2009), and Heinen and Valdesogo (2012).
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Wewill detail the use of one particular, and very straightforward, copula construction for modeling
and predicting asset returns in Chapter 12.

11.3 Introducing Portfolio Optimization

11.3.1 Some Trivial Accounting

Assume a universe of financial assets, such as currencies, commodities, or stocks, that can be traded
(i.e., have the required liquidity) at the desired frequency, such as monthly, weekly, daily, intra-day,
etc. For illustration, we assume daily stock trading on companies 1,… , d. Further, assume there is
an investment amount of capital at time t, say Ct . We want to detail the evolution of the wealth
through time.
It is useful to first do so without incorporating transaction costs; these are dealt with below. Further,

we assume no short-selling, which is typical in many contexts and mandatory in others. Let

wt = (𝑤1,t,… , 𝑤d,t)′ ∈ [0, 1]d,
d∑

k=1
𝑤k,t = 1, (11.24)

denote the non-negative weight vector summing to one that describes a portfolio for the d stocks at
time t. Observe that this is another assumption, namely that we attempt to invest all the money avail-
able. More realistic settings could allow for a “risk fear strategy” such that, based on some calculated
signal at time t, the investor wishes to exit the market (anticipating perhaps very high risk or a market
downturn), and thus allowing for

∑d
k=1 𝑤k,t = 0.

Denote the price of stock k at time t as Pk,t > 0. Inwhat follows, we assume time ismeasured in some
discrete unit such as hours, days, weeks, etc. For our purposes, assume daily, and when we speak of
time t, one can fix this to mean, say, at 4:00PM on day t.
Based on some investment strategy (such as use of an assumed stochastic process with parameters

fit from a window of past data up to time t and a prediction for time t + 1), we decide to hold the
portfolio with weightswt , such that Ct𝑤k,t is invested in the kth asset, k = 1,… , d. This will often not
be possible because of discreteness, and thus entails buying

𝛼k,t ∶=
⌊Ct𝑤k,t

Pk,t

⌋
stocks of company k, where ⌊⋅⌋ denotes the floor function, i.e., ⌊2.8⌋ = ⌊2.1⌋ = 2.Thus, the amount of
money invested in stock for company k is 𝛼k,tPk,t , which has an upper bound ofCt𝑤k,t andwill be close
to this bound when Ct∕Pk,t is large. We denote the total amount invested (wealth) as ; in particular,
at the beginning of the investment process, this is1 ∶= 1∣1, where we define

s∣t ∶=
d∑

k=1
𝛼k,tPk,s,

i.e.,s∣t is the portfolio wealth at time s, given the prices at time s and the number of shares at time t.
Observe that, as the weights sum to one,

t∣t =
d∑

k=1
𝛼k,tPk,t ≈

d∑
k=1

Ct𝑤k,t = Ct ,
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with Ct being the upper bound on the amount invested, t∣t ⩽ Ct . When t∣t = Ct , we will call this
the full investment approximation.
At time t + 1, we know the prices Pk,t+1, k = 1,… , d, and the portfolio is worth

t+1∣t ∶=
d∑

k=1
𝛼k,tPk,t+1 =

d∑
k=1

𝛼k,t
Pk,t

Pk,t
Pk,t+1 ≈ Ct

d∑
k=1

𝑤k,t
Pk,t+1

Pk,t
. (11.25)

From the last expression in (11.25), it is clear that we wish to have chosen a zero weight in stocks such
that the price change from time t to t + 1 is negative, and ideally a weight of one in the stock whose
relative price increase is the largest.

Remark Observe that (11.25) is not valid for negative weights. This is because a negative weight
implies short selling, whichmeans the stocks are borrowed at time t (for a fee, just like you pay interest
when you borrow money from a bank), immediately sold, and purchased at a future date (for which
you hope the price has gone down) to return to the lender. Expression (11.25) could be augmented to
support short selling by taking

t+1∣t ≈ Ct

d∑
k=1

|𝑤k,t|(Pk,t+1

Pk,t

)sgn(𝑤k,t)

,

though this will not be necessary to compute the returns below in (11.28) because there the relative
price difference is used. ◾

Thepercentage return of the portfolio at time t + 1 based on starting time t, denotedRP,t+1∣t , is given
by, with the full investment approximation,

RP,t+1∣t ∶= 100
t+1∣t −t∣t

t∣t
≈ 100

Ct
∑d

k=1 𝑤k,t
Pk,t+1

Pk,t
− Ct

Ct
(11.26)

= 100

( d∑
k=1

𝑤k,t
Pk,t+1

Pk,t
− 1

d

d∑
k=1

Pk,t

Pk,t

)
= 100

d∑
k=1

1
Pk,t

(
𝑤k,tPk,t+1 −

Pk,t

d

)
. (11.27)

Observe in (11.27) how, if the weights𝑤k,t were chosen to be equal, i.e., the equally weighted portfolio,
then (11.27) reduces to (with the full investment approximation)

(equal weights) RP,t+1∣t ≈
1
d

d∑
k=1

100
(Pk,t+1 − Pk,t

Pk,t

)
= 1

d

d∑
k=1

Rk,t+1∣t ,

where Rk,t+1∣t ∶= 100(Pk,t+1 − Pk,t)∕Pk,t is the (simple) percentage return on asset k at time t + 1 calcu-
lated with respect to its price at time t. As the portfolio weights sum to one, we can also write (11.26)
as

RP,t+1∣t ≈ 100

( d∑
k=1

𝑤k,t
Pk,t+1

Pk,t
−

d∑
k=1

𝑤k,t

)
= 100

d∑
k=1

𝑤k,t
Pk,t+1 − Pk,t

Pk,t

=
d∑

k=1
𝑤k,tRk,t+1∣t = w′

tRt+1∣t, (11.28)

where Rt+1∣t ∶= (R1,t+1∣t ,… ,Rd,t+1∣t)′, generalizing the equally weighted case.
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Now consider themulti-step returns.We first illustrate the returnswith the full investment approxi-
mation.With the new price information at time t + 1, the weights are updated to vectorwt+1, as calcu-
lated by the investmentmethod, and the wealth that can be invested ist+1∣t = Ct+1.We thus buy and
sell shares of the d assets such that we have 𝛼k,t+1 = ⌊Ct+1𝑤k,t+1∕Pk,t+1⌋ shares in company k, which,
under the full investment approximation, implies a wealth in company k of 𝛼k,t+1Pk,t+1 = Ct+1𝑤k,t+1.
At time t + 2, the prices Pk,t+2 are realized,

t+2∣t+1 =
d∑

k=1
𝛼k,t+1Pk,t+2 =

d∑
k=1

𝛼k,t+1
Pk,t+1

Pk,t+1
Pk,t+2 ≈ Ct+1

d∑
k=1

𝑤k,t+1
Pk,t+2

Pk,t+1
,

and

RP,t+2∣t = 100
t+2∣t+1 −t∣t

t∣t
. (11.29)

Consider now the return for h periods ahead, h ⩾ 1, i.e., based on starting time t, we want the return
at time t + h. For the initial purchase at time t, it is algebraically convenient to lett∣t−1 ∶= t∣t . From
(11.29) for time t + h,

1
100

RP,t+h∣t + 1 =
t+h∣t+h−1

t∣t
=

t+h∏
𝜏=t+1

( 𝜏∣𝜏−1

𝜏−1∣𝜏−2

)
=

t+h∏
𝜏=t+1

(
1 +

𝜏∣𝜏−1 −𝜏−1∣𝜏−2

𝜏−1∣𝜏−2

)
=

t+h∏
𝜏=t+1

(
1 + 1

100
RP,𝜏∣𝜏−1

)
,

or

RP,t+h∣t = 100

( t+h∏
𝜏=t+1

(
1 + 1

100
RP,𝜏∣𝜏−1

)
− 1

)
. (11.30)

Recall the Taylor series log(1 + x) =
∑∞

i=1 (−1)i+1xi∕i for |x| < 1, with first-order approximation
log(1 + x) ≈ x. Thus, return RP,t+2∣t satisfies RP,t+2∣t ≈ 100 log(t+2∣t+1∕t∣t) (see, e.g., page I.152), and

RP,t+2∣t ≈ 100 log
(t+2∣t+1

t∣t

)
= 100 log

(t+2∣t+1

t+1∣t

t+1∣t

t∣t

)
= 100 log

(t+2∣t+1

t+1∣t

)
+ 100 log

(t+1∣t

t∣t

)
= RP,t+2∣t+1 + RP,t+1∣t = w′

t+1Rt+2∣t+1 + w′
tRt+1∣t .

In general, at time t + h, using both the log and full investment approximations,

RP,t+h∣t ≈
h∑
i=1

w′
t+i−1Rt+i∣t+i−1. (11.31)

This is the commonly used approximation for illustrating and comparing the performance of invest-
ment methods. It is conservative compared to (11.30) because log(1 + x) ⩽ x for |x| < 1 (see, e.g.,
Lang, 1997, p. 87). The difference between (11.30) and (11.31) can also be exemplified as follows. For
h = 3, (11.30) is

1
100

RP,t+3∣t + 1 =
(
1 + 1

100
RP,t+1∣t

)(
1 + 1

100
RP,t+2∣t+1

)(
1 + 1

100
RP,t+3∣t+2

)
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or, multiplying out,

RP,t+3∣t = RP,t+1∣t + RP,t+2∣t+1 + RP,t+3∣t+2

+ 1
100

(RP,t+1∣tRP,t+2∣t+1 + RP,t+1∣tRP,t+3∣t+2 + RP,t+2∣t+1RP,t+3∣t+2)

+ 1
1002

RP,t+1∣tRP,t+2∣t+1RP,t+3∣t+2. (11.32)

Thus, (11.31) ignores the higher-order terms in (11.32), which are clearly very small, but become
visible over long investment horizons.
Now consider relaxing the full investment approximation. Assume the investor starts with capitalCt

and invests in portfolio
∑d

k=1 𝛼k,tPk,t ⩽ Ct , and let the “savings” be that amount that cannot be invested
because of the discreteness, i.e.,

St ∶= Ct −
d∑

k=1
𝛼k,tPk,t.

At time t + 1, the portfolio is wortht+1∣t =
∑d

k=1 𝛼k,tPk,t+1 and imagine the investor sells everything,
obtaining Ct+1 = St +t+1∣t . (We also assume the interest on St from time period t to t + 1 is zero,
which currently is not so unrealistic, though is easily accommodated.) She then purchases the portfo-
lio with 𝛼k,t+1 shares from company k, at price Pk,t+1, k = 1,… , d, where 𝛼k,t+1 ∶= ⌊Ct+1𝑤k,t+1∕Pk,t+1⌋.
Naturally, in practice, one does not sell everything and then repurchase the new portfolio because of
transaction costs and the fact that there will be overlap between the two portfolios. Instead, one buys
or sells the shares of company k to adjust 𝛼k,t to 𝛼k,t+1, k = 1,… , d. Without transaction costs and
assuming a zero bid-ask spread, this is equivalent to imagining selling everything and then purchasing
the updated portfolio anew.
It follows that

St+1 = Ct+1 −
d∑

k=1
𝛼k,t+1Pk,t+1.

At time t + 2, the portfolio is wortht+2∣t+1 =
∑d

k=1 𝛼k,t+1Pk,t+2, and selling gives

Ct+2 = St+1 +t+2∣t+1 = Ct+1 −
d∑

k=1
𝛼k,t+1Pk,t+1 +

d∑
k=1

𝛼k,t+1Pk,t+2

= Ct+1 +
d∑

k=1
𝛼k,t+1(Pk,t+2 − Pk,t+1) = St +

d∑
k=1

𝛼k,tPk,t+1 +
d∑

k=1
𝛼k,t+1(Pk,t+2 − Pk,t+1)

= Ct +
d∑

k=1
𝛼k,t(Pk,t+1 − Pk,t) +

d∑
k=1

𝛼k,t+1(Pk,t+2 − Pk,t+1).

Continuing, she purchases 𝛼k,t+2 shares from company k, at price Pk,t+2, k = 1,… , d, and St+2 = Ct+2 −∑d
k=1 𝛼k,t+2Pk,t+2. At time t + 3, the portfolio is worth

t+3∣t+2 =
d∑

k=1
𝛼k,t+2Pk,t+3, and selling gives Ct+3 = St+2 +t+3∣t+2,
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which reduces to

Ct +
d∑

k=1
𝛼k,t(Pk,t+1 − Pk,t) +

d∑
k=1

𝛼k,t+1(Pk,t+2 − Pk,t+1) +
d∑

k=1
𝛼k,t+2(Pk,t+3 − Pk,t+2).

The pattern should now be clear, so that, at period t + h,

Ct+h = Ct +
t+h−1∑
𝜏=t

d∑
k=1

𝛼k,𝜏(Pk,𝜏+1 − Pk,𝜏), (11.33)

and the percentage return is

RP,t+h∣t = 100
Ct+h − Ct

Ct
, or Ct+h = Ct

(
1 +

RP,t+h∣t

100

)
. (11.34)

We now address how to account for transaction costs. To do so, we could adjust Ct at each t, but it
is easier to imagine having a separate account (without interest) to pay the costs, and these costs are
removed from the return calculated at time t + i, i = 1,… , h. To this end, let T1 be the initial startup
cost for buying the

∑d
k=1 𝛼k,1 shares.This can be seen as imagining the existing portfolio at time t = 0 to

consist of 𝛼k,0 = 0, k = 1,… , d, and thus we takeT1∣0 ∶= T1. LetTt+1∣t be the total induced transaction
cost for buying or selling 𝛼k,t+1 − 𝛼k,t shares on company k, k = 1,… , d, at the price at time t + 1, and
similarly for Tt+2∣t+1,… ,Tt+h−1∣t+h−2.
A typical approximation uses so-called proportional transaction costs, and does not account for

the bid-ask spread, i.e., the different buying (ask) and selling (bid) prices. This method will be subse-
quently discussed. Assuming the investment procedure stops at time t + h, all shares are sold at time
t + h, at cost Tt+h, and we define Tt+h∣t+h−1 ∶= Tt+h. The gross percentage return, i.e., before paying
transaction costs, is (11.34), which we now denote as

RG
P,t+h∣t = 100

Ct+h − Ct

Ct
. (11.35)

The net percentage return, meaning after transaction costs, is then

RN
P,t+h∣t = 100

Ct+h −
∑h

i=0 Tt+i∣t+i−1 − Ct

Ct
. (11.36)

The proportional transaction cost approximation, as in DeMiguel et al. (2013), assumes that trans-
action costs lead to a deduction of the total portfolio return proportional to the amount of portfolio
rebalancing. It is defined as

(100 + RN
P,t+h∣t) =

(
1 − 𝜅

h∑
i=0

d∑
k=1

|𝑤k,t+1+i −𝑤k,(t+i)+ |) (100 + RG
P,t+h∣t), (11.37)

where

1) 𝑤k,t from (11.24) is the portfolio weight of asset k, computed at time t, held from time t to t + 1.
2) 𝑤k,t+ is the proportion of wealth that is held in asset k at time t + 1 just before rebalancing the

portfolio, i.e.,

𝑤k,t+ =
𝛼k,tPk,t+1∑d
k=1 𝛼k,tPk,t+1

. (11.38)
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3) 𝜅 > 0 quantifies the level of proportional transaction cost, with values of 0.005 and 0.010 (five and
ten basis points, respectively) being typical.

Observe how (11.37) and (11.38) account for the change in the proportion of wealth invested in
asset k due to a change in asset prices from time t to t + 1.
An important aspect of this method is how the equally weighted portfolio is treated. This is char-

acterized by 𝑤k,t = 1∕d for all assets k = 1,… , d and all time periods t = 1, 2,…. When the relative
prices of assets change from time t to t + 1,𝑤k,t+ ≠ 1∕d, and the portfolio needs to be rebalanced (and
incurs transaction costs).
Observe that (11.37) utilizes the total returns, as opposed to the log returns (11.31), to guarantee

proportionality of the transaction costs to the portfolio value. To see this, rewrite (11.37) usingCt+h =
Ct(1 + RN

P,t+h∣t∕100) from the right-hand side of (11.34) to get

Ct+h = Ct

(
1 − 𝜅

h∑
i=0

d∑
k=1

|𝑤k,t+1+i −𝑤k,(t+i)+ |)(
1 +

RG
P,t+h∣t

100

)
. (11.39)

For h = 1, (11.39) appears in, among others, DeMiguel et al. (2009b). From this, the total transac-
tion cost amount can be expressed as a fraction of the final wealth, proportional to the amount of
rebalancing, i.e.,

Ct+h𝜅

h∑
i=0

d∑
k=1

|𝑤k,t+1+i −𝑤k,(t+i)+ | = h∑
i=0

Tt+i∣t+i−1. (11.40)

This approximation is implemented in the program in Listing 11.1.

1 function [pandl_net,pandl_gross] = netreturns(wmat,rmat,pmat,kap)
2 % Computes the portfolio returns net of transactions costs as
3 % r_t =( 1 - kap sum_j=1ˆN |w_j,t - w_j,(t-1)+| ) * ( w_t .* r_t) where
4 % w_j,(t-1)+ is the portfolio weight in asset j at time t before rebalancing;
5 % w_j,t is the desired portfolio weight at time t after rebalancing;
6 % kap is the proportional transaction cost;
7 % w_t is the vector of portfolio weights; and
8 % r_t is the vector of returns.
9 % p_t is the vector of prices

10 pandl_gross = sum( wmat .* rmat ,2 ); pandl_net = zeros(size(pandl_gross));
11 pandl_net(1) = pandl_gross(1);
12 wmatplus = zeros(size(wmat));
13 alpha = zeros(size(wmat));
14 for t=2:length(pandl_gross)
15 alpha(t-1,:) = wmat(t-1,:)./ pmat(t-1,:);
16 % without loss of generality the total wealth invested is 1
17 wmatplus(t-1,:) = (alpha(t-1,:).*pmat(t,:)) ./ (sum(alpha(t-1,:).*pmat(t,:),2));
18 pandl_net(t) = ( ( 1 - kap * sum( abs( wmat(t,:) - wmatplus(t-1,:) ) ,2 ) ) ...
19 * ( 100 + pandl_gross(t) ) ) - 100;
20 end

Program Listing 11.1: Computes the returns net of transaction costs.

A further approximation involves use of only the returns on each asset. This is convenient and will
often be enough. The implementation is given in Listing 11.2.
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1 function [pandl_net,pandl_gross] = netreturns(wmat,rmat,kap)
2 pandl_gross = sum( wmat .* rmat ,2 );
3 pandl_net=zeros(size(pandl_gross));
4 pandl_net(1)=pandl_gross(1);
5 for t=2:length(pandl_gross)
6 pandl_net(t) = ( ( ( 1 - kap * sum( abs( wmat(t,:) - wmat(t-1,:) ) ,2 ) ) ...
7 * (100 + pandl_gross(t))) - 100 );
8 end

ProgramListing 11.2: Further approximation of accounting for transaction costs, requiring only the
returns.
Remarks
a) To help reduce transaction costs without an appreciable effect on performance, one approach is

to impose some form of constraint on the rebalancing of the portfolio weights; see DeMiguel et al.
(2009a, 2014), Fan et al. (2012), Fastrich et al. (2015), and the references therein.
Another method is to “tame” the evolution of the covariance matrix, allowing for some dynamic
variation, but not as much as induced by use of traditional multivariate GARCHmodels. One way
of accomplishing this is by using principle components analysis (PCA), as investigated in Paolella
et al. (2018b) (in a non-Gaussian context).
The use of PCA in this context is not new, with the seminal works being Ding (1994) andAlexander
and Chibumba (1996), with subsequent embellishments by Alexander (2001, 2002, 2008).The idea
is conceptually very simple:The spectral decomposition of the covariancematrix is computed and,
instead of using univariate GARCH processes for all margin processes, only a small number of
leading principle components of the covariance matrix are endowed with a GARCH structure
(and the remaining eigenvalues are set to zero). Finally, the reader should know that the general
methodology of PCA goes back to Pearson (1901) and Hotelling (1933); a good textbook starting
point is Jolliffe (2002), though PCA now gains evenmore popularity via its applicability inmachine
learning, and is discussed in many such textbooks.
Othermethods include shrinking the ex-post portfolio weights towards a constant target portfolio,
as demonstrated in Suh (2016), and use of averaging of covariancematrix forecasts over subsequent
rolling windows to stabilize portfolio weights and thus reduce transaction costs; see, e.g., Hautsch
et al. (2015).

b) We are still not done—we have not accounted for paid dividends on the stocks. These can only
increase returns (even after adjusting for the fact that dividends might be taxed as income), so
a conservative measure of returns can ignore them. Often, one uses returns that are (split and)
dividend adjusted, such that the dividend is added to the return, and one can proceed as above,
with the returns automatically adjusted for dividends. In the case of nonzero-coupon bonds, one
would need to incorporate coupon payments. ◾

11.3.2 Markowitz and DCC

Consider a set of d financial assets, such as highly liquid stocks onmajor exchanges, for which returns
are observed over a specified period of time and frequency (e.g., daily, ignoring the weekend effect for
stocks), and assume (as is common in numerous real contexts) that short-selling will not be used.The
set of valid portfolio weights is thus

 = {a ∈ [0, 1]d ∶ 𝟏′d a = 1}. (11.41)
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In the classic portfolio optimization framework going back to the seminal work of Markowitz (1952),
the returns are assumed to be an i.i.d. multivariate normal process with mean 𝝁 and variance 𝚺. One
wishes to determine the portfolio weight vector, say a∗, that yields the lowest variance of the predictive
portfolio percentage return at time t + 1, given information up to time t, say Pt+1∣t , conditional on its
expected value being greater than some positive threshold 𝜏daily. That is,

a∗ = argmin
a∈ 𝕍 (Pt+1∣t,a) such that 𝔼[Pt+1∣t,a] ⩾ 𝜏daily, (11.42)

where is given in (11.41), and, with discrete compounding,

𝜏daily = 100
((

1 + 𝜏

100

)1∕250
− 1

)
, 𝜏 = 100

((
1 +

𝜏daily

100

)250

− 1

)
, (11.43)

for 𝜏 = 𝜏annual the desired annual percentage return, here calculated assuming 250 business days per
year. In this i.i.d. Gaussian Markowitz setting, note that

�̂�[Pt+1∣t,a] = a′�̂�, 𝕍 (Pt+1∣t,a) = a′�̂�a, (11.44)

where �̂� and �̂� refer to the usual plug-in unbiased estimators of the Gaussian distribution parameters.
When short selling is allowed in the i.i.d. Markowitz framework, there is a well-known closed-form
solution to (11.42); see, e.g., Ruppert (2004, Sec. 5.5) for a clear exposition and also Matlab codes for
calculating and plotting the ubiquitous efficiency frontier and calculation of the tangency portfolio.
For the long-only case, numerical methods are required to determine it. This is very easy to set up
in Matlab using their constrained optimization program fmincon, with bare-bones code given in
Listing 11.3 for this i.i.d. case, as well as with using the predicted variance-covariance matrix from the
DCC model.

1 function w = PortMNS(data, tau, DCC)
2 if nargin<3, DCC=0; end
3 if DCC, [mu,Sigma] = DCC1step(data); else mu = mean(data); Sigma = cov(data); end
4 DEDR=100*((tau/100 + 1)ˆ(1/250)-1); feas=max(mu) <= DEDR;
5 if feas, w=meanvar(mu,Sigma,DEDR)'; else w=zeros(length(mu),1); end
6
7 function w = meanvar(mu, Sigma, tau)
8 opt=optimset('Algorithm','active-set','LargeScale', 'off','Display','off');
9 d=length(mu); A = -mu; B = -tau; LB = zeros(1,d); UB = ones(1,d); w0=UB/d;

10 Aeq = ones(1,d); Beq = 1; % sum(w) = 1
11 w = fmincon(@fv, w0, A, B, Aeq, Beq, LB, UB, [], opt, Sigma);
12
13 function f = fv(w, Sigma), f = w * Sigma * w';

Program Listing 11.3: MNS stands for Markowitz No Short (selling). Delivers the long-only
mean-variance pure Markowitz (i.i.d. model with plug-in estimators for mean and variance–
covariance) portfolio weight vector or the long-only mean-variance portfolio weight vector based on
the DCC density prediction of the mean and covariance matrix. It is based on a set of returns passed
as data and for a given desired expected yearly return 𝜏 . Function DCC1step is from the author, and
computes the predictive distribution (here, Gaussian, and thus characterized by the mean vector and
covariance matrix) corresponding to the fitted DCC model of Section 11.2.2, having used the profile
likelihood method of univariate Gaussian GARCH estimation discussed at the end of Section 10.2.
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Remarks
a) In the more general elliptic setting, which nests the Gaussian distribution and can allow for heavy

tails such as via a multivariate t distribution, (11.42) is still valid, provided that second moments
exist.

b) The success of the method depends crucially on the estimates �̂� and �̂�. For a particular length
of data, say T , the number of parameters, and thus the estimation error, grow with the number of
assets d, and is such that, for typical T , even amodest choice of d will lead to highly unreliable esti-
mates and, thus, poor performance.This was emphasized in DeMiguel et al. (2009b), who provide
an example showing that, in order to outperform the equally weighted portfolio (equal weights
for each asset; see Section 11.3.3 below) in the case of monthly updating with 25 assets, about
3000 months (250 years) of past historical returns are required. Not only is that completely unre-
alistic, but this is all the more problematic if the data generating process of the returns is changing
over time.
Many studies have shown the deleterious effect of estimation error, and developed suggestions
for mitigating the problem; see, e.g., Frankfurter et al. (1971), Kalymon (1971), Klein and Bawa
(1976), Frost and Savarino (1986), Britten-Jones (1999), and Kolm et al. (2014), as well as Brandt
(2010) for an overview. Shrinkage estimation is a key methodology in this pursuit. See, e.g.,
Jorion (1986), Ledoit and Wolf (2004, 2012), and Kan and Zhou (2007) for model parameter
shrinkage, and DeMiguel et al. (2009a,b), Brown et al. (2013), and the references therein for
portfolio weight shrinkage.
Chen and Yuan (2016) propose to restrict the portfolio weight vector to a subspace determined by
using only a subset of the spectral decomposition of the estimated covariance matrix. The idea is
to offset the loss of efficiency from restricting the investment set by reduced estimation error.
Another approach for determining the portfolio weights that avoids the pitfalls inherent in the
estimation of the large number of parameters associated with first and second moments (let alone
possible use of higher-order moments) is by Brandt et al. (2009), and briefly discussed in a remark
below in Section 11.3.4. There, another method for avoiding the “curse of dimensionality” suited
for daily (or higher frequency) data, called the univariate collapsing method, is presented.

c) One would think that use of a multivariate GARCH-type model such as CCC or DCC should
result in superior portfolio performance at the daily level, given the blatant non-i.i.d. nature of the
data. This is true if investment and portfolio updating can take place without transaction costs
(see Section 11.3.1). As reality dictates, transaction costs are significant, particularly for individual
investors, but also for financial institutions. When using GARCH-type models, the turnover, i.e.,
the sum of the absolute changes of the portfolio weights induced when re-balancing, tends to be
vastly higher compared to use of an i.i.d. model. This is because of the far greater changes from
period to period of the estimated covariancematrix. As such, it is often the case that an i.i.d. model
can outperform the use of DCC with even modest transaction costs. ◾

In the non-elliptic setting (elliptical distributions, and examples of non-elliptic ones being discussed
in Section C.2), given the asymmetry of the portfolio distribution, the variance as the risk measure
is not as desirable. Instead, left-tail risk measures such as value-at-risk (VaR) and expected shortfall
(ES) are commonly used, and indeed lead to different allocations than with use of the variance; see,
e.g., Embrechts et al. (2002) and Campbell and Kräussl (2007). In this case, the portfolio optimization
problem can be expressed as follows: We want the portfolio weight vector a∗ that yields the least
expected shortfall (inmagnitude—recall the ESwill be negative, so, formally, wewant the largest ES) of
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the predictive portfolio return random variable Pt+1∣t , conditional on its expected value being greater
than 𝜏daily, i.e.,

a∗ = argmin
a∈|ES(Pt+1∣t,a, 𝜉)| such that 𝔼[Pt+1∣t,a] ⩾ 𝜏daily, (11.45)

where 𝜉 is a pre-specified probability associated with the ES (for which we take 0.01).This will be used
in the model discussed below in Section 11.3.4 and also in Chapter 12.

11.3.3 Portfolio Optimization Using Simulation

It is useful to think about what one can do if the function fmincon, as invoked, for example, by
the code in Listing 11.3, or any black-box constrained optimizer, were not available. The first reason
to entertain this idea is that, in more advanced model settings, particularly for large d, the numeric
optimizer could encounter an inferior local minimum of (11.42) or (11.45), as well as exhibit other
numeric problems, as discussed at length in Paolella (2014, Sec. 4.2). The second reason is that, when
the objective function is not smooth in the parameters (as occurs when using a model such as the
one discussed below in Section 11.3.4), fmincon will tend to fail, as it attempts to use gradient and
Hessian information; see Paolella (2014) for a demonstration. In these cases, the evolutionary opti-
mization algorithms discussed in Section III.4.4 would seem to be appropriate, though they are still
subject to the possibility of returning an inferior local minimum, as well as having relatively slow
convergence properties.4
The issue of avoiding potential inferior local minima (whether with use of gradient/Hessian-based

methods or with evolutionary algorithms) can be mitigated by ensuring that the starting value passed
to the optimization method is such that the associated objective function is “close enough” to the
global minimum.This can be done with simulation, and is, in fact, a viable method in and of itself for
locating a suitable portfolio vector, obviating any need for (traditional or evolutionary) optimization
algorithms.
The method of simulation is extraordinarily simple: We randomly draw s portfolio weights (how

to do so being subsequently discussed), where s will be a function of d and the desired accuracy (and
possibly also depending on features of the data and the nature of the optimum; see below).Those draws
that do not match all the required constraints (such as the mean constraint in (11.42), but potentially
many others, as is typical in pension funds and financial institutional investors) are deleted. From the
remaining, choose the portfolio vector that most closely satisfies (11.42) or (11.45). This vector could
then be used as a starting value for the optimization methods, or, if s is high enough, the optimal
portfolio vector (up to simulation discrepancy) is obtained, and use of optimization algorithms can
be forgone.
Note that, as s → ∞, the probability of locating a∗, if it exists (its existence depending on the choice

of 𝜏), goes to one. Observe that, by the nature of simulation-based estimation with finite s, (11.42) or
(11.45) will not be exactly obtained, but only approximated. We argue that this is not a drawback: All

4 Moreover, those heuristic optimization methods, as presented in Section III.4.4, were not designed to handle general
constraints. If the only constraints are box constraints, i.e., fixed bounds on one or more parameters, then a straightforward
transformation, as was done in Section III.4.3.2, can be employed. In our setting, we do have the simple fixed bound of [0, 1]
on each of the portfolio weights, but additionally we require that their sum is equal to one, and also that the constraint on the
minimum expected return is met. The reader interested in the CMAES optimization algorithm is encouraged to explore how
constraints can be embedded, possibly by appending the objective function with penalty terms to respect the desired
constraints.
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models arewrongw.p.1, are anyway subject to estimation error, and the portfolio deliveredwill depend
on the chosen data set, in particular, how much past data to use and which assets to include, and, in
the case of non-ellipticity, also depends on the choice of 𝜉 (see, e.g., Rockafellar and Uryasev, 2000;
Embrechts et al., 2002). As such, the method should be judged not on how well (11.42) or (11.45) can
be evaluated per se, but rather on the out-of-sample portfolio performance, for a given model, given
universe of assets, and conditional on all tuning parameters (such as 𝜏 and s).
The primary starting point for sampling portfolio weight vectors is to obtain values that are uniform

on the simplex (11.41). This is achieved by taking a = (a1,… , ad)′ to be

a = U(log)∕𝟏′dU
(log), U(log) = (logU1,… , logUd)′, Ui

iid∼Unif(0, 1), (11.46)

see, e.g., Devroye (1986). However, use of

a = U(q)∕𝟏′dU
(q), U(q) = (Uq

1 ,… ,Uq
d )

′, Ui
iid∼Unif(0, 1), (11.47)

is valuable for exploring other parts of the parameter space. In particular, the non-uniformity cor-
responding to q = 1 is such that there is a disproportionate number of values close to the equally
weighted portfolio. As q → 0, (11.47) collapses to equal weights.This is useful, given the well-studied
ability of the seemingly naive equally weighted portfolio to outperform other allocation methods, as
discussed in the subsequent remark.

Remark The equally weighted (or, commonly, “1∕N”) portfolio simply takes the portfolio weights to
be equal. As the weights need to sum to one, the weight of each asset is, in our notation, 1∕d. This can
be seen as an extreme form of shrinkage such that the choice of portfolio weights does not depend on
the data itself, but only on the number of assets.
Studies of the high performance of the equally weighted portfolio relative to classicMarkowitz allo-

cation goes back at least to Bloomfield et al. (1977), with further analysis provided by DeMiguel et al.
(2009b) and Brown et al. (2013). Fugazza et al. (2015) confirm that the “startling” performance by such
a naive strategy indeed holds at the monthly level, but fails to extend to longer-term horizons, when
asset return predictability is taken into account. This finding is thus very relevant for mutual- and
pension-fund managers, and motivates the search for techniques to improve upon the 1∕N strategy,
particularly for short-term horizons such as monthly, weekly or daily.
See also Stivers (2018) for a possible explanation of why the 1∕N portfolio can outperform tradi-

tional mean-variance approaches for asset allocation. ◾

As q → ∞ in (11.47), a will approach a vector of all zeroes, except for a one at the position cor-
responding to the largest Ui. Thus, large values of q can be used for exploring what we will refer to
as corner solutions, or allocations such that only a small number of stocks have appreciable weight,
and the remaining ones have weights close to or equal to zero. Figure 11.5 illustrates these sampling
methods via scatterplots of a1 versus a2 for d = 3, using s = 1,000 points.
The sampling methods can be mixed: A data-driven heuristic is developed in Paolella (2017) for

determining the proportions of portfolio vectors to be generated via uniform sampling (11.46) and
from (11.47) for q = 1 and q = 8, resulting in a lower total number of replications required to reach
an acceptable minimum of (11.42) or (11.45).
A natural way of checking the efficacy of the simulationmethod is to use it when the optimal portfo-

lio can be easily obtained, such as with the i.i.d. Markowitz setting and use of (11.42). As our sampling
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Figure 11.5 Scatterplot of the first two out of three portfolio weights, for different sampling schemes.

schemes are defined so far with only non-negative portfolio weights from (11.41) and (11.46), we use
the long-only i.i.d. Markowitz setting.5 The goal is to conduct a backtesting exercise over moving
windows of stock return data, computing for each window the optimal portfolio corresponding to the
i.i.d. long-only Markowitz framework, using the program in Listing 11.3, and the optimal portfolio
obtained via simulation with s replications. For each of the s replications, a random portfolio vector
is selected, and its mean and variance are computed from (11.44). Of these s results, those not fulfill-
ing the mean criterion are discarded, and from the remaining, the one with the smallest variance is
returned.
The idea is to repeat this exercise with ever-increasing numbers of simulated portfolios s, and con-

firm that, as s increases, so does the closeness between the numeric-optimized portfolio and the
portfolio obtained via the simulation method. The optimal s is then chosen as the smallest value
such that the results of the sampling method are “adequately close” to those obtained from the opti-
mized Markowitz portfolio solution. An obvious measure is the average (over the moving windows)
Euclidean distance between the analytical-optimized and sampling-based optimal portfolio.
For this exercise, we use theT = 3,923 daily (percentage log) returns on 29 stocks from theDJIA-30,

from June 1, 1999 to December 31, 2014. (The DJIA-30 index consists of 30 stocks, but for the dates
we use, the Visa company is excluded due to its late IPO in 2008.) With 𝜏 = 10%, observe that, for
some time periods (for which we use moving windows of length𝑤 = 250), there might be no solution
to the portfolio problem, and the portfolio vector consisting of all zeros is returned, i.e., trading is not
conducted on that day.The left panel of Figure 11.6 shows the resulting cumulative returns, including
those for the equally weighted portfolio, giving our first demonstration that the simple 1∕N strategy
can outperform the Markowitz allocation framework.
(The extent of this outperformance is understated: When transaction costs are accounted for, the

1∕N strategy will be relatively even better, as it induces far lower turnover than other strategies.) The
interested reader is encouraged to replicate these findings, as it serves as a good warmup to more
advanced methods.
We see from the figure that, even for s = 10,000, the uniform sampling-based method is not able

to fully reproduce the optimized portfolio vector results. They differ substantially only during peri-
ods for which the sampling method is not able to find a portfolio that satisfies the mean constraint.

5 To allow for negative weights in the sampling scheme, one could simply randomly assign a positive or negative sign to the
simulated vector a, and then renormalize. However, in this case, each weight is no longer restricted to lie in [0, 1], and some
constraints would need to be imposed on the lower and upper limits.
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Figure 11.6 Left: Cumulative return sequences of the DJIA data using the equally weighted allocation and the
Markowitz iid long-only framework (denoted Mark-NS), based on moving windows of𝑤 = 250 returns. Right: Circles
indicate the average, over all the windows, of ∥ wA −wU∥2, wherewA andwU refer to the analytic (optimized) and
UCM-based portfolio vectors, respectively. This was conducted h = 8 times per sample size s for s ⩽ 1000, and
otherwise h = 2 times. Crosses indicate the average over the h-values.

The average portfolio vector discrepancies, as a function of s, are plotted in the right panel.The trajec-
tory indicates that the concept works, but even s = 10,000 is not yet adequate, and that the primary
issue arises during periods for which relatively few random portfolios will obtain the desired mean
constraint. Based on this analysis, it is clear that brute-force sampling will not be appropriate, and
more clever sampling strategies are required. Section 11.3.4 addresses this issue.

11.3.4 The Univariate Collapsing Method

With more sophisticated models and distributional assumptions, simple formulae such as those in
(11.44) are often not available. We discuss a simple and general alternative method of calculating the
mean, variance, and, in particular, the ES. Consider a set of d assets for which returns are observed at
a particular frequency (such as daily) over a specified period of time. For a particular set of portfolio
weights a = (a1, a2,… , ad)′ (chosen either from the simulation-based methodology or by a numeric
optimizer), a univariate time series, say RP = (RP,1,RP,2,… ,RP,T )′, which we will call the constructed
portfolio return series, is computed from the d time series of past observed asset returns,R1,… ,Rd,
as RP = a1R1 + · · · + adRd. In our toy example under the i.i.d. assumption, the sample mean and vari-
ance of RP replaces the analytic calculation in (11.44).
The idea of the constructed portfolio return series is to look at the past returns of the portfolio

dictated by weight vector a. These returns are “fictitious” in the sense that the particular portfolio
designated by vector a was most likely not held by the active portfolio manager over the specified
time period. It shows the returns that would have occurred if those portfolio weights were used and
not changed over time. The use of the constructed portfolio series for risk assessment, whereby the
portfolio weights are known, and only the risk of the position is required (typically VaR or ES), is
within the scope of univariate GARCH modeling, and has been well-studied; see, e.g., Kuester et al.
(2006) and the references therein. Its use for risk management, whereby active portfolio trading is
engaged, is less common; see Manganelli (2004), Bauwens et al. (2006a, p. 143), Andersen et al. (2007,
p. 541), Christoffersen (2009, Sec. 3), Paolella (2014), and the references therein. Our goal is to use
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RP, in conjunction with a modeling technique and method for portfolio optimization, for (active) risk
management.
Generalizing the toy example above, the—for daily returns data, rather untenable—i.i.d. assump-

tion is replaced by assuming a GARCH-type time-series model for RP, and this is fit to {RP,t}Tt=1.
Then, an h-step-ahead (univariate) density prediction is formed, fromwhich anymeasurable quantity
of interest, such as the mean, variance, VaR, and ES, can be (analytically or empirically) computed.
We refer to this as the univariate collapsing method, or UCM. While very straightforward con-
ceptually, the problem is the computational time required. In an MGARCH model such as DCC,
estimation is performed once, the predictive mean and covariance matrix are determined, and then
portfolio optimization is conducted based on themultivariate predictive density.WithUCM, for every
entertained portfolio vector (by simulation or an optimization algorithm), the constructed portfolio
return series needs to be computed (that being computationally trivial) and, in particular, a univariate
GARCH-type model needs to be estimated and, from its h-step-ahead density prediction, the mean
and a risk measure (variance or VaR or ES) needs to be computed. The latter steps of GARCHmodel
estimation and analytic computation of the ES are the severe bottlenecks of the otherwise useful and
straightforward method, and partially explain why, compared to other methods, it has not received
much (academic at least) attention.
One solution to this computational issue, as proposed in Paolella (2014), is to use the

NCT-APARCH(1,1) model and the fast estimation technique discussed in Section 10.4. More-
over, as the predictive distribution is then NCT (with scale being determined from the APARCH
update), the VaR (the left tail quantile) and the ES are also delivered instantaneously via the
pre-tabulation method. This enormous gain in speed allows the performance of UCM to be
investigated in backtest exercises and further developed.
Observe that, by using an asymmetric, heavy-tailed distribution as the innovation sequence of a

flexible GARCH-type model that allows for asymmetric responses to the sign of the returns, UCM
respects all the major univariate stylized facts of asset returns, as well as a multivariate aspect that
manymodels do not address, namely non-ellipticity (see Section C.2), as induced, for example, by dif-
fering tail thicknesses and asymmetries across assets.This latter feature is accomplished in an indirect
way by assuming that the conditional portfolio distribution can be adequately approximated by a non-
central Student’s t distribution (NCT). If the underlying assets were to actually follow a location-scale
multivariate noncentral t distribution, then their weighted convolution is also noncentral t.Thismoti-
vation is unfortunately highly tempered, first by the fact that the scale terms are not constant across
time, but rather exhibit strong GARCH-like behavior—and it is known that GARCH processes are
not closed under summation; see, e.g., Nijman and Sentana (1996). Second, the multivariate NCT
necessitates that each asset has the same tail thickness (degrees of freedom), this being precisely an
assumption we wish to avoid, in light of evidence against it. Third, in addition to the fact that the
underlying process generating the returns is surely not precisely a multivariate noncentral t-GARCH
process, even if this were a reasonable approximation locally, it is highly debatable if the process is
stationary, particularly over several years.
As such, and as also remarked by Manganelli (2004), UCM (i) relies on the fact that the pseudo-

historical time series corresponding to a particular portfolio weight vector can be very well approxi-
mated by (as our choice) an NCT-APARCH process and (ii) uses shorter windows of estimation (say,
250 observations, or about one year of daily trading data) to account for the non-stationarity of the
underlying process.
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The primary benefit of the UCM is that it avoids the ever-increasing complexity,
implementation, numerical issues, and parameter estimation inaccuracy associated with
multivariate models, particularly those that support differing tail thicknesses of the assets and
embody a multivariate GARCH-type structure.

With the UCM there is no need to employ formal numeric optimization methods to obtain the
desired portfolio, nor optimization of model parameters associated with an elaborate multivariate
model for the return process. This avoids all their associated problems, such as initial values, local
maxima, convergence issues, and specification of tolerance parameters. Moreover, while a multivari-
atemodel explicitly captures features such as the (possibly time-varying) covariancematrix, this often
necessitates estimation of many parameters, and the curse of model mis-specification can be magni-
fied, as well as the curse of dimensionality, in the sense that, themore parameters there are to estimate,
the larger is the magnitude of estimation error. Of course, for the latter, shrinkage estimation is a
notably useful method for error reduction. However, not only is the ideal method of shrinkage not
known, but even if it were, the combined effect of the two curses can be detrimental to themultivariate
density forecast.
Finally, note that, with the UCM, the objective function will not be differentiable in the portfolio

weights.This, however, is irrelevant when used with the simulation-basedmethodology for determin-
ing the optimal portfolio.

Remark Observe how portfolio optimization usually first involves obtaining the multivariate pre-
dictive distribution of the returns at the future date of interest, and then, in a second step, based on
that predictive distribution, the optimal portfolio weight vector is determined. The UCM method
does not make use of this two-step approach, but rather uses only univariate information of (poten-
tially thousands) of candidate portfolio distributions to determine the optimal portfolio. The idea of
avoiding the usual two-step approach is not new. For example, Brandt et al. (2009) propose a straight-
forward and successful method that directly models the portfolio weight of each asset as a function
of the asset’s characteristics, such as market capitalization, book-to-market ratio, and lagged return
(momentum), as in Fama and French (1993, 1996). In doing so, and as emphasized by those authors,
they avoid the large dimensionality issue of having tomodel first- and, notably, second-ordermoments
(let alone third-order moments to capture higher-order effects and asymmetries, in which case, the
dimensionality explodes).
Based on their suggestion of factors, the method of Brandt et al. (2009) is particularly well-suited

to monthly (as they used) or lower-frequency re-balancing, such as bi-monthly, quarterly, or yearly.
Our goal is higher frequency re-balancing, such as daily, in which case GARCH-type effects become
highly relevant. Fletcher (2017) has independently confirmed the efficacy of the Brandt et al. (2009)
approach, using the largest 350 stocks in the United Kingdom. However, he finds that (i) the per-
formance benefits are concentrated in the earlier part of the sample period and have disappeared in
recent years, and (ii) there are no performance benefits fromuse of themethodology based on random
subsets of those 350 largest stocks. ◾

With respect to the UCM, it is shown in Paolella (2017) that use of naive sampling, as described
above, is problematic in the sense that s needs to be very large, and even then performance is notmuch
better than use of the simple 1∕N strategy. Large improvements are gained by (i) using a data-driven
heuristic for mixing the sampling schemes of (11.46) and (11.47), (ii) avoiding trading if a certain
fraction of sampled portfolios do not meet the mean-constraint requirement, (iii) augmenting the
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search for the optimal portfolio by accounting for characteristics of the individual stock returns,
referred to there as the performance ratio of individual time forecasts or, amusingly, the PROFITS
measure, and (iv) invoking a cutoff mechanism such that one of two portfolios is chosen based on
the ES.
The interested reader is referred to Paolella (2017) for a detailed account of this so-called

UCM(𝜏, s):DDS+DONT(kC)+PROFIT(kS, kCS)+𝜏∗(kES) method or, far more appealing, just UCM2
(perhaps standing for “You See Money Too”). The key to developing such a strategy is to avoid the
pernicious trap of backtest overfitting, as discussed in Section 13.3 and detailed in Paolella (2017).
To avoid too many lines on the graph (especially without color), we first limit ourselves here to

showing the performance of the UCM2 methodology compared to the use of the i.i.d. Markowitz,
DCC-Markowitz, and equally weighted strategies, along with the method denotedMCD, based on an
i.i.d. discrete two-component multivariate normal mixture model (MixN), as detailed in Chapter 14.
Figure 11.7 shows the results. As the UCM is stochastic in nature, eight runs are depicted.We see that
the overall best performer is the MCD method in terms of cumulative returns, and it is noteworthy
that this model does not use any type of GARCH filter, but rather an i.i.d. framework based on short
windows of estimation (to account for the time-varying scale) and use of shrinkage estimation.
Arguably of more interest than the cumulative returns themselves is a risk-adjusted performance

measure.Themost important (or at least themost common) is the Sharpe ratio (assuming a risk-free
interest rate of zero), here computed simply as

SR = 250 r̄√
250 std(r)

, (11.48)

where r = (r1,… , rT ) denotes the collection of observed one-step-ahead portfolio results.
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Figure 11.7 The same as the left panel of Figure 11.6, i.e., comparison of cumulative returns for the stocks listed on the
DJIA, but with other methods. From top to bottom, the first is the i.i.d. two-component mixed normal distribution with
parameters estimated via the MCDmethodology, from Gambacciani and Paolella (2017) (in the color version, in
purple). This is followed by eight runs of the UCM2method based on 900 replications (black lines), the equally
weighted method (red line), Markowitz (no short selling) based on the i.i.d. assumption (green line), and Markowitz (no
short selling) but using the Gaussian DCC-GARCHmodel for computing the expected returns and their covariance
matrix (blue line).
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Remarks
a) Other, more recent measures of downside risk-adjusted return that have some advantages over the

Sharpe ratio are the so-called stable tail adjusted return ratio, or STARR (Martin et al., 2003),
and the Sortino ratio (Sortino and van der Meer, 1991). Gambacciani and Paolella (2017) show
that these measures also favor the MCD model.

b) It is imperative to note that transaction costs were not accounted for in the comparisons illustrated
in Figures 11.7 and 11.8. Besides necessarily lowering all the plotted returns (except the equally
weighted, which is not affected by use of the simple proportional transaction cost approximations),
it could change their relative ranking. For example, while the two Markowitz cases of i.i.d. and
DCC-GARCH result in similar performance, inspection of the actual portfolio weights over time
reveals that they are much more volatile for the latter, as is typical when GARCH-type filters are
used, and presumably would thus induce greater transaction costs, making the DCC approach yet
less competitive. ◾

For 1∕N , Markowitz-IID, and Markowitz-DCC, we obtain Sharpe ratios of 0.38, 0.47, and 0.43,
respectively.Themean Sharpe ratio over the eight UCM runs is 0.95, while that for the MCDmethod
is 0.66. The reason for the superior (and quite good) performance of the UCM method in terms of
Sharpe ratio is because the UCM method is unique among the methods shown in its ability to avoid
trading during, and the subsequent losses associated with, crisis periods.
As such, it recommends itself to develop a similar methodology for incorporation into the MCD

method.This results in the graph shown in Figure 11.8, with label “MixN-MCD-Enhanced” and results
in a Sharpe ratio of 0.91. Overlaid is the analogous performance graphic using the method developed
in Näf et al. (2018b), which augments the COMFORT model of Section 11.2.4 with more than one
latent random variable sequence. It results in a Sharpe ratio of 0.62.
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Figure 11.8 Similar to Figure 11.7 but using (i) a modified version of the mixed normal MCDmethod such that a
signal, based on information up to time t, is used to determine if trading should take place at time t + 1 or not, and
(ii) a new variant of the COMFORT method discussed in Section 11.2.4.
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11.3.5 The ES Span

A benefit of the simulation-based approach to determining the optimal portfolio weight vector, as
compared to use of direct (gradient/Hessian-based, or evolutionary) optimization algorithms, is that
one obtains as a by-product the so-called ES span, as introduced in Paolella (2014). Based on a partic-
ular time segment of returns data consisting of d assets, denoted asD, and a specified tail probability 𝜉,
we define the distribution of possible values that the ES can take on, over the set of all a, when a is uni-
formly chosen over the simplex (11.41), and conditional on a chosenmodel, to be spanES(D,, 𝜉).
The values obtained from simulation can be plotted as a histogram, and convey knowledge of the dis-
tribution of the ES corresponding to D (and  and 𝜉). Observe that use of optimization algorithms
gives no such information—they just return a single value (also dependent on D,  and 𝜉), which
hopefully is the global optimum.
The spread of the ES values, measured as, say, the (sample) variance or interquartile range of

spanES(D,, 𝜉), or other measures, such as the distance from the minimal ES value to, say, the ES
corresponding to the equally weighted portfolio (possibly scaled by the sample variance or interquar-
tile range), contain information about the relative sensitivity of risk to changes in the portfolio vector,
and might be of use in a trading strategy. As an example from Paolella (2014), Figure 11.9 shows
approximations of the ES span based on two models. In particular, the spanES(D,, 0.01) is depicted
as a histogram based on 100,000 replications, drawn uniformly from the simplex, for D being the
matrix of 252 log percentage returns of the 30 stocks in the DJIA, corresponding to years 2005
(left panels) and 2008 (right panels), based on the UCM (top panels) and the i.i.d. two-component
multivariate normal mixture model, fit via m.l.e. with shrinkage, as detailed in Chapter 14 (bottom
panels).
By contrasting the ES span for the same data set D based on two models, we see the dependency

of the span on the choice of model, and by how much they can differ. Unexpectedly, for both models,
the ES span differs remarkably between the two years 2005 and 2008, with 2005 having been chosen
because it was a relatively quiet, low-volatility, low-risk period, and 2008 being in the midst of the
liquidity crisis. Indicated on the plots as long vertical lines are the minimum ES based on 100,000
simulated portfolios, and the ES corresponding to use of constrained numeric optimization.6 Also in
the plots are short vertical lines, indicating the ES corresponding to putting all the weight on a single
stock. (The x-axis was truncated for readability, so that not all 30 are shown.)
Also shown is the ES corresponding to the equally weighted portfolio, denoted “1∕N”. (Further

shown is the ES corresponding to the Markowitz minimum variance portfolio. This is just for curios-
ity: it is not directly comparable to the rest of the graphic because it allows for short selling.) Observe
that the ES of the equally weighted portfolio is very close to the center of the span for 2008, for both
models, while for 2005 it is much more left of center. This seems logical: The data in 2005 are much
less volatile than those in 2008 (during the unfolding of the liquidity crisis) and, more relevantly, also
have much thinner tails. As such, the equally weighted portfolio for 2005 should, via the central limit
theorem, yield a more Gaussian-like distribution (and, thus, a lower ES) than that in 2008.
We now wish to provide more detail on the claim that the conditional tails in 2008 are thicker

than those in 2005. Before proceeding, we explicitly remind the reader what we mean by the

6 The constrained minimization was based on Matlab’s fmincon function. For the UCM, the ES, being the objective
function to minimize, is “close to”, but not precisely continuous in the portfolio weights, so that the reported fmincon result
(whose algorithm requires differentiability and, thus, continuity) is based on the best result obtained from 1,000 runs using
different starting values, drawn randomly and uniformly from the simplex. This obviously takes a large amount of time, and
was just done for illustration. It is not feasible in practice.
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Figure 11.9 Top: The ES span, spanES(D,, 0.01), based on the UCM NCT-APARCH(1,1) model of Section 11.3.4
(denoted in the title as1,b), shown as a histogram from 100,000 random portfolio replications drawn uniformly from
the simplex via (11.46), for D corresponding to the 252 trading days of years 2005 (left) and 2008 (right). Its minimum
value is denoted by the (orange) line “ES spanminimum”, while the minimum ES obtained by constrained optimization
(fmincon; repeated 1,000 times because of non-differentiability of the objective function) is indicated by the (red)
line “min-ES”. The (green) line “Markowitz” indicates the ES corresponding to the minimum variance portfolio allowing
for short selling (i.e., negative portfolio weights). The short vertical (black) lines indicate the ES corresponding to
putting a weight of one on a single asset (and the rest zero). The x-axis was truncated on the right to improve
readability, so that some (or all, in the case of the lower left panel) of the ES values corresponding to individual assets
are not shown. Bottom: Same as top, but based on the i.i.d. discrete two-component multivariate normal mixture
model, as discussed in Chapter 14, fit via maximum likelihood with shrinkage (denoted in the title as2).

just-mentioned “conditional” tails.This is conditioning on the changing volatility, captured by using a
GARCHmodel for the time-varying scale term.The conditional distribution of asset returns is of far
more relevance when interest centers on short-term forecasting and asset allocation. We estimated
the NCT-APARCH model for each of the 30 series in 2005. This yields an average estimated degrees
of freedom parameter of 15.6. The same exercise applied to the 30 stocks for the year 2008 resulted
in (the shockingly low value of ) 4.0. Now recall the discussions in Section III.9.1 regarding fallacious
inference about the tail index when basing it on a fully specified parametric distribution. In particular,
if the true underlying process is i.i.d. stable Paretian with tail index (obtained after a trivial bit of
trial and error) 1.78, then the estimated tail index under the erroneous location scale Student’s t
assumption is, on average, 4.0 (and between 3.5% and 4.5 90% of the time when conducted using
series of length T = 5,000). The point is: Not knowing the true distribution of the returns, it is
very difficult to make reliable inference about the tail index, and the rather low values of the fitted
degrees of freedom parameters in the year 2008 under the conditional (accounting for GARCH)
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Student’s t assumption leads us to question the existence of certainly fourth, but also third, and
even second moments in many of the stocks (recall the average was 4.0, so approximately half the
stocks have an estimated degrees of freedom below this value). It is important to emphasize that the
aforementioned average degrees of freedom parameter of 4.0 is not referring to the unconditional
estimated parametric tail indexes (which would be influenced by conditional heteroskedasticity), but
rather the conditional (parametric) tail index (via the degrees of freedom parameter of the NCT) for
an NCT-APARCH model, i.e., the varying volatility is accounted for.
Next, we look at the short vertical lines corresponding to investment in a single stock. For 2005,

most such investments deliver a much higher ES than the minimum ES portfolio, whereas for 2008, a
small number of stocks are such that their ES values are not relatively far from the minimum ES.This
at first might appear to be a perverse anomaly (or a mistake), but it makes sense when we juxtapose
the facts in the previous discussion about the conditional tail index, the fallacy of parametric-based
tail index estimation, and remind ourselves that we cannot assume the conditional returns are literally
Student’s t. In particular, if one imagines a case in which most stocks have a genuine tail index below
two (and we again emphasize that its determination is difficult and cannot be based on a parametric
assumption such as Student’s t or stable Paretian; recall Sections III.9.1 and III.9.2), then, asd increases
and (obviously erroneously assuming they are independent), their convolution will be in the domain
of attraction of a non-Gaussian stable law, and diversification may not be any better than use of a
particular individual stock. Of course, stock returns are not independent; they are, unfortunately,
usually all positively dependent. (One can speak of positively correlated if second moments exist.) If
some stock returns were negatively correlated, then, clearly, diversification would help lower risk. As
this is not the case, and given their very heavy tails in 2008, this explains how it can be that holding a
single asset may not be much riskier than holding an equally weighted portfolio of all of them.
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12

Multivariate t Distributions

The multivariate normal distribution is the right starting point for modeling many phenomena,
though it will prove inadequate in several contexts. For daily stock returns, we are motivated
to consider distributions that exhibit leptokurtosis in the univariate margins, as well as possible
asymmetry. Distributions that nest the multivariate normal, or yield it as a limiting case, and possess
desirable features enabling them to be of use in a variety of applications (in particular, but not only,
empirical finance) include the multivariate generalized hyperbolic distribution, or MGHyp (Section
11.2.4), discrete mixtures of multivariate normals (Chapter 14), and the multivariate noncentral t, or
MVNCT (Section 12.2 below). While very flexible, the MGHyp and the MVNCT are such that each
univariate margin has the same tail thickness parameter. This is not appropriate in some situations,
and we present distributions that allow for heterogeneous tail behavior.
We proceed as follows. The short Section 12.1, on the multivariate Student’s t distribution, serves

as a warmup for Section 12.2, on its noncentral extension. Sections 12.3 and 12.4 are dedicated to
a group of bivariate distributions that generalize the t such that they can exhibit differing tail thick-
ness parameters. Section 12.5 details a copula construction, referred to as the meta-elliptical t, of
which we will make extensive use. Section 12.6 discusses a class of distributions formed as a so-called
heterogenous multivariate normal mean-variance mixture. Some summary comments are given in
Section 12.7, while Sections 12.A and 12.B are appendices that detail some further aspects of the
copula construction from Section 12.5.

12.1 Multivariate Student’s t

Our natural starting point is the d-dimensional multivariate Student’s t distribution, some details
of which are given in Appendix C.1. When endowed with a correlation structure, it is sometimes
expressed in what we will refer to as its canonical form, without location and scale parameters,
namely

fT(t;R, 𝑣) =
Γ
(

𝑣+d
2

)
Γ
(

𝑣

2

)
(𝑣𝜋)d∕2|R|1∕2

(
1 + t′R−1t

𝑣

)−(𝑣+d)∕2

, (12.1)

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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where 𝑣 is the degrees of freedom parameter, and R is a positive definite correlation matrix such that
its (ij)th element satisfies:

{𝜌ij ∶ 𝜌ii = 1, −1 < 𝜌ij < 1, i ≠ j, 𝜌ji = 𝜌ij, i, j = 1,… , d}. (12.2)

To obtain the density of X ∼ t𝑣(𝝁,𝚺), let scale vector 𝝈 = (𝜎1,… , 𝜎d)′ ∈ ℝd
>0, and let 𝚺 = SRS, with

S = diag(𝝈). Observe that 𝚺 > 0. Then, for 𝝁 = (𝜇1,… , 𝜇d)′ ∈ ℝd, the usual location-scale transform
implies, for t = (t1,… , td)′ and ti = (xi − 𝜇i)∕𝜎i, i = 1,… , d, X = 𝝁 + ST, with

fX(x;𝝁,𝚺, 𝑣) =
fT(t;R, 𝑣)
𝜎1𝜎2 · · · 𝜎d

, R = S−1𝚺S−1. (12.3)

From (C.23), 𝔼[X] = 𝝁, if 𝑣 > 1, and 𝕍 (X) = {𝑣∕(𝑣 − 2)}𝚺, if 𝑣 > 2.
It is of value to recall the mixture representation of the Student’s t from (C.20). In particular, let

Z ∼ Nd(𝟎, I), 𝚺 a d × d symmetric positive definite matrix, and G ∼ IGam(𝑣∕2, 𝑣∕2), 𝑣 > 0. Then
𝚺1∕2Z ∼ Nd(𝟎,𝚺),

X = 𝝁 +
√
G𝚺1∕2Z ∼ t𝑣(𝝁,𝚺), (12.4)

and (X ∣ G = g) ∼ N(𝝁, g𝚺). For simulating from (12.1) (with extension to the location-scale case
obtained in the usual way), representation (12.4) can be used. Matlab conveniently has a simulation
method built in, for example in the bivariate case with the indicated parameters,

1 T=500; C = [1 0.4; 0.4 1]; df = 3; x = mvtrnd(C, df, T);

For general dimension d, the best way of estimating the parameters associated with (12.3) is via
the EM algorithm, as described, for example, in McLachlan and Krishnan (2008). In the bivariate
case, there are only six parameters, and we can use direct likelihood optimization, resulting in the
program in Listing 12.1. It calls the density evaluation in Listing 12.2, which directly works with the
location-scale form (12.3), though the reader is encouraged to make the minor modification to use
the canonical form (12.1), which is how Matlab has it implemented in their function mvtpdf (and
apply the location-scale transformation).The benefit of their implementation is that it accepts aT × d
matrix of data, with the rows being the entire set of d-variate observations, instead of requiringT calls
to the program in Listing 12.2 for each likelihood evaluation.

Example 12.1 We begin by fitting the univariate location-scale noncentral Student’s t distribution,
or NCT (detailed in Section III.9.3), denoted T ∼ t′(k, 𝜃), where parameters k and 𝜃 are the degrees
of freedom and noncentrality (asymmetry), respectively, to each of the 30 individual series compris-
ing the DJIA index, using the 5,037 daily returns from January 4, 1993, to December 31, 2012. The
left panel of Figure 12.1 shows the estimated values of k, and their associated confidence intervals,
obtained via the non-parametric bootstrap.1 As the multivariate t assumes an equal degrees of free-
dom parameter for each margin, we see that this assumption is not applicable to all 30 assets, though
it might be reasonable for certain subsets of them. The right panel is similar, but corresponds to
parameter 𝜃. ◾

1 Not shown is the same plot but having used the confidence intervals more easily obtained as a by-product from the
Hessian-based quasi-Newton optimization method and the asymptotic normality of the m.l.e. They were all shorter than
their bootstrap counterparts and, of course, symmetric.
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1 function [param,stderr,iters,loglik,Varcov] = MVTestimation(x)
2 % param: (k, mu1, mu2, Sigma_11, Sigma_12, Sigma_22)
3 [nobs d]=size(x); if d~=2, error('not done yet, use EM'), end
4 if d==2
5 %%%%%%%% k mu1 mu2 s11 s12 s22
6 bound.lo= [ 0.2 -1 -1 0.01 -90 0.01];
7 bound.hi= [ 20 1 1 90 90 90];
8 bound.which=[ 1 0 0 1 1 1];
9 initvec =[2 -0.8 -0.2 20 2 10];

10 end
11 maxiter=300; tol=1e-7; MaxFunEvals=length(initvec)*maxiter;
12 opts=optimset('Display','iter','Maxiter',maxiter,'TolFun',tol,'TolX',tol,...
13 'MaxFunEvals',MaxFunEvals,'LargeScale','Off');
14 [pout,fval,~,theoutput,~,hess]= ...
15 fminunc(@(param) MVTloglik(param,x,bound),einschrk(initvec,bound),opts);
16 V=inv(hess)/nobs; % Don't negate because we work with the negative of the loglik
17 [param,V]=einschrk(pout,bound,V); % transform and apply delta method to get V
18 param=param'; Varcov=V; stderr=sqrt(diag(V)); % Approximate standard errors
19 loglik=-fval*nobs; iters=theoutput.iterations;
20
21 function ll=MVTloglik(param,x,bound)
22 if nargin<3, bound=0; end
23 if isstruct(bound), param=einschrk(real(param),bound,999); end
24 [nobs d]=size(x); Sig=zeros(d,d); k=param(1); mu=param(2:3); % Assume d=2
25 Sig(1,1)=param(4); Sig(2,2)=param(6); Sig(1,2)=param(5); Sig(2,1)=Sig(1,2);
26 if min(eig(Sig))<1e-10, ll=1e5;
27 else
28 pdf=zeros(nobs,1);
29 for i=1:nobs, pdf(i) = mvtpdfmine(x(i,:),k,mu,Sig); end
30 llvec=log(pdf); ll=-mean(llvec); if isinf(ll), ll=1e5; end
31 end

Program Listing 12.1: Estimates the six parameters of the bivariate location-scale Student’s t.

1 function y = mvtpdfmine(x,df,mu,Sigma)
2 % x is a d X 1 vector. Unlike Matlab's version, cannot pass a matrix.
3 % Matlab's routine accepts a correlation (not dispersion) matrix.
4 % So, just need to do the usual scale transform. For example:
5 % x=[0.2 0.3]'; C = [1 .4; .4 1]; df = 2;
6 % scalevec=[1 2]'; xx=x./scalevec; mvtpdf(xx,C,df)/prod(scalevec)
7 % Same as:
8 % Sigma = diag(scalevec) * C * diag(scalevec); mvtpdfmine(x,df,[],Sigma)
9 d=length(x);

10 if nargin<3, mu = []; end, if isempty(mu), mu = zeros(d,1); end
11 if nargin<4, Sigma = eye(d); end
12 x = reshape(x,d,1); mu = reshape(mu,d,1); term = (x-mu)' * inv(Sigma) * (x-mu);
13 logN=-((df+d)/2)*log(1+term/df); logD=0.5*log(det(Sigma))+(d/2)*log(df*pi);
14 y = exp(gammaln((df+d)/2) - gammaln(df/2) + logN - logD);

Program Listing 12.2: Evaluation of the location-scale d-dimensional Student’s t density.



528 Linear Models and Time-Series Analysis

Remark Although we are focussing on the i.i.d. setting in this chapter, one might be curious about
howFigure 12.1would change if, instead of examining the shape parameters of theNCT for the uncon-
ditional returns, we do so conditioning on the GARCH filtered scale terms. As discussed in Chapter
10, once GARCH effects are removed by jointly estimating the parameters of an NCT-GARCH(1,1)
model, wewould expect that the estimated tail index corresponding to theNCT should increase (thin-
ner tails). This is indeed the case, as shown in Figure 12.2. Interestingly, the asymmetry parameters
are more clearly negative when based on the NCT-GARCH-filtered residuals.
It is important to emphasize that the unconditional returns are surely not i.i.d. NCT distributed—

they are obviously not i.i.d., and the NCT is just an approximation. As such, the estimated degrees
of freedom parameter from the NCT is not a measure of the supremum of the maximally existing
moment of the returns; see the discussion in Section III.9.1 for further details on this important point.
The NCT-GARCH(1,1) model is certainly “less mis-specified” than its i.i.d. counterpart, but is also
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Figure 12.1 Left: The sorted values of the estimated tail thickness parameters (degrees of freedom) k̂ of the
noncentral Student’s t distribution, for the 30 daily stock return series comprising the DJIA index, along with
approximate 95% confidence intervals obtained via the non-parametric bootstrap with B = 1,000 replications. Right:
The same as the left panel, but for the noncentrality parameter 𝜃. The ordering is the same as in the left panel, thus
allowing a comparison.
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Figure 12.2 Similar to Figure 12.1, but having used the NCT-GARCH(1,1) model. The y-axis of the left graphic is
truncated for readability.



Multivariate t Distributions 529

wrong w.p.1, in terms of both the assumed GARCH innovations distribution and the GARCHmodel
itself, which is just a simple mechanism to address the non-i.i.d. nature of the data.
Valid conclusions from juxtaposing the two figures include:

i) Incorporation of a GARCH filter helps address some of the heavy-tailed nature of the data. (One
could speak of addressing the leptokurtosis, but this would then assume existence of fourth
moments.)

ii) Conditional on use of the NCT distribution, the tail index is not constant across all assets. How-
ever, based on the confidence intervals, it appears that it can be deemed the same for many assets,
particularly in the GARCH case.

iii) The lengths of the bootstrap confidence intervals are roughly proportional to themagnitude of the
point estimates, so that, in the GARCH case, there is, relatively speaking, larger sampling error
associated with the tail index k, as compared to the asymmetry parameter.

iv) When conditioning on the scale term via a GARCH model, the point estimates of asymmetry
parameter 𝜃 are negative for 29 out of the 30 assets, and have a lower sampling error than in the
i.i.d. case. ◾

Example 12.2 (Example 12.1 cont.)
Now consider the bivariate data set consisting of the 1,945 daily returns, from the shorter period of
June 2001 to March 2009, of the two stocks with the most extreme individually estimated values of
k, these being Bank of America (with k̂ = 1.5 for this period) and Wal-Mart Stores (k̂ = 4.4). Their
returns are plotted in Figure 12.3, and it is apparent that the global financial crisis impacted the for-
mer relatively much more than the latter. A scatterplot of the two series is given in the top panel of
Figure 12.4, while the bottom panel shows the fitted multivariate t distribution (12.3), overlaid with
the scatterplot of the data, but such that, for optical clarity, the points for which both returns were
less than three in absolute value were omitted.
The point estimates (and approximate standard errors) are �̂� = 2.01(0.09), 𝜇1 = 0.011(0.029),

𝜇2 = −0.011(0.027), 𝜎2
1 = 1.09(0.06), 𝜎12 = 0.442(0.033), and 𝜎2

2 = 0.884(0.04), with an obtained
log-likelihood value of −7199.3. Observe how the value of �̂� lies between the two individually
estimated values of k̂ (though it is closer to the smaller of the two), thus underestimating the risk
(or probability of extreme occurrences) of Bank of America and significantly overestimating that of
Wal-Mart. ◾

The previous two examples serve as motivation for use of multivariate distributions such that
the margins can have individual tail shape parameters. In addition, stock (and other asset) returns
typically exhibit asymmetry. This was seen above in the right panel of Figure 12.1, showing that
individual assets tend to have positive skewness (yet from Figure 12.2, their GARCH-filtered
counterparts are nearly all negative). Interestingly, aggregate stock returns, such as market indexes
and their associated exchange traded funds, tend to exhibit negative skewness. A resolution to this
seeming puzzle is provided in Albuquerque (2012).
From a risk management point of view, if, say, the left tail is somewhat heavier than the right (i.e.,

negative asymmetry) and a symmetric model is fit to the data, then the, say, 1% quantile from the
fitted distribution (a negative value, in the left tail) will be smaller in magnitude (i.e., closer to zero)
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Figure 12.3 Daily percentage log returns on Bank of America (top) and Wal-Mart (bottom).

than it should, i.e., it will underestimate the loss associated with an extreme negative event. We first
consider an important asymmetric extension of (12.3) in Section 12.2, and then turn to the harder task
of how to extend the distribution such that each margin is endowed with its own degrees of freedom
parameter.

12.2 Multivariate Noncentral Student’s t

There are several asymmetric extensions to themultivariate Student’s t available; seeKotz andNadara-
jah (2004), Genton (2004), Nadarajah and Dey (2005), Arellano-Valle and Genton (2010), and the
references therein for an overview. One of the earliest, from Kshirsagar (1961), is a direct extension
of the univariate noncentral t (NCT) and, being a continuous mixture of normals, has some use-
ful properties. We refer to it in short as MVNCT: Let 𝜸 = (𝛾1,… , 𝛾d)′ ∈ ℝd, Z ∼ Nd(𝟎, I), R a d × d
correlation matrix (12.2), and G ∼ IGam(𝑣∕2, 𝑣∕2), 𝑣 > 0, independent of Z. Then, similar to (12.4),
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Figure 12.4 Top: Scatterplot of the returns on Bank of America and Wal-Mart for the T = 1,945 observations. Bottom:
Scatterplot, now with truncated and equal axes, and omitting points near the center, with an overlaid contour plot of
the fitted multivariate Student’s t density.

Y = (𝜸 + R1∕2Z) ∼ Nd(𝜸,R), and

T =
√
GY =

√
G𝜸 +

√
GR1∕2Z ∼ MVNCT(𝟎, 𝜸,R, 𝑣) (12.5)

is said to follow a Kshirsagar (1961) d-dimensional multivariate noncentral t distribution (in short,
noncentral t) with degrees of freedom 𝑣, noncentrality vector 𝜸, and correlation matrix R. Recalling
the relation between the gamma, inverse gamma, and 𝜒2 distributions, an equivalent representation
sometimes seen in the literature is the following: Let Z ∼ Nd(𝜸,R), independent of C ∼ 𝜒2(𝑣). Then
T = Z∕

√
C∕𝑣 ∼ MVNCT(𝟎, 𝜸,R, 𝑣).

Note that, from the construction in (12.5),

(T ∣ G = g) ∼ N(g𝜸, gR), (12.6)

implying that T is, analogous to the usual multivariate Student’s t, a continuous mixture of normals,
and, also from (12.5), all the univariate margins are noncentral t. If 𝜸 = 𝟎, then T is elliptic (in this
case, spherical), and otherwise is non-elliptic; see the discussion in Section C.2.
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The p.d.f. of T ∼ MVNCT(𝟎, 𝜸,R, 𝑣), denoted fT = fT(x; 𝟎, 𝜸,R, 𝑣), is given by

fT =
Γ((𝑣 + d)∕2)

(𝑣𝜋)d∕2Γ(𝑣∕2)|R|1∕2 exp{−1
2
𝜸′R−1𝜸

}(
1 + x′R−1x

𝑣

)−(𝑣+d)∕2

×
∞∑
k=0

gk(x;𝝁, 𝜸,R, 𝑣), (12.7)

where

gk(x;𝝁, 𝜸,R, 𝑣) =
2k∕2Γ((𝑣 + d + k)∕2)

k!Γ((𝑣 + d)∕2)

(
x′R−1𝜸√
𝑣 + x′R−1x

)k

. (12.8)

The derivation is similar to that in the univariate case; see Section II.10.4.1.1. Recall Section III.10.3.2
on a fast, accurate approximation to the p.d.f. of the univariate noncentral t. With very minor
modification, this can also be used in the MVNCT case. The program in Listing 12.3 accomplishes
this.

1 function pdfln = mvnctpdfln(x, mu, gam, v, Sigma)
2 % x d X T matrix of evaluation points
3 % mu, gam d-length location and noncentrality vector
4 % v is df; Sigma is the dispersion matrix.
5 [d,t] = size(x); C=Sigma; [R, err] = cholcov(C, 0);
6 assert(err == 0, 'C is not (semi) positive definite');
7 mu=reshape(mu,length(mu),1); gam=reshape(gam,length(gam),1);
8 vn2 = (v + d) / 2; xm = x - repmat(mu,1,t); rho = sum((R'\xm).ˆ2,1);
9 pdfln = gammaln(vn2) - d/2*log(pi*v) - gammaln(v/2) - ...

10 sum(slog(diag(R))) - vn2*log1p(rho/v);
11 if (all(gam == 0)), return; end
12 idx = (pdfln >= -37); maxiter=1e4; k=0;
13 if (any(idx))
14 gcg = sum((R'\gam).ˆ2); pdfln = pdfln - 0.5*gcg; xcg = xm' * (C \ gam);
15 term = 0.5*log(2) + log(xcg) - 0.5*slog(v+rho');
16 term(term == -inf) = log(realmin); term(term == +inf) = log(realmax);
17 logterms = gammaln((v+d+k)/2) - gammaln(k+1) - gammaln(vn2) + k*term;
18 ff = real(exp(logterms)); logsumk = log(ff);
19 while (k < maxiter)
20 k=k+1;
21 logterms = gammaln((v+d+k)/2) - gammaln(k+1) - gammaln(vn2) + k*term(idx);
22 ff = real(exp(logterms-logsumk(idx))); logsumk(idx)=logsumk(idx)+log1p(ff);
23 idx(idx) = (abs(ff) > 1e-4); if (all(idx == false)), break, end
24 end
25 pdfln = real(pdfln+logsumk');
26 end
27
28 function y = slog(x) % Truncated log. No -Inf or +Inf.
29 y = log(max(realmin, min(realmax, x)));

Program Listing 12.3: The direct density approximation (d.d.a.) to the (log of the) d-variate canon-
ical MVNCT density.
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Figure 12.5 Bivariate contour plots of three MVNCT densities.

Figure 12.5 shows contour plots of the bivariateMVNCTdensity, using 𝑣 = 4, 𝛾1 = 0, and two differ-
ent values for 𝛾2 (and correlation zero and 0.5).The code to produce these plots is given in Listing 12.4.
It is instructive, as it shows twoways of generating the plots: First, with basic principles and FOR loops,
giving a program that is easy to understand and portable to all languages, and, second, using the vec-
torized capabilities and specific commands of Matlab (namely meshgrid and reshape). The latter
is far faster because the evaluation of the (log) density is done “all at once” in a vectorized fashion, but
also because the double FOR loop just to generate the large matrix of coordinates is surprisingly slow.
Location vector 𝝁 and scale vector 𝝈 = (𝜎1,… , 𝜎d)′ can be introduced precisely as in (12.3) to give

X = 𝝁 + ST, S = diag(𝝈), and we write X ∼ MVNCT(𝝁, 𝜸,𝚺, 𝑣), where R = S−1𝚺S−1. Estimation of
the location-scale MVNCT in the bivariate case can be done with a simple modification to the pro-
gram in Listing 12.1. It is given in Listing 12.5, and is used below in Example 12.3. For the general
d-variate case, a two-stepmethod can be used that avoids having to estimate all the parameters simul-
taneously. It works as follows (and the reader is encouraged...).
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1) Recalling that the margins of the MVNCT are univariate noncentral t, estimate each, getting
parameters �̂�[1]

i , �̂� [1]i , �̂�[1]
i , �̂�[1]i , i = 1,… , d, and set �̂�[1] equal to the mean of the �̂�[1]i .

2) Conditional on the fixed degrees of freedom �̂�[1], estimate again each margin to get �̂�[2]
i , �̂� [2]i , �̂�[2]

i ,
i = 1,… , d.

3) Conditional on the fixed �̂�
[2]
i , �̂� [2]i , and �̂�

[2]
i , estimate the single degree of freedom value �̂�[2] from

the MVNCT likelihood.
4) Repeat the previous two steps, giving the sequence �̂�[j]

i , �̂� [j]i , �̂�[j]
i , �̂�[j], until convergence.

5) Conditional on the final values in the previous step, estimate each lower-diagonal element of R
individually (univariate optimizations) from the MVNCT likelihood, similar to how the elements
in the Rmatrix are estimated in Section 12.5.4 below for the AFaK distribution.

Example 12.3 (Example 12.1 cont.)
We fit the MVNCT to the Bank of America (BoA) and Wal-Mart returns data, getting �̂� = 2.02,
�̂�1 = −0.157 (for BoA), while �̂�2 (for Wal-Mart) is nearly zero, 0.036. The obtained log-likelihood is
−7194.5, compared to −7199.3 in the symmetric case, suggesting (when compared to a 𝜒2

2 distribu-
tion) “parameter significance”. Clearly, only that of BoA is “significant” (with the usual asymptotically
determined estimate of its standard error being 0.044). Genuine significance is best determined with
respect to the measure of real interest: In our case, this is forecasting, as will be considered below.
The fact that the margins have markedly different tail behaviors indicate that even theMVNCT is still
“too mis-specified”, and conclusions with respect to asymmetry parameters are best drawn once the
heterogeneous tail behavior issue is addressed, as is done next. ◾

12.3 Jones Multivariate t Distribution

Jones (2002) proposed two constructions for a multivariate t distribution such that each univariate
margin is endowed with its own degrees of freedom parameter. Let Zi

iid∼ N(0, 1) and Wi
indep∼ 𝜒2(ni),

i = 1,… , d, such that they are all mutually independent, and taking Wi = 0 w.p.1, when ni = 0. For
values 0 = 𝑣0 < 𝑣1 ⩽ · · · ⩽ 𝑣d, let ni = 𝑣i − 𝑣i−1, i = 1,… , d. The first is to take

T1 =
√
𝑣1Z1√
W1

, T2 =
√
𝑣2Z2√

W1 +W2

,… ,Td =
√
𝑣dZd√

W1 + · · · +Wd

, (12.9)

which, from the additivity of independent 𝜒2 random variables, is such that Ti is Student’s t with 𝑣i
degrees of freedom. Note that construction (12.9) with 𝑣1 = 𝑣2 = · · · = 𝑣d is equivalent to the usual
multivariate t distribution (12.3), with zero mean vector and 𝚺 the identity matrix.
The second construction takes

T1 =
√
𝑣1Z1∕

√
W1, T2 =

√
𝑣2Z2∕

√
W1 +U2,… ,Td =

√
𝑣dZd∕

√
W1 +Ud, (12.10)

where Ui ∼ 𝜒2(𝑣i − 𝑣1), i = 2,… , d, with the Zi, W1, and Ui all mutually independent. In the d = 2
case, both of these constructions are equivalent. In this case, Jones (2002) shows that, for r1 and r2
both nonnegative integers, r1 < 𝑣1 and r1 + r2 < 𝑣2,

𝔼[Tr1
1 T

r2
2 ] =

𝑣
r1∕2
1 𝑣

r2∕2
2 Γ{(r1 + 1)∕2)}Γ{(r2 + 1)∕2}Γ{(𝑣1 − r1)∕2}Γ{(𝑣2 − r1 − r2)∕2}

𝜋Γ(𝑣1∕2)Γ{(𝑣2 − r1)∕2}
, (12.11)
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1 v=4; gam=[0 1]'; R12=0.5; R=[1 R12; R12 1]; Xvec=-8:0.02:8; Yvec=-10:0.02:10;
2 if 1==2 % Manual (slow)
3 % XY=zeros(2,length(Yvec)*length(Xvec)); % don't need.
4 Z=zeros(length(Xvec),length(Yvec));
5 for xl=1:length(Xvec), x=Xvec(xl);
6 for yl=1:length(Yvec), y=Yvec(yl); use=[x ; y];
7 % pos=(xl-1)*length(Yvec)+yl; XY(:,pos)=use; % don't need
8 Z(xl,yl)= exp( mvnctpdfln(use, gam, R, v) );
9 end

10 end
11 else % Vectorized (fast)
12 [X,Y]=meshgrid(Xvec,Yvec); XY=[X(:)' ; Y(:)'];
13 Z = exp( mvnctpdfln(XY, gam, R, v) );
14 Z = reshape(Z',length(Yvec),length(Xvec))'; % note the end transpose!
15 end
16 figure, contour(Xvec,Yvec,Z',9,'linewidth',2), hold on
17 levvec=[40 20 10 5 2 1 0.5]/10000;
18 for z=1:length(levvec), lev=levvec(z);
19 contour(Xvec,Yvec,Z',[lev lev],'linewidth',2)
20 end
21 set(gca,'fontsize',16), xlabel('X_1'), ylabel('X_2')
22 str1=['MVNCT v=',int2str(v),', \gamma=[',int2str(gam(1)),' ', ...
23 num2str(gam(2)),'], '];
24 if R12==0, str2='\Sigma = I_2'; else str2=['R = ',num2str(R12)]; end
25 title([str1 str2]), axis equal, xlim([-8 8]), ylim([-10 10])

ProgramListing 12.4: Generates the plots in Figure 12.5.The lines commented outwith “don’t need”
were there just to confirm that the set of pair coordinates for the density are the same in both the slow
and fast way of computing.

1 function [param,stderr,iters,loglik,Varcov] = MVNCT2estimation(x)
2 [d T]=size(x); if d~=2, error('not done yet, use 2-step'), end
3 %%%%%%%% k mu1 mu2 scale1 scale2 R12 gam1 gam2
4 bound.lo= [ 1.1 -1 -1 0.01 0.01 -1 -4 -4 ];
5 bound.hi= [ 20 1 1 100 100 1 4 4 ];
6 bound.which=[ 1 0 0 1 1 1 1 1 ];
7 initvec =[ 3 0 0 2 2 0.5 0 0 ];
8 maxiter=300; tol=1e-6; MaxFunEvals=length(initvec)*maxiter;
9 opts=optimset('Display','iter','Maxiter',maxiter,'TolFun',tol,'TolX',tol,...

10 'MaxFunEvals',MaxFunEvals,'LargeScale','Off');
11 [pout,fval,~,theoutput,~,hess]= ...
12 fminunc(@(param) MVNCTloglik(param,x,bound),einschrk(initvec,bound),opts);
13 V=inv(hess)/T; [param,V]=einschrk(pout,bound,V); param=param';
14 Varcov=V; stderr=sqrt(diag(V)); loglik=-fval*T; iters=theoutput.iterations;
15
16 function ll=MVNCTloglik(param,x,bound)
17 if nargin<3, bound=0; end
18 if isstruct(bound), param=einschrk(real(param),bound,999); end
19 k=param(1); mu=param(2:3); scale=param(4:5); gam=param(7:8);
20 R12=param(6); R=[1 R12; R12 1]; if min(eig(R))<1e-4, ll=1e5;
21 else
22 xx=x; for i=1:2, xx(i,:)=(x(i,:)-mu(i))/scale(i); end
23 llvec = mvnctpdfln(xx, gam, R, k) - log(prod(scale));
24 ll=-mean(llvec); if isinf(ll), ll=1e5; end
25 end

Program Listing 12.5: Maximum likelihood estimation of the location-scale MVNCT for d = 2
dimensions.
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if r1 and r2 are even, and zero otherwise. For example, with r1 = r2 = 1, this yields Cov(T1,T2) =
𝔼[T1T2] = 0. Likewise, for 𝑣1 > 2 and 𝑣2 > 2, it is easy to confirm that, respectively for r1 = 2 and
r2 = 0, and r1 = 0 and r2 = 2,

𝕍 (T1) = 𝔼[T2
1 ] =

𝑣1

𝑣1 − 2
and 𝕍 (T2) =

𝑣2

𝑣2 − 2
, (12.12)

which agree with the variance expression for (12.3) when 𝑣1 = 𝑣2.
Jones (2002) also derives the density expression

fT1,T2
(t1, t2; v) =

1
𝜋
√
𝑣1𝑣2

Γ((𝑣1 + 1)∕2)
Γ((𝑣2 + 1)∕2)

Γ(𝑣2∕2 + 1)
Γ(𝑣1∕2)

× 2F1(𝑣2∕2 + 1, (𝑣2 − 𝑣1)∕2; (𝑣2 + 1)∕2; z)
m𝑣2∕2+1

, (12.13)

where z = (t21∕𝑣1)∕m and m = 1 + t21∕𝑣1 + t22∕𝑣2. See, e.g., Section II.5.3 for the definition of, and
methods of computation for, the 2F1 function. The reader is encouraged to algebraically (or numeri-
cally) confirm that (12.13) agrees with (12.1) when 𝑣1 = 𝑣2.
One arguable drawback of constructions (12.9) and (12.10) is that the Ti can never be indepen-

dent (except in the limit as the 𝑣i tend to infinity), a characteristic shared by the usual multivariate t
distribution. Moreover, if we wish to endow (12.9) with correlation between the Ti, and/or noncen-
trality terms, then we can expect the derivation, and the final form, of a closed-form or single integral
expression for the joint distribution to be far more complicated in the d = 2 case, let alone the general
d-variate case.
Initiating this, we can extend Jones’ construction (12.9) to support a dispersion matrix (which is

related to, but not necessarily equal to, a covariance matrix) 𝚺 and noncentrality parameters 𝜷 as
follows. We take X = (X1,X2)′ ∼ N(𝜷,𝚺), with 𝜷 = (𝛽1, 𝛽2)′ ∈ ℝ2 and 𝚺 a 2 × 2 symmetric, positive
definite matrix, independent ofWi

indep∼ 𝜒2(ni), i = 1, 2, where n1 = 𝑣1 and n2 = 𝑣2 − 𝑣1, and 0 < 𝑣1 ⩽
𝑣2 < ∞.
Then, defining in addition T3 =

√
W1 and T4 =

√
W1 +W2, so that

W1 = T2
3 , W2 = T2

4 − T2
3 , X1 = T3T1∕

√
𝑣1, X2 = T4T2∕

√
𝑣2,

the Jacobian is

J =
⎡⎢⎢⎢⎣
𝜕X1∕𝜕T1 𝜕X1∕𝜕T2 𝜕X1∕𝜕T3 𝜕X1∕𝜕T4
𝜕X2∕𝜕T1 𝜕X2∕𝜕T2 𝜕X2∕𝜕T3 𝜕X2∕𝜕T4
𝜕W1∕𝜕T1 𝜕W1∕𝜕T2 𝜕W1∕𝜕T3 𝜕W1∕𝜕T4
𝜕W2∕𝜕T1 𝜕W2∕𝜕T2 𝜕W2∕𝜕T3 𝜕W2∕𝜕T4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
T3∕

√
𝑣1 0 T1∕

√
𝑣1 0

0 T4∕
√
𝑣2 0 T2∕

√
𝑣2

0 0 2T3 0
0 0 −2T3 2T4

⎤⎥⎥⎥⎦ ,
and |det J| = 4T2

3T
2
4 ∕

√
𝑣1𝑣2. Thus

fT1,T2,T3,T4
(t1, t2, t3, t4) =

4t23t
2
4√

𝑣1𝑣2
fX1,X2,W1,W2

(t3t1∕
√
𝑣1, t4t2∕

√
𝑣2, t23 , t

2
4 − t23),
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and fT1,T2
(t1, t2) = ∫∫ fT1,T2,T3,T4

(t1, t2, t3, t4) dt3 dt4. Clearly,

fX1,X2
(x1, x2) =

1|𝚺|1∕2(2𝜋) exp{−1
2
((x − 𝜷)′𝚺−1(x − 𝜷))

}
,

while, for 𝑣2 > 𝑣1,

fW1,W2
(𝑤1, 𝑤2; 𝑣1, 𝑣2) =

1
2𝑣1∕2Γ(𝑣1∕2)

𝑤
𝑣1∕2−1
1 e−𝑤1∕2II(0,∞)(𝑤1)

× 1
2(𝑣2−𝑣1)∕2Γ((𝑣2 − 𝑣1)∕2)

𝑤
(𝑣2−𝑣1)∕2−1
2 e−𝑤2∕2II(0,∞)(𝑤2),

and, for 𝑣2 = 𝑣1,

fW1,W2
(𝑤1, 𝑤2; 𝑣1) =

1
2𝑣1∕2Γ(𝑣1∕2)

𝑤
𝑣1∕2−1
1 e−𝑤1∕2II(0,∞)(𝑤1) × II[0](𝑤2).

Thus,

fT1,T2
(t1, t2; v, 𝜷,𝚺) = ∫ ∫0<t3<t4<∞

4t23t
2
4√

𝑣1𝑣2

2−𝑣1∕2
Γ(𝑣1∕2)

(2𝜋)−1|𝚺|−1∕2
2(𝑣2−𝑣1)∕2Γ((𝑣2 − 𝑣1)∕2)

× t𝑣1−23 e−t23∕2(t24 − t23)
(𝑣2−𝑣1)∕2−1e−(t24−t23 )∕2

× exp
{
−1
2
((h − 𝜷)′𝚺−1(h − 𝜷))

}
dt3 dt4 , (12.14)

where v = (𝑣1, 𝑣2), with 0 < 𝑣1 < 𝑣2 < ∞, and h = [t3t1∕
√
𝑣1, t4t2∕

√
𝑣2]′, to ease the notation. A

location term, say 𝝁 = (𝜇1, 𝜇2)′ ∈ ℝ2, could be trivially added.
One could pursue a similar expression for general d, in which case there are 2d random variables

involved in (12.9), and the joint p.d.f. of T = (T1,… ,Td)′ will involve a d-dimensional integral. It
should be obvious that such an exercise will be of limited value because of the curse of dimensionality
aspect as d grows. Another, less obvious reason is the associated numeric problems arising with its
evaluationwhen any pair 𝑣i and 𝑣i+1 (recall they are ordered) are close in value; see the closing remarks
in Section 12.7.
Clearly, if 𝜷 = 𝟎 and all the 𝑣i are equal (to, say, 𝑣), then T ∼ T𝑣(𝟎,𝚺). Thus, in light of (12.12),

one might hope that, for 𝜷 = 𝟎 and 2 < 𝑣1 < · · · < 𝑣p, 𝕍 (T) is simply given by K𝚺K, where K is the
diagonalmatrix with iith element 𝜅i =

√
𝑣i∕(𝑣i − 2), i = 1,… , k. Simulation quickly indicates that this

is not the case. An indication of the complexity of 𝕍 (T) when off-diagonal elements are present can
be gleamed from (12.17), which gives the correlation between T1 and T2 in the bivariate case, with no
asymmetry parameters, when the linkage between T1 and T2 is expressed via an angle 𝜃.
Figure 12.6 shows (12.14) for 𝑣1 = 2, 𝑣2 = 8, and several constellations of the other parameters.

Computation of p.d.f. (12.14) via numeric integration in these cases was numerically unproblematic
because 𝑣1 and 𝑣2 are very well-separated.The reader is encouraged to program (12.14) and replicate
Figure 12.6.
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Jones Bivariate t (σ12 = 0)

Dimension with 2 d.f.

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Jones Generalized Bivariate t (σ12 = 0.50)

Dimension with 2 d.f.
D

im
en

si
on

 w
ith

 8
 d

.f.

D
im

en
si

on
 w

ith
 8

 d
.f.

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Jones Generalized Bivariate t (σ12 = 0)
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Jones Generalized Bivariate t (σ12 = 0.5)
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Figure 12.6 Top left: The bivariate Jones (2002) distribution (12.9) for 𝑣1 = 2 and 𝑣2 = 8 degrees of freedom. Top
right: Same, but its generalization (12.14) with 𝜎2

1 = 𝜎2
2 = 1 and 𝜎12 = 0.5 (and no noncentrality). Bottom: Similar to

top, but additionally introduce asymmetry via noncentrality parameters 𝛽1 = −1 and 𝛽2 = −2.

12.4 Shaw and Lee Multivariate t Distributions

Several ideas in the bivariate case are developed in Shaw and Lee (2008), such as a bivariate t with
a closed-form expression (involving the 2F1 function) for the density and possibly independent
marginals, albeit the same degrees of freedom, and a bivariate distribution with a closed-form
expression (involving the 1F1 function) for the density, but such that one marginal is normal. They
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also provide a relation to, and generalization of, the Jones (2002) structure (12.9) by proposing to
take, in our notation,

T1 =
√

𝑣1

W1
Z1, T2 =

√
𝑣2

W1 +W2
(Z1 sin(𝜃) + Z2 cos(𝜃)), (12.15)

where W1 ∼ 𝜒2(𝑣1), W2 ∼ 𝜒2(𝑣2 − 𝑣1), Z1,Z2 ∼ N(0, 1), all four completely independent, 0 < 𝑣1 ⩽
𝑣2 < ∞, and 𝜃 ∈ [0, 2𝜋). Simulation from (12.15) is trivial, and Shaw and Lee (2008) derive the density
expression

fT1,T2
(t1, t2; 𝑣1, 𝑣2, 𝜃) =

2Γ
(

a+b+2
2

)
∕ cos(𝜃)

Γ
(

a
2

)
Γ
(

b
2

)
𝜋
√
a(a + b) ∫

1

0

ua(1 − u2)(b−2)∕2

(𝛼2 + (𝛼1 − 𝛼2)u2 − 𝛽u)(a+b+2)∕2
du ,

(12.16)

where a = 𝑣1, b = 𝑣2 − 𝑣1, and

𝛼2 = 1 +
t22

(a + b)cos2(𝜃)
, 𝛼1 = 𝛼2 +

t21
a cos2(𝜃)

, 𝛽 =
2 sin(𝜃)t1t2√
a(a + b)cos2(𝜃)

.

This reduces to the closed-form expression given by Jones (2002) when 𝜃 = 0. Shaw and Lee (2008)
also show that the correlation between T1 and T2 is given by

𝜌(T1,T2; 𝑣1, 𝑣2, 𝜃) = sin(𝜃)
Γ
(

a−1
2

)
Γ
(

a+b−2
2

)
Γ
(

a
2

)
Γ
(

a+b−1
2

) √
a
2
− 1

√
a + b
2

− 1, (12.17)

for a = 𝑣1 > 2 (and recalling b = 𝑣2 − 𝑣1 and that 𝑣2 ⩾ 𝑣1).
One drawback of (12.16) is that the margins are not independent when 𝜃 = 0, in which case it coin-

cides with (12.9). To devise a construction that yields independent marginals when 𝜃 = 0, Shaw and
Lee (2008) replaceW1 +W2 in (12.15) by a 𝜒2(𝑣2) random variable that does not depend onW1, i.e.,

T1 =
√

𝑣1

W1
Z1, T2 =

√
𝑣2

W2
(Z1 sin(𝜃) + Z2 cos(𝜃)), (12.18)

where Wi
ind∼ 𝜒2(𝑣i), i = 1, 2, independent of, as before, Z1,Z2

ind∼ N(0, 1). (Another structure for
accomplishing this is given below in Section 12.6). They show that the p.d.f. fT1,T2

(t1, t2; 𝑣1, 𝑣2, 𝜃) can
be expressed as

Γ(r12)Γ(r22)2F1
(
r12, r22;

1
2
; 𝛾2

4𝛼1𝛼2

)√
𝛼1𝛼2 + 𝛾Γ(r11)Γ(r21)2F1

(
r11, r21;

3
2
; 𝛾2

4𝛼1𝛼2

)
𝛼
r11
1 𝛼

r21
2 cos(𝜃)𝜋

√
𝑣1𝑣2Γ(𝑣1∕2)Γ(𝑣2∕2)

, (12.19)

where, to ease the notation, we let rij = 𝑣i∕2 + 1∕j, i = 1, 2, j = 1, 2, and

𝛼i = 1 +
t2i

𝑣icos2(𝜃)
, i = 1, 2, and 𝛾 =

2 sin(𝜃)t1t2√
𝑣1𝑣2cos2(𝜃)

.
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Shaw−Lee (4.10) with θ = π/4
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Shaw−Lee (4.18) with θ = π/4
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Figure 12.7 Contour plots of (12.16) (Shaw and Lee, 2008, Eq. 4.10) and (12.19) (Shaw and Lee, 2008, Eq. 4.18) for
𝑣1 = 2, 𝑣2 = 8, and 𝜃 = 𝜋∕4. Compare to the top right panel of Figure 12.6.

One can confirm, both algebraically and numerically, that the density factors into the product
of the univariate Student’s t marginals when 𝜃 = 0. They also show that the correlation between
T1 and T2 is

𝜌(T1,T2; 𝑣1, 𝑣2, 𝜃) = sin(𝜃)
Γ
(

𝑣1−1
2

)
Γ
(

𝑣2−1
2

)
Γ
(

𝑣1

2

)
Γ
(

𝑣2

2

) √
𝑣1

2
− 1

√
𝑣2

2
− 1, (12.20)

for 𝑣1 > 2 and 𝑣2 > 2.
To illustrate the difference between the two distributions when T1 and T2 are correlated, contour

plots of (12.16) and (12.19) are shown in the left and right panels, respectively, of Figure 12.7, using
𝑣1 = 2 and 𝑣2 = 8 degrees of freedom, and a dependence parameter of 𝜃 = 𝜋∕4. These can be com-
pared to the top right panel of Figure 12.6 (and the bottom right panel of Figure 12.12). Unfortunately,
extension of (12.15) or (12.18) to the d-dimensional case, or incorporation of noncentrality (asymme-
try) parameters (even in the bivariate case), is presumably intractable.

12.5 The Meta-Elliptical t Distribution

A rather general way of producing a d-variate distribution such that the ith univariate margin is,
say, Student’s t(𝑣i), is to use a copula construction. Continuous copula-based distributions are very
general in that themargins can be taken to be essentially any continuous distribution, while the depen-
dency structure, via the copula, is also very flexible, though in reality there are only a handful of choices
that are typically used.When the distribution is such that themargins are t(𝑣i) and the copula is based
on amultivariate t distribution, it is often referred to as a meta-elliptical t, as discussed in this section.
More advanced aspects of t copula constructions can be found in Demarta and McNeil (2005) and
Nikoloulopoulos et al. (2009).
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12.5.1 The FaK Distribution

The canonical p.d.f. of themeta-elliptical t distribution proposed in Fang et al. (2002) is given by2

fX(x; v,R) = 𝜓(Φ−1
𝑣0
(Φ𝑣1

(x1)),… ,Φ−1
𝑣0
(Φ𝑣d

(xd));R, 𝑣0)
d∏
i=1

𝜙𝑣i
(xi), (12.21)

where x = (x1,… , xd)′ ∈ ℝd, v = (𝑣0, 𝑣1,… , 𝑣d)′ ∈ ℝd+1
>0 , 𝜙𝑣(x), and Φ𝑣(x) denote, respectively, the

univariate Student’s t p.d.f. and c.d.f., with 𝑣 degrees of freedom, evaluated at x, R is a d-dimensional
correlation matrix (12.2), and, with z = (z1, z2,… , zd)′, 𝜓(⋅; ⋅) = 𝜓(z1, z2,… , zd;R, 𝑣) is the density
weighting function given by

𝜓(⋅; ⋅) =
Γ{(𝑣 + d)∕2}{Γ(𝑣∕2)}d−1

[Γ{(𝑣 + 1)∕2}]d|R|1∕2
(
1 + z′R−1z

𝑣

)−(𝑣+d)∕2 d∏
i=1

(
1 +

z2i
𝑣

)(𝑣+1)∕2

. (12.22)

If 𝑣0 = 𝑣i, i = 1, 2,… , d, then xi = Φ−1
𝑣0
(Φ𝑣i

(xi)), i = 1,… , d, and T ∼ t𝑣(𝟎,R), where we set 𝑣 = 𝑣0.
Fang et al. (2002) refer to this as a multivariate asymmetric t distribution and write T ∼ AMtd(⋅),

where d is the dimension of T, but we choose not to use this notation because, while the multivari-
ate density is indeed asymmetric,3 the univariate margins are not. We express a random variable T
with location vector𝝁 = (𝜇1,… , 𝜇d)′, scale terms 𝜎i > 0, i = 1,… , d, and positive definite dispersion
matrix (not covariance matrix) 𝚺 = DRD, where D = diag([𝜎1,… , 𝜎d]) and R is a correlation matrix
(12.2), as T ∼ FaK(v,𝝁,𝚺), with FaK a reminder of the involved authors, and density

fT(y; v,𝝁,𝚺) =
fX(x; v,R)
𝜎1𝜎2 · · · 𝜎d

, x =
(y1 − 𝜇1

𝜎1
,… ,

yd − 𝜇d

𝜎d

)′

, R = D−1𝚺D−1, (12.23)

with fX given in (12.21). The margin (Ti − 𝜇i)∕𝜎i is standard Student’s t with 𝑣i degrees of freedom,
irrespective of 𝑣0. Thus, 𝔼[Ti] = 𝜇i, if 𝑣i > 1, and 𝕍 (Ti) = 𝜎2

i 𝑣i∕(𝑣i − 2), if 𝑣i > 2.
Simulation of T = (T1,… ,Td)′ ∼ FaK(v,𝝁,𝚺) can be done as follows. With R as given in (12.23),

simulate Y = (Y1,… ,Yd)′ ∼ t𝑣0 (𝟎,R) and set

Ti = 𝜇i + 𝜎iΦ−1
𝑣i
(Φ𝑣0

(Yi)), i = 1,… , d. (12.24)

This is implemented in Listing 12.6 (for the more general AFaK setting discussed below). The mar-
gin Yi ∼ t𝑣0 , so that in (12.24), Φ𝜈0

(Yi) ∼ Unif(0, 1). Thus, from the probability integral transform,
Φ−1

𝑣i
(Φ𝑣0

(Yi)) ∼ t𝑣i . The Ti are not independent because the Yi are not independent.
Figure 12.8 shows a selection of examples from the bivariate FaK distribution, all with zero location

and unit scales.
The parameter 𝑣0 influences the dependency structure of the distribution. To illustrate this,

Figure 12.9 shows (12.21) with 𝑣1 = 2, 𝑣2 = 4, and six different values of 𝑣0, and with R = I, so that
all the Xi are uncorrelated. Overlaid onto each plot is a scatterplot of 100,000 simulated realizations
of the density, but such that, for clarity, the points in the middle of the density are not shown.
When compared to scatterplots of financial returns data, it appears that only values of 𝑣0 ⩾ maxi𝑣i,

2 There is a minor typographical error in the p.d.f. as given in Fang et al. (2002, Eq. 4.1) that is not mentioned in the
corrigendum in Fang et al. (2005), but which is fixed in the p.d.f. as given in the monograph of Kotz and Nadarajah (2004,
Eq. 5.16), but which itself introduces a new typographical error.
3 A multivariate cumulative distribution function is said to be symmetric if FX(X1,X2,… ,Xd) = FX(Xi1

,Xi2
,… ,Xid

), for any
permutation {i1, 12,… , id} of {1, 2,… , d}. This condition is equivalent to exchangeability; see Section I.5.2.3.
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1 function T=FaKrnd(sim,v,mu,scales,R,noncen)
2 v0=v(1); v=v(2:end); p=length(v);
3 if nargin<6, noncen=[]; end
4 if isempty(noncen), noncen=zeros(p+1,1); end
5 a0=noncen(1); a=noncen(2:end);
6 T=zeros(sim,p);
7 for j=1:sim
8 r=mvtrnd(R,v0,1);
9 for i=1:p

10 if a0==0, term1=tcdf(r(i),v0); else term1=nctcdf(r(i),v0,a0); end
11 if a(i)==0
12 term2 = tinv(term1,v(i));
13 else
14 term2 = nctinv(term1,v(i),a(i));
15 end
16 T(j,i)=mu(i)+scales(i)*term2;
17 end
18 end

Program Listing 12.6: Simulates realizations from FaK distribution (12.23) for noncen all zeros,
otherwise is for the asymmetric FaK (AFaK) introduced below.

i = 1,… , d, are of interest, and one could entertain just setting 𝑣0 = maxi𝑣i. Based on the empirical
forecasting exercises for financial returns data in Paolella and Polak (2015a), �̂�0 is very close to
max(�̂�1, �̂�2) when it is freely estimated and suggests forgoing its estimation.
LetV = 𝕍 (T) denote the covariancematrix ofT = (T1,… ,Td)′ ∼ FaK(v,𝝁,𝚺). Unfortunately, Fang

et al. (2002) and Abdous et al. (2005) are silent on the off-diagonal elements of V. This is addressed
with approximations in Section 12.B.

12.5.2 The AFaK Distribution

While flexible in terms of allowing for differing degrees of freedom, each marginal is still restricted
to being symmetric about its location parameter. A simple idea is to replace (12.21) with a structure
that augments each Student’s t margin with a noncentrality parameter, say 𝜃i ∈ ℝ, i = 0, 1,… , d.
Thus, for X = (X1,… ,Xd)′, x = (x1,… , xd)′, and with 𝜙𝑣,𝜃(x) and Φ𝑣,𝜃(x) denoting the p.d.f. and

c.d.f., respectively, of the noncentral t distribution at x ∈ ℝ,

fX(x; v,𝜽,R) = 𝜓(Φ−1
𝑣0,𝜃0

(Φ𝑣1,𝜃1
(x1)),… ,Φ−1

𝑣0,𝜃0
(Φ𝑣d ,𝜃d

(xd));R, 𝑣0)
d∏
i=1

𝜙𝑣i,𝜃i
(xi), 𝜃0 = 0, (12.25)

still in conjunction with (12.22). The location-scale variant fT(y; v,𝜽,𝝁,𝚺) is analogous to (12.23),

fT(y; v,𝜽,𝝁,𝚺) =
fX(x; v,𝜽,R)
𝜎1𝜎2 · · · 𝜎d

, x =
(y1 − 𝜇1

𝜎1
,… ,

yd − 𝜇d

𝜎d

)′

, R = D−1𝚺D−1, (12.26)

where fX is given in (12.25) and, as before, D = diag([𝜎1,… , 𝜎d]). For a random variable with density
(12.26), we will write T ∼ AFaK(v,𝜽,𝝁,𝚺), for asymmetric FaK. Drawing sample AFaK realizations
is the same as that for FaK, but replacing the Φ𝑣i

in (12.24) by Φ𝑣i,𝜃i
, i = 0, 1,… , d.
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Figure 12.8 Examples of the bivariate FaK distribution (12.23), each with zero location and unit scale, and degrees of freedom parameters given in the
title (writing 𝑣 for parameter 𝑣0).
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Figure 12.9 Examples of the bivariate FaK distribution (12.23) based on simulation, each with zero location, unit scale, and zero correlation. The case
with 𝑣0 = maxi𝑣i in the bottom left (in the graphics titles, having used k instead of 𝑣) appears the most appropriate for financial returns data.
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1 function f=FFKpdfvec(ymat,v,theta,mu,scale,R)
2 [nobs,p]=size(ymat);
3 if length(theta)== p, theta=[0 ; theta(:)]; end
4 if length(theta)~= (p+1), error('bad theta'), end
5 if length(v)~= (p+1), error('bad v'), end
6 xmat=zeros(nobs,p); Zmat=zeros(nobs,p);
7 for i=1:p, xmat(:,i) = ( ymat(:,i)-mu(i) ) / scale(i); end
8 v0=v(1); v=v(2:end); % degrees of freedom parameters
9 a0=theta(1); a=theta(2:end); % a for asymmetry parameters

10 tol=1e-6; pdfprod=ones(nobs,1);
11 if sum(abs(theta))<1e-10 % close enough to zero
12 for i=1:p
13 x=xmat(:,i); pdfprod=pdfprod.*tpdf(x,v(i));
14 cdf=tcdf(x,v(i)); cdf=min(cdf,1-tol); cdf=max(cdf,tol);
15 Zmat(:,i)=tinv(cdf,v0);
16 end
17 else
18 for i=1:p
19 x=xmat(:,i); pdfprod=pdfprod.*nctpdf(x,v(i),a(i));
20 %x=xmat(:,i); pdfprod=pdfprod .* exp( stdnctpdfln_j(x,v(i),a(i)) );
21 % previous line is slightly faster
22 cdf=nctcdf(x,v(i),a(i)); cdf=min(cdf,1-tol); cdf=max(cdf,tol);
23 if abs(a0)<1e-10
24 Zmat(:,i)=tinv(cdf,v0);
25 else
26 Zmat(:,i)=nctinv(cdf,v0,a0);
27 end
28 end
29 end
30 term1 = exp( gammaln((v0+p)/2) + (p-1)*gammaln(v0/2) - p*gammaln((v0+1)/2) );
31 term1 = term1 / sqrt(det(R)); Rinv=inv(R); temp=zeros(nobs,1);
32 for i=1:nobs, z=Zmat(i,:)'; temp(i)=z'*Rinv*z; end %#ok<MINV>
33 term2=(1+temp/v0).ˆ(-(v0+p)/2); term3=prod( (1+Zmat.ˆ2/v0).ˆ((v0+1)/2) ,2);
34 f = (term1.*term2.*term3.*pdfprod) / prod(scale);

Program Listing 12.7: Computes the p-dimensional (A)FaK density for a set of nobs points.

The program in Listing 12.7 computes the density of the (A)FaK for a set of points. Useful also is to
be able to compute the c.d.f., at least in the bivariate case (higher dimensions will be very slow). The
program in Listing 12.8 shows how this is elegantly accomplished with nested integration.
It should be clear from the construction (and simulations confirm) that, for 𝜃0 = 0, and irrespective

of 𝑣0, the univariatemargins areTi ∼ t′(𝑣i, 𝜃i, 𝜇i, 𝜎i), where t′(𝑣, 𝜃, 𝜇, 𝜎) denotes the (singly) noncentral
Student’s t distribution with 𝑣 degrees of freedom, noncentrality parameter 𝜃, location 𝜇, and scale
𝜎. (This fact is crucial to the first step of our two-step estimation method discussed below.) It is less
obvious what happens when 𝜃0 ≠ 0, as 𝜓 in (12.25) may not be a copula. Simulations confirm that the
margins are in fact not t′(𝑣i, 𝜃i, 𝜇i, 𝜎i) for 𝜃0 ≠ 0, and we do not further entertain this case.
Thus, using the expectation of the univariate NCT distribution, if mini(𝑣i) > 1, 𝔼[T] =

(𝔼[T1],𝔼[T2],… ,𝔼[Td])′, where

𝔼[Ti] = 𝜇i + 𝜃i

(𝑣i
2

)1∕2Γ(𝑣i∕2 − 1∕2)
Γ(𝑣i∕2)

, i = 1,… , d. (12.27)
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1 function cdf = AFaKcdf(df,noncen,mu,scale,R,xup,yup)
2 % pass df as [v0 v1 v2] and noncen as [0 gam1 gam2]
3 % As a check: (pick any v)
4 % v=3; df=[v v v]; noncen=[0 0 0]; scale=[1 1]; mu=[0 0]; R12=0; R=[1 R12; R12 1];
5 % AFaKcdf(df,noncen,mu,scale,R,0,0) % Should return 0.250000. It does.
6
7 ATOL=1e-10; RTOL=1e-6; % 10 and 6 are the defaults
8 cdf = quadgk(@(yvec) int1(yvec,df,noncen,mu,scale,R,xup), ...
9 -Inf,yup,'AbsTol',ATOL,'RelTol',RTOL);

10
11 function Int=int1(yvec,df,noncen,mu,scale,R,xup)
12 Int=zeros(size(yvec)); ATOL=1e-10; RTOL=1e-6;
13 for i=1:length(yvec), y=yvec(i);
14 Int(i) = quadgk(@(x) int2(x,y,df,noncen,mu,scale,R), ...
15 -Inf,xup,'AbsTol',ATOL,'RelTol',RTOL);
16 end
17
18 function f = int2(x,y,df,noncen,mu,scale,R)
19 yy=y*ones(1, length(x)); pass=[x ; yy];
20 f=FFKpdfvec(pass',df,noncen,mu,scale,R)';

Program Listing 12.8: Computes the bivariate (A)FaK c.d.f. at xup,yup. See also Listing 12.21, for
the covariance.

To illustrate the new construction (12.25), Figure 12.10 shows several contour plots in the bivariate
case. Numeric integration confirms that (12.25) yields a proper density.

12.5.3 FaK and AFaK Estimation: Direct Likelihood Optimization

We wish to develop a program for computing the m.l.e. based on direct evaluation of the
log-likelihood. It is useful, as it shows how to deal with estimation in the general d-dimensional
case, notably the off-diagonal elements of R. This requires use of the so-called vech operator and its
inverse procedure, where vech returns as a vector the elements on and below the diagonal of a matrix.
This is already built into Matlab, as function tril (lower triangular), but to invert it requires a bit
of coding. The reader should confirm that a symmetric m ×m matrix has u = (m + 1)m∕2 unique
elements, and that, in terms of u, m = (

√
8u + 1 − 1)∕2. The program in Listing 12.9 computes vech

and its inverse.
The program in Listings 12.10–12.12 computes the m.l.e. for the FaK or AFaK model of arbitrary

dimension d. As it is easy to simulate from the AFaK, as given in Listing 12.6, we do the obvious thing:
Based on a sample size of n = 10,000 and for several parameter constellations, for d = 2 and d = 3,
the m.l.e. was computed (using starting values relatively far off from the true values) and seen to agree
with the true parameter values to about three significant digits for the degrees of freedom parame-
ters, and three or more for the remaining parameters. The program also outputs (as param.Sig)
the covariance matrix based on the estimated parameters, using approximations (12.52) and (12.56)
developed below in Section 12.B. This can be compared to the usual sample covariance matrix of
the data.
The reader is encouraged to expand the program to incorporate the parametric and nonparametric

bootstrap for determining confidence intervals of the parameters, as used in the next example.
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Figure 12.10 Examples of the bivariate AFaK (asymmetric FaK) distribution (12.25), each with zero location and unit scale (and using k instead of 𝑣).
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1 function v=vech(M,invert)
2 if nargin>1 % M is a vector, and we return a matrix
3 vec=M; n=(sqrt(8*length(vec)+1)-1)/2;
4 V=zeros(n,n);
5 for i=1:n
6 take=(n-i+1); comp=vec(1:take); vec=vec(take+1:end);
7 V(i:n,i)=comp; V(i,i:n)=comp';
8 end, v=V;
9 else % M is a matrix, and we return vech(M)

10 tt=tril(M); v=tt(tt~=0);
11 end

Program Listing 12.9: If one argument is passed, computes the vech of a matrix. If the second argu-
ment is passed, constructs the matrix from a passed vector of values to invert the vech operator. That
is, for symmetric matrix M, we have M == vech(vech(M),1).

Example 12.4 (Example 12.1 cont.)
Recall the bivariate fit to the returns of Bank of America and Wal-Mart stock prices, using the mul-
tivariate t, resulting in an obtained log-likelihood of −7199.3. Tables 12.1 and 12.2 show the m.l.e.
parameter estimates and associated standard errors based on the two Shaw and Lee (2008) construc-
tions (12.15) and (12.18), and the FaK and AFaK distributions, respectively. The ability to allow each
margin its own degrees of freedom parameter enables a much better fit, as seen from the obtained
log-likelihood values.The FaK obtains the highest log-likelihood among the three symmetric models,
while theAFaK results in a further increase (this being necessarily so—the likelihood can only increase
when parameters are added), resulting in a likelihood ratio test p-value (based on its asymptotic 𝜒2

2
distribution under the null) of 0.030.Aswas emphasized in Section III.2.8 andwill be further discussed
in Chapter 13, the fact that this p-value is below 0.05 does not persuade us in any way to choose the
AFaK model over the FaK or to conclude that asymmetry in the margins is “important” or “signifi-
cant”, and this, especially when one factors in that the i.i.d. (A)FaKmodel is anywaymis-specified with
probability one. What counts is (in our context) out-of-sample forecasting performance among a set
of practical models.
Recalling the discussion in Section III.2.3, if the model is correctly specified, then one would expect

that inference on the estimated parameters based on the parametric and nonparametric bootstrap
will be similar, while as the model mis-specification increases, one might expect these to diverge.
For the four models considered here, the estimated standard errors from both bootstrap methods
are reasonably close for the degrees of freedom parameters (which will generally have relatively wide
confidence intervals, given their estimation difficulty), while those of the other parameters are all
rather close, suggesting (informally at least) that thesemodels are flexible enough to capture the salient
features of the (unconditional) data. ◾

12.5.4 FaK and AFaK Estimation: Two-Step Estimation

A drawback of the direct likelihood approach is that, as d (and thus the number of parameters) grows,
estimation time will become prohibitive. To counter this, we propose a somewhat obvious two-step
estimation procedure. The idea is to estimate the univariate margins separately, these being either
a location-scale (central) Student’s t, or location-scale noncentral t. For the latter, while the d.d.a.
program in Listing 12.3 could be used (it is obviously applicable in the univariate case as well), we use
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1 function [param,stderr,iters,loglik,Varcov] = AFaKestimation(data, AFaK, initvec)
2 % data is the usual T X p matrix of financial asset returns
3 % Set AFaK to 0 (default) for (symmetric) FaK
4 % 1 for AFaK (with noncentrality terms), theta_0= 0
5
6 if nargin<2, AFaK=0; end
7 if nargin<3, initvec=[]; else initvec=reshape(initvec,1,length(initvec)); end
8 [nobs p]=size(data);
9 O=ones(1,p); Odf=ones(1,p+1); ORmat=ones(1,p*(p-1)/2);

10 switch AFaK
11 case 0
12 % df mu scale R (off diagonals)
13 bound.lo= [1.0*Odf, -1*O, 0.01*O, -0.99*ORmat ];
14 bound.hi= [ 20*Odf, 1*O, 1000*O, 0.99*ORmat ];
15 bound.which=[Odf , 0*O, O, ORmat ];
16
17 if isempty(initvec)
18 initvec=[3*Odf, 0*O, O, 0.01*ORmat];
19 end
20 case 1 % here, there are an additional p noncen parameters
21 % df noncen mu scale R (off diagonals)
22 bound.lo= [1.0*Odf, -6*O, -1*O, 0.01*O, -0.99*ORmat ];
23 bound.hi= [ 15*Odf, 6*O, 1*O, 1000*O, 0.99*ORmat ];
24 bound.which=[Odf , O, 0*O, O, ORmat ];
25
26 if isempty(initvec)
27 initvec=[3*Odf, 0*O, 0*O, O, 0.01*ORmat];
28 end
29 otherwise
30 error('Not valid AFaK Model Option')
31 end
32
33 maxiter=300; tol=1e-5; MaxFunEvals=25*maxiter;
34 opts=optimset('Display','iter','Maxiter',maxiter,'TolFun',tol,'TolX',tol, ...
35 'MaxFunEvals',MaxFunEvals,'LargeScale','Off');
36
37 if 1==1
38 [pout,fval,~,theoutput,~,hess]= fminunc(@(param) ...
39 FFKloglik(param,data,AFaK,bound),einschrk(initvec,bound),opts);
40 else
41 [pout,fval,~,theoutput]= fminsearch(@(param) ...
42 FFKloglik(param,data,AFaK,bound),einschrk(initvec,bound),opts);
43 hess=eye(length(pout));
44 end
45 V=inv(hess)/nobs; [param,V]=einschrk(pout,bound,V);
46 param=param'; Varcov=V; stderr=sqrt(diag(V));
47 loglik=-fval*nobs; iters=theoutput.iterations;

Program Listing 12.10: Computes the m.l.e. based on direct evaluation of the likelihood of the FaK
or AFaK distribution (12.26). Continued in Listing 12.11.
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1 if AFaK==0
2 PP=param; clear param
3 param.df=PP(1:p+1); param.mu=PP(p+2:2*p+1); param.scale=PP(2*p+2:3*p+1);
4 Rterms=PP(3*p+2:end); param.Rterms=Rterms;
5 elseif AFaK==1
6 PP=param; clear param
7 param.df=PP(1:p+1); param.noncen=PP(p+2:2*p+1);
8 param.mu=PP(2*p+2:3*p+1); param.scale=PP(3*p+2:4*p+1);
9 Rterms=PP(4*p+2:end); param.Rterms=Rterms;

10 end
11
12 % now augment so I can vech it:
13 Rt=Rterms'; RR=[1 , Rt(1:p-1)]; Rt=Rt(p:end);
14 for i=2:p-1 % have to add a total of p ones into Rterms
15 RR=[RR , 1 , Rt(1:p-i)]; Rt=Rt(p-i+1:end); %#ok<AGROW>
16 end
17 RR=[RR , 1]; param.R=vech(RR,1);
18
19 kvec=param.df(2:end);
20 if AFaK==0
21 kappa = sqrt(kvec./(kvec-2)); M = diag(param.scale .* kappa);
22 else
23 theta=param.noncen;
24 m1=sqrt(kvec/2) .* gamma(kvec/2-1/2) ./ gamma(kvec/2) .* theta;
25 m2=kvec./(kvec-2) .* (1+theta.ˆ2); varterm = m2-m1.ˆ2;
26 M=diag(param.scale .* sqrt(varterm));
27 end
28 param.Sig = M*param.R*M;

Program Listing 12.11: Continued from Listing 12.10.

1 function ll=FFKloglik(param,data,AFaK,bound)
2 if nargin<4, bound=0; end
3 if isstruct(bound)
4 paramvec=einschrk(real(param),bound,999);
5 else
6 paramvec=param;
7 end
8 [~, p]=size(data);
9 if AFaK==0 % symmetric case

10 dfvec=paramvec(1:p+1); muvec=paramvec(p+2:2*p+1);
11 scalevec = paramvec(2*p+2:3*p+1);
12 Rterms=paramvec(3*p+2:end);
13 noncenvec=zeros(1,p+1);
14 elseif AFaK==1 % asymmetric case but with v0==0
15 dfvec=paramvec(1:p+1); noncenvec=[0 paramvec(p+2:2*p+1)];
16 muvec=paramvec(2*p+2:3*p+1);
17 scalevec = paramvec(3*p+2:4*p+1); Rterms=paramvec(4*p+2:end);
18 end
19 Rt=Rterms; RR=[1 , Rt(1:p-1)]; Rt=Rt(p:end);
20 for i=2:p-1, RR=[RR , 1 , Rt(1:p-i)]; Rt=Rt(p-i+1:end); end
21 RR=[RR , 1]; R=vech(RR,1); if min(eig(R))<1e-5, ll=1e5; return, end
22 pdf = FFKpdfvec(data,dfvec,noncenvec,muvec,scalevec,R);
23 llvec=log(pdf); ll=-mean(llvec); if isinf(ll), ll=1e5; end

Program Listing 12.12: Continued from Listing 12.11.
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Table 12.1 The estimated parameters using the set of 1,945 daily (log percentage) returns of Bank of America and
Wal-Mart Stores, as depicted in Figures 12.3 and 12.4. “S-L” refers to Shaw and Lee, “loglik” is the log-likelihood
evaluated at the obtained m.l.e., “std err Hess” refers to the approximate (asymptotic normal-based) standard errors
obtained as output from the optimization, and “std err NPB” and “std err PB” refer to use of the nonparametric and
parametric bootstrap, respectively.

S–L (12.15) Loglik 𝒗1 𝒗2 𝝁1 𝝁2 Scale 1 𝜽 Scale 2

MLE −7092 1.620 3.705 0.0274 −0.0070 0.923 0.545 1.081
Std err NPB (0.078) (0.317) (0.026) (0.029) (0.027) (0.026) (0.030)
Std err PB (0.082) (0.337) (0.035) (0.036) (0.033) (0.031) (0.035)

S–L (12.18) Loglik 𝒗1 𝒗2 𝝁1 𝝁2 Scale 1 𝜽 Scale 2

MLE −7142 1.601 4.813 0.0313 −0.0057 0.926 0.587 1.160
Std err Hess (0.077) (0.491) (0.027) (0.030) (0.030) (0.023) (0.031)
Std err NPB (0.072) (0.508) (0.027) (0.028) (0.027) (0.023) (0.029)
Std err PB (0.067) (0.498) (0.024) (0.024) (0.029) (0.023) (0.032)

Table 12.2 Similar to Table 12.1 but for the FaK and AFaK distributions, as well as theMESTI, discussed in Section 12.6.2.

FaK (12.23) Loglik 𝒗0 𝒗1 𝒗2 𝝁1 𝝁2 Scale 1 R12 Scale 2

MLE −7086 3.975 1.464 3.873 0.0331 0.0027 0.857 0.492 1.106
Std err Hess (0.50) (0.067) (0.34) (0.026) (0.028) (0.028) (0.020) (0.030)
Std err NPB (0.56) (0.058) (0.38) (0.025) (0.031) (0.024) (0.020) (0.030)
Std err PB (0.53) (0.068) (0.35) (0.026) (0.028) (0.029) (0.020) (0.033)

AFaK (12.26) Loglik 𝒗0 𝒗1 𝒗2 𝜽1 𝜽2 𝝁1 𝝁2 Scale 1 R12 Scale 2

MLE −7079 3.849 1.473 3.887 −0.165 0.136 0.191 −0.192 0.857 0.492 1.106
Std err Hess (0.48) (0.068) (0.35) (0.055) (0.094) (0.057) (0.12) (0.028) (0.020) (0.030)
Std err NPB (0.55) (0.060) (0.37) (0.060) (0.094) (0.062) (0.12) (0.024) (0.020) (0.030)
Std err PB (0.53) (0.066) (0.35) (0.064) (0.093) (0.061) (0.12) (0.027) (0.021) (0.031)

MESTI (12.35) Loglik k1 k2 𝜷1 𝜷2 𝝁1 𝝁2 Scale 1 R12 Scale 2

MLE −7144 1.445 4.357 −0.159 0.147 0.186 −0.205 0.857 0.525 1.127

the saddlepoint approximation (s.p.a.), as discussed in Section III.10.3.1, given its speed and accuracy
over a very large portion of the parameter space. This determines the location 𝜇i, the scale 𝜎i, and
the one or two shape parameters 𝑣i and 𝜃i, i = 1,… , d. For the copula shape parameter 𝑣0, we take
�̂�0 = max{�̂�i}, though one could do a univariate optimization over this parameter, conditional on all
others, very quickly.
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1 function param = AFaK2stepSIMPLE(data, AFaK)
2 % Two-step for (A)FaK. Uses SPA for noncentral t.
3 % data is a T X p matrix of asset returns. AFaK=0 for FaK. Else AFaK
4 if nargin<2, AFaK=0; end
5 [~, p]=size(data); dfvec=zeros(p,1); muvec=zeros(p,1); scalevec=zeros(p,1);
6 if AFaK==0
7 for i=1:p
8 pp = Studentstestimation(data(:,i)); % df, location and scale of Student t
9 dfvec(i)=pp(1); muvec(i)=pp(2); scalevec(i)=pp(3);

10 end
11 theta=zeros(p,1); noncenvec=theta;
12 else
13 noncenvec=zeros(p,1);
14 for i=1:p
15 pp = Noncentraltestimation(data(:,i),1,1); % Uses the SPA
16 noncenvec(i)=pp(1); dfvec(i)=pp(2); %pp = [noncen df mu scale]
17 muvec(i)=pp(3); scalevec(i)=pp(4);
18 end
19 end
20 param.df=[max(dfvec) ; dfvec]; param.noncen=[0 ; noncenvec];
21 param.mu=muvec; param.scale = scalevec;
22 param.R=corr(data); v=vech(param.R); param.Rterms=v(v<0.999999);

Program Listing 12.13: Two-step estimation of the FaK and AFaK models. Program Stu-
dentstestimation is the same as tlikmax in Listing III.4.6, just augmented for weighted likeli-
hood (not used here), as discussed in Chapter 13. Program Noncentraltestimation estimates
the parameters of the location-scale NCT using the saddlepoint approximation, as discussed in
Section III.9.3.

What remains is parameter R, which can be quickly estimated by the sample correlation of the
location-scale adjusted data. The program in Listing 12.13 shows the simple code to accomplish this.
Note that, like the direct likelihood method in Section 12.5.3, the two-step method can also be aug-
mented to deliver confidence intervals and/or standard errors of the parameters with the parametric
and nonparametric bootstrap. As guessed, the reader is encouraged to do so. With (i) the s.p.a. for
the noncentral t, (ii) just setting �̂�0 = max{�̂�i}, and (iii) using the sample correlation, this two-step
procedure is extremely fast.
Simulations confirm that, for FaK and AFaK, the location, scale, degrees of freedom, and, for AFaK,

the noncentrality parameters, are estimated with virtually the same accuracy as the direct method.
We wish to examine the accuracy of the correlation term R̂12, using the bivariate case. We perform a
simulation in the FaK case (as it is faster to simulate and estimate) using 500 replications, a sample
size of 10,000, two values of R12, fixed 𝑣2 = 4, and three values of 𝑣1, namely 1.8, 2.0, and 2.5. For the
former two cases, second moments do not exist, and we would expect that the estimated correlation
term in the two-step procedure will not perform well.
This is confirmed in Figure 12.11.The top two panels show kernel density estimates of the resulting

R̂12, based on the two-step method. As 𝑣1 decreases below two, the sample-correlation-based esti-
mator of R12 becomes highly biased and with a high variability. The bottom two panels are similar,
based on the same simulated data, but having used full maximum likelihood. In this case, the kernel
densities corresponding to each of the three choices of 𝑣1 are identical (up to three significant digits)
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Figure 12.11 Top: Kernel density plots of R̂12 based on 500 replications and T = 10,000 observations using the two-step method of estimating the
parameters of the FaK model, with 𝑣2 = 4, 𝑣1 indicated in the graphs, and two choices of R12, zero and 0.5. Bottom: Same, but having used full maximum
likelihood estimation via the direct method, and plotted with a vertical offset because they are otherwise graphically identical; see the text for explanation.
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and are thus plotted with a vertical offset, just for visualization purposes. This is not a mistake: It
happens because, for each of the three 𝑣i-values, the 500 simulated series are based on seed values
1, 2,… , 500.

Example 12.5 (Example 12.2 cont.)
For the same data as used in Table 12.2, the point estimates for the AFaK are �̂�1 = 1.48, �̂�2 = 4.36
(and �̂�0 = �̂�2); �̂�1 = −0.16, �̂�2 = 0.15 (and �̂�0 ≡ 0); �̂�1 = 0.19, �̂�2 = −0.21; �̂�1 = 0.87, �̂�2 = 1.13, and
R̂12 = 0.34. These compare well with the results based on the full m.l.e. given in Table 12.2, though
the estimates of R12 differ somewhat, as might have been expected, given that the existence of second
moments of the first time series is questionable, rendering the sample correlation matrix an inconsis-
tent and possibly highly unreliable estimator, particularly, as seen from Figure 12.11, as |R12| grows
away from zero. ◾

There are (at least) three ways of dealing with the estimation of the correlation matrix when second
moments do not exist. The first is to use a different estimator for the Rij, as is common in the copula
literature, such as Kendall’s 𝜏 and Spearman’s 𝜌 (these being conveniently built into Matlab).
The second way to address the problem, common for financial data, is to impose a GARCH process

on the scale terms of each margin. The unconditional distribution of a GARCH process (or more
general stochastic volatility structures) can be very heavy tailed, while the conditional distribution,
having addressed the changing scale term, results in less heavy tails of the innovation process, besides
the fact that the model itself might be “less mis-specified” and (often, but not always) better suited for
short-horizon density forecasting. With Student’s t(𝑣) as the assumed process, unconditional daily
returns data typically exhibit an estimated 𝑣 between two and five (see Figure 12.1), whereas, after
controlling for GARCH effects, �̂� is almost always at least four. Thus, the traditional estimator of the
correlation matrix R, when based on GARCH-filtered data, should be unproblematic, albeit clearly
not as efficient as the m.l.e., as seen from Figure 12.11.
Note that the problem persists if the non-Gaussian stable distribution is the correct innovation

process in a conditional GARCH model. In practice, one of course never knows the correct distribu-
tion, and so, in a heavy-tailed context, we recommend (with or without GARCH), the following third
solution.
A third way, given its demonstrated efficiency and far higher speed, is to use the first part of the

two-step procedure to get all the margin parameter estimates, followed by sequential univariate opti-
mizations of the likelihood, as in the direct method, with fixed parameters from the first step, just
over each of the Rij for which �̂�i or �̂�j is less than (or just above) two. This latter step is given in the
function in Listing 12.14. Thus, even for large d, this procedure will still be relatively fast.
Inspection of Figure 12.11 suggests that, under the true d.g.p. of (A)FaK, particularly with

low degrees of freedom, this procedure should be used for all of the (lower diagonal) Rij terms,
given (i) the much higher efficiency of the m.l.e. estimator, (ii) its applicability irrespective of the
values of 𝑣i and 𝑣j, and (iii) the fact that the likelihood is accessible and only d(d − 1)∕2 univari-
ate optimizations are required. The reader is encouraged to make the program to do this, say
FangFangKotzestimation2step—a very easy job, given Listings 12.10, 12.13, and 12.14. To
ensure the resulting R̂ is positive definite, we can repeatedly shrink its off-diagonal elements to their
average until this is obtained, using (13.5) given later, with code shown in Listing 12.15.
Related (advanced) results on the behavior of sample covariance matrices in a heavy-tailed setting

can be found in Davis et al. (2016a,b) and the references therein.
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1 function [param,stderr,iters,loglik,Varcov] = AFaK_MLE_R_biv(Y,paramfix,rho)
2 if nargin<7, rho=1; end
3 nobs=length(Y);
4 bound.lo=-0.999; bound.hi=0.999; bound.which=1;
5 maxiter=300; tol=1e-5; MaxFunEvals=25*maxiter;
6 opts=optimset('Display','none','Maxiter',maxiter,'TolFun',tol,'TolX',tol, ...
7 'MaxFunEvals',MaxFunEvals,'LargeScale','Off');
8 Rsamp=corr(Y); initvec=Rsamp(1,2);
9 [pout,fval,~,theoutput,~,hess]= fminunc(@(param) ...

10 AFaK_R_loglik(param,Y,paramfix,rho,bound), ...
11 einschrk(initvec,bound),opts);
12 V=inv(hess)/nobs; [param,V]=einschrk(pout,bound,V);
13 Varcov=V; stderr=sqrt(diag(V));
14 loglik=-fval*nobs; iters=theoutput.iterations;
15
16 function ll = AFaK_R_loglik(param,Y,paramfix,rho,bound)
17 if isstruct(bound), R12=einschrk(real(param),bound,999); else R12=param; end
18 dfvec=paramfix.df; noncenvec=paramfix.noncen;
19 muvec=paramfix.locvec; scalevec=paramfix.scalevec;
20 R=[1 R12; R12 1]; T=length(Y); tvec=(1:T);
21 omega=(T-tvec+1).ˆ(rho-1); w=T*omega/sum(omega);
22 pdf = FFKpdfvec(Y,dfvec,noncenvec,muvec,scalevec,R);
23 llvec=log(pdf) .* w'; ll=-mean(llvec); if isinf(ll), ll=1e5; end

Program Listing 12.14: Maximum likelihood estimation of the correlation term (off-diagonal term
R12) of the bivariate AFaK model, conditional on all the other model parameters, as passed in the
structure paramfix, with entries given in lines 18 and 19. Scalar rho passed to the function is for
weighted likelihood, as discussed in Section 13.

1 low=1e-6; bad=any(eig(param.R)<low); sR2=0.02;
2 while bad
3 a=U'*(param.R-eye(p))*U/p/(p-1);
4 disp('Shrinking R to enforce positive definite')
5 param.R = (1-sR2) * param.R + sR2 *( (1-a)*eye(p)+a*J );
6 bad=any(eig(param.R)<low);
7 end

ProgramListing 12.15: Shrink the estimated correlationmatrix via (13.5) until it is positive definite.

12.5.5 Sums of Margins of the AFaK

In the i.i.d. setting, based on a time series of (A)FaK data Y1,… ,YT , for Yt = (Y1,t ,… ,Yd,t)′,
t = 1,… ,T , the predictive densities for time periods T + 1,T + 2,…, are all the same, namely, from
(12.26),

fY(y; v̂, �̂�, �̂�, �̂�) =
fX(x; v̂, �̂�, R̂)
�̂�1�̂�2 · · · �̂�d

, x =
(y1 − �̂�1

�̂�1
,… ,

yd − �̂�d

�̂�d

)′

, (12.28)

where fX is given in (12.25), and hatted values indicate parameter estimates. We are concerned with
the distribution of P = w′Y, wherew = (𝑤1,… , 𝑤d)′ ∈ ℝd.This arises, for example, in the study of the
portfolio distribution, whenY is the random variable of, say, tomorrow’s returns on a specified set of d
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assets. In that case,
∑d

i=1 𝑤i = 1 and is often restricted such that𝑤i is non-negative (no short-selling),
so that w ∈ , where is given in (11.41).
Themean of P is just 𝔼[P] = w′𝔼[Y], and using (12.27). However, unlike with the distribution of the

sum of (weighted) margins from the multivariate (noncentral) t distribution, that of the FaK or AFaK
is analytically intractable when the 𝑣i are not all the same. An idea is to use simulation of P, from
which any measurable quantity of interest can be elicited; for portfolio analysis, this is typically the
mean (which we already have analytically), and one or more measures of risk, such as the variance,
value-at-risk (VaR), or the expected shortfall (ES).
The distribution of P is empirically generated by drawing s1 replications from (12.28), stored in a

d × s1 matrix, sayM, and then computing the s1 × 1 vector

P̃ = P̃w = w′M. (12.29)

The problem with this idea in the aforementioned context is that a relatively large number of replica-
tions will be necessary for accurate tail risk measures. In particular, if only one vector w is of interest
(such as for risk assessment of a given portfolio), this method will be relatively slow, most notably for
theAFaK case, and a fastermethod based on a parametric approximation is developed in Section 12.A.
If, however, interest centers on potentially thousands of candidate w, as would be required in port-

folio optimization (or risk management), then it makes sense to simulate M once, based on a large
number of replications, say s1 = 10,000, and then use (12.29) for each w, from which the desired risk
measure can be obtained empirically. For example, assumingM has been generated and w is a candi-
date portfolio vector, the VaR and ES can be empirically computed as discussed in Section III.1.7 via
the code:

1 P=w'*M; VaR=quantile(P,0.01); Plo=P(P<=VaR); ES=mean(Plo);

The estimates of the desired risk quantities for a givenw, and the resulting optimal portfolio vector,
sayw∗, are dependent onM, with the dependence weakening as s1 → ∞.Thus, the choice of s1 should
be taken as large as possible, given the nature of the application. We will make use of this model and
method for obtaining the ES for portfolio optimization in Section 13.4.

12.6 MEST: Marginally Endowed Student’s t

Recall the construction of themultivariate Student’s t in (12.4), and theMVNCT in (12.5) via the latent
univariate random variable G ∼ IGam(𝑣∕2, 𝑣∕2), 𝑣 > 0. These are special cases of the multivariate
normal mean-variance mixture distribution, or MNMVM, introduced in Section 11.2.4. We wish to
generalize this to the case such that each margin is endowed with its own Gi, i = 1,… , d. Using the
canonical form (the reason for which is discussed below), we define the vector random variable X to
be a heterogenous multivariate normal mean-variance mixture distribution if

X = m(G) +DR1∕2Z, (12.30)

where Z ∼ Nd(𝟎, I), D = diag([G1∕2
1 ,G1∕2

2 ,… ,G1∕2
d ]) and G = (G1,G2,… ,Gd)′ is a vector of possibly

dependent non-negative continuous scalar-valued random variables (but still independent of Z), R is
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a positive definite correlation matrix (12.2), andm ∶ ℝd → ℝd is a measurable mean function. From
(12.30), it follows that (X ∣ G = g) ∼ N(m(g), diag(g)1∕2R diag(g)1∕2).

12.6.1 SMESTI Distribution

As a first special case of (12.30), consider taking Gi
indep∼ IGam(ki∕2, ki∕2), i = 1,… , d, with

k = (k1, k2,… , kd)′ ∈ ℝd
>0 andm(G) = 𝝁. ThenX = 𝝁 +DR1∕2Z, implying (X ∣ G = g) ∼ N(𝝁,DRD).

Observe that 𝝁 is a location term. Multiplying each margin of X − 𝝁 by a scale term 𝜎i > 0 gives
X = 𝝁 +D𝚺1∕2Z, with 𝚺 = SRS, with S = diag(𝝈) and 𝝈 = (𝜎1,… , 𝜎d)′, implying (X ∣ G = g) ∼
N(𝝁,D𝚺D).
The p.d.f. of X is

fX(x; k,𝝁,𝚺) = ∫
∞

0 ∫
∞

0
· · ·∫

∞

0
fX∣G(x; g)

d∏
i=1

fGi
(gi; ki∕2, ki∕2) dg1 dg2 · · · dgd. (12.31)

Wewill denote this asX ∼ SMESTI(k,𝝁,𝚺), where SMESTI stands for symmetricmarginally endowed
Student’s t: independent case.
A reason this construction might be seemingly uninteresting is that, except for extraordinarily low

dimensions, (12.31) involves a nested d-dimensional integral, nullifying any possibility of computing
the likelihood of a given data set. However, a two-step approach similar to the AFaK can be used: First
estimate the location, scale, and degrees of freedom (and, for the asymmetric case discussed below, the
noncentrality parameter) for eachmargin, and then, in a second step, deal with the off-diagonal terms
of the dispersion matrix. This will be done in Section 12.6.3. In addition, by construction, simulating
realizations of X is trivial; see below for a program to do this.
In the bivariate case, the p.d.f. of X = (X1,X2)′ is given by

∫
∞

0 ∫
∞

0
fX∣G(x; g)fG1

(g1; k1∕2, k1∕2)fG2
(g2; k2∕2, k2∕2) dg1 dg2, (12.32)

where, with 𝜙(⋅;𝝁,𝚺) denoting the multivariate normal p.d.f. with mean 𝝁 and variance covariance
matrix 𝚺,

fX∣G(x; g) = 𝜙(x;𝝁,D𝚺D), 𝝁 =
[
𝜇1
𝜇2

]
, D𝚺D =

[
g1𝜎2

11
√
g1g2𝜎12√

g1g2𝜎12 g2𝜎2
22

]
.

If we restrict G1 = G2 =∶ G, then g1 = g2, k1 = k2 =∶ k, and, with G ∼ IGam(k∕2, k∕2) and 𝟏d a
d-length column of ones, (12.32) simplifies to

fX(x; k𝟏2,𝝁,𝚺) = ∫
∞

0 ∫
∞

0
𝜙(x;𝝁, g1𝚺)fG(g1; k∕2, k∕2)fG(g2; k∕2, k∕2) dg1 dg2

= ∫
∞

0
𝜙(x;𝝁, g1𝚺)fG(g1; k∕2, k∕2) dg1 × ∫

∞

0
fG(g2; k∕2, k∕2) dg2,

which is (12.3) for d = 2. The generalization to d > 2 is obvious.
Now consider the restriction that k1 = k2 = k, but not that G1 = G2. Then (12.32) is

fX(x; k𝟏2,𝝁,𝚺) = ∫
∞

0 ∫
∞

0
𝜙(x;𝝁,D𝚺D)fG1

(g1; k∕2, k∕2)fG2
(g2; k∕2, k∕2) dg1 dg2, (12.33)



558 Linear Models and Time-Series Analysis

while if we further take 𝚺 = diag([𝜎2
1 , 𝜎

2
2 ]), then D𝚺D = diag([g1𝜎2

1 , g2𝜎2
2 ]), and (12.33) reduces to

∫
∞

0
𝜙(x1;𝜇1, g1𝜎2

1 )fG1
(g1; k∕2, k∕2) dg1 × ∫

∞

0
𝜙(x2;𝜇2, g2𝜎2

2 )fG2
(g2; k∕2, k∕2) dg2,

which is the product of the margins, each being Student’s t with k degrees of freedom, showing that
a type of multivariate t, with a single degree of freedom and independent margins, is a special case
of the proposed SMESTI distribution. If 𝚺 is endowed with off-diagonal elements, then, like the mul-
tivariate normal distribution, the dependence among the Xi is strictly via 𝚺. Observe that the same
decomposition goes through without restricting the ki to be equal—all that is required is that 𝚺 is
diagonal, so that a multivariate t type of distribution, with independent margins and with different
degrees of freedom for each marginal, is a special case of the proposed distribution.
Computationally speaking, density expression (12.31) can, in principle, be evaluated for any d using

an algorithm that recursively calls a univariate numerical integration routine, until the inner integral
is reached, in which case the integrand is delivered. This will of course be maddeningly slow for d
larger than, say, three.The code to do this is given (for the more general MESTI case) in Listing 12.17.
As a check, when 𝚺 is diagonal, the density can (and should) be evaluated as the product of

location-scale univariate (noncentral, if asymmetric; seen below) Student’s t p.d.f.s. Their equality
was confirmed for d = 2 and 3. To illustrate, Figure 12.12 contrasts the usual MVT (12.3) and the
SMESTI distribution for d = 2, as given in (12.32), with the highlight being the lower right panel,
showing a case with two different degrees of freedom and non-diagonal covariance matrix.
It follows from the mixture construction that, for X ∼ SMESTI(k,𝝁,𝚺), 𝔼[X] = 𝝁, if min{ki} > 1,

and does not exist otherwise. From the independence property of the components when𝚺 is diagonal,
it immediately follows (even for non-diagonal 𝚺) that 𝕍 (Xi) = [ki∕(ki − 2)]𝜎2

i if ki > 2, and does not
otherwise exist, i = 1,… , d. Now, the idea that 𝕍 (X) is possibly given byK𝚺K, whereK is the diagonal
matrix with iith element

√
ki∕(ki − 2), i = 1,… , d, is easily dismissed, for the following reason: If all

the ki are equal, then this yields the same covariance matrix as that for (12.3), but these matrices must
be different, owing to the different dependency structure of their elements arising from using either
a single latent variable G, in (12.3), or a set of d of them, as in (12.31). It turns out that the exact
expression for Cov(Xi,Xj) is tractable, and is given in (12.40).

12.6.2 AMESTI Distribution

We wish to extend the SMESTI structure such that the margins can exhibit asymmetry. To this end,
let 𝜷 = (𝛽1,… , 𝛽d)′ ∈ ℝd andm(G) = 𝝁 +D𝜷 . Then

X = 𝝁 +D𝜷 +DR1∕2Z, (12.34)

where D (and the Gi, 𝝁 and Z) are defined as before. Then (X ∣ G = g) ∼ N(𝝁 +D𝜷,DRD), general-
izing the MVNCT (12.5). The resulting p.d.f. of X is given by the same integral expression in (12.31),
denoted fX(x; k, 𝜷,𝝁,R), and we write either X ∼ MESTI(k,𝜷,𝝁,R) or, to emphasize its asymmet-
ric property, X ∼ AMESTI(k, 𝜷,𝝁,R). Observe that Xi = 𝜇i + G1∕2

i 𝛽i + G1∕2
i Zi, where Zi ∼ N(0, 1), so

that the margins of X are each location-𝜇i, scale-one noncentral t.
If we had instead defined X as 𝝁 +D𝜷 +D𝚺1∕2Z, for 𝚺 = SRS as in the SMESTI case, then this

implies thatXi = 𝜇i + G1∕2
i 𝛽i + G1∕2

i 𝜎iZi, and this is not the construction of the (univariate) noncentral
t (which assumes unit scale instead of 𝜎iZi). While 𝜇i is indeed a location parameter, it is not the case
that (Xi − 𝜇i) is multiplied by 𝜎i, so that, in this construction, 𝜎i is not a scale parameter. (This issue
does not arise in the SMESTI case, as 𝜷 = 𝟎.)
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Figure 12.12 Top row shows the usual MVT (12.3) with k = 2 degrees of freedom, zero mean vector, 𝜎2
1 = 𝜎2

2 = 1, and
two values of 𝜎12, zero (left) and 0.5 (right). The middle and last rows show the SMESTI distribution with k1 = k2 = 2
and k1 = 2, k2 = 8, respectively (same 𝝁 and 𝚺 as first row).
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1 function M = MESTIsim(k,beta,mu,scale,R,T)
2 d=length(k); beta=reshape(beta,1,d); D=eye(d); M=zeros(T,d);
3 %[Vv,Dd] = eig(R); R12=Vv*sqrt(Dd)*Vv; % for Way 2 below
4 for t=1:T
5 for i=1:d, ki=k(i);
6 V=gamrnd(ki/2,1,[1 1])/(ki/2); G=1./V; % either this...
7 %chi2=random('chi2',ki,1,1); G = 1./(chi2/ki); % or this.
8 D(i,i)=sqrt(G);
9 end

10 muN=(D*beta')'; VN=D*R*D; M(t,:)=mvnrnd(muN,VN,1); % Way 1
11 %Z = mvnrnd(zeros(1,d),eye(d))'; M(t,:)=D*beta'+D*R12*Z; % Way 2
12 end
13 for i=1:d, M(:,i)=scale(i)*M(:,i)+mu(i); end

Program Listing 12.16: Simulates T realizations from the (S)MESTI distribution with the passed
parameters. Two equivalent ways are shown for generatingG, and two equivalent ways are shown for
generating the MESTI random variable.

We denote a location-scale MESTI random variable asM ∼ MESTI(k,𝜷,𝝁,𝚺) with p.d.f.

fM(y; k, 𝜷,𝝁,𝚺) =
fX(x; k, 𝜷, 𝟎,R)
𝜎1𝜎2 · · · 𝜎d

, x =
(y1 − 𝜇1

𝜎1
,… ,

yd − 𝜇d

𝜎d

)′

, R = S−1𝚺S−1. (12.35)

The univariate margins are each location-scale noncentral t. The program in Listing 12.16 shows how
to simulate from the (S)MESTI distribution.
Let X ∼ MESTI(k, 𝜷, 𝟎,R). Then, as detailed in Section II.10.4.3,

𝔼[Xi] = 𝛽i

(ki
2

)1∕2Γ(ki∕2 − 1∕2)
Γ(ki∕2)

, if ki > 1, i = 1,… , d. (12.36)

For the variance of Xi, from (III.A.124) and (III.A.125), 𝕍 (G1∕2
i ) = 𝔼[Gi] − (𝔼[G1∕2

i ])2, with 𝔼[Gi] =
ki∕(ki − 2) and

𝔼[G1∕2
i ] =

√
ki
2

Γ
(

ki−1
2

)
Γ
(

ki
2

) =∶ Ai, if ki > 1, i = 1,… , d. (12.37)

By construction from (12.34), Gi and Zi are independent, so we can use result (II.2.36) for the vari-
ance of a product: For r.v.s G and Y , in obvious notation, 𝕍 (GY ) = 𝜇2

Y𝜎
2
G + 𝜇2

G𝜎
2
Y + 𝜎2

G𝜎
2
Y . Now, with

Y = 𝛽 + Z and (dropping subscripts) X = G1∕2(𝛽 + Z) = G1∕2Y ,

𝕍 (X) = 𝛽2𝕍 (G1∕2
i ) + (𝔼[G1∕2

i ])2 ⋅ 1 + 𝕍 (G1∕2) ⋅ 1 = (1 + 𝛽2)𝕍 (G1∕2) + A2

= (1 + 𝛽2)
[

k
k − 2

− A2
]
+ A2,

i.e.,

𝕍 (Xi) =
( ki
ki − 2

)
+ 𝛽2

i

⎡⎢⎢⎢⎣
ki

ki − 2
−

ki
2

⎛⎜⎜⎜⎝
Γ
(

ki−1
2

)
Γ
(

ki
2

) ⎞⎟⎟⎟⎠
2⎤⎥⎥⎥⎦ , if ki > 2, i = 1,… , d. (12.38)
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For the covariance, from (III.A.86),

𝕍 (X) = 𝔼G[𝕍 (X ∣ G)] + 𝕍G(𝔼[X ∣ G]) = 𝔼G[DRD] + 𝕍 (D𝜷,D𝜷). (12.39)

As Gi and Gj are independent for i ≠ j, Cov(D𝜷,D𝜷) = diag(𝛽2
1𝕍 (G

1∕2
1 ),… , 𝛽2

d𝕍 (G
1∕2
d )), so that

Cov(Xi,Xj) for i ≠ j does not depend on 𝜷 . With this and again using independence, it follows from
(12.39) that Cov(Xi,Xj) = 𝔼[G1∕2

i ]𝔼[G1∕2
j ] = AiAj from (12.37), i ≠ j, i.e.,

Cov(Xi,Xj) = 𝜎ij

√
ki
2
kj
2

Γ
(

ki−1
2

)
Γ
(

kj−1
2

)
Γ
(

ki
2

)
Γ
(

kj
2

) , i ≠ j, ki, kj > 1. (12.40)

The program in Listing 12.17 computes the MESTI density at a given point xvec for any dimen-
sion d, though it is rather slow for d = 3, and for any d ⩾ 4 becomes prohibitive, given the curse of
dimensionality. Its value is that it illustrates the useful technique of general d-dimensional numeric
integration conducted recursively. As a test case for d = 2 and d = 3 with a diagonal Rmatrix (so that
the margins are independent), first set prodtogg=0 in line 3 of Listing 12.17 and run the following
code:

1 %x=[0 1]; k=[2 7]; beta=[-0.5 1]; mu=[1 2]; scale=[1 2];
2 x=[0 1 0]; k=[2 7 3]; beta=[-0.5 1 2]; mu=[1 2 3]; scale=[1 2 3];
3 MESTIpdf(x,k,beta,mu,scale)

Then, do the same but with prodtogg=1 to see that they are equal to machine precision.
Figure 12.13 shows the bivariate MESTI density, as computed using the aforementioned program,

for the same parameter constellations as were used in the bottom four panels of Figure 12.12, but
having used 𝛽i = −i, i = 1, 2. With tail thickness and asymmetry parameters for each marginal, and
a covariance matrix to account for dependence, the MESTI distribution is quite flexible. However, it
does not have the feature of tail dependence, this being a recognized stylized fact of asset returns.
To allow for tail dependence, we need to drop the independence assumption on the Gi, as discussed
in Section 12.6.5.

12.6.3 MESTI Estimation

With the p.d.f. available, full maximum likelihood estimation is trivial to set up, using our usual code
for such things.The program in Listing 12.18 is given for completeness, though without large parallel
processing for line 32, it is essentially useless, even for d = 2. It could serve as a base for developing
the code for estimating, via full maximum likelihood, the MEST extension in Section 12.6.5, though
with the aforementioned caveat in mind about the necessity of parallel computing.
Estimation of the (S)MESTI model for general d and large sample sizes can be conducted very fast

using the aforementioned two-step procedure, similar to use with the (A)FaK, where here the uni-
variate Student’s t (or NCT) is estimated to obtain the �̂�i, k̂i (and 𝛽i), i = 1,… , d, and in a second step
the 𝜎ii and 𝜎ij are obtained via the method of moments, equating the usual sample estimates of them
with (12.38) and (12.40), conditioning on ki = k̂i (and 𝛽i = 𝛽i).
The short code in Listing 12.20 confirms the estimation (and the simulation) procedures work

correctly.
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1 function f = MESTIpdf(x,k,beta,mu,scale,R)
2 % pdf of the MESTI asymmetric marginally endowed students t
3 prodtogg=1; % set to 1 to use product, when indep.
4 d=length(x); x=reshape(x,1,d);
5 if nargin<6 || isempty(R), R=eye(d); end
6 if nargin<5 || isempty(scale), scale=ones(1, d); end, scale=reshape(scale,1,d);
7 if nargin<4 || isempty(mu), mu=zeros(1, d); end, mu=reshape(mu,1,d);
8 if nargin<3 || isempty(beta), beta=zeros(1, d); end, beta=reshape(beta,1,d);
9 xx=(x-mu)./scale; dd=R-eye(d);

10 if norm(dd,1)<1e-14 && prodtogg % Are they independent?
11 f=1; for i=1:d, f=f*nctpdf(xx(i), k(i), beta(i)); end
12 else
13 gfixed=[]; f=quadgk(@(gi) recursint(gi,gfixed,xx,k,beta,R), 1e-8, Inf);
14 end
15 f=f/prod(scale);
16
17 function Int=recursint(gi,gfixed,x,k,beta,R)
18 d=length(x); gilen=length(gi); Int=zeros(size(gi));
19 if length(gfixed)==(d-1) % last, inner integral
20 for gg=1:gilen
21 gp=gi(gg); D=eye(d); D(1,1)=sqrt(gp);
22 for i=1:(d-1), D(i+1,i+1)=sqrt(gfixed(i)); end
23 P=1; normteil=mvnpdf(x,beta*D,D*R*D);
24 for i=1:d
25 guse=D(i,i)ˆ2; kuse=k(i); P=P*IGampdf(guse,kuse/2,kuse/2);
26 end
27 Int(gg)=normteil*P;
28 end
29 else % continue the recursion
30 for gg=1:gilen
31 gfixednew=[gfixed gi(gg)];
32 Int(gg) = quadgk(@(gi) recursint(gi,gfixednew,x,k,beta,R), 1e-8, Inf);
33 end
34 end
35
36 function f=IGampdf(x,a,b), f = bˆa / gamma(a) * xˆ(-(a+1)) * exp(-b/x);

Program Listing 12.17: Computes the p.d.f. of the MESTI distribution for any d via recursive
numeric integration, for the single d-length point xvec.

Example 12.6 (Example 12.1 cont.)
We continue with the Bank of America andWal-Mart data, now fitting the MESTI distribution. Esti-
mation is done using the two-stepmethod, and then the log-likelihood is computed from the program
in Listing 12.17, though observe that this is not the log-likelihood corresponding to the true m.l.e.,
but rather the result of the two-step estimation method.The obtained log-likelihood is −7144, show-
ing the expected large improvement over the usual MVT, but pales compared to the AFaK result in
Table 12.2, of −7079. The latter has one additional parameter, but a crucial one, as it allows for tail
dependence, whereasMESTI does not.The parameter estimates are given in the last line of Table 12.2
and are very similar to the corresponding ones from the AFaK. ◾
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Figure 12.13 Similar to the bottom four panels of Figure 12.12, but for the MESTI distribution, with 𝛽1 = −1 and
𝛽2 = −2.

Remarks
a) In light of the relatively poor performance of the sample-based estimator of the elements of R in

the (A)FaK model when the relevant degrees of freedom are small (recall Figure 12.11), we can
anticipate the same poor performance in the (S)MESTI context. An idea is to use the method
of indirect inference (Chapter III.10), with the auxiliary function being the (A)FaK likelihood for
the individual correlations, to determine the 𝜎ij for the (S)MESTI. This appears reasonable, as (i)
the AFaK is a similar distribution in many regards to MESTI, with nearly the same number of
parameters and a clear “mapping” between them, and (ii) simulating from theMESTI is trivial and
fast. What a fantastic take-home exam idea!

b) In a portfolio optimization context, the sums of (weighted) margins is required; this can be
approximated exactly the same as was done with the (A)FaK, given that the (S)MESTI margins
are also (noncentral) Student’s t and that simulation from MESTI is fast, faster in fact than with
the AFaK. ◾
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1 function [param,stderr,iters,loglik,Varcov] = MESTIest(x,initvec)
2 % Marginally Endowed Student's t, Independent G_i case
3 % Full MLE for the d=2 dimension case.
4 [nobs d]=size(x); if d~=2, error('Full MLE only for d=2'), end
5 if nargin<2, initvec=[]; end
6 %%%%%%%% k1 k2 beta1 beta2 mu1 mu2 scale1 scale2 R12
7 bound.lo= [0.3 0.3 -10 -10 -1 -1 0.01 0.01 -20];
8 bound.hi= [ 20 20 10 10 1 1 20 20 20];
9 bound.which=[ 1 1 1 1 0 0 1 1 1];

10 %if isempty(initvec), initvec=[2 4 0 0 0 0 2 2 0]; end
11 if isempty(initvec), initvec=[1.5 3.9 -0.17 0.14 0.2 -0.2 0.9 1.1 0.5]; end
12 maxiter=300; tol=1e-5; MaxFunEvals=25*maxiter;
13 opts=optimset('Display','iter','Maxiter',maxiter,'TolFun',tol,'TolX',tol, ...
14 'MaxFunEvals',MaxFunEvals,'LargeScale','Off');
15 [pout,fval,~,theoutput,~,hess]= ...
16 fminunc(@(param) MESTIloglik(param,x,bound),einschrk(initvec,bound),opts);
17 V=inv(hess)/nobs; [param,V]=einschrk(pout,bound,V); param=param';
18 Varcov=V; stderr=sqrt(diag(V)); loglik=-fval*nobs; iters=theoutput.iterations;
19
20 function ll=MESTIloglik(param,x,bound)
21 if nargin<3, bound=0; end
22 if isstruct(bound)
23 paramvec=einschrk(real(param),bound,999);
24 else
25 paramvec=param;
26 end
27 [nobs d]=size(x); R=eye(d);
28 k=paramvec(1:2); beta=paramvec(3:4); mu=paramvec(5:6);
29 scale=paramvec(7:8); R(1,2)=paramvec(9); R(2,1)=R(1,2);
30 pdf=zeros(nobs,1); hand=plot(1:nobs,pdf,'g-');
31 for i=1:nobs
32 pdf(i) = MESTIpdf(x(i,:),k,beta,mu,scale,R);
33 if i==1, delete(hand), end
34 hand=plot(1:nobs, pdf, 'g-',1:i,pdf(1:i),'r-o');
35 title(['df = ',num2str(k)]), drawnow % Watch the slow show...
36 end
37 llvec=log(pdf); ll=-mean(llvec); if isinf(ll), ll=1e5; end

Program Listing 12.18: Computes the m.l.e. of the MESTI distribution in the d = 2 case. Calls pro-
gram MESTIpdf from Listing 12.17. Assuming use of only one core (no parallel processing), the
graphics commands in lines 33 and 35 allow the p.d.f. evaluation to be seen unfolding at each t.

12.6.4 AoNm-MEST

LetX• ,• = [ X1,• ∣ X2,• ∣ · · · ∣ Xd,• ] be the T × dmatrix of the return series under study, whereXi,• =
(Xi,1,… ,Xi,T )′, i = 1,… , d, and X•,t = (X1,t ,X2,t,… ,Xd,t)′, t = 1,… ,T . We impose a structure such
that each asset belongs to one ofm groups, 1 ⩽ m ⩽ d. Let nj be the number of components in the jth
group, so that

∑m
j=1 nj = d. After reordering and renumbering indices, we have m groups, such that

we can partition the components in X as X• ,• = [X1
•,• ∣ X2

•,• ∣ · · · ∣ Xm
•,• ], where

X1
•,• = [X1

1,• ∣ X
1
2,• ∣ · · · ∣ X

1
n1,• ],

X2
•,• = [X2

1,• ∣ X
2
2,• ∣ · · · ∣ X

2
n2,• ],

⋮

Xm
•,• = [Xm

1,• ∣ X
m
2,• ∣ · · · ∣ X

m
nm,• ].
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1 function param = MESTIest2(data)
2 [~, d]=size(data); X=data; R=eye(d);
3 beta=zeros(d,1); k=zeros(d,1); mu=zeros(d,1); scale=zeros(d,1);
4 for i=1:d
5 pNCT = Noncentraltestimation(data(:,i),1,1);
6 beta(i)=pNCT(1); k(i)=pNCT(2); mu(i)=pNCT(3); scale(i)=pNCT(4);
7 end
8 param.beta=beta; param.df=k; param.mu=mu; param.scale=scale;
9 for i=1:d, X(:,i) = ( X(:,i)-mu(i) ) / scale(i); end

10 SC=cov(X); % Sample Covariance
11 for i=1:d % Method of moments for the off-diagonal elements
12 for j=(i+1):d, ki=k(i); kj=k(j);
13 t1=sqrt(ki*kj/4)*gamma((ki-1)/2)*gamma((kj-1)/2)/gamma(ki/2)/gamma(kj/2);
14 R(i,j)=SC(i,j)/t1; R(j,i)=R(i,j);
15 end
16 end
17 param.R=R;

Program Listing 12.19: Estimates the parameters of the (S)MESTI distribution via the two-step
method.

1 k=[4 5]; beta=[2 -2]; mu=[1 2]; scale=[4 3]; r=0.6; R=[1 r; r 1];
2 T=1e5; M = MESTIsim(k,beta,mu,scale,R,T);
3 param = MESTIest2(M); param.df, param.beta, param.mu, param.scale, param.R

Program Listing 12.20: MESTI simulation and estimation.

The components within a group are jointly MVNCT, i.e., for j ∈ {1,… ,m},

Xj
•,t = 𝝁j +

√
Gj𝜷 j +

√
Gj𝚪jjZ, (12.41)

where Gj ∼ IGam(kj∕2, kj∕2) and Z ∼ N(𝟎, I). The model can then be stated as

X•,t
iid∼AoNm-MEST(k, 𝜷,𝝁,𝚪), t = 1,… ,T , (12.42)

where k is the m × 1 vector of degrees of freedom parameters, 𝜷 is the m × 1 vector of asymmetry
(noncentrality) parameters, 𝝁 is the location term, of size d × 1, and 𝚪 is the d × d dispersion matrix,
partitioned as

𝚪 =

⎛⎜⎜⎜⎜⎝
𝚪11 𝚪12 … 𝚪1m
𝚪21 𝚪22 …
⋮ ⋱ ⋮

𝚪m1 … 𝚪mm

⎞⎟⎟⎟⎟⎠
. (12.43)

We now turn to estimation of the model parameters. Given a certain grouping, parameter estima-
tion is conducted in two steps.

Step 1: For each of the univariate return series, the degrees of freedom ki, noncentrality 𝛽i, loca-
tion 𝜇i, and scale parameters 𝜎i, i = 1,… , d, are estimated via maximum likelihood, but using the
closed-form, vectorized saddlepoint approximation to the NCT density, as in Broda and Paolella
(2007), for speed reasons. (In the GARCH case, if the model in (12.41) is endowed with the fixed
APARCH structure (10.20), then the method in Section 10.4 can be used, setting �̂�i = 0 for all i.)
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Thus, in the first step, estimates of k, 𝜷 , 𝝁, and some of the elements of �̂� are obtained. Note that
the model requires the ki to be equal for all components in a group, i.e., k now has onlym distinct
components. Denote these values as k[1], k[2],… , k[m]. One rather rudimentary way to operational-
ize this equality restriction is to take the arithmetic mean or median over all ki in a certain group,
i.e., using the former, for group j,

k̂[j] = n−1j

nj∑
l=1

k̂l. (12.44)

Step 2: Estimate 𝚪.The diagonal matrices 𝚪jj are the dispersionmatrices for the components in group
j, j = 1,… ,m, while the off-diagonal matrices 𝚪ij contain dispersion terms from series in the dif-
ferent groups i and j. Note that these need not be square, nor of the same size, due to the different
number of components in the groups. Aswe assume in this construction that dependency of returns
in different groups is only via a covariance term, the estimates of the (n, l)th element of 𝚪ij, 𝜎

ij
nl, is

calculated from the expression of the covariance of the MESTI distribution, i.e.,

Cov(Xi
n,t ,X

j
l,t) = 𝜎

ij
nl

√
ki
2
kj
2

Γ
(

ki−1
2

)
Γ
(

kj−1
2

)
Γ
(

ki
2

)
Γ
(

kj
2

) , i ≠ j, n = 1,… , ni, l = 1,… , nj.

(12.45)

Estimates �̂�ij
nl are obtained by replacing the left-hand side of (12.45) by its usual plug-in estimator

for the covariance between the nth element of the ith group and the lth element of the jth group at
time t.With assets in the same group j sharing a single latent variable, theMEST structure simplifies
to the MVNCT, so that estimates of the off-diagonals of 𝚪jj, j = 1,… ,m, are calculated from

Cov(Xj
n,t ,X

j
l,t) = 𝜎

jj
nl

ki
ki − 2

+ 𝛽
j
n𝛽

j
l

⎛⎜⎜⎜⎝
kj

kj − 2
−

kj
2

⎛⎜⎜⎜⎝
Γ
(

kj−1
2

)
Γ
(

kj
2

) ⎞⎟⎟⎟⎠
2⎞⎟⎟⎟⎠ , l ≠ n. (12.46)

Example 12.7 The AoN model requires that the assets are grouped, such that the components in
each group share a common latent variable, this being the Gt sequence discussed in Section 11.2.4.
A purely data-driven way could be to estimate the COMFORT model on each univariate asset to get
the imputedGt sequences, and attempt to group them via somemeasure such as correlation. Instead,
and driven more by financial economic theory, we use the grouping dictated by the official sector to
which the asset belongs.
For our example, we use daily data for the 416 stocks listed in the in the S&P500 index that are

available from January 5, 2004, to May 16, 2014. (The data are from Bloomberg, and are dividend and
split adjusted.) For each stock, we estimate the parameters of the NCT-APARCH model using the
method discussed in Section 10.4, and thus, for all 416 stocks, taking just a few seconds. (This is the
reason for the granularity of the estimates—which is irrelevant given their sampling error—and the
upper limit of 30 for the estimated degrees of freedom parameter and the restriction to lie between−1
and 1 for the estimated noncentrality parameter.) Figure 12.14 plots the estimated degrees of freedom
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Figure 12.14 Estimated degrees of freedom parameter from a fitted NCT-APARCHmodel using the fast estimation
method discussed in Section 10.4, and based on the 10 years of daily returns data of the S&P500 from January 2004 to
May 2014.



568 Linear Models and Time-Series Analysis

0 2 4 6 8 10
0

5

10

15

20

25

30

The 10 Telecom−Services Stocks in the S&P500 Index

Estimated df Parameter from NCT−APARCH

0 5 10 15 20 25 30
0

5

10

15

20

25

30

The 29 Utilities Stocks in the S&P500 Index

Estimated df Parameter from NCT−APARCH

Figure 12.14 (Continued)
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Figure 12.15 Same as Figure 12.14 but based on only the last 500 observations (two years of data).
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Figure 12.15 (Continued)

parameter for each stock, grouped by sector, computed over the whole available 10-year time period.
Figure 12.15 is similar, but just uses the last 500 observations (about two years of trading data). These
are summarized in Figure 12.16, which forms boxplots of the estimates based on sector. It appears
that the sectors form reasonable, albeit not perfect, groups with respect to the tail behavior of the
assets, and motivates the use of sector splitting for the AoN method.
Figures 12.17 and 12.18 are analogous to Figures 12.14 and 12.15, but show the estimated noncen-

trality parameter of the fitted NCT-APARCH. There is a strong association between the asymmetry
parameters within a sector, with several such that one best assumes it is zero (given the imprecision of
the estimator), while for consumer discretionary stocks (materials and utilities), the point estimates
are predominantly positive (negative) and, for each stock in the sector, could be taken to be the mean
or median of the individual point estimates as a form of shrinkage estimation.
With respect to inspecting the estimated (parametric) tail index of the sectors to motivate this

method of grouping, it is important to note that, while the stochastic process generating a latent
variable Gt sequence necessarily dictates the tail behavior and asymmetry, it is not the case that two
series with even identical tail behaviors come from the sameGt sequence.Thus, this method is only a
proxy. It is nevertheless appealing from the point of view that shocks to the economy generated within
a sector will affect other assets in that sector, and possibly less so the stocks outside of it.
As with all financial econometric models, the proof of the pudding is in the eating: The only way to

judge the efficacy of the idea is with out of sample forecasting—either risk, density, or, most usefully,
portfolio weights. For this model, there is no analytic tractable form of the portfolio density, and
simulation is required.The same method as in Section 12.5.5 could be used. See Näf et al. (2018a) for
details on the portfolio performance of the AoN-MEST model. ◾
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Figure 12.16 Top: Boxplots of the estimated degrees of freedom parameters based on division by financial sector,
having used the entire 10 year data period. Bottom: Same, but based on only the last 500 observations (two years of
data).
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Figure 12.17 Similar to Figure 12.14, but showing the estimated noncentrality (asymmetry) parameter from a fitted
NCT-APARCHmodel, based on the 10 years of daily returns data.
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Figure 12.17 (Continued)
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Figure 12.18 Same as Figure 12.17 but based on only the last 500 observations (two years of data). Note that some
points might be missing due to the size of the y-axis, chosen to be the same as in Figure 12.17.
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Figure 12.18 (Continued)

12.6.5 MEST Distribution

A potential limitation of the MESTI structure is that dependence between margins is strictly through
matrix 𝚺. This has the significant disadvantage of not allowing for tail dependence. An elegant way
of introducing dependency among the margins beyond covariance is to allow dependence among
the Gi by endowing them with a multivariate structure, yielding the MEST distribution. Observe the
special case in whichGi andGj are perfectly correlated: If, say,Gi = Gj w.p.1, i, j = 1,… , d, then this is
precisely the structure of theMVNCT,which exhibits tail dependence (except in the limitingGaussian
case); see, e.g., McNeil et al. (2005, p. 211), and the discussion in Jondeau (2016).
Multivariate generalizations of the generalized inverse Gaussian (MGIG) suggest themselves as nat-

ural structures for models of Gt = (G1,t,… ,Gd,t)′, where, anticipating applications to time series, we
endow each Gi with a further subscript, t, indexing time. We mention four possibilities. One of the
earliest approaches to construct an MGIG was done in Barndorff-Nielsen et al. (1992), using random
effect models and yielding a multivariate distribution with GIG margins. Their construction is quite
simple, which turns out to be both its merit and weakness: While it allows the specification of several
properties of the distribution, most importantly its m.g.f., an expression for the density cannot be
derived.
Another candidate is fromMinami (2003), who proposed a sophisticated multivariate extension to

the inverseGaussian distribution. Unfortunately, some initial attempts at simulating it did not result in
success. A third option is, instead of takingDt = diag(G1∕2

1,t ,G
1∕2
2,t ,… ,G1∕2

d,t ), to entertain a distribution
that models the entire matrix Dt in (12.30). A candidate in this case would be the matrix general-
ized inverse Gaussian distribution. It was originally proposed in Barndorff-Nielsen et al. (1982), while
Butler (1998) derives various properties and its relation to other distributions. The resulting model is
surely highly flexible, but might be over-parameterized in typical applications.
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The last option wemention is to use a copula construction to join theGi, each being IGam (or, more
generally, GIG). We favor this latter idea, as it is straightforward to construct, clearly has the desired
margin distributions, and is such that evaluation of 𝔼[G1∕2

i,t ] and, more challenging, 𝜂ij = 𝔼[G1∕2
i,t G1∕2

j,t ]
is possible. In this context, note that we are not modeling the joint distribution of, say, asset returns
with a copula, but ratherwith a very rich normalmean-variancemixture distribution, and only require
inducing dependency among the Gi,t , i = 1,… , d. As such, we have the luxury of not necessarily
requiring sophisticated copula structures, but rather only a simpleway of inducing dependence among
them and such that their margins remain in the IGam (or GIG) class. This can be accomplished
using even the very simple Gaussian copula. Even if the Gi are linked only by traditional correla-
tion, the components of the financial assets (or whatever the components represent) will exhibit tail
dependence.

12.7 Some Closing Remarks

The Jones (2002) distribution (12.9), along with our simple extension (12.14), the Shaw and Lee (2008)
extension (12.16), and their related construction (12.19), have at least two aspects in common with
our proposed MESTI distribution (12.31). First, they are all easy to simulate from, which is useful for
studying the small-sample behavior of the parameter estimates, and also crucial if the method of indi-
rect inference is to be used (Chapter III.10). Second, for d > 2, (12.9) also has no known closed-form
solution (see Jones, 2002, page 170). In the d = 2 case, the density of (12.9) has a closed-form expres-
sion, but this comes at the price of not having a dispersion matrix or noncentrality terms, as added in
(12.14). Once these are added, the computation of the density involves, for all d > 1, a d-dimensional
integral, just like the MESTI.
The constructions from Shaw and Lee (2008) are, unfortunately, only limited to the bivariate case, so

that what remains is a comparison between the Jones (2002) extension (12.14), the AFaK distribution
(12.25), and the MESTI distribution (12.31).

1) The univariate margins of (12.31) are independent (Student’s t) for 𝚺 diagonal. With a diagonal
dispersion matrix, the marginals of (12.14), similar to those of its special case (12.3), are uncorre-
lated, but not independent. The same holds for (12.25); see Abdous et al. (2005, p. 11), who refer
to this as a “serious limitation”.

2) During estimation of (12.9) or (12.14), the degrees of freedom ki, i = 1,… , d, have to be in ascend-
ing order, thus causing a label-switching problem.The 𝑣i are fully decoupled in (12.25) and (12.31),
completely obviating this problem.

3) Both evaluation of the generalization of (12.14) to the d-dimensional case and evaluation of (12.31)
suffer from the curse of dimensionality as d grows. However, we have confirmed that (12.31) is,
numerically speaking, completely unproblematic for any set of 𝑣1,… , 𝑣d, whereas (12.14) reveals
itself to be quite numerically problematic when (as tested for the d = 2 case) 𝑣2 is close to 𝑣1, as
would be expected by the construction of the density. However, and quite disappointingly, this
region of “closeness” is not some small epsilon-distance, but rather large enough to obviate its use
in practice (as revealed by the potential closeness of the 𝑣i from Figure 12.1).
For example, numerical problems occurred for the case when 𝑣1 = 3 and 𝑣1 < 𝑣2 < 3.8 when very
high accuracy is demanded from the numeric integration, worsening and eventually failing as
𝑣2 → 𝑣1 nomatter what the desired accuracy, and presumably will only be exacerbated for larger d.
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For well-separated values of 𝑣1 and 𝑣2 (and no 𝚺matrix or noncentrality parameters), we recover,
to virtually machine precision, the values obtained from the closed-form density expression in
Jones (2002).
In contrast to the statement in Shaw and Lee (2008, p. 1285) that (12.16) “is a good basis for numeri-
cal computation provided b > 0”, (12.16) also suffers numerically for 𝑣2 near 𝑣1, the critical distance
depending on the desired accuracy of the numeric integration. When values of 𝑣1 and 𝑣2 are used
such that no numerical problems occur, and 𝜃 = 0, the obtained values agree, tomachine precision,
with those obtained for the bivariate density of (12.9).

12.A ES of Convolution of AFaK Margins

Here we propose an approximate method for computing the VaR and ES of a (weighted) convolution
of the margins of an AFaK distribution that is faster than the simulation method discussed in Section
12.5.5 if only onew is relevant. Consider using a relatively small simulation sample size s1 and approx-
imating the distribution of P̃ in (12.29) with a flexible, fat-tailed, asymmetric parametric distribution
whose parameters are estimated from the set of s1 i.i.d. simulated observations. From this fitted dis-
tribution, the ES (and anymeasure of interest) can be analytically calculated. To this end, we entertain
use of four such location-scale distributions: the GAt, a mixture of two GAt distributions (MixGAt),
the noncentral t, and the asymmetric stable Paretian distribution.
The c.d.f. of the two-component MixGAt is no more complicated to evaluate than the single GAt.

In particular, the c.d.f. of the K-component MixGAt is given by

FP(z) =
K∑
j=1

𝜆jFZj

(z − uj

cj
; dj, 𝜈j, 𝜃j

)
, (12.47)

where the jth GAt c.d.f. mixture component is given as the closed-form expression in (III.A.123), so
that a quantile can be found by simple one-dimensional root searching. Similar to calculations for the
ES of mixture distributions in Section III.A.8 and Broda and Paolella (2011), the ES of the mixture is
given by

ES(P; 𝜉) = 1
𝜉 ∫

qP,𝜉

−∞
xfP(x)dx = 1

𝜉

K∑
j=1

𝜆j ∫
qP,𝜉

−∞
xc−1j fZj

(x − uj

cj

)
dx

= 1
𝜉

K∑
j=1

𝜆j ∫
qP,𝜉 − uj

cj
−∞

(cjz + uj)c−1j fZj
(z)cjdz,

giving

ES(P; 𝜉) = 1
𝜉

K∑
j=1

𝜆j

⎡⎢⎢⎢⎣cj ∫
qP,𝜉 − uj

cj
−∞

zfZj
(z)dz + uj ∫

qP,𝜉 − uj

cj
−∞

fZj
(z)dz

⎤⎥⎥⎥⎦
= 1

𝜉

K∑
j=1

𝜆j

[
cjS1,Zj

(qP,𝜉 − uj

cj

)
+ ujFZj

(qP,𝜉 − uj

cj

)]
, (12.48)

where qP,𝜉 is the 𝜉-quantile of P, S1,Zj
is given in (III.A.95), and FZj

is the c.d.f. of the GAt distribution.



576 Linear Models and Time-Series Analysis

Remark While estimation of the two-component MixGAt is straightforward using standard
maximum likelihood estimation, it was found that this occasionally resulted in an inferior, possibly
bi-modal fit that optically did not agree well with a kernel density estimate. This artefact arises from
the nature of mixture distributions and the problems associated with the likelihood, as discussed
in detail in Chapter III.6. The methods discussed there can be used to rectify this issue, though we
mention here an alternative, general method based on a so-called augmented likelihood procedure.
The technique was first presented in Broda et al. (2013) in the context of discrete mixtures of stable
Paretian, and is adapted for the mixture GAt as follows.
Let f (x;𝜽) =

∑K
i=1 𝜆i fi(x;𝜽i) be the univariate p.d.f. corresponding to a K-component mixture dis-

tribution with component weights 𝜆1,… , 𝜆K positive and summing to one.The likelihood function is

𝓁∗(𝜽; x) =
T∑
t=1

log
K∑
i=1

𝜆i fi(xt;𝜽i), (12.49)

where x = (x1,… , xT )′ is the sequence of evaluation points, and 𝜽 = (𝝀,𝜽1,… ,𝜽K )′ is the vector of
all model parameters. Assuming that the 𝜽i include location and scale parameters, 𝓁∗ will be plagued
with “spikes” (degenerate maxima).
To avoid these, we remove unbounded states from the likelihood function by introducing a smooth-

ing (or shrinkage) term 𝜅 that, as 𝜅 → ∞, drives all components to be the same (irrespective of their
assigned mixing weight), implying that the mixture loses its otherwise inherently large flexibility.The
suggested augmented likelihood function is given by

𝓁(𝜽; x, 𝜅) = 𝓁∗(𝜽; x) + 𝜅

K∑
i=1

1
T

T∑
t=1

log fi(xt;𝜽i), (12.50)

where 𝜅 ⩾ 0 controls the shrinkage strength. If all component densities fi are of the same type, then
larger values of 𝜅 lead to more similar parameter estimates across components, with identical esti-
mates in the limit, as 𝜅 → ∞. At 𝜅 = 0, (12.50) reduces to (12.49). We term

�̂�ALE(𝜅) = argmax
𝜽

𝓁(𝜽;X, 𝜅)

the augmented likelihood estimator, or ALE, and it is, for fixed 𝜅 or 𝜅 growing at a slow enough rate
compared to the sample size T , consistent. By changing 𝜅, smooth density estimates can be enforced,
even for small sample sizes. For MixGAt with K = 2 and 250 observations, we find that 𝜅 = 10 works
well. ◾

We now turn to the use of the location-scale noncentral t (NCT). Estimation of the four parameters
is done via maximum likelihood, using the saddlepoint approximation to the density. There is no
closed-form expression for the VaR (quantiles) and the ES (note the latter needs the former), but
numeric methods are straightforward and fast, relative to the time cost of parameter estimation; see
the program and discussion in Section III.A.14.4

4 Another idea that is far faster is to use the table-lookup method for the VaR and ES, based on the two shape parameters, as
developed in Krause and Paolella (2014), and then incorporate the location and scale terms from the fact that VaR and ES
preserve location-scale transformations; see (III.A.128). However, that table-lookup method was designed for a shifted NCT
based on its expectation (12.57), such that, when location parameter 𝜇 is zero, its mean is zero, as is desirable when working
with GARCH-type processes.
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For the stable Paretian distribution, estimation of the four parameters is done using the empirical
c.f. estimator (see Section III.9.4.5), given its enormous speed advantage and comparable efficiency
to the m.l.e. For VaR and ES, a table construction was made such that, for given 𝛼 and 𝛽, the VaR
and ES are delivered based on table-lookup. Once the table is constructed, this method is essentially
instantaneous.5 An alternative fast method based on a saddlepoint approximation is developed in
Broda et al. (2017).
The motivation for using the stable is the conservative nature of the delivered ES. In particular,

the GAt, MixGAt, and NCT are all asymmetric variations of the Student’s t distribution which,
while clearly heavy-tailed, still potentially possess a variance; as opposed to the stable, except in the
measure-zero case of 𝛼 = 2. As such, the ES delivered from the stable will almost always be larger
than those from the t-based models. This might be desirable when more conservative estimates of
tail risk are desired, and, in the context of portfolio optimization, will affect the optimized portfolio
vectors and the out-of-sample performance.
Thus, for these four parametric models, they are all straightforward to estimate and, as just

discussed, computation of the VaR and ES is very fast and numerically reliable. We compare their
performance against the pure simulation method based on 100,000 replications, and use for vector
w (as a neutral and typical choice) the equally weighted portfolio, i.e., 𝑤i = 1∕d, i = 1,… , d.

Remark The tail behavior associated with the P̃ = P̃w in (12.29), given the AFaK model and
the parameters, is not subject to debate: Its distribution is analytically intractable, but involves
convolutions of (dependent) random variables with power tails, and, as such, will also have power
tails—unless all the 𝑣i > 2 and as d → ∞, so that the Gaussian central limit theorem is applicable. If
the 𝑣i are less than two, then the resulting convolution is expected to be in the domain of attraction
of a non-Gaussian stable law.
It is fallacious to argue that, as ourmodel involves use of the (noncentral) Student’s t, with estimated

degrees of freedomparameters above two, the convolutionwill have a finite variance, and so the stable
distribution cannot be considered. It is crucial to realize first that the model we employ is wrong w.p.1
(and also subject to estimation error) and, second, recalling that, if an i.i.d. set of stable data with,
say, 𝛼 = 1.7 is estimated as a Student’s tmodel, the resulting estimated degrees of freedom will not be
below two, but rather closer to four (see Section III.9.1). ◾

With respect to computational time for estimating theAFaKmodel and evaluating the ES for each of
the four parametric distributions based on a sample size of s1 = 1,000, the noncentral t required 0.20
seconds (on a 4.3GHz PC), the GAt andMixGAt required 0.23 and 1.96 seconds, respectively, and the
stable required 0.00064 seconds. Generation of the s1 samples required 2.9 seconds. (Generating the
s1 = 1e5 samples for the purely simulation-basedmethod required a bit under 100 times that, or about
4.5 minutes.) The empirical calculation of the ES based on s1 = 1e5 samples required approximately
0.35 seconds.The bottleneck is clearly the generation of samples, and this is because of the evaluation

5 Note, again, from (III.A.128) that VaR and ES preserve location-scale transformations, so that the table needs only be
constructed for the two shape parameters 𝛼 and 𝛽. If 𝛼 > 1 and the location parameter is zero, then the mean is zero; see
Section II.8.3.1. Given the extremely heavy tails of the stable, and the fact that the density is difficult to evaluate far into the
tails, direct evaluation of the ES (or construction of the aforementioned table) will be problematic if numeric integration
using the p.d.f. is employed. However, a definite integral formula for the ES that is straightforward to numerically evaluate has
been derived by Stoyanov et al. (2006), and this was used to build the tables; see Section III.1.16 for details.
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Figure 12.19 Comparison of five methods of estimating ES for a sequence of 100 rolling windows, using the equally
weighted portfolio based on the d = 30 constituents (as of April 2013) of the Dow Jones Industrial Average index
(Wharton/CRSP), with starting dates August 8, 2012 to December 31, 2012. These are plotted as a function of time, and
based on the equally weighted portfolio.

of the NCT quantile function in (12.24). In summary, it is fastest to use s1 = 1e3 samples and one of
the parametric methods to obtain the ES.
With respect to accuracy, for practical purposes, the ES delivered by the GAt, MixGAt, and NCT

are all very close to the empirical one, while the stable, as predicted, is considerablymore conservative;
see Figure 12.19. Closer inspection shows that the GAt and NCT are very close in performance, while
the MixGAt is virtually unbiased and has the smallest deviation from the empirical values. However,
because of the relatively high estimation time of the MixGAt (and the fact that the model is wrong
anyway), we advocate use of the NCT.
Our next and final goal is to determine an approximation to the smallest value of s1, say s∗1, such that

the sampling variance of the ES determined from the parametricmethods is less than some threshold.
This value, s∗1, is then linked to the tail thickness of the various predictive returns distributions over the
non-overlapping windows of data used above. The logic is that, as the tail thickness (degrees of free-
dom) parameter of the fitted NCT decreases, more samples will be required to estimate it accurately,
as its determination is primarily driven by tail observations.
To compute s∗1 for a particular data set, the ES is calculated n = 50 times for a fixed s1, based on n

simulations of P̃ in (12.29) (and having used the NCT for its approximation). This is conducted for
a range of s1 values, and s∗1 is taken to be the smallest number such that the sample variance of the
n ES values is less than a threshold value. Figure 12.20 shows the results for selected values of s1. As
expected, the spread of the ES values across rolling windows decreases as s1 increases. As can be seen
from themiddle right panel, a roughly linear relationship is obtained for the logarithm of ES variance.
A simple regression approach suggests itself. For a variance threshold of exp{−2} ≈ 0.14, some trial

and error results in

s1(�̂�P) = ⌈100 + (49.5 − 3.8 �̂�P + 100.5 �̂�−1P )2]II{�̂�P ⩽ 15} + 100II{�̂�P > 15}. (12.51)

The procedure is then: From an initial set of 300 AFaK samples, the ES is evaluated, s1 is computed
from (12.51), and, if s1 > 300 (or �̂�P < 11.58), an additional s1 − 300 samples are drawn.
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Figure 12.20 Upper left: Percentage log returns of the equally weighted portfolio.Mid and lower left: Boxplots of 1% ES values obtained from 50
simulations based on s1 draws from the fitted copula for different non-overlapping rolling windows of size 250, spanning January 4, 1993, to December
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12.B Covariance Matrix for the FaK

At the end of Section 12.5.1 we remarked that a closed-form expression for the covariancematrixV of
T = (T1,… ,Td)′ ∼ FaK(v,𝝁,𝚺) appears elusive. An attempt based on representation (12.24) appears
fruitless. We might guess that, if 𝑣i > 2, i = 1,… , d, then

V
?
= K𝚺K, K = diag([𝜅1, 𝜅2,… , 𝜅d]), 𝜅i =

√
𝑣i∕(𝑣i − 2). (12.52)

By computing the covariance via bivariate numeric integration, conducted using the program in
Listing 12.21, we can confirm that (12.52) is at least a reasonable approximation for the range of
values considered. For example, the code in Listing 12.22 can be used to compare the approximate
and (numerically computed) exact values.

1 function covval = AFaKcovint(df,noncen,mu,scale,R)
2 ATOL=1e-10; RTOL=1e-6; % 10 and 6 are the defaults
3 covval = quadgk(@(yvec) int(yvec,df,noncen,mu,scale,R), ...
4 -Inf,Inf,'AbsTol',ATOL,'RelTol',RTOL);
5
6 function Int=int(yvec,df,noncen,mu,scale,R)
7 Int=zeros(size(yvec));
8 ATOL=1e-10; RTOL=1e-6; % 10 and 6 are the defaults
9 for i=1:length(yvec)

10 y=yvec(i);
11 Int(i) = quadgk(@(x) AFaKcov(x,y,df,noncen,mu,scale,R), ...
12 -Inf,Inf,'AbsTol',ATOL,'RelTol',RTOL);
13 end
14
15 function f = AFaKcov(x,y,df,noncen,mu,scale,R)
16 dfvec=df(2:end); theta=noncen(2:end);
17 m1=sqrt(dfvec/2) .* gamma(dfvec/2-1/2) ./ gamma(dfvec/2) .* theta;
18 yy=y*ones(1, length(x)); tx=x-m1(1)-mu(1); ty=yy-m1(2)-mu(2);
19 pass=[x ; yy]; f=tx.*ty.*FFKpdfvec(pass',df,noncen,mu,scale,R)';

Program Listing 12.21: Computes the covariance of the bivariate (A)FaK. Nested univariate
numeric integration based on adaptive Gauss–Kronrod quadrature is used, as implemented in Mat-
lab’s quadgk routine.Their implementation conveniently supports integration over infinite intervals,
and is more accurate than use of their other numeric integration routines, notably the canned routine
for bivariate integration, dblquad, even in conjunction with an extreme error tolerance. The cases
in the graphs for which 𝑣0 = 𝑣1 = 𝑣2 were also computed with numeric integration, and as they are
exact (the discrepancy being on the order of less than 1 × 10−8 for all 𝜎12 between −0.9 and 0.9), we
can be rather confident that the values for the 𝑣1 ≠ 𝑣2 cases are quite accurate.

1 df=[4 3 4]; noncen=[0 0 0]; scale=[3 0.1];
2 mu=[3 -7]; R12=0.5; R=[1 R12; R12 1];
3 K = sqrt(diag( [df(2)/(df(2)-2) , df(3)/(df(3)-2)] ));
4 ApproxSigma = K*diag(scale)*R*diag(scale)*K
5 TrueCov = AFaKcovint(df,noncen,mu,scale,R)

Program Listing 12.22: Approximate and exact covariance of the bivariate (A)FaK.
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Figure 12.21 Top: Illustration of the discrepancy between the approximation of V12 = Cov(T1, T2) (obtained as the
off-diagonal term K𝚺K) and the true value (obtained by bivariate numeric integration), as a function of 𝜎12, where
T = (T1, T2)′ ∼ FaK(v,𝝁,𝚺), with 𝝁 = 𝟎, 𝜎1 = 𝜎2 = 1, 𝜎12 varies along the x-axis, and v = (𝑣0, 𝑣1, 𝑣2)′ 𝑣0 = max(𝑣1, 𝑣2),
with 𝑣1 and 𝑣2 specified in the legend of the plots.Middle and bottom: Same, but with using the AFaK distribution
with 𝜃0 = 0 but nonzero 𝜃1 and 𝜃2.

To illustrate, the top two panels of Figure 12.21 show the discrepancy between the single covariance
term in the 2 × 2 matrix K𝚺K from (12.52) and the true covariance between T1 and T2, obtained via
numeric integration, over a grid of 𝜎12 values, where 𝑣0 is always taken to be max(𝑣1, 𝑣2). Notice that,
for the cases with 𝑣1 = 𝑣2 (and, thus, 𝑣0 = 𝑣1 = 𝑣2), the FaK coincides with (12.3), with covariance
precisely K𝚺K. This is also seen in the graphs.
The nonzero discrepancy visible from the plots appears to increase monotonically in |𝜎12|

(for fixed 𝑣i), in |𝑣2 − 𝑣1|, and in min(𝑣1, 𝑣2). It also appears linear and symmetric about 𝜎12 = 0,
suggesting that we take, with Vij ∶= [V]ij the ijth element V, i, j = 1,… , d,

V12 = Cov(T1,T2) = [K𝚺K]12 − b12𝜎12 = (𝜅1𝜅2 − b12)𝜎12, (12.53)
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Figure 12.22 Same as top two panels of Figure 12.21 but based on (12.53) and (12.54) (and using k instead of 𝑣 in the
legend).

where b12 = b(𝑣1, 𝑣2) is the the slope of the line depicted in the top panels, 𝜅1 and 𝜅2 are given in
(12.52), and assuming that 𝑣0 = max(𝑣1, 𝑣2). Some trial and error based on simulation for a range of
values of 𝑣1 and 𝑣2 yielded the approximation

0.6 ⋅ b(𝑣1, 𝑣2) = c1g + c2𝛿 + c3𝛿m + c4𝛿m1∕2 (12.54)

for b, resulting in an R2 regression coefficient of 0.985, where

m ∶= min(𝑣1, 𝑣2), 𝛿 ∶= |𝑣2 − 𝑣1|, g ∶= Γ(𝛿 + 1∕2),

and, with enough significant digits to maintain the accuracy,

c1 = −0.00043, c2 = 0.2276, c3 = 0.0424, c4 = −0.1963.

Figure 12.22 shows the same top two panels of Figure 12.21 but based on (12.53) and (12.54).
The additional terms from (12.53) and (12.54) result in further accuracy, presumably enough for
practical applications. The results are, however, limited to the bivariate case, with 𝑣0 = max(𝑣1, 𝑣2).
If this latter constraint on 𝑣0 is adopted, then the result might hold in the general d-variate case:
Observe that, for T = (T1,… ,Td)′ ∼ FaK(v,𝝁,𝚺), if the bivariate marginal distribution of (Ti,Tj)′
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Figure 12.23 Top: Similar to Figure 12.22 but for 𝑣1 = 3, 𝑣2 = 4, a fixed value of 𝜎12 of 0.8, and as a function of 𝑣0. The
vertical dashed line indicates the case with 𝑣0 = max(𝑣1, 𝑣2), which agrees with the corresponding point in the bottom
panel of Figure 12.22 (right-most point of the dashed line). Bottom: Same, but for 𝑣1 = 3, 𝑣2 = 5. (Note that notation k
instead of 𝑣 is used in the titles, sparing the lazy author a re-computation of the graphics.)

is FaK([𝑣0, 𝑣i, 𝑣j]′, [𝜇i, 𝜇j]′,𝚺i,j), where 𝚺i,j is the 2 × 2 dispersion matrix of the ith and jth entries
of 𝚺, then clearly Cov(T1,T2) is unaffected by 𝑣3, 𝑣4,… , 𝑣d. Given that the univariate margins are
Student’s t, this conjecture seems likely, and simulation (by estimating the FaK parameters of the
three bivariate distributions formed from a simulated FaK with d = 3 with 100,000 observations)
essentially confirms this.
For example, taking the tri-variate case with 𝑣1 = 3, 𝑣2 = 4, 𝑣3 = 5, and 𝑣0 = max(𝑣i) = 5, the bivari-

ate margins (T1,T3) and (T2,T3) are such that 𝑣0 is the maximum of the two 𝑣i-values, but not for
(T1,T2).The top panel of Figure 12.23 investigates this case inmore detail, showing the error incurred
by the approximation (12.53) as a function of 𝑣0, for a fixed value of 𝜎12 of 0.8, with 𝑣1 = 3 and 𝑣2 = 4.
The case with 𝑣0 = max(𝑣1, 𝑣2) = 4 corresponds very close to the minimal error obtained for all 𝑣0.
As such, use of the structure of (12.53) for all pairs,

Vij ≈ (𝜅i𝜅j − bij)𝜎ij, bij = b(𝑣i, 𝑣j), (12.55)
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appears to be a reasonable approximation, keeping in mind that the slope term bij is not exact, and bij
was determined only for the bivariate case with 𝑣0 = max(𝑣i, 𝑣j). The reader is encouraged to investi-
gate this in more detail, replicating and augmenting the findings and graphs shown here.
We now turn to the AFaK case. Let T ∼ AFaK(t; v,𝜽,𝝁,𝚺), with 𝜃0 = 0 and mini(𝑣i) > 2. As with

the symmetric case, we hope that, to first order, 𝕍 (T) is reasonably approximated by K𝚺K, where K
is now

K = diag([𝜅1, 𝜅2,… , 𝜅d]), 𝜅i =
√
𝕍 (Si), Si = (Ti − 𝜇i)∕𝜎i, (12.56)

i.e., the diagonal matrix with iith element given by the square root of the variance of the singly non-
central t random variable Si ∼ t′(𝑣i, 𝜃i, 0, 1), computed from the expression for the mean,

𝔼[S] = 𝜃

(
𝑣

2

)1∕2Γ(𝑣∕2 − 1∕2)
Γ(𝑣∕2)

, (12.57)

as in (12.36), and 𝔼[S2] = [𝑣∕(𝑣 − 2)](1 + 𝜃2).
The middle and bottom panels in Figure 12.21 show that the linearity and symmetry about 𝜎12 = 0

no longer hold when noncentrality parameters are introduced, although the discrepancy between the
true Cov(Ti,Tj) and that given by the corresponding element of approximation K𝚺K remains small.
This will break down as the asymmetry increases and/or as min(𝑣i) → 2.
The reader interested in this model is encouraged to develop an approximation to Cov(Ti,Tj)

improving upon K𝚺K, similar to (12.53) and (12.54). Such an approximate mapping is a type of
response surface. The program in Listing 12.21 using bivariate numeric integration would be used
to generate a set of exact covariance values over a four-dimensional grid of values in 𝑣1, 𝑣2, 𝜃1, and 𝜃2,
and then trial and error is required for finding an accurate response surface based on polynomials and
other terms involving v and 𝜽 for Cov(T1,T2). A final program would input, for any dimension d, v, 𝜽,
𝝁, and 𝚺, and output the (approximation to the) covariance matrix of T ∼ AFaK(t; v,𝜽,𝝁,𝚺). As the
resulting response surface is evaluated very fast, one could use it to estimate the model parameters
with the method of moments, i.e., choose the parameters to minimize the difference between the
sample mean vector and sample variance covariance matrix, and their theoretical counterparts. The
result is a type of robust estimator, in the sense that the likelihood was not used, which could well be
mis-specified.
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13

Weighted Likelihood

[I]t is worth asking why do we continue to study non-linear time series models, if they are
analytically difficult, can rarely be given economic interpretation, and are very hard to use for
practical tasks such as forecasting.

(Clive W. J. Granger, 2008, p. 2)

13.1 Concept

The goal of this chapter is not to present another model for asset returns, but rather a way of
augmenting virtually any time-series model with very little effort that results in improved forecasts.
There are, in fact, two ways, and we have already discussed one of them (notably in book III, though
also in this chapter below, and in Chapter 14), namely use of shrinkage. From a conceptual point
of view, shrinkage helps to address the annoying fact that there is a finite amount of data available
for estimation, and uses the tradeoff of bias and variance to deliver estimators with, in aggregate,
lower mean squared error. The second inferential augmentation, use of weighted likelihood,
works from a different angle, and addresses the fact that, in essentially all realistic applications in
time-series modeling, the proposed model is wrong w.p.1, and is in some (often unknown) way
mis-specified. Note that, as shrinkage and weighted likelihood are addressing different aspects of the
estimation problem, they can (and should) be used in conjunction. Conveniently and importantly,
neither entails a more complicated estimation procedure, though both require the use of tuning
parameters that need to be optimized for the desired purpose of the model (which is, in our setting,
forecasting).
Weighted likelihood can be used in conjunction with what the researcher deems to be the “best”

model in the sense of being “least mis-specified”, but also in models that are blatantly mis-specified.
The reason one would use the latter is because of ease of estimation—the “best” model might be
relatively sophisticated and entail a complicated estimation paradigm, and/or is such that simulation
is trickier (as would be used for checking the small-sample behavior of estimators) and/or whose
stationarity conditions are more elaborate or unknown. In particular, we have in mind to use an i.i.d.
setting for modeling financial asset returns, which, as was emphasized in Chapter 10 on GARCH
structures, is quite obviously mis-specified. Such an approach, when used with weighted likelihood,
still requires respecting the time-series nature of the data (i.e., the natural ordering through time), as

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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opposed to allowing for the data to enter an inferential procedure permuted in some way. That is, if
the data are truly i.i.d., then their ordering has no relevance; they are exchangeable.1
The idea is to recognize that, in all traditional likelihood-based inference for i.i.d. data, each obser-

vation (or, in the non-i.i.d. case, possibly the i.i.d. innovation, or error term, associated with that
observation) is implicitly equally weighted in the likelihood. This is optimal if the data generating
process (d.g.p.) is correctly specified. In a time-series context, notably for modeling financial asset
returns, it is essentially understood that the underlying d.g.p. is quite complicated, and any postu-
lated model is wrong w.p.1. All models will be mis-specified to some extent, some models more than
others, though it is not obvious what a correct metric is for “degree of mis-specification”. Use of penal-
ized in-sample-fitmeasures such asAIC andBIC can help choose among competingmodels, as well as
(and preferably) out-of-sample performance. As all models will be wrong in this context, we can envi-
sion our chosen model to be a reasonable approximation when used on short time intervals, though
as the size of the data window increases, its “degree of mis-specification” is expected to increase.
While it might, at first blush, appear that the extent of amodel’s mis-specification is an analytic con-

cept that has nothing whatsoever to do with the amount of data available for estimation, the demands
of realitywhenworkingwith nontrivial d.g.p.s suggest that the two are indeed intimately linked. Essen-
tially, the amount of available data decisively dictates the possible complexity of the model.
If we somehow knew the true parametric form of the d.g.p., and estimation of its parameters were

computationally feasible, then it would be optimal to use all the available data, and possibly the correct
d.g.p.,2 and equally weight the data in the likelihood, as we have so far implicitly done. As this is not the
case, we are left with fitting a mis-specified model that serves as a reasonable local approximation to
the d.g.p., so the question becomes: Howmuch data should be used? A small window of observations
leads to less bias but very high variance, and vice versa for a large window. As the complexity of the
model increases, more data could be used.
Moreover, for time-series data, if the goal is to construct a density forecast at the future time T + 1,

then it stands to reason that, amid a mis-specified model that does not account for how, say, the
parameters change through time,more recent observations contain relativelymore information about
the distribution at timeT + 1 than do observationsmuch further in the past.The same concept could,
for example, be applied to spatial data, such that observations closer to the target area to be forecasted
to receive more weight than more distant observations.
In general, the idea that parameters change over (say) time was strongly embraced in the latter

half of the 20th century with regression modeling (and continues unabated), as discussed in Section
5.6. With respect to the Hildreth–Houck random coefficient model, it was pointed out early on that,
along with endowing the coefficients with randomness, they should also be augmented by making
them (usually simple linear) functions of other observable random variables that change through
time. As stated by Singh et al. (1976, p. 341), “… we assume that the typical regression coefficient
𝛽i(t) is subject to two influences that cause it to deviate from its average value 𝛽i. The first of these,
following [Hildreth–Houck], is a random disturbance that possesses certain distributional properties.

1 See Section I.5.2.3 for a formal definition. This is also the assumption used for the non-parametric bootstrap. Note that
exchangeability does not imply independence.
2 Recall the quote by Magnus (2017) at the beginning of Section 1.4 regarding possibly omitting estimation of some
parameters, even if they correspond to genuine effects in the true model, because of having a finite amount of data, and such
that precision of more relevant parameters can be gained (at the cost of bias). An example is the asymmetry parameter in the
APARCH model from Section 10.3.1: When this asymmetric effect is mild, it is better off in terms of out-of-sample
forecasting ability to just set it to zero. Observe how this is a form of shrinkage estimation.
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The second is due to the influence of factors that may vary systematically with time”. This concept
ultimately gave rise to the more general time-varying regression model structures surveyed in Park
et al. (2015). The use of weighted likelihood can thus be seen as a “poor man’s” way of improving the
forecasts from a model for which it is speculated or known that the parameters (such as regression
coefficients) are changing through time and, possibly, depend on certain variables that are not easily
obtained.
As already mentioned, the most notable stylized fact of asset returns measured at a daily frequency

is volatility clustering. Indeed, one of the reasons the class of GARCHmodels is successful is because
it models the volatility essentially as a weighted average of past volatilities, withmore weight on recent
observations. This is well-captured in the following quote by the originator of the ARCH model:

The assumption of equal weights seems unattractive, as one would think that the more recent
events would be more relevant and therefore should have higher weights. Furthermore the
assumption of zero weights for observations more than one month old is also unattractive.

(Robert Engle, 2001, p. 159)

While Engle’s statement is taken somewhat out of context (it refers to the use of a GARCH filter for
modeling a time-varying volatility), it embodies precisely the more general idea that, when the true
d.g.p. of a time series is complicated, a mis-specified model to be used for forecasting the future can
be improved by conducting its estimation such that more recent observations receive relatively more
weight than those further in the past. Such a method adds considerably to the forecasting power of a
model for financial asset returns—evenwhen time-varying volatility via aGARCH-typemodel is used.
To add some intuition to the use of weighted likelihood, let the true d.g.p. be nonlinear (as will

be the case in almost all nontrivial phenomena of interest). As suggested in the quote above from
Granger (2008), specification of the nonlinearmodel can be rather difficult, and the ensuing problems
associated with forecasting (and possibly estimation) can preclude its practical use. Consider using a
local linear approximation (as could be obtained from a first-order Taylor series, for example, from
the true d.g.p., if it were somehow available). This will be useful on smaller windows of data, but the
parameters associated with the linear approximation will need to change through time (or, for spatial
models, through space). This is in fact the content of Granger (2008), appealing to a result he derived
with HalbertWhite, referred to asWhite’s theorem. It states that, for time series {Yt}with finitemean
and Pr(Yt = 0) = 0, there exists sequences {pt} and {et} such that Yt = ptYt−1 + et , i.e., the model can
be expressed linearly, with time-varying coefficients.
The specification of the law of motion for sequence {pt}might be challenging, and instead one can

consider assuming it is constant on short windows of data.This, in turn, can be approximated by using
the entire data set, but such that observations at time t are given more weight than those at time t − s,
s > 0. Thus, the nonlinearities associated with the true d.g.p. can be implicitly modeled via use of a
linear model with time-varying parameters or weighted likelihood.
Another notable feature of this strategy, also emerging in Engle’s quote, is that the researcher is

relieved of having to choose an arbitrary cutoff for the data window, and can, in principle, use all
relevant data instead of just an arbitrarily chosen amount, such as one or four years. Indeed, in light
of the above reasoning, it should actually seem quite odd that, in the difficult game of time-series
prediction, there should exist a precise point of time in the past such that the data previous to that
point are of absolutely no relevance to the analysis, while the data that do get included are implicitly
equally weighted.
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To implement theweighting scheme for a set of 𝑣 observations, a vector ofweights𝝕 = (𝜛1,… , 𝜛𝑣)
is used such that it is standardized to sum to a constant, such as 𝑣 (as with the conventional m.l.e.),
or to one, which is what we choose. The model parameters are then estimated by maximizing the
weighted likelihood, whereby the log-likelihood component associated with period t is multiplied by
𝜛t , t = 1, 2,… , 𝑣. We use the simple hyperbolic weighting scheme given by

𝜛t ∝ (𝑣 − t + 1)𝜌−1,
𝑣∑

t=1
𝜛t = 1, (13.1)

where the single parameter 𝜌 dictates the shape of the weighting function. Values of 𝜌 < 1 (𝜌 > 1)
cause more recent observations to be given relatively more (less) weight than those values further in
the past, while 𝜌 = 1 corresponds to the standard, equally weighted likelihood.

Example 13.1 Let Yt
ind∼ N2(𝟎,Rt), t = 1,… ,T , where Rt is a correlation matrix with the single

parameter being its (1, 2) element Rt,12 = 0.5t∕T . Notice that R1,12 starts at (almost) zero and changes
linearly such that, for t = T , is 0.5. This is an example of a time-varying parameter model. If we
estimate R12 with the usual, equally weighted likelihood and assuming an i.i.d. sequence, then we
expect R̂12 to be close to 0.25, though the density prediction at time T + 1 ideally would use an R̂12
close to 0.5.
We imagine thatwe don’t know the true time-varying nature ofR12, and consider the use ofweighted

likelihood. We do this using values of weighting parameter 𝜌 = 0.01, 0.02,… , 1, with 𝜌 = 1 corre-
sponding to traditional, equally weighted estimation, applying (13.1) to the usual plug-in estimator of
correlation.Weighted estimation of correlation matrices based on the usual plug-in sample estimator
is considered in detail in Pozzi et al. (2012), who also provide Matlab code as function weighted-
corrs. We use that routine for our results, though the reader is encouraged to construct the basic
weighted sample correlation estimator him- or herself.
The results, for two sample sizes T and 40 replications, are shown in Figure 13.1a. As 𝜌 decreases

towards 0.01, the “effective sample size” is decreasing, and the variance of R̂12 increases, though is also
becoming less biased. As (also) expected, the variance of R̂12 is larger for the smaller sample size of
T = 1,000.
Now let Yt

ind∼ FaK2(v, 𝟎,Rt), as introduced in Section 12.5.1, where the subscript 2 denotes the
dimension d, v = (𝑣0, 𝑣1, 𝑣2) = (4, 4, 4)′, and the same structure as for the normal case is used for
Rt . Figure 13.1b shows the resulting R̂12 when the estimator is the weighted sample correlation, while
Figure 13.1c uses the weighted m.l.e., conditional on the true parameters v, 𝝁 = (0, 0)′, and scales
𝝈 = (1, 1)′. (One could also inspect R̂12 when all parameters are jointly estimated, though besides tak-
ing longer to compute in this exercise, the point is to compare the m.l.e. of R12 versus the sample
correlation estimator, which itself does not make use of the other parameters.)
As with the normal case, the variance of R̂12 increases as 𝜌 decreases, its bias decreases, and is

lower for the larger of the two sample sizes. Moreover, its variance when using the (weighted) sample
correlation is substantially higher when using FaK instead of the normal, and, most crucially, for FaK,
R̂12 has much lower variance when the (weighted) m.l.e. is used, in agreement with the results in
Figure 12.11.
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Figure 13.1 (a) Estimates of R̂12 using the weighted sample correlation estimator, as a function of weighting

parameter 𝜌, for bivariate normal data generated as Yt
ind∼ N2(𝟎,Rt), t = 1,… , T , where Rt is a correlation matrix with

single parameter Rt,12 = 0.5t∕T , so that the correlation is varying linearly through time, from zero to 0.5. (b) Same as (a),
again using the weighted sample correlation estimator, but for bivariate FaK data with 𝑣0 = 𝑣1 = 𝑣2 = 4 and the same
correlation structure. (c) Same as (b), but estimation is based on the weighted m.l.e.

The reader is invited to construct the code to reproduce the graphs in Figure 13.1 and, at least for the
case for bivariate normal data generated as Yt

ind∼ N2(𝟎,Rt), perform far more than 40 replications and
compute and plot the mean squared error as a function of 𝜌. Presumably, it will be an approximately
quadratic function such that its minimum is reached for a value of 𝜌 somewhere between zero
and one. ◾
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13.2 Determination of Optimal Weighting

The only useful function of a statistician is to make predictions, and thus to provide a basis for
action.

(William Edwards Deming; quoted in Wallis, 1980, p. 321).

Note that the optimal value of 𝜌 cannot be jointly estimated with the model parameters by maxi-
mizing the likelihood, but must be obtained with respect to some criterion outside of the likelihood
function. Consider working with a series of data, say Y1,Y2,… ,YT , in which the observations have
a natural ordering through time or space, and concern centers on making a prediction about the
as-yet-unobserved YT+1. In much of the classic time-series literature, emphasis was on predicting
𝔼[YT+1], with the nearly universal assumption that YT+1 is (multivariate) normally distributed with
constant covariance matrix 𝚺. In numerous applications, empirical finance being a highly prominent
one, the distribution of YT+1, either unconditionally, or conditional on Y1,Y2,… ,YT , is (often highly)
non-Gaussian and, for daily financial asset returns, also exhibits a time-varying covariance matrix.
As such, there is merit in constructing a density forecast for YT+1, instead of just its first and second
moments.
In the context of using the i.i.d. Mix2Nd model (presented in Chapter 14) for obtaining a predictive

density for the DJIA-30 asset returns, the choice of 𝜌 was determined in Paolella (2015) by using the
average of the so-called realized predictive log-likelihood values based on one-step-ahead predic-
tions, formed from moving windows of 𝑣 = 250 observations (about one year of daily trading data).
For the particular data set and model used in Paolella (2015), the optimal 𝜌 was found to be about
0.7, with respect to (13.3) given below.The latter changes smoothly with 𝜌, and is monotone decreas-
ing as 𝜌 increases or decreases away from 0.7. Notice that, via use of weighted likelihood, the model
implicitly addresses the non-i.i.d. aspect of volatility clustering of the data.
To be more precise, we require the predictive density of Yt+1, conditional on It , the information set

up to time t. In our context, the information set is just the past 𝑣 observations of daily data.We denote
the predictive density based on given model  as ft+1∣It (⋅; �̂�), where �̂� is an estimator of parameter
set 𝜽. As a simpler example, take model  to be the univariate, mean-zero, stationary first-order
autoregressive model with homoskedastic normal innovations (4.1), i.e., Yt = aYt−1 +Ut , |a| < 1, and
Ut

i.i.d.∼ N(0, 𝜎2). Then ft∣It−1(y; â, 𝜎
2) is the normal distribution with mean âyt−1 and variance 𝜎2, i.e.,

𝜙( y; âyt−1, 𝜎2).
Observe that either a growing or moving window can be used; we use the latter, given our premise

that the local linear approximation to the d.g.p. is not stationary over large segments of time, and
also exhibits volatility clustering, so that use of relatively smaller, fixed-size windows is preferred. For
judging the quality of the density forecasts, we use the average (over all the moving windows) of logs
of the values of the forecast density itself, evaluated at next period’s actual realization. In particular,
based on model, the realized predictive log-likelihood at time t + 1 is given by

𝜋t+1(, 𝑣) = log ft+1∣It (yt+1; �̂�). (13.2)

This 𝜋t+1(, 𝑣) is computed for each t = 𝑣,… ,T − 1, where T is the length of the entire time series
under study, and their average,

ST (i, 𝑣) =
1

(T − 𝑣)

T∑
t=𝑣+1

𝜋t(i, 𝑣), (13.3)
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is reported, for themodels1,… ,m under consideration.We refer to this as the normalized sum
of the realized predictive log-likelihood. In this way, the choice and calibration of the model is tied
to directly what is of interest—its ability to forecast.
Thismethod has gained in prominence, compared to inspection of, say, point estimates of forecasts,

particularly for non-Gaussian models and models that are less concerned with mean prediction, but
rather volatility; both of these conditions being precisely the case in financial time-series analysis.
See Dawid (1984, 1985a,b, 1986), Diebold and Mariano (1995), Diebold et al. (1998), Christoffersen
(1998), Timmermann (2000), Tay and Wallis (2000), Corradi and Swanson (2006), Gneiting et al.
(2007), Geweke and Amisano (2010), Maneesoonthorn et al. (2012), and Paolella and Polak (2015a)
for methodological developments and applications in financial forecasting.
To reiterate, if the actual d.g.p. were known and feasibly estimated, then no weighting should be

employed (i.e., 𝜌 = 1). Observe that this idea could be used as a metric to rank and judge the efficacy
of various models and the “degree of mis-specification”:The smaller the optimal 𝜌 is for a givenmodel
(i.e., larger weighting is required), the more it deviates from the actual d.g.p.

Remarks
a) We use the convention that, with no subscript on �̂� in ft∣It−1 (⋅; �̂�), this implies that �̂� has been esti-

mated based on It−1. However, this need not be the case, and in many models, �̂� is not updated for
every t. For example, in the the AR(1) model, we could estimate a and 𝜎2 only every, say, o = 20
observations, but the forecast for time t is still âyt−1, because yt−1 ∈ It−1, but âmay not have been
“refreshed” with yt−1. We denote the predictive density of Yt conditional on It−1 but using only
the parameter estimate based on I𝜁 as ft∣It−1(⋅; �̂�𝜁 ), 𝜁 ⩽ t − 1. If we wish to re-estimate 𝜽 only every
o observations, then in a computer program a FOR loop is used to traverse from t = 𝜏0 + 1 up
to t = T , where 𝜏0 indicates where the forecasting exercise starts (and usually equals 𝑣), and the
parameters would be re-estimated if rem(t − 𝜏0 − 1, o) = 0, where rem is the remainder function
with rem(a, b) = a − nb for n = ⌊a∕b⌋. We can then express the tth density forecast as

ft∣It−1(⋅; �̂�𝜁 ), 𝜁 = t − 1 − rem(t − 𝜏0 − 1, o). (13.4)

Note that, for o = 1, this reduces to 𝜁 = t − 1. We take o = 1 when estimation is fast, while for
models such that estimation is relatively time consuming, a value o > 1 should be considered.

b) Lest the reader get the impression that weighted likelihood is only a technique to augment an
i.i.d. model as a substitute for (in our context) a (possibly, but not necessarily) more appropriate
time-series model, we wish to emphasize that, quite on the contrary, it can also be applied with the
latter. The idea is that, w.p.1, even the time-series model employed for inference is mis-specified,
and so weighting recent observations more than those in the past will lead to better predictions.
This was shown to be the case by Mittnik and Paolella (2000) in the context of VaR prediction for
financial time seriesmodeled withGARCH-type processes, and also by Paolella and Steude (2008).
In the latter paper, several models, ranging in complexity from very simple to rather sophisticated,
were used, and the very intuitive and confirming result emerged that, as the GARCH-type model
employed increased in complexity and (crucially) effectiveness for prediction with traditional,
un-weightedmaximum likelihood, its optimal value ofweighting parameter increases towards one,
i.e., less weighting is required.
Weighted likelihood can also be used in conjunction with the bootstrap to compute confidence
intervals for value at risk (VaR) and expected shortfall (ES); see Broda and Paolella (2011). ◾
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13.3 Density Forecasting and Backtest Overfitting

It is worth reflecting again on the earlier quote by Granger (2008) regarding the use of complicated
nonlinear time-series models. The AFaK model from Section 12.5.1, like the Mix2Nd in Chapter 14,
is analytically simple, fast, and straightforward to estimate and forecast. While the underlying true
d.g.p. of a (particularly multivariate) sequence of financial asset returns is surely highly complicated
and nonlinear, via the links between nonlinear models, linear models with time-varying parameters,
and weighted likelihood, we can argue that use of a linear model (in our setting, actually an i.i.d.
model with no relationship, linear or otherwise, between time points) with weighted likelihood offers
a potentially reasonable approximation to the true d.g.p. for forecasting purposes that also exhibits
the practically useful aforementioned benefits (ease of estimation and forecasting, etc.). However, the
ultimate judge of a time-series (or spatial) model is almost always its ability to forecast, as considered
below.
Weighted likelihood can be used in conjunction with shrinkage. An essentially perfect context for

the use of shrinkage is the correlation matrix R, given that their off-diagonal elements are measuring
a common phenomenon and their numbers grow on the order of d2. It is known that covariance- and,
thus, correlation-matrices can be subject to large estimation error, particularly as the ratio d∕T grows,
and shrinkage estimation becomes crucial; see, e.g., Jorion (1986), Kan and Zhou (2007), Levina et al.
(2008), Ledoit and Wolf (2004, 2012), and the references therein.
Denote by R̂ an estimator of R, such as the sample correlation estimator or the m.l.e. Shrinkage

towards zero can be applied to its off-diagonal elements by taking the estimator to be R̃ = (1 − sR)R̂ +
sRI, for some 0 ⩽ sR ⩽ 1. Alternatively, shrinkage towards the average of the correlation coefficients
can be used. A bit of thought reveals that this can be algebraically expressed as, with a = 𝟏′(R̂ −
I)𝟏∕(d(d − 1)) and 𝟏 a d-vector of ones,

R̃ = (1 − sR)R̂ + sR((1 − a)I + a𝟏𝟏′). (13.5)
Use of (13.5), with sR = 0.2, was demonstrated in Paolella andPolak (2015a) (in the context of theAFaK
model with a GARCH structure for the scale terms) to be most effective, in terms of out-of-sample
density forecasting, using the d = 30 components of the DJIA index from January 1993 to December
2012. We will demonstrate below a similar result for the AFaK model but using the i.i.d. setting.

Remark In a financial context, correlations among asset returns tend to be positive, and change over
time. These two characteristics further support use of simple shrinkage constructs such as (13.5),
while the latter suggests that smaller windows of estimation—as we anyway advocate in light of an
unknown and complex d.g.p.—are beneficial, thus increasing ratiod∕T and the necessity of employing
shrinkage to reduce the m.s.e. of R̂.
Relevant to a discussion of correlations between financial assets changing over time is the concept of

financial contagion. Researchers define the term in different ways. For example, Forbes and Rigobon
(2002) argue that financial contagion is an increase in cross-market comovement after a sudden shock
to one market (or country), while Dungey and Martin (2007) separate contagion from spillover. The
difference between these two types of linkages is related to the timing of transmission, with contagion
referring to a shock that occurs contemporaneously in two markets, while a spillover involves a time
lag. Dungey and Martin (2007) demonstrate that spillover effects are larger than contagion effects.
More detail can be found in Dungey et al. (2018) and Caporin et al. (2017), who recently study conta-
gion via use of high-frequency data. Dungey et al. (2018) examine contagion through the episodes of
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flight-to-safety (moving assets from stocks to gold) and flight-to-quality (stocks to bonds), whereas
Caporin et al. (2017) explore so-called systemic co-jumps.
Regarding why correlations among assets (in a single market or in multiple markets) tend to change

over time and “move together”, one possible, and surely partial, explanation is the following, which
we will also refer to as contagion: As markets drop and investors begin to sell not just the distressed
stocks, but everything, out of fear and desire for liquidity, more assets begin to fall; other nervous
investors follow suit, markets drop further, and the correlations among assets begin to increase. As
put by Ilmanen (2011, p. 14), “Sharp liquidations tend to occur amidst tightening financial conditions,
and these in turn reinforce price and liquidity declines. These forces contribute to the short-term
momentum and long-term reversal patterns observed for many investments.”
One can view this as a form of violation of “efficient markets”, and the potential for so-called

behavioral finance models for assisting in explaining human behavior and the rationality of deci-
sions amid irrational market participants. It also serves as an example of why traditional hedging
strategies—designed to deal with dropping stock prices by offsetting with other instruments or
low-correlated stocks, fail, precisely when they are required, and thus the need for more advanced
financial engineering and econometric tools. See, e.g., Solnik and Longin (2001), Pesaran and Pick
(2007), and the references therein for more substantial, detailed discussions and explanations for this
effect. ◾

What we require is a program to estimate the i.i.d. AFaK model, using the two-step method with
the correlation terms determined optionally via maximum likelihood or the sample correlation, both
with the weighting procedure, and such that, for the margins and R, weighted likelihood can be used,
along with shrinkage via (13.5). We name it FangFangKotzestimation2step. In the FaK case,
it calls program Studentstestimation, as also called in Listing 12.13, and is the same as pro-
gram tlikmax in program Listing III.4.6, except that Studentstestimation supports weighted
likelihood. The only changes required are to additionally pass to it the scalar rho, and augment the
evaluation of the log-likelihood with the code in Listing 13.1. For the AFaK case, program Noncen-
traltestimation is similar, but using the s.p.a. density approximation to the NCT.

1 T=length(x); tvec=(1:T); omega=(T-tvec+1).ˆ(rho-1); w=T*omega'/sum(omega);
2 ll = -mean(w.*llvec);

Program Listing 13.1: Required addition to program Studentstestimation to support
weighted likelihood, which is otherwise the same as program tlikmax in Listing III.4.6.

Next, we need a program that computes (13.3) over a grid of sR values from (13.5) and 𝜌-values
from (13.1) and plots the resulting 3D performance graphic.This is given in Listing 13.2.The reader is
encouraged to expand this, performing the parameter estimation only every, say, o = 10 trading days
to save time without great loss of applicability, via (13.4).3

3 Another idea is to augment the code such that the previous window’s final parameter estimates are used as the starting
values for the next window, as the parameters are not expected to change very much. This task is not so crucial with this
model, as it appears that the final estimates are not dependent on the choice of starting values, nor is much time wasted using
inferior starting values. Also, it could be a bit tricky when using the parfor statement, enabling parallel processing.



596 Linear Models and Time-Series Analysis

Based on the daily (percentage log) returns of the 30 stocks comprising the DJIA index, from June
2001 toMarch 2009 (yielding 1,945 vector observations), the resulting graphic for the case of the i.i.d.
FaK model and using sample correlations is shown in Figure 13.2 (and having taken about 15 hours
of computing, using four cores). We see the appealing result that performance is close to quadratic in
both 𝜌 and sR, with the maximum occurring at �̃� = 0.45 and s̃R = 0.30 (with respect to the coarse grid
chosen).
The previous exercise was conducted for several models, and the results are collected in Table 13.1.

For the FaK model but using the m.l.e. for the off-diagonal elements of R, the optimal values are �̃� =
0.50 and s̃R = 0.30, yielding a slightly higher achieved maximum of (13.3) of 45.3986. (The resulting
3D figure is very similar in appearance to that in Figure 13.2, and is omitted.) This demonstrates that
use of the m.l.e. does add to forecasting performance (for the FaK and this data set), but it is far from
obvious if this relatively small gain (also considering the additional computational cost) is significant
in a meaningful sense, such as with respect to applications such as hedging or portfolio optimization
investment strategies.

Model: FaK.  Corr: Sample.  Max: −45.448

0.25 0.35 0.45 0.55 0.65 0.75 0.850.2
0.3

0.4
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Figure 13.2 Density forecast measure (13.3) over a grid of sR values from (13.5) and 𝜌-values from (13.1), for the FaK
model, using sample correlation.

Table 13.1 The obtained average realized predictive log-likelihood (13.3) (to four significant
digits) for various models and weighted likelihood (𝜌) and correlation shrinkage (sR)
parameter settings. Last column is the difference of (13.3) from that of the first entry.

Model Type Correlations 𝝆 sR (13.3) Diff

FaK i.i.d. Sample 0.45 0.30 −45.45 0.00
FaK i.i.d. Sample 1.00 0.00 −46.05 0.60
FaK i.i.d. m.l.e. 0.50 0.30 −45.40 −0.05
AFaK i.i.d. Sample 0.45 0.30 −45.53 0.08
AFaK i.i.d. m.l.e. 0.45 0.30 −45.83 0.38
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1 if matlabpool('size') == 0
2 matlabpool open
3 matlabpool size
4 end % use 4 cores. Commands are for Matlab version 10.
5 % parpool % higher Matlab versions
6 % data is the T X d matrix of (daily log percentage) returns
7 [T,d]=size(data); wsize=500;
8 MLEforR=0; AFaK=0; % choose. Use of MLE and AFaK is much slower.
9 rhovec=0.05:0.05:0.9; s_Rvec=0.0:0.05:0.5; % choose grid

10 rholen=length(rhovec); sRlen=length(s_Rvec); rpllmat=zeros(rholen,sRlen);
11 tic
12 for rholoop=1:rholen, rho=rhovec(rholoop);
13 parfor sRloop=1:sRlen, s_R=s_Rvec(sRloop);
14 rpllvec=zeros(T-wsize-1+1,1); % put here because parfor
15 for t=(wsize+1):T % make density prediction for time t
16 disp([rho, s_R, t])
17 Y=data((t-wsize):(t-1),:); % previous wsize returns
18 Yt=data(t,:); % actual realized return at time t
19 param = FangFangKotzestimation2step(Y,AFaK,rho,MLEforR,s_R);
20 v=param.df; theta=param.noncen; mu=param.mu; scale=param.scale;
21 rpllvec(t-wsize)=FFKpdfvec(Yt,v,theta,mu,scale,param.R);
22 end
23 rpllmat(rholoop,sRloop)=mean(log(rpllvec));
24 end
25 end
26 toc
27 % chop off some
28 rhovec=0.05:0.05:0.9; rhovec=rhovec(3:end);
29 s_Rvec=0.0:0.05:0.5; s_Rvec=s_Rvec(4:end); use=rpllmat(3:end,4:end);
30
31 % surface plot
32 surf(rhovec,s_Rvec,use')
33 set(gca,'fontsize',16), zlim([min(use(:)) max(use(:))])
34 xlabel('Weight \rho'), ylabel('Shrinkage s_R')
35 xlim([rhovec(1) rhovec(end)]), ylim([s_Rvec(1) s_Rvec(end)])
36 set(gca,'XTick',0.15:0.1:0.85), set(gca,'YTick',0.2:0.1:0.5)
37
38 % get values of rho and s_R at function maximum
39 [TheMax idx] = max(use(:)); [rhomaxi sRmaxi] = ind2sub(size(use),idx);
40 rhomax=rhovec(rhomaxi); s_Rmax=s_Rvec(sRmaxi);
41 disp(['Achieved Max: ',num2str(TheMax), ...
42 ' for rho=',num2str(rhomax),', s_R=',num2str(s_Rmax)])
43 title(['Model: FaK. Corr: Sample. Max: ',num2str(TheMax)])
44
45 % plot lines showing coordinates at maximum
46 zz=zlim; zz=zz(1); xx=rhomax; yy=s_Rmax;
47 line([xx xx],ylim,[zz zz],'color','k','linewidth',3)
48 line(xlim,[yy yy],[zz zz],'color','k','linewidth',3)

Program Listing 13.2: Constructs (13.3) for a given data set data, over a double grid of s𝐑 and
𝜌-values.
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The i.i.d. AFaK model, using the sample correlation for estimating R, resulted in a maximum of
45.5323, occurring at �̃� = 0.45 and s̃R = 0.30. Note, perhaps surprisingly, that the obtained maximum
of (13.3) based on the FaK with sample correlation is (slightly) higher than that of AFaK, even though
it appears that most assets have “significant” asymmetry. This is not an inconsistency or a paradox,
but rather the nature of statistical inference, and worth emphasizing.

Classic assessment of parameter significance (notably at the conventional levels) does not imply
improvements in forecasts, particularly, but not only, in highly parameterized time-series
models.

This issue touches upon many important topics in statistics, such as use of p-values for assessing
“parameter significance” (recall Section III.3.8), multiple hypothesis testing, backtest overfitting (dis-
cussed below), shrinkage estimation, andmodel selection procedures such as the lasso, elastic net, and
relatedmethods. Indeed, as noted in Rapach and Zhou (2013, p. 328) in their extensive survey of stock
return prediction methods, “Some studies argue that, despite extensive in-sample evidence of equity
premium predictability, popular predictors from the literature fail to outperform the simple historical
average benchmark forecast in out-of-sample tests. Recent studies, however, provide improved fore-
casting strategies that deliver statistically and economically significant out-of-sample gains relative
to the historical average benchmark.” Further recent examples include Harvey and Liu (2016) and
Harvey et al. (2016), who discuss the inadequacy of the usual t-test procedure for determining the
factors driving the cross-section of expected financial asset returns, while Diebold and Yilmaz (2015)
illustrate use of the elastic net in conjunction with highly parameterized vector autoregressive models
for multivariate financial variable prediction and assessment of “connectedness”.

Remark In general, with such data-driven ideas, one needs to exercise some caution. In our case,
Figure 13.2 shows that the forecasting quality is very smooth in 𝜌 and sR, and such that it is mono-
tonically decreasing to the left and right of the optimal 𝜌 and sR values. If it were instead the case
that the plot were somewhat erratic (jittery) in behavior or, worse, jittery and no visible approximate
quadratic shape, then choosing the optimal value where the erratic graphic happens to obtain its
maximum would be highly suspect and almost surely unreliable for genuine increases in forecasting
performance: In such a case, we would be modeling in-sample noise, and not capturing a genuine
“signal” useful for forecasting.
This touches upon the topic of backtest overfitting, in which numerous (possibly dozens of ) tuning

parameters are optimized in-sample or, more often, on an out-of-sample exercise as we have done,
and result in impressive performance. However, it is fictitious and does not lead to gains (and actually
often leads to losses) when used in a genuine (true future) out-of-sample prediction framework. Good
starting points to this literature include Bailey et al. (2014) and Zhu et al. (2017). That both of these
papers are in the context of finance should not surprise:The lure of finding signals in stock price data is
very enticing tomany people (as well as brokers and electronic platforms happy tomake commissions
on naive gamblers or—more politically correct—“noise traders”, though the latter do help to provide
liquidity), and with easy access to past stock returns and powerful computing, one can try literally
thousands ofmodels quickly, and then “pick the best one”, thinking one has used his or her intelligence
and expertise gained from an introductory statistics course to become wealthy.
The “models” often used in this context are typically rather simplistic, moving-average-based cal-

culations on the price process (as opposed to the returns process) with a large variety of window
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lengths, and under an implicit assumption of a local mean-reversion in stock prices, not to mention
the so-called “technical trading” rules, in which one believes in certain patterns recognizable to the
human eye, such as “head and shoulders” and “cup and handle”, etc. Appeals to wishful thinkers less
inclined to study mathematics and stochastic processes with arguments how a simple (and unpre-
dictable) random walk (recall Figure 4.3) or a stationary ARMA model realization (recall Figure 9.1
and the subsequent discussion), particularly with leptokurtic innovations, easily gives rise to such
patterns, as well as fictitious “trends”, usually fall on deaf ears.
The ever-poular mantra “Past performance is not an indicator of future performance” is an under-

statement: Strong backtest performancemight literally be an indicator of negative future results, with
the optimized “strategy” easily beaten by trivial allocation methods such as putting an equal amount
of money in all available assets, commonly referred to as the equally weighted or “1∕N” strategy.This
equally weighted strategy is nothing more than an extreme form of shrinkage, and has been shown
in numerous studies to work shockingly well, to the disgruntlement of “talented fund managers with
many years of experience andMBAs”; recall the discussion in Section III.2.1.1. As ourmethod involves
only two parameters that result in well-behaved performance, one can be cautiously optimistic, but
the real proof comes only in genuine out-of-sample performance.
To further illustrate the concept, the common story goes as follows. A well-dressed businessman

enters a nice bar and enters conversation with some apparently well-off gentlemen (usually assessed
by the wristwatch) who regularly frequent the establishment. After the usual pleasantries, he explains
that he is a highly successful investor, and goes so far as to say that, based on his advanced statistical
models, the stock market will increase on each of the next four business days. He then politely exits,
and repeats the exercise at another posh bar, but says that the stock market will increase over the next
three business days, and then drop on the fourth. He continues this at different bars (presumably not
drinking too much), exhausting all the 16 possible permutations of performance over the next four
business days.
The next business day, markets will go up or down (with essentially the same probability as a flip

of a fair coin), and, assuming the market went up, he returns that evening to the eight bars in which
his stated prediction was correct, and, casually, in the midst of advanced-sounding statistical talk,
reminds them of his success. The subsequent day, he returns to the four bars in which his prediction
was “correct” twice in a row, etc., until after the fourth day, he returns to the single bar for which his
streak of success held true. “Gentlemen, you are surely now convinced. Who wants to invest?”
The point is, besides the “method of prediction” being completely random, that he does not disclose

all the failed methods considered. This is the concept underlying backtest overfitting. ◾

Having shown the benefits of shrinking the off-diagonals of R̂, and the use of weighted likelihood,
we now entertain shrinking the estimates of the 𝑣i. Juxtaposing the usual multivariate Student’s t with
the (A)FaK, these can be seen as the two extremes of a continuum: One has the degrees of freedom
parameter equal across all margins, while the other has them all (and w.p.1 when estimating) unequal.
We have already demonstrated that the former is too inflexible for the DJIA data set, but the latter
might be too flexible, in the following sense:

While as tail thickness measures, none of the 𝑣i are precisely equal, the amount of data being
used to estimate them (limited also by the fact that we believe the 𝑣i are changing, hopefully
slowly, over time) is too small to obtain the desired accuracy. We are asking too much of the
data, in terms of the amount of data available, and the parameterization of the model.
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Figure 13.3 Density forecasting performance measure (13.3) as a function of degrees of freedom shrinkage parameter
s
𝑣
, for the i.i.d. FaK model applied to the usual DJIA data, using the two forms of estimating correlation matrix R, and

with fixed �̃� = 0.45 and s̃R = 0.30.

This is precisely where shrinkage can play a useful role. Also observe that the 𝑣i are estimated with
relatively much more uncertainty than the location and scale parameters, as they are tail measures,
so that shrinkage could be expected to reduce their overall m.s.e. Finally, recall the left panel of Figure
12.1, which suggests that, for many assets, the degrees of freedommight be very similar across assets,
so that shrinkage will be beneficial as a way of pooling information across assets. (One could also
entertain forming, say, three clusters, such that each 𝑣i takes on only one of three possible values, this
also being a form of shrinkage.This is clearlymore difficult to implement, and is considered in Section
12.6.4.) Estimates of the noncentrality parameters 𝜃i could be subjected to shrinkage in a similar way
(with the right panel of Figure 12.1 suggesting zero as the natural target).
Let s𝑣 be the shrinkage strength on the 𝑣i, and the mean of the 𝑣i, denoted �̄�, be the target, so

that �̃�i = s𝑣�̄� + (1 − s𝑣)𝑣i are the resulting shrinkage estimators for the 𝑣i, i = 1,… , d. An ideal setup
would be one such that s𝑣, sR, and 𝜌 are each endowed with a tight grid of values, and their optima are
determined by computing (13.3) over all the combinations induced by the three grids. While feasible,
it could take many weeks or even months to run. This is an example of the curse of dimensionality,
such that each additional dimension increases the computational time by a large multiplicative factor.
Instead, we “cut corners” (nearly literally), and fix the values of 𝜌 and sR to �̃� = 0.45 and s̃R = 0.30,
respectively. Thus, for a grid of s𝑣-values, we have a one-dimensional search problem.The results are
shown in Figure 13.3.The performance is smooth in s𝑣, with its optimal value (for this data set, choice
of window length 500, and chosen grid coarseness) being approximately s̃𝑣 = 0.075 for R estimated
both via sample correlations and m.l.e. The rather low value of s̃𝑣 indicates that this idea may not be
very fruitful and the aforementioned idea of use of clusters might be better.

13.4 Portfolio Optimization Using (A)FaK

Before applying the AFaK model to real data, we investigate its performance using simulated data
and based on the true model parameters. This obviously unrealistic setting serves as a check on the
methodology and also (assuming the method is programmed correctly), will illustrate the large vari-
ation in the performance of the methods due strictly to the nature of statistical sampling.
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We simulate first from the multivariate t distribution (hereafter MVT), using d = 10 dimensions,
𝑣 = 4 degrees of freedom, each component of the mean vector being i.i.d. N(0, 0.12) realizations,
and each of the scale terms being i.i.d. Exp(1, 1) (i.e., scale one, and location one) realizations. The
off-diagonal elements of correlation matrix R are taken to be i.i.d. Beta(4, 9), with mean 4∕13 and
such that the resulting matrix is positive definite. The code in Listing 13.3 performs this, using our
FaKrnd routine instead of mvtrnd, as we will generalize this exercise subsequently to the FaK case.

1 d=10; sim=3e3; bad=1;
2 while bad
3 R=eye(d);
4 for i=1:d, for j=(i+1):d, R(i,j)=betarnd(4,9); R(j,i)=R(i,j); end, end
5 bad=any(eig(R)<1e-4);
6 end
7 dffix=4; df=dffix*ones(d+1,1); % all the same. Is the MVT
8 mu=0+0.1*randn(d,1); scales=1+exprnd(1,d,1);
9 Sigma=diag(scales) * R * diag(scales);

10 data=FaKrnd(sim,df,mu,scales,R,zeros(d+1,1)); % MVT or FaK iid sequence

Program Listing 13.3: Generates sim i.i.d. realizations of the MVT with random parameters. By
changing line 7, different margin degrees of freedom can be specified, and the output are then FaK
realizations, of which MVT is a special case.

The next step is to compute the optimal portfolio vectors and the associated realized returns. This
is conducted over moving windows of (arbitrarily chosen) length 1,000 and with a desired expected
annual return of 𝜏 = 10% from (11.43), using (i) the long-only Markowitz procedure based on the
usual sample estimators of the mean and covariance, and (ii) the long-only allocation method based
on simulation, from (11.46), and knowledge of the true MVT parameters. The simple code for the
former is given in Listing 13.4, while that for the latter is given in Listing 13.5.

1 DEAR=10; winsize=1000; [T,~]=size(data); Ret=zeros(T-winsize,1);
2 for t=(winsize+1):T, if mod(t,100)==0, disp(t), end
3 Y=data((t-winsize):(t-1),:); P = PortMNS(Y, DEAR); Yt=data(t,:); RR=P'*Yt';
4 if ~isnan(RR), Ret(t-winsize)=RR; end
5 end
6 CSMarkRet=cumsum(Ret); SharpeMarkowitz=mean(Ret)/std(Ret);

ProgramListing 13.4: For given data setdata, computes the long-onlyMarkowitz portfolio vectors
for a desired expected annual return (DEAR) of 𝜏 = 10%, over windows of length winsize = 1, 000,
their realized returns, and then the cumulative returns and the Sharpe ratio (with risk-free rate of
zero). Program PortMNS is given in Listing 11.3.

This exercise runs quickly, and was conducted several times, with six representative results shown
in Figure 13.4. The cumulative realized returns are plotted from (i) the long-only Markowitz method
and (ii) the simulation-based method using the knownMVT distribution and s = 10,000 replications
(asim in Listing 13.5). Also plotted is the performance of the equally weighted (“1∕N”) portfolio. Fur-
ther overlaid are 100 cumulative returns based on randomly selecting the long-only portfolio weights
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1 asim=1e4; agiveup=asim/10;
2 xi=0.01; DEDR= 100*((DEAR/100 + 1)ˆ(1/250) - 1);
3 [T,d]=size(data); muvec=mu; PortMat=zeros(T-winsize,d);
4 for t=(winsize+1):T, if mod(t,100)==0, disp(t), end
5 bestES=-1e9; foundDEDRokay=0;
6 for i=1:asim
7 if foundDEDRokay || (i <= agiveup)
8 a=-log(rand(d,1)); a=a/sum(a); ER = a'*muvec; VaR = tinv(xi,dffix);
9 ES = -tpdf(VaR,dffix) / xi * ( (dffix+VaRˆ2)/(dffix-1) );

10 ES = ER + a'*Sigma*a * ES;
11 if (ER>=DEDR) && (ES>bestES), besta=a; bestES=ES; foundDEDRokay=1; end
12 end
13 end
14 if foundDEDRokay, PortMat(t-winsize,:)=besta; end
15 end
16 Ret=zeros(T-winsize,1); % compute the returns from FaK
17 for t=(winsize+1):T
18 Yt=data(t,:); P = PortMat(t-winsize,:); RR=P*Yt';
19 if ~isnan(RR), Ret(t-winsize)=RR; end
20 end
21 CSFaKRet=cumsum(Ret); SharpeFaK=mean(Ret)/std(Ret);

Program Listing 13.5: Similar to Listing 13.4 but using simulation from (11.46) based on asim =
10, 000 replications, and using the knowledge that the true d.g.p. is i.i.d. MVT, and the true
parameters—observe how dffix comes from line 7 in Listing 13.3.The formula for the ES of a stan-
dard Student’s t in line 9 is given in (III.A.121), while that for the portfolio (weighted sums of margins)
is computed using (III.A.126) and (C.28). If after agiveup samples, no portfolio is found that satis-
fies the mean constraint, we give up (to save time), and the portfolio vector is taken to be all zeros,
i.e., no investment is made (and implicitly, existing assets would be sold). Adding to the unrealistic
setting with fully known d.g.p., we also do not account for transaction costs.

at each point in time. This provides a guide for assessing if the allocation methods are genuinely out-
performing a “pure luck strategy”. The code to generate such a plot is given in Listing 13.6.
In each of the six cases, the true MVT parameters are different, having been generated from the

code in Listing 13.3, but come from the same underlying distribution, as discussed above. The fact
that theMVT case is using the true parameter values gives it an edge in terms of total returns, as seen
in the middle- and lower-left panels, though in other cases it does not perform better in finite-time
experiments, such as in the middle right panel.

The take-away message is that, even over a period using 2,000 days of trading, allocation based
on the true model and true parameters may not outperform the somewhat naive Markowitz
approach (at least in terms of total return), and that the latter can even be beaten by the very
naive 1∕N strategy.

Thus, one should be extraordinarily cautious when claims are made about the viability of various
trading strategies.The reader is encouraged to repeat this exercise and also plot the cumulative returns
corresponding to the MVT model, but using estimated instead of the true parameters.
We take one next step (of several) towards reality and leave the elliptic world, using instead the FaK

model with heterogeneous degrees of freedom, but still (ludicrously, for academic purposes) assuming
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Figure 13.4 Cumulative returns of the equally weighted, Markowitz, and MVT models, the latter using the true
parameter values and simulation based on s samples to obtain the optimal portfolio. The thinner, dashed (red) line
uses s = 1,000 instead of s = 10,000 (thicker, solid, red line). In all but the top left case, use of s = 10,000 is at least as
good as s = 1,000 and in some cases, such as the last four panels, leads to substantially better results.
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1 a=ones(d,1)/d; rep=100;
2 for t=(winsize+1):T, Yt=data(t,:); Ret(t-winsize)=a'*Yt'; end
3 CSRet1d=cumsum(Ret); Sharpe1N=mean(Ret)/std(Ret);
4 xData=1:(T-winsize); figure, hold on % need plot to make the legend
5 plot(xData,CSRet1d,'k-',xData,CSFaKRet,'r-',xData,CSMarkRet,'b-','linewidth',3)
6 for i=1:rep % now the random portfolios
7 a=-log(rand(d,1)); a=a/sum(a);
8 for t=(winsize+1):T, Yt=data(t,:); Ret(t-winsize)=a'*Yt'; end
9 CSRet=cumsum(Ret); plot(xData,CSRet,'g-')

10 if i==1, legend('1/N','FaK','Markowitz','Random','Location','NorthWest'), end
11 end
12 % Plot them again to see the lines more clearly.
13 plot(xData,CSRet1d,'k-',xData,CSFaKRet,'r-',xData,CSMarkRet,'b-','linewidth',3)
14 hold off
15 title('Daily Portfolio Performance of Simulated MVT data','fontsize',14)
16 xlabel('Date of Investment','fontsize',16)
17 ylabel('Cumulative Returns','fontsize',16)

Program Listing 13.6: Generates the plots shown in Figure 13.4.

the model, and the true parameters, are known. The same method of simulation is used as in Listing
13.3, butwe take the degrees of freedomvalues to be i.i.d. Unif(2, 7), and change line 7 in Listing 13.3 to

1 df=2+(7-2)*rand(d,1); df=[max(df); df];

Recall that the distribution of the (weighted) sum of margins of the FaK is not analytically tractable,
requiring that the computation of the ES is done via the method in Section 12.5.5, namely using the
empirical VaR and ES, obtained from s1 = 10,000 draws. Listing 13.7 shows the required code to deter-
mine the optimal portfolio.
Results for four runs are shown in Figure 13.5, with other runs (not shown) being similar.We obtain

our hoped-for result that the FaK model outperforms Markowitz (which is designed for elliptic data
with existence of secondmoments), and does so particularly when the set of 𝑣i tended to have smaller
(heavier-tail) values. The 1∕N portfolio is also seen to be inferior in this setting, particularly in the
last of the four shown runs.The FaK graphs are also such that they systematically lie near or above the
top of the cloud of cumulative returns obtained from random portfolio allocations, indicating that
accounting for the heavy-tailed and heterogeneous-tailed nature of the data indeed leads to supe-
rior asset allocation. This exercise also adds confirmation to the fact that allocations differ in the
non-elliptic case, particularly amid heavy tails, and also that the algorithm for obtaining the optimal
portfolio, and the method of calculating the ES for a given portfolio vector, are working.
The crucial next step is to still use knowledge that the d.g.p. is FaK, but use parameter estimates

instead of the true values, based on the two-step estimator with the conditional m.l.e. for the elements
of R, and this along with shrinkage for R with sR = 0 and sR = 0.30, as developed in Section 13.3. For
the code, just replace line 6 in Listing 13.7 with the code in Listing 13.8.
Figure 13.6 is similar to Figure 13.5, and uses the same generated data, so that the two figures can

be directly compared. The degradation in performance of the FaK model is apparent: The realistic
necessity of parameter estimation when using parametric models takes a strong toll for all of the
four runs shown, and also shrinkage of R̂ does not help, but rather, at least for the cases shown and
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1 asim=1e3; agiveup=asim/10; xi=0.01; DEDR= 100*((DEAR/100 + 1)ˆ(1/250) - 1);
2 [T,d]=size(data); muvec=mu; PortMat=zeros(T-winsize,d); s1=1e4;
3 for t=(winsize+1):T
4 bestES=-1e9; foundDEDRokay=0;
5 %%%%%%%%%%%%%%%%%% now because is FaK and not MVT. Use true parameters.
6 param.df=df; param.noncen=nc; param.R=R; param.mu=mu; param.scale=scales;
7 M=FaKrnd(s1,param.df,muvec,param.scale,param.R,param.noncen)';
8 %%%%%%%%%%%%%%%%%%
9 for i=1:asim

10 if foundDEDRokay || (i <= agiveup)
11 a=-log(rand(d,1)); a=a/sum(a); ER = a'*muvec;
12 %%%%%%%%%%%%%%%%%%
13 % now because is FaK and not MVT.
14 P=a'*M;
15 if 1==2 % Just for comparison. It is much slower. Based on NCT fit.
16 paramNCT = Noncentraltestimation(P,1,1);
17 theta=paramNCT(1); v=paramNCT(2); mu=paramNCT(3); scale=paramNCT(4);
18 [ES, VaR] = nctES(xi,v,theta); ES=mu+scale*ES;
19 else % USE THIS with FaK: empirical VaR and ES. Much faster.
20 VaR=quantile(P,0.01); Plo=P(P<=VaR); ES=mean(Plo);
21 % slower: P=sort(P); lowP=P(1:round(s1*xi)); ES=mean(lowP);
22 end
23 %%%%%%%%%%%%%%%%%%
24 if (ER>=DEDR) && (ES>bestES), besta=a; bestES=ES; foundDEDRokay=1; end
25 end
26 end
27 if foundDEDRokay, PortMat(t-winsize,:)=besta; end
28 end

Program Listing 13.7: Similar to Listing 13.5, but for the FaK distribution, again using known
parameters.

1 MLEforR=1; AFaK=0; rho=0; s_R=0; % or s_R=0.30
2 Y=data((t-winsize):(t-1),:);
3 param = FangFangKotzestimation2step(Y,AFaK,MLEforR,rho,s_R);
4 muvec = param.mu;

Program Listing 13.8: Replace line 6 in Listing 13.7 with this to conduct parameter estimation
instead of using the true values.

the choice of sR = 0.30, predominantly hurts. Admittedly, the choice of sR = 0.30, as determined in
Section 13.3, was obtained with respect to density forecasting, for a real financial returns data set with
d = 30 and a window size of 250, as opposed to our context here, which is portfolio optimization,
for simulated FaK data, with d = 10 and a window size of 1000. The reader is invited to determine
the optimal shrinkage in this setting, though it is doubtful that much will be obtained in terms of
cumulative return performance.
It is worth emphasizing that, in general, the quality of density forecasts and portfolio performance

are not necessarily “comonotonic” with respect to tuning parameters, in the sense that the best, say,
tuning parameters for shrinkage and weighted likelihood for density forecasts are not necessarily
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Figure 13.5 Similar to Figure 13.4, but based on the FaK model, using the true parameter values. All plots were
truncated in order to have the same y-axis.

the best values for portfolio performance. Note that, if the true multivariate predictive density were
somehow available, then the optimal portfolio (as defined by some measure accounting for risk
and return) can be elicited from it. However, there is still an important caveat here that we wish to
emphasize:

Actual performance, even with the true model, is probabilistic, and thus only with repeated
investment over very many time periods would it be the case that, on average, the desired
return is achieved with respect to the specified risk. As (i) the true predictive density is clearly
not attainable (because the specified model is wrong w.p.1, along with the associated estima-
tion error) and (ii) backtest exercises necessarily involve a finite amount of data (so that the
real long-term performance cannot be assessed with great accuracy), there will be a difference
between inference based on density forecast and portfolio performance.

This exercise serves to illustrate a case in which the estimation error associated with highly param-
eterized models—even in the unrealistic setting in which the parametric model (here, i.i.d. FaK) is
known—induces a dramatic loss in out-of-sample performance. This underscores the point made
in Section III.2.8 regarding use of classic inferential methods, such as inspecting the t-statistics
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Figure 13.6 Performance comparison using the same four data sets as in Figure 13.5, and having estimated the FaK
parameters.

associated with estimated parameters, when interest centers on forecasting—particularly, but not
only, in highly parameterized time-series models.
Not yet willing to give up, we consider an alternative investment strategy that capitalizes on the

nature of how the optimal portfolio is determined. In particular, as we use random sampling instead
of a black-box optimization algorithm to determine optimal portfolio (11.45), we have access to s
(in our case, s = 10,000) portfolios. We attempt to use these in a simple, creative way, and apply the
following algorithm for a given desired expected annual return 𝜏 , for which we use 10%:

1) For a given data set of dimension d, window length, and 𝜏 , estimate the FaK model, possibly with
shrinkage. (In the cases shown, we use sR = 0.)

2) Attempt s random portfolios (we use s = 10,000 for d = 10), and if after s∕10 generations no port-
folio reaches the desired expected annual return (the 𝜏-constraint), give up (and trading does not
occur).

3) Assuming the exit in step 2 is not engaged, from the s portfolios, store those that meet the
𝜏-constraint, amassing a total of 𝑣 valid portfolios.

4) If 𝑣 < s∕100, then do not trade. The idea is that, if so few portfolios meet the 𝜏-constraint, then,
taking the portfolio parameter uncertainty into account, it is perhaps unlikely that the expected
return will actually be met.
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5) Assuming 𝑣 ⩾ s∕100, keep the subset consisting of the (at most) s∕10 with the lowest ES. (This
requires that the stored ES, and the associated stored expected returns and portfolio vectors, are
sorted).

6) From this remaining subset, choose that portfolio with the highest expected return.

The core idea is to collect the 10% of portfolios yielding the lowest ES, and then choose from among
them the one with the highest expected return. Observe how this algorithm could also be applied to
the Markowitz setting, using variance as a risk measure, but then the sampling algorithm would need
to be used, as opposed to a direct optimization algorithm, as is applicable with (11.45). The reader
can investigate this and confirm to what extent similar results hold. This alternative method contains
several tuning parameters, such as the choice of 𝜏 , the window size, s, shrinkage sR, and the (arbitrary)
values of s∕100 in step 4, and s∕10 in step 5. Recalling the discussion of backtest overfitting above, one
is behooved to investigate its performance for a range of such values (and data sets), and confirm that
the results are reasonably robust with respect to their choices around an optimal range.
Figure 13.7 shows the resulting graphs based again on the same four simulated data sets. There

now appears to be some space for optimism, and tweaking the—somewhat arbitrarily chosen—tuning
parameters surely will lead to enhanced performance. The intrigued reader is encouraged to pursue
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Figure 13.7 Similar to Figure 13.6, with estimated parameters and using sR = 0, but having used the alternative
investment strategy based on choosing among the 10% of generated portfolios with the lowest ES the one with the
highest expected return.
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this, and investigate it with simulated and real data, ideally computing additional performance mea-
sures such as the Sharpe and related ratios, and taking into account transaction costs, as discussed in
Section 11.3.1.The AFaKmodel (with simulated AFaK and real data) could also be used, though note
that it is computationally slower because of estimation and the determination of the ES. Finally, for
real daily returns data, incorporation of a GARCH-type filter applied to each of the margins could be
beneficial, given the clear conditional heteroskedasticity, though such results are often tempered via
incorporation of transaction costs, given that models that use a GARCH-type structure have much
higher turnover than their i.i.d. counterparts.
As a final step and “progression to the next level”, we use real data, namely the closing prices on the 30

stocks on the DJIA, but instead of the daily data from June 2001 toMarch 2009 as used in Section 13.3,
we use an updated data set, from January 2, 2001 to July 21, 2016 (conveniently including the market
turmoil associated with the Brexit event). However, we still refrain from accounting for transaction
costs. Figure 13.8 shows the obtained cumulative returns based on the equally weighted portfolio,
the FaK model (obviously, estimating the parameters) in conjunction with the alternative investment
strategy outlined above, Markowitz (the latter two restricted to no short-selling), and randomly gen-
erated portfolios with non-negative weights. The only merit one can ascribe to the FaK/alternative
investment strategy is that it avoids trading during the financial crisis period, though as time goes
on its performance is overshadowed by both Markowitz and 1∕N , and none of the methods used in
this study do particularly better than the average of the random portfolios after about the middle
of 2013.
One can compare these results to the better performances shown in Figures 11.7 and 11.8. While

general conclusions are difficult to draw, it appears safe to say that naive application of simple
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Figure 13.8 Cumulative returns on portfolios of the 30 stocks in the DJIA index, using the FaK model with the
alternative investment strategy, the 1∕N allocation, Markowitz (no short selling), and 400 random portfolios (showing
only the most extreme ones to enhance graphic readability).
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copula-based models, while straightforward (due to the ability to separately specify and estimate the
margins and the copula) and appealing (because the margins are easily endowed with heterogeneous
tail behavior), may not deliver as much bang for the buck as different non-Gaussian stochastic
processes such as the COMFORT-based paradigm and the mixture distribution paradigm. A further
disadvantage of the copula methodology not shared by the latter two frameworks is that simulation
is required to obtain the necessary characteristics of the predictive portfolio distribution.
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14

Multivariate Mixture Distributions

Occasionally, papers are published suggesting how returns can be forecast using a simple
statistical model, and presumably these techniques are the basis of the decisions of some
financial analysts. More likely the results are fragile: once you try to use them, they go away.

(Clive W. J. Granger, 2005, p. 36)

The next obvious step is towards using predictive, or conditional, distributions. Major problems
remain, particularly with parametric forms and in themultivariate case. For the center of the dis-
tribution amixture of Gaussians appears to work well but these do not represent tail probabilities
in a satisfactory fashion.

(Clive W. J. Granger, 2005, p. 37)

Use of the i.i.d. univariate discrete mixture of normals distribution, or MixN, as detailed in
Chapter III.5.1, allows for great enrichment in modeling flexibility compared to the Gaussian.
Here, we extend this to the multivariate case. We also develop the methodology for mixtures of
(multivariate) Laplace, this distribution having the same tail behavior (short, or thin tails) as the
normal, but such that it is leptokurtic. This is advantageous for modeling heavier-tailed data, such as
financial asset returns. We will also see other important concepts such as mixture diagnostics and an
alternative estimation paradigm for multivariate mixtures.

14.1 The MixkNd Distribution

Like its univariate counterpart, use of the multivariate mixed normal distribution has a long his-
tory in statistics, and the scope of applications to which it is applied continues to expand, notably in
biology, medicine, finance and, somewhat more recently, machine learning; see McLachlan and Peel
(2000), Frühwirth-Schnatter (2006), Bishop (2006, Ch. 9), Schlattmann (2009), and Murphy (2012,
Ch. 11).

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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1 function y = mixMVNsim(mu1,mu2,Sig1,Sig2,lam,n)
2 [V,D]=eig(Sig1); C1=V*sqrt(D)*V'; [V,D]=eig(Sig2); C2=V*sqrt(D)*V';
3 d=length(mu1); y=zeros(n,d);
4 for i=1:n
5 z=randn(d,1);
6 if rand<lam, y(i,:)=mu1+C1*z; else y(i,:)=mu2+C2*z; end
7 end

Program Listing 14.1: Simulates n i.i.d. realizations from a Mix2Nd distribution.

14.1.1 Density and Simulation

Let Yt = (Yt,1,Yt,2,… ,Yt,d)′
i.i.d.∼ MixkNd(M,𝚿,𝝀), t = 1,… ,T , where MixkNd denotes the

k-component, non-singular d-dimensional multivariate mixed normal distribution, with

M =
[
𝝁1 𝝁2 · · · 𝝁k

]
, 𝝁j = (𝜇1j, 𝜇2j,… , 𝜇dj)′,

𝚿 =
[
𝚺1 𝚺2 · · · 𝚺k

]
, 𝝀 = (𝜆1,… , 𝜆k), (14.1)

𝚺j > 0 (i.e., positive definite), j = 1,… , k, and

fMixkNd
(y;M,𝚿,𝝀) =

k∑
j=1

𝜆j fN(y;𝝁j,𝚺j), 𝜆j ∈ (0, 1),
k∑
j=1

𝜆j = 1, (14.2)

with fN denoting the d-variate normal distribution. Yakowitz and Spragins (1968) have proven that
the class of MixkNd distributions is identified (see Section III.5.1.1).
Simulating realizations from the MixkNd(M,𝚿,𝝀) distribution is straightforward; the short pro-

gram in Listing 14.1 shows this for k = 2.

14.1.2 Motivation for Use of Mixtures

As for the univariate case, there are many multivariate distributions that nest (or yield as a limiting
case) the normal, and otherwise allow for thicker tails, such as the multivariate Student’s t or, more
generally, the multivariate generalized hyperbolic (MGHyp) andmultivariate noncentral t (MVNCT)
distributions, the latter two also allowing for asymmetry.These assist in addressing some of the com-
mon stylized facts of financial asset returns. However, a discrete mixture distribution is of particular
relevance for financial returns data because of its ability to capture the following two additional styl-
ized facts associated withmultivariate asset returns:

1) The so-called leverage or down-market effect, or the negative correlation between volatility and
asset returns. A popular explanation for this phenomenon is attributed to Black (1976), who noted
that a falling stock price implies a higher leverage on the firm’s capital structure (debt to equity
ratio), and thus a higher probability of default. This increase in risk is then reflected in a higher
stock price volatility.1

1 While the effect is empirically visible for falling stock prices, it is less apparent, or missing, for rising prices, calling into
question Black’s explanation. The empirical effect of negative correlation between volatility and returns also appears in other
asset classes (such as exchange rates and commodities) for which Black’s explanation is not applicable. See, e.g., Figlewski and
Wang (2000), Hens and Steude (2009), Hasanhodzic and Lo (2011), and the references therein for further details.
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2) The so-called contagion effect, or the tendency of the correlation between asset returns to
increase during pronounced market downturns, as well as during periods of higher volatility. See
the remark in Section 13.3 for more discussion of this.

The stylized facts of heavy tails, asymmetry, and volatility clustering in the univariate returns distri-
bution, alongwith changing correlations among the assets, such as the contagion effect, are sometimes
referred to as the proverbial four horsemen in multivariate financial asset returns; see, e.g., Allen and
Satchell (2014) and Bianchi et al. (2016).
We will show some empirical evidence for these effects below, and discuss how a mixture distri-

bution is well-suited for capturing them. A third stylized fact that the MixkNd for k > 1 (and also
the MGHyp and MVNCT) can capture, but not the (usual, central) multivariate t, hereafter MVT, is
non-ellipticity; see Section C.2. Evidence against ellipticity for financial asset returns, driven in part
from the two aforementioned stylized facts, as well as so-called time-varying tail-dependence and
heterogeneous tail indexes, is provided inMcNeil et al. (2005), Chicheportiche and Bouchaud (2012),
Paolella and Polak (2015a), and the references therein.

Remark A stylized fact of multivariate financial asset returns that the mixed normal does not for-
mally capture is tail dependence, or the dependency (or co-movement) between returns falling in
the tails of the distributions (see, e.g., McNeil et al., 2005, Sec. 5.2.3 and the references therein). This
is because more extreme market conditions are being modeled essentially by one of the two (in our
case, the second; see below) components of theMix2Nd distribution, which, being Gaussian, does not
have tail dependence.
However, observe that, if there really were just two “states of nature”, say “business as usual” and

“crisis”, then the Mix2Nd model does allow for this effect, as the covariance matrix in the second
component will be different than that of the first component (and the contagion effect is captured).
To formally have a tail dependence structure, theGaussian assumptionwould need to be replacedwith
a distribution that has tail dependence, such as a (noncentral) multivariate Student’s t, a multivariate
generalized hyperbolic, or a copula structure, though observe that, as the number of components k
increases, the MixkNd distribution can arbitrarily accurately approximate the tail behavior of such
distributions.
This latter statement should not be interpreted as an argument to choose k “as large as possible”.

As we have seen many times here and in book III, the choice of k involves a tradeoff, with large k
inducing many more parameters and, thus, decreased precision of the parameter estimates.The opti-
mal choice should depend on the desired application, such as, in empirical finance, risk prediction,
density forecasting, portfolio optimization, etc. ◾

With a Mix2Nd model, we would expect to have the higher-weighted, or primary, component, say
the first, capturing the more typical, “business as usual” stock return behavior, with a near-zero mean
vector 𝝁1, and the second component capturing the more volatile, “crisis” behavior, with

• (much) higher variances in 𝚺2 than in 𝚺1,
• significantly larger correlations, reflecting the contagion effect,
• and a predominantly negative 𝝁2, reflecting the down-market effect.

A distribution with only a single mean vector and covariance matrix (such as the MVT, MVNCT,
and MGHyp) cannot capture this behavior, no matter how many additional shape parameters for the
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tail thickness and asymmetry the distribution possesses. We will subsequently see that these three
features are germane to the DJIA-30 data set.
To get some feeling for the data, Figure 14.1 shows three sets of bivariate scatterplots and the cor-

responding contour plots of the fitted Mix2N2 model. It might be of interest to know which assets
are the least correlated during turbulent market periods in which contagion effects can be strong.
The first column of panels shows the result for the two stocks with the lowest correlation in the esti-
mated covariance matrix �̂�2 of all

(
30
2

)
pairs, this being for Hewlett-Packard and Kraft Foods, with

a correlation in component 2 of 0.27 (and 0.17 in component 1).2 The middle column shows the pair
for which the correlations change the most between components one and two, these being Chevron
and Walt Disney. The first component correlation is 0.25, while the second is 0.63. The last column
shows the pair for which the correlation in the second component was largest. Unsurprisingly, it is
between Chevron and Exxon Mobil, both in the same sector of energy, oil, and gas. The correlations
between these two are 0.79 and 0.88, in the first and second components, respectively. The program
in Listing 14.2 shows how to locate these pairs.

14.1.3 Quasi-Bayesian Estimation and Choice of Prior

With multivariate distributions, the number of parameters requiring estimation can be large, even
for a modest number of dimensions d, and often grows quadratically with d, so that direct likelihood
maximization via generic optimization routineswill be impractical. For themultivariate normal distri-
bution, the closed-form solution for the m.l.e. is very straightforward. When working with mixtures
of normals (univariate or multivariate), no such closed-form solution exists. However, the univari-
ate EM algorithm can be extended easily to the multivariate MixN case. Just as with the univariate
mixed normal distribution, we will see that use of shrinkage estimation is of enormous value in the
multivariate setting.
Anticipating use of the EM algorithm, denote the latent, or hidden, variable associated with the

tth observation Yt as Ht = (Ht,1,… ,Ht,k)′, t = 1,… ,T , where Ht,j = 1 if Yt came from the jth com-
ponent, and zero otherwise, j = 1,… , k. The joint density of Yt and Ht is, with 𝜽 = {M,𝚿,𝝀} and
h = (h1,… , hk),

fYt ∣Ht
(y ∣ h;𝜽) fHt

(h;𝜽) = 𝕀

( k∑
j=1

hj = 1

) k∏
j=1

[𝜆j fN(y;𝝁j,𝚺j)]hj 𝕀{0,1}(hj). (14.3)

With Y = (Y1,… ,YT )′ andH = (H1,… ,HT )′, the complete data log-likelihood is

𝓁c(𝜽;Y,H) =
T∑
t=1

k∑
j=1

Ht,j log 𝜆j +
T∑
t=1

k∑
j=1

Ht,j log fN(Yt;𝝁j,𝚺j). (14.4)

2 It is actually the second lowest correlation; the first is between General Motors (GM) and Merck, but this is primarily due
to the massive losses GM suffered, so that its second component correlations with other series are among the lowest anyway.
As GM is no longer in the DJIA index, we chose not to use it. Further observe that we just picked the pair with the
numerically lowest correlation in �̂�2, and it might be that this value is not statistically different from the second lowest value
or the third, etc. Given the i.i.d. assumption, this could be straightforwardly assessed by the parametric or nonparametric
bootstrap, from which, e.g., one-at-a-time confidence intervals on the correlation parameters could be computed.
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Figure 14.1 Examples of scatterplots between pairs of stock return series (top) and their corresponding contour plots of the fitted Mix2N2 distribution
(bottom). In the scatterplots, the smaller (larger) dots correspond to the points assigned to the first (second) component, as determined by the
approximate split discussed in Section 14.2.1.
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Then, calculations similar to those in the univariate case yield the EM algorithm. In particular, the
conditional expectation of the Ht,j is calculated from

Pr (Ht,j = 1 ∣ Yt = y;𝜽) =
𝜆j fN(y;𝝁j,𝚺j)∑k
j=1 𝜆j fN(y;𝝁j,𝚺j)

, j = 1,… , k. (14.5)

We state the resulting parameter updating equations, augmented by the quasi-Bayesian prior of
Hamilton (1991), as in the univariate MixN case. They are

�̂�j =
1
T

T∑
t=1

Ht,j, �̂�j =
cjmj +

∑T
t=1 Ht,jYt

cj +
∑T

t=1 Ht,j

, j = 1,… , k, (14.6)

1 [T,d]=size(data); [mu1,mu2,Sig1,Sig2] = mixnormEMm(data,50);
2 [~,C1]=cov2corr(Sig1); C1=(C1+C1')/2;
3 [~,C2]=cov2corr(Sig2); C2=(C2+C2')/2;
4
5 % Locate the two assets that exhibit the lowest 2nd-component correlation
6 %%%%%%%%%%%%%%%%%%%%%%%%%
7 % WAY 1: brute force code:
8 cmin=1; asset1=1; asset2=1;
9 for row=1:(d-1)

10 for col=(row+1):d
11 c=C2(row,col);
12 if c<cmin, cmin=c; asset1=row; asset2=col; end
13 end
14 end
15 mincorr = cmin, asset1, asset2 %#ok<NOPTS>
16 %%%%%%%%%%%%%%%%%%%%%%%%%
17 % WAY 2: elegant and fast:
18 Use=C2(:); minC=min(Use), loc=find(Use==minC); loc=loc(1); %#ok<NOPTS>
19 asset1=ceil(loc/d), asset2=mod(loc,d); if asset2==0, asset2=d; end, asset2
20 %%%%%%%%%%%%%%%%%%%%%%%%%
21 % WAY 3: If the ceil and mod functions were not available:
22 Use=C2(:); minC=min(Use), loc=find(Use==minC); loc=loc(1); %#ok<NOPTS>
23 garb=zeros(dˆ2,1); garb(loc)=1; garb=reshape(garb,d,d);
24 asset1=find(sum(garb,1)==1), asset2=find(sum(garb,2)==1)
25 %%%%%%%%%%%%%%%%%%%%%%%%%
26
27 % Locate the two assets that exhibit the maximal difference in correlations
28 % between the two components
29 % (Note: correlations in this context are almost always >0)
30 Use=abs(C1-C2); Use=Use(:); loc=find(Use==max(Use)); loc=loc(1);
31 asset1=ceil(loc/d), asset2=mod(loc,d); if asset2==0, asset2=d; end, asset2
32
33 % Locate the largest 2nd-component correlation
34 Use=C2; for i=1:d, Use(i,i)=0; end
35 Use=Use(:); loc=find(Use==max(Use)); loc=loc(1);
36 asset1=ceil(loc/d), asset2=mod(loc,d); if asset2==0, asset2=d; end, asset2

ProgramListing 14.2: Code for finding interesting pairs of data from theDJIA-30 dataset. It assumes
thereturns are in the matrix data. Function cov2corr is in Matlab’s finance toolbox, and just
converts a covariance matrix to a correlation matrix. Function mixnormEMm is given below in
Listing 14.6.
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and

�̂�j =
Bj +

∑T
t=1 Ht,j(Yt − �̂�j)(Yt − �̂�j)′ + cj(mj − �̂�j)(mj − �̂�j)′

aj +
∑T

t=1 Ht,j

, (14.7)

j = 1,… , k. Fixed quantities mj ∈ ℝd, aj ⩾ 0, Bj a d × d positive definite matrix, and cj ⩾ 0, indicate
the prior information, with interpretations analogous to the univariate case.
Thus, genuine maximum likelihood (possibly with shrinkage via the quasi-Bayesian prior) can be

conducted extremely fast, even for a large number of parameters. For the application we consider,
with k = 2 components and d = 30 assets, there are d2 + 3d + 1 = 991 parameters to estimate. In a
general optimization setting with so many parameters this would be essentially infeasible, even with
modern computing power, while the EM algorithm is very simple to implement and, using a 3-GHz
desktop PC, takes about one tenth of a second, using T = 1,000 observations. The program is given
in Listing 14.6 and incorporates the use of weighted likelihood, as discussed in Chapter 13.
When using the Gaussian framework (i.e., single-component multivariate normal) for financial

portfolio optimization, the use of shrinkage applied to the sample means, variances, and covariances
of the returns to improve performance is well-known; see, e.g., Jorion (1986), Jagannathan and Ma
(2003), Kan and Zhou (2007), Bickel and Levina (2008), Fan et al. (2008), and the references therein.
Here, we extend this idea to the MixkNd case. A natural candidate for the prior would be to take mj
to be a d-vector of zeros, and Bj the d-dimensional identity matrix, corresponding to shrinkage to the
standard normal. Our choice will be similar to this, but altered in such a way to be more meaningful
in the context of modeling daily equity returns in general, as subsequently explained.The precise val-
ues are obtained based on “loose calibration” to the DJIA-30 data (explained below), and thus form
a data-driven prior, further distancing it from a traditional Bayesian approach, though it is similar in
principle to the use of so-called empirical Bayes procedures. The relationship between the empiri-
cal Bayes approach and shrinkage estimation are discussed in Berger (1985, Sec. 4.5), Lehmann and
Casella (1998, Sec. 4.6), Robert (2007, Sec. 2.8.2, 10.5), and the references therein.
The top two panels in Figure 14.2 show the 30 values of �̂�1 and �̂�2, obtained from fitting theMix2N30

model to the DJIA-30 data set via the EM algorithm, but using only a very weak prior (enough such
that the singularities are avoided).These values are in accordance with our aforementioned discussion
of the two regimes at work in the financial market. While the means in �̂�1 are closely centered around
zero, those from �̂�2 are nearly all negative, and with a much higher magnitude than those from �̂�1.
From the middle row of panels, we see that the variances from �̂�2 of the 30 components are about
10 times the size of those from �̂�1. Thus, the second component indeed captures the high volatil-
ity “regime” of the returns, and is associated with a relatively strong negative mean term. Finally, we
see from the bottom panels that the correlations between the 30 assets are also higher in the second
component, reflecting the contagion effect. As already mentioned, while being leptokurtic and asym-
metric, distributions such as the MGHyp (and its special or limiting cases) and MVNCT have only
one location vector and dispersion matrix, and so cannot capture these two separate types of market
behavior.
Based on these findings, and in line with the usual motivation for the James–Stein estimator for the

mean vector of a multivariate normal population with independent components (see Section III.5.4),
our prior is one that shrinks the means, variances, and covariances from each of the two components
towards their average values over the d = 30 series, as shown in Figure 14.2.Thus,m1 is a vector of all
zeros,m2 is a vector with all elements equal to −0.1; B1 is the prior strength, 𝜔, times the matrix with
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Figure 14.2 The estimated d = 30 means (top), 30 variances (middle), and 435 correlations (bottom) for the first (left)
and second (right) components of the normal mixture corresponding to the DJIA-30 data set under study. Solid
(dashed) vertical lines show the mean (median).

its d = 30 diagonal elements equal to 1.5, and off-diagonal elements equal to 0.6; for B2, the variance
and covariance are 10 and 4.6, respectively. While several shrinkage targets for the covariance matrix
have been proposed, the one with constant correlations is the easiest, and also does not suffer from
a potential criticism of adding too much information via the prior. Use of constant correlation as
a shrinkage target was advocated by Ledoit and Wolf (2004), who show that it yields comparable
performance to other choices.
Weight aj reflects our strength in the prior of the variance–covariance matrix 𝚺j, j = 1, 2. We take

a1 = 2𝜔 and a2 = 𝜔∕2 because 𝚺2 is far more variable than 𝚺1, though the value of 2 is arbitrary and
could be viewed as a further tuning parameter, alongwith𝜔.Weight cj reflects our strength in the prior
of mean vector 𝝁j, j = 1, 2. These should be higher than the aj for two reasons. First, an appeal to the
efficient market hypothesis provides some justification for shrinking the means in the first, primary
component of themixture towards zero, while the blatant down-market effect in financial crises lends
support for shrinking the mean in the second component of the mixture towards a negative value.
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The second reason is that errors in the estimated mean vector are considered more consequential in
asset allocation andportfoliomanagement (see, e.g., Best andGrauer, 1991, 1992;Chopra andZiemba,
1993), so that the benefits of shrinkage could be quite substantial.3 In light of this, we take cj = 20𝜔, j =
1, 2. (The large factor of 20 was determined by some trial and error based on the simulation exercise
discussed next. It could also serve as a further tuning parameter.) The shrinkage prior, as a function
of the scalar hyper-parameter 𝜔, is then

a1 = 2𝜔, a2 = 𝜔∕2, c1 = c2 = 20𝜔, m1 = 𝟎d, m2 = (−0.1)𝟏d,
B1 = a1[(1.5 − 0.6)Id + 0.6Jd], B2 = a2[(10 − 4.6)Id + 4.6Jd],

(14.8)

where 𝟏d and Jd are the d × 1 column vector and d × d matrix of ones, respectively. As the numerical
values in (14.8) were obtained by calibration to a typical set of financial stock returns, but only loosely,
in the sense that each margin receives the same prior structure and the correlations are constant in
each of the two prior dispersionmatrices, we expect this prior to be useful for any such set of financial
data that exhibits the usual stylized facts of (daily) asset returns.
The only tuning parameter that remains to be chosen is 𝜔. The effect of different choices of 𝜔 is

easily demonstrated with a simulation study, using the Mix2N30 model, with parameters given by the
m.l.e. of the 30 return series (whose parameter values are depicted in Figure 14.2). We used T = 250
observations (which is roughly the number of trading days in one year), a choice of 11 different values
of 𝜔, and 10,000 replications for each 𝜔. All 110,000 estimations were successful, at least in the sense
that the program in Listing 14.6 never failed, with the computation of all of them requiring about 20
minutes (on a single core, 3.2 GHz PC).4
For assessing the quality of the estimates, we use the same technique as in the univariateMixN case,

namely, the log sum of squares as the summary measure, noting that, as with the univariate case, we
have to convert the estimated parameter vector if the component labels are switched. That is,

M∗(�̂�,𝜽) = min{M(�̂�,𝜽),M(�̂�,𝜽=)}, (14.9)

for

𝜽 = (𝝁′
1, 𝝁

′
2, (vech(𝚺1))′, (vech(𝚺2))′, 𝜆1)′, (14.10)

where the vech operator of a matrix forms a column vector consisting of the elements on and below
the main diagonal (see the beginning of Section 12.5.3),

M(�̂�,𝜽) ∶= log (�̂� − 𝜽)′(�̂� − 𝜽), (14.11)

3 While this result is virtually conventional wisdom now, it has been challenged by Bengtsson (2003), who shows that the
presumed deleterious impact of the estimation errors of the mean vector might be exaggerated, and that errors in the
covariance matrix can be equally detrimental. As such, shrinkage of both the mean vector and covariance matrix should be
beneficial.
4 One might inquire about the potential for multiple local plausible maxima of the log likelihood. To (very partially) address
this, for each of the 110,000 replications in the simulation study, the model was estimated twice, based on different starting
values, these being (i) the true parameter values and (ii) the default starting values, which we take to be the prior values from
(14.8). Interestingly, for all 10,000 data sets and each value of 𝜔, without a single exception, the final likelihood values
obtained based on the two different starting values were identical up to the tolerance requested of the EM estimation
algorithm, namely 10−6. While we did not compare the parameter values, this is quite strong evidence that the two starting
values led to the same maximum each time. (As an “idiot check”, estimating each model twice, but using the same starting
values, yields genuinely identical likelihood values, up to full machine precision.)
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and 𝜽= refers to the parameter vector obtained by switching the labels of the two components, i.e.,
𝜽= = (𝝁′

2, 𝝁
′
1, (vech(𝚺2))′, (vech(𝚺1))′, (1 − 𝜆1))′.

The boxplots in Figure 14.3 show, for each value of 𝜔, the discrepancy measureM∗ from (14.9), but
decomposed into four components consisting of the aggregate of the elements in �̂�1, �̂�2, �̂�1, and �̂�2,
respectively (and ignoring 𝜆1). This is valuable because, in addition to being able to assess their esti-
mation uncertainly separately, we can also see the impact of the choices of the aj and cj, j = 1, 2. (If we
were to pool all 991 parameters, then those from �̂�2 would dominate the measure.)The improvement
to both mean vectors is quite substantial, with the last boxplot in each graph, labeled 𝜔 = ∞, having
been based on 𝜔 = 105, illustrating the case when the prior is allowed to dominate.The improvement
from the shrinkage is less dramatic for the covariance matrices, with larger values of 𝜔 eventually
leading to an increase in average estimation error. A reasonable choice of 𝜔 appears to be 20, though
we will see below in the context of density forecasting with the DJIA-30 data (which are certainly not
generated from an i.i.d. Mix2N30 process, as used in the previous simulation) that higher values of 𝜔
are desirable.

14.1.4 Portfolio Distribution and Expected Shortfall

In financial applications with portfolio optimization, interest centers on weighted sums of the uni-
variate margins of the joint MixkNd distribution. This is the random variable describing the portfolio
returns, which, at time t and for portfolio weight vector a and parameter vector 𝜽, we will denote as
Pt(a,𝜽).

Theorem 14.1 Let Yt ∼ MixkNd(M,𝚿,𝝀), with 𝜽 = {M,𝚿,𝝀} as given in (14.1), and portfolio
return P = Pt(a,𝜽) = a′Yt . For any a ∈ ℝd,

fP(x;𝜽) =
k∑
j=1

𝜆j𝜙(x;𝜇j, 𝜎
2
j ), (14.12)

where 𝜙(x;𝜇, 𝜎2) denotes the univariate normal distribution with mean 𝜇 and variance 𝜎2, evaluated
at x, 𝜇j = a′𝝁j, and 𝜎2

j = a′𝚺ja, j = 1,… , k.

Proof : Let X ∼ Nd(𝝁,𝚺), with characteristic function

𝜑X(t) = 𝔼[exp(it′X)] = exp
(
it′𝝁 − 1

2
t′ 𝚺 t

)
=∶ 𝜑(t;𝝁,𝚺), (14.13)

for t ∈ ℝd. As scalar S = a′X ∼ N(a′𝝁, a′𝚺a) for a = (a1,… , ad)′ ∈ ℝd, (14.13) implies that

𝜑S(t) = 𝜑(t; a′𝝁, a′𝚺a) = 𝔼[exp(ita′X)] = ∫ℝd
exp(ita′x) dFN(x;𝝁,𝚺). (14.14)

LetY ∼ MixkNd(M,𝚿,𝝀).With discrete random variableC such that fC(c) = 𝜆c, 𝜆c ∈ (0, 1),
∑k

c=1 𝜆c =
1, we can express the mixed normal density as

fY(y) = ∫ fY∣C(y ∣ c) dFC(c) =
k∑

c=1
𝜆cfN(y;𝝁c,𝚺c). (14.15)



−4
−3.5

−3
−2.5

−2
−1.5

−1
−0.5

0
0.5

M* for μ1 (n = 250, p = 30)

ω=4ω=0 ω=8
ω=12

ω=16
ω=20

ω=24
ω=28

ω=32
ω=36

ω=∞

M* for μ2 (n = 250, p = 30)

−2

−1

0

1

2

3

4

ω=4ω=0 ω=8
ω=12

ω=16
ω=20

ω=24
ω=28

ω=32
ω=36

ω=∞

1.5

2

2.5

3

3.5

4

M* for (vech of) Σ1 (n = 250, p = 30)

ω=4ω=0 ω=8
ω=12

ω=16
ω=20

ω=24
ω=28

ω=32
ω=36

ω=∞

M* for (vech of) Σ2 (n = 250, p = 30)

6

6.5

7

7.5

8

8.5

9

9.5

10

ω=4ω=0 ω=8
ω=12

ω=16
ω=20

ω=24
ω=28

ω=32
ω=36

ω=∞

Figure 14.3 Estimation accuracy, as a function of prior strength parameter 𝜔, measured as four divisions ofM∗ from (14.9) (𝜆1 is ignored), based on
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Then, from (14.13) and (14.15),

𝜑Y(t) = ∫ℝd
exp(it′y) dFY(y) =

k∑
c=1

𝜆c exp
(
it′𝝁c −

1
2
t′ 𝚺c t

)
,

and interest centers on the distribution of the portfolio P = a′Y. Its c.f. is, from (14.14),

𝜑P(t) = 𝔼[exp(itP)] = ∫ℝd
exp(ita′y) dFY(y)

=
k∑

c=1
𝜆c∫ℝd

exp(ita′y) dFN(y;𝝁c,𝚺c) =
k∑

c=1
𝜆c𝜑(t; a′𝝁c, a′𝚺ca),

and applying the inversion theorem gives

fP(x) =
1
2𝜋 ∫

∞

−∞
exp(−itx)𝜑P(t) dt =

k∑
c=1

𝜆c
1
2𝜋 ∫

∞

−∞
exp(−itx)𝜑(t; a′𝝁c, a′𝚺ca) dt

=
k∑

c=1
𝜆c fN(x; a′𝝁c, a′𝚺ca),

which is (14.12). ◾

The first two moments of P are (see Example II.7.14)

𝔼𝜽[P] =
k∑

c=1
𝜆c𝜇c, 𝕍𝜽(P) =

k∑
c=1

𝜆c(𝜎2
c + 𝜇2

c ) − (𝔼𝜽[P])2, (14.16)

using standard notation to express their dependence on parameter 𝜽. The c.d.f. of P is FP(x;𝜽) =∑k
c=1 𝜆cΦ((x − 𝜇c)∕𝜎c), with Φ the standard normal c.d.f. Denote the 𝜉-quantile of P as qP,𝜉 , for 0 <

𝜉 < 1. Recall from Section III.A.7 that, for P continuous, the 𝜉-level expected shortfall is (using the
minus convention) ES (P, 𝜉;𝜽) = −𝔼[P ∣ P ⩽ qP,𝜉 ;𝜽]. In our setting, an analytic expression is available,
so that the objective function in portfolio optimization using expected shortfall as the risk measure
is instantly and accurately evaluated. Dropping the dependency of the ES on 𝜽 for notational conve-
nience, we have

Theorem 14.2 For portfolio return P = Pt(a,𝜽) = a′Yt with p.d.f. (14.12),

ES(P, 𝜉) =
k∑
j=1

𝜆jΦ(cj)
𝜉

{
𝜇j − 𝜎j

𝜙(cj)
Φ(cj)

}
, cj =

qP,𝜉 − 𝜇j

𝜎j
, j = 1,… , k. (14.17)

Proof : With P ∼ MixkN1 and p.d.f. (14.12), we require the following two simple facts, both of which
are shown in Section III.A.8. First, if Y = 𝜎Z + 𝜇 for 𝜎 > 0 and ES(Z; 𝜉) exists, then ES(Y , 𝜉) = 𝜇 +
𝜎 ES (Z, 𝜉). Second, for R ∼ N(0, 1) with p.d.f. 𝜙 and c.d.f. Φ, a simple integration shows that

ES(R, 𝜉) = −𝜙{Φ−1(𝜉)}∕𝜉. (14.18)
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Let qP,𝜉 be the 𝜉-quantile of P, Xj ∼ N(𝜇j, 𝜎
2
j ), cj ∶= (qP,𝜉 − 𝜇j)∕𝜎j, and Z ∼ N(0, 1). Based on the sub-

stitution z = (x − 𝜇j)∕𝜎j,

ES(P, 𝜉) = 1
𝜉 ∫

qP,𝜉

−∞
xfP(x) dx = 1

𝜉

k∑
j=1

𝜆j ∫
qP,𝜉

−∞
x 𝜎−1

j fZ
(x − 𝜇j

𝜎j

)
dx

= 1
𝜉

k∑
j=1

𝜆j ∫
qP,𝜉−𝜇j

𝜎j

−∞
(𝜎jz + 𝜇j)𝜎−1

j fZ(z) 𝜎j dz

= 1
𝜉

k∑
j=1

𝜆j

[
𝜎j ∫

cj

−∞
zfZ(z) dz + 𝜇j ∫

cj

−∞
fZ(z) dz

]
. (14.19)

Using (14.18) and (14.19), we obtain (14.17). ◾

14.2 Model Diagnostics and Forecasting

All models are wrong, but some are useful.
(George Edward Pelham Box, 1979)

14.2.1 Assessing Presence of a Mixture

Recall that the filteredHt,j values from (14.5) have support [0, 1] and can be referred to as theposterior
probabilities that observationYt came from component j, t = 1,… ,T , j = 1, 2, conditional on all the
Yt and the estimated parameters. It is natural to plot the values of Ht,1, versus the time ordering t,
t = 1,… , 1,945. These are shown in the left panel of Figure 14.4, as returned from the EM algorithm
after it converged.The right panel is the same, but just showing the last 250 values. It appears that the
two components are well separated, with most values being very close to either zero or one.
While this would appear to add even more support to our claim that there exist two reasonably

distinct “regimes”, this is actually not the case: The same effect occurs if the data come from a (sin-
gle component) leptokurtic multivariate distribution such as Student’s t or Laplace. To illustrate,
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Figure 14.4 Final values of Ĥt,1 returned from the EM algorithm based on the Mix2N30 model, applied to the DJIA-30
data set.
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we first simulate a set of T = 1,945 return vectors, each an i.i.d. draw from the multivariate normal
distribution with the mean and covariance matrix chosen as the sample mean and covariance from
the DJIA-30 stock return data, and attempt to fit the Mix2N30 model. The code for this is given in
Listing 14.3.
Of course, there is only one component, and the parameters of the mixture model are not identi-

fied. As perhaps expected, the EM algorithm converges slowly (over 1,000 iterations in this case).The
likelihood is (except for the singularities) relatively flat in 𝜆, with true value zero or one, and thus not
in the interior of the parameter space. For this simulated data set, them.l.e. was �̂� = 0.55. Further sim-
ulations resulted in similar behavior. The left panel of Figure 14.5 shows the final values of Ĥt,1. There
is clearly far less separation than with the actual DJIA-30 data. The sum of the diagonal of the sample
covariance matrix of the DJIA-30 data is 146, while the sums for the two “mixture components” �̂�1
and �̂�2, based on the simulated multivariate normal data, were 136 and 155, respectively, showing
that there is hardly any difference in the two components.
The right panel of Figure 14.5 is similar, but based on T = 1,945 samples of i.i.d. data generated

from the multivariate Laplace distribution given below in (14.31). A realization from this distribution
is very simple to generate using its mixture representation: For b > 0, G ∼ Gam(b, 1) and (Y ∣ G =
g) ∼ N(0, g𝚺). The code for the plot is given in Listing 14.4.
Now, the sum of the diagonals of �̂�1 and �̂�2 are 34 and 218, respectively, with a clear separation of

the two normal components, even though the data were not generated from a two-component mixture
of normals. As the shape parameter b decreases towards one, the univariate marginal distributions
become very peaked and leptokurtic, allowing a clear separation of the data (under the incorrect
assumption of a MixN). As b → ∞, the distribution becomes Gaussian, so that the resulting plot of
the Ĥt,1 begins to look like the left panel of Figure 14.5.

1 T=1945; Y=mvnrnd(mean(data),cov(data),T);
2 [mu1,mu2,Sig1,Sig2,lam,ll,H1] = mixnormEMm (Y,0.1,[]);
3 figure, plot(1:1945,H1,'ro')
4 sum(diag(cov(data))), sum(diag(Sig1)), sum(diag(Sig2))

Program Listing 14.3: Simulates T i.i.d. realizations from the d-dimensional multivariate normal
distribution and estimates the Mix2Nd model. data is the T × d DJIA-30 daily returns matrix.
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Figure 14.5 Left: Final values of Ĥt,1 returned from the EM algorithm based on the Mix2N30 model for a simulated set
of multivariate normal data with T = 1,945, d = 30, using a mean and covariance equal to the sample mean and
covariance from the DJIA-30 data set. Right: Same, but having used a multivariate Laplace distribution with b = 1.
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1 d=30; b=1; mu=mean(data); Sig=cov(data)/b; T=1945; Y=zeros(T,d);
2 for i=1:T
3 theta=gamrnd(b,1,[1,1]); Y(i,:)=mvnrnd(zeros(1,d),theta*Sig,1) + mu;
4 end
5 [mu1,mu2,Sig1,Sig2,lam,ll,H1] = mixnormEMm (Y,0.1,[]);
6 figure, plot(1:1945,H1,'bo')
7 sum(diag(cov(data))), sum(diag(Sig1)), sum(diag(Sig2))

Program Listing 14.4: Simulates T i.i.d. realizations from the d-dimensional multivariate Laplace
distribution (14.31) and estimates the Mix2Nd model. The expression for Sig in the first line comes
from the variance of the Laplace distribution, see (14.32).

Thus, we see that our empirical justification for using a mixture distribution with two components
stems from the results in Figure 14.2, namely that the means of the first and second component differ
markedly, with the latter being primarily negative, and that the correlations in the second compo-
nent are on average higher than those associated with component 1. As we have seen by considering
Figures 14.4 and 14.5, the larger variances associated with the second component arise if the data are
actually generated from a two-component mixture of normals, but also if the data are generated from
a (single-component) multivariate Laplace.

The separation apparent in Figure 14.4 is necessary, but not sufficient, to support the hypothesis
that the data were generated by a mixture distribution.

14.2.2 Component Separation and Univariate Normality

Returning now to the DJIA-30 data, the separation apparent from Figure 14.4 is also highly advanta-
geous because it allows us to assign each Yt to one of the two components, in most cases with what
appears to be rather high confidence. Once done, we can assess how well each of the two estimated
multivariate normal distributions fits the observations assigned to its component.While we could use
the rule to assign the tth observation Yt to component 1 if Ĥt,1 > 0.5, and to component 2 otherwise
(whichwould result in 1,490 observations assigned to component 1, or 76.6%, which is nearly the same
as �̂�1 = 0.763), we instead use the criteria Ĥt,1 > 0.99, choosing to place thoseYt whose corresponding
values of Ĥt,1 suggest even a slight influence from component 2 into this more volatile component.
This results in 1,373 observations assigned to component 1, or 70.6% of the observations, and 572 to
the second component.
Once the data are (inevitably imperfectly) split, we wish to assess the normality of each of the two

components. There are many tests for composite univariate normality; see Chapter III.6 for some
of these. Unfortunately, testing composite multivariate normality is not trivial; see Thode, Jr. (2002,
Chap. 9) and the survey article from Mecklin and Mundfrom (2004). Part of the reason for the com-
plexity of testing multivariate normality is that there are many ways a distribution can depart from
it, so that no single test will be optimal. Examining only the univariate margins (as was illustrated in
Section III.6.5.1) is not ideal because they do not uniquely determine the joint distribution. (Example
II.3.2 shows a distribution for which all marginals, univariate and multivariate, are normal, but the
joint distribution is not.) Nevertheless, we proceed first by inspecting the behavior of the univari-
ate margins, so that we can possibly suggest a more suitable multivariate distribution that at least
accounts for the univariate empirical behavior of the data.
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Figure 14.6 Truncated boxplots of the fitted GAt parameters of the d = 30 return series in the first (left) and second
(right) component. Parameter d has nothing to do with our use of d for the dimension of the data, 30 in our case.

Based on the split into the two components, wewill estimate, for each of the d = 30 univariate series
in each of the two components, a flexible, asymmetric, fat-tailed distribution (that nests the normal
as a limiting case), and inspect the parameters to learn about the univariate margins. For this, we use
the GAt distribution (III.A.124). Figure 14.6 shows the (truncated) boxplots of the five GAt estimated
parameters over the d = 30 time series, along with the sample skewness.
For the first component, the sample skewness is virtually centered around zero and has a much

lower variation than those for the second component, indicating that we can assume symmetry in
the marginals for the first component. For both components, the estimated value of the asymmetry
parameter 𝜃 barely deviates from unity, lending support that the asymmetry exhibited in the asset
returns is well-explained by using two symmetric components in a mixture distribution.
The scale terms for the first component are, as expected, much lower than those in the second com-

ponent. In addition, while the values of �̂� (the tail thickness parameter, with 𝑣 = ∞ corresponding to
exponential tails as with the normal and GED distributions) in the first component are, on average,
quite high, and far higher than �̂� for the second component, some of those 30 values are still rather
small, the smallest, corresponding to the stock returns of McDonald’s corporation, being 1.98.5 This
fact adds considerable weight against the multivariate normality hypothesis for each of the two com-
ponents, though there are very few stocks such as McDonald’s that have such aberrant behavior, and
so ending the story here would be premature.
To investigate this further, consider the following heuristic procedure. For each of the d series, but

not separating them into the two components, we fit the GAt, first with no parameter restrictions
(other than those required by the parameter space of the distribution), and second, with the restriction
that 90 < �̂� < 100, which essentially forces normality if GAt distribution parameter d = 2 and 𝜃 = 1,
or Laplace if d = 1 and 𝜃 = 1, though it is important to emphasize that d̂ and �̂� were not constrained in
this way.6 Then, we compute the asymptotically valid p-value of the likelihood ratio test. If that value

5 The maximally existing moment of the GAt is bound above by 𝑣d. In this case, d̂ is 2.41, so that �̂�d̂ = 4.8, and this is also the
stock with the lowest such product. Recall from Chapter III.9 that this does not imply an estimate for the supremum of the
maximally existing moment of 4.8 because of the flawed nature of using a parametric model for determining the maximally
existing moment.
6 For each estimation, several different starting values were used to help ensure the global maximum was found. In
particular, we used as starting values d̂ = 1.4, �̂� = 0.98, �̂� = 0, ĉ = 3, and that for �̂� was chosen from an equally spaced grid of
10 points from its lowest possible value (we used 0.5 in the unrestricted, and 90 in the restricted) to its highest allowed value
of 100. Doing this made a difference in about 10% of the entries in the table, confirming that multiple maxima of the
likelihood are possible for this model.
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1 cut=0.05; comp0outliers=zeros(30,1);
2 for stock=1:30, stock
3 y=data(:,stock); pval=0; remove=-1;
4 while pval<cut
5 use=y; remove=remove+1;
6 for i=1:remove
7 loc=find(abs(use)==max(abs(use))); use=[use(1:loc-1) ; use(loc+1:end)];
8 end
9 [param,stderr,iters,loglikUNR] = GAtestimation(use,0.5);

10 [param,stderr,iters,loglikRES] = GAtestimation(use,90);
11 stat=2*(loglikUNR-loglikRES); pval = 1-chi2cdf(stat,1);
12 end
13 comp0outliers(stock)=remove;
14 end

Program Listing 14.5: Removes “outliers” until the p-value from the likelihood ratio test exceeds
0.05.

is less than 0.05, we remove the largest value (in absolute terms) from the series, and re-compute the
estimates and the p-value. This is repeated until the p-value exceeds 0.05, and we report the smallest
number of observations required to be removed in order to achieve this.TheMatlab code to perform
this calculation is shown in Listing 14.5, assuming the returns are stored in aT × dmatrix data. (The
second parameter passed to GAtestimation is the lower limit on �̂�.)
The results are given in Table 14.1, in the rows labeled “All”.The other rows are the same, but having

used the observations allocated to components 1 and 2. Thus, for example, stock number 5 (Bank
of America) is such that the 65 most extreme values had to be removed from the series to get the
p-value above 0.05, but no observations from component 1 needed to be removed, and only three
from component 2. Except for stock numbers 6 (Boeing) and 22 (McDonald’s), either zero or one
outlier, or two (in two cases), had to be removed from the first component.
While this is a heuristic method with unknown theoretical performance and arbitrarily chosen sig-

nificance level 0.05, it does provide some evidence that a mixture of two normal distributions can

Table 14.1 Number of observations required to be removed until the likelihood ratio test comparing GAt and
normality does not reject at the 0.05 level.

Stock # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All 19 19 5 2 65 21 11 27 60 10 30 19 28 31 8
Comp1 0 0 0 0 0 3 0 0 1 1 1 0 0 0 0
Comp2 0 1 0 0 3 1 1 6 8 2 0 8 0 1 1

Stock # 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

All 7 12 8 5 19 7 15 28 3 14 10 11 6 8 10
Comp1 0 0 2 2 0 0 7 0 0 0 0 0 0 0 0
Comp2 0 0 0 1 0 0 1 2 0 2 1 3 0 2 1
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account for nearly, but not all, of the leptokurtic behavior in the returns, as well as the asymmetry,
and, as already mentioned, has the advantage over other asymmetric, fat-tailed multivariate distribu-
tions in that the two components can capture highly distinct behavior that would otherwise have to
be averaged over when using only a single component.

Remark There is another advantage of amixture of normals compared to use of a single-component
multivariate distribution with one or several additional shape parameters, such as the MGHyp and
all its special cases, the MVNCT, etc. As discussed in Chapter 12, for these distributions the shape
parameters (such as the degrees of freedom parameter in the Student’s t) dictate the thickness of the
tails, common to all d univariate dimensions. Based on the results in the previous table, this would
be too restrictive. For example, with stock number 4 (AT&T), only two extreme values needed to be
removed to induce thin-tailed behavior, while Bank of America required 65.
To further substantiate this, recall Figure 12.1, showing the (sorted) values of the estimated degrees

of freedom parameter corresponding to the univariate location-scale Student’s t distribution, for each
of the d = 30 return series (the entire series, and not split into two components), along with approx-
imate 95% confidence intervals computed via the nonparametric bootstrap. Of interest is if the 𝑣i,
i = 1, 2,… , 30, can be deemed equal, as would be required for the multivariate Student’s t distribu-
tion. This is clearly untenable.
As mentioned above, the Mix2Nd distribution does not formally exhibit tail dependence and does

not have a tail index: It is a thin, or short-tailed distribution, so that the tail behavior of each of the
d dimensions is also the same. However, via the mixture and its two sets of location and dispersion
parameters, the margins are leptokurtic and can “mimic” heterogeneous tail behavior, but only up
to a point, usually adequate for the actual range of the data, but eventually, the tail behaviors of the
margins are all the same, and are thin-tailed, Gaussian.
Another way of addressing this issue, and allowing for each margin to have its own tail thickness

parameter is via use of a copula structure, as with the (A)FaK distribution in Chapter 12. ◾

We now consider the McDonald’s results in more detail, this being the worst-fit case. Figure 14.7
shows the unrestricted and restricted fitted densities (top panels) corresponding to the first and sec-
ond components (left and right, respectively), and the fitted densities after having removed the seven
(one) most extreme values from the first (second) component (bottom panels). The unrestricted and
restricted densities are surprisingly close, with their differences only observable in the tails of the dis-
tribution. Once the extreme values are removed, the unrestricted and restricted densities are nearly
indistinguishable.
In all cases, but particularly the top panels (for which no extreme values were removed), the value

of GAt shape parameter d̂ (not to be confused with the dimension of the multivariate data set, d)
decreases substantiallywhen going from the unrestricted to the restrictedmodel. In particular, d̂ = 1.4
(1.2) for the first (second) component.This is because a lower value of d implies a higher kurtosis, and
so it is able to offset the restriction that �̂� is constrained to lie above 90. Recalling that d = 1 in the
GAt (with 𝜃 = 1 and 𝑣 → ∞) corresponds to the Laplace distribution, this motivates considering the
use of a mixture of two multivariate Laplace distributions instead of multivariate normal. We return
to this idea in Section 14.5.2.
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Figure 14.7 The first (left) and second (right) components of the McDonald’s stock returns, with unrestricted and
restricted GAt densities, without and with outlier removal.

14.2.3 Component Separation andMultivariate Normality

We now turn to one way of assessing the multivariate normality of the two components. The left
panel of Figure 14.8 shows the Mahalanobis distances corresponding to the multivariate normal fit
of the DJIA returns. (This is the same as Figure III.3.4.) With the ability to partition the data into
the two components, we can construct the same graphic, but applied to each component. The left
panel of Figure 14.9 shows this for the first component, in which case 14% of the observations lie
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Figure 14.8 Left: The traditional Mahalanobis distances computed for the DJIA-30 returns, with 15% of the
observations above the cutoff line. Right: Similar, but having used the robust Mahalanobis distance based on the
mean vector and covariance matrix from the m.c.d. method, resulting in 33% above.
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Figure 14.9 Left: The traditional Mahalanobis distances computed for the observations in the first component, based
on the EM-split of the DJIA-30 data. Right: Similar, but having used the robust Mahalanobis distance based on the
mean vector and covariance matrix from the m.c.d. method.
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Figure 14.10 Similar to Figure 14.9 but for the second component.

above the 97.5% cutoff line, instead of 2.5%, as would be expected under the null hypothesis of i.i.d.
normality. Thus, as also determined above via the previous univariate analysis, the first component is
not multivariate normal, though it is noteworthy that the magnitudes of the Mahalanobis distances
that exceed the cutoff are rather modest.
The same graphic but applied to the second component is shown in the left panel of Figure 14.10,

and is such that 13% of the observations lie above the 97.5% cutoff line, which is about the same as the
14% associated with the first component. But notice that the magnitudes of the violations are much
larger, thus indicating (albeit outside a formal testing framework of just counting those below and
above the line) that the violation of normality is of a different nature in the second component than
that in the first.
There is, however, a problem with this assessment, besides the lack of a formal probabilistic

framework to account for the violations being of a larger magnitude. In fact, it is the proverbial
elephant in the room: The use of the Mahalanobis distance is sensitive to the presence of outliers
in the data, particularly when their number is relatively large and/or when they are of extreme
magnitudes, because they have a strong and deleterious effect on the estimates of the mean and
covariance matrix, with the pernicious effect of allowing the genuine outliers to mask themselves. To
address this, we use the minimum covariance determinant, or m.c.d. method, discussed in Section
III.3.1.3.
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Similar to the Mahalanobis distance, outliers are identified in the m.c.d. method via the so-called
robust Mahalanobis distance (hereafter, r.M.d.), given by

RMD(y; 𝛼) =
√

(y − �̂�r)′Ŝ−1r (y − �̂�r), (14.20)

where y is a d-dimensional column vector, and �̂�r and Ŝr are robust estimators of the location vector
and scatter matrix, respectively.
The right panel of Figure 14.10 shows the result for the second component when using the m.c.d.

robust estimators of the mean vector and covariance matrix. It indicates that 26% of the observations
lie above the cutoff line, but also shows that the violations occur predominantly at the end of the time
period. This period corresponds precisely with the massive drops and high volatility of the financial
markets during theGlobal Financial Crisis.This robust estimator is clearly a superior tool in situations
such as this, in which a substantial number of observations are present that deviate from the overall
typical behavior and cause genuine outliers to be masked.
The right panel in Figure 14.9 shows the corresponding plot for the first component.The differences

between the usual and robust Mahalanobis distances are rather small in comparison to those for the
second component, though it results in 20% of the values exceeding the cutoff line. The right panel
of Figure 14.8 shows the robust Mahalanobis distances (14.20) when computed for the returns them-
selves (and not split into two components), indicating that the extent of non-normality of the returns
data is much stronger than what the traditional Mahalanobis distance indicates.
Taken altogether, we have considerable evidence that neither component, but particularly the sec-

ond, is adequatelymodeledwith aGaussian distribution.Oneway of addressing this is to use amixture
of distributions whose components allow for leptokurtic behavior, such as the Laplace. This is done
in Section 14.5.

14.2.4 Mixed Normal Weighted Likelihood and Density Forecasting

To apply the weighted likelihood scheme of Chapter 13 in this context, the tth term entering into
the log-likelihood gets multiplied by its corresponding weight 𝜛t , t = 1,… , 𝑣. When using the EM
algorithm for the MixkNd model, this direct implementation is not available. To accommodate this,
several options were considered in Paolella (2015) and the following was found to be the best choice:
Multiply eachYt appearing in themean updating equation (14.6) by𝜛t , multiply eachYt appearing in
the variance updating equation (14.7) by𝜛t , andmultiply eachHt,j in the component weight updating
equation (14.6) by𝜛t .
It turns out that most of the improvement comes from applying the weights to the �̂�j, whereas

virtually no improvement is obtained from weighting the �̂�j. Interestingly, this is virtually the oppo-
site result compared to the gains in forecasting performance attributable to the use of shrinkage,
which improves the mean forecast significantly, but hardly affects the variance and covariance esti-
mates; recall Figure 14.3.Thus, the use of shrinkage and weighted likelihood contribute to forecasting
improvement in a nearly orthogonal fashion. That weighted likelihood in this context improves the
estimates of �̂�j (with respect to forecasting) relatively the most was to be expected, given the volatility
clustering inherent in the data, and the fact that we do not account for it by, say, a GARCH-type law
of motion for the volatility.
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The Matlab implementation of the quasi-Bayesian EM algorithm for estimating the Mix2Nd
distribution with weighted likelihood is given in Listing 14.6. The default setup is to apply weighted
likelihood only to the �̂�j. The extension to the k-component case is straightforward, and the reader
is encouraged to set it up for k = 3. Compared to the univariate case, the code is more involved.

1 function [mu1,mu2,Sig1,Sig2,lam,loglik,H1,crit,iter] ...
2 = mixnormEMm (y,omega,init,rho,tol,maxit)
3 if nargin < 6, maxit=1e4; end, if nargin < 5, tol=1e-6; end
4 if nargin < 4, rho=1; end, if nargin < 3, init=[]; end
5 if nargin < 2, omega=0; end
6 if length(rho)==1
7 weightmeans=0; weightsigmas=1; weightlam=0;
8 else
9 weightmeans=rho(2); weightsigmas=rho(3); weightlam=rho(4);

10 end
11 [n,p]=size(y);
12
13 % weighted likelihood
14 tvec=(1:n)'; likew=(n-tvec+1).ˆ(rho(1)-1); likew=n*likew/sum(likew);
15
16 if 1==1 % based on typical financial data
17 s1=1.5; cov1=0.6; s2=10; cov2=4.6; m1=zeros(p,1); m2=-0.1*ones(p,1);
18 else % arbitrary
19 s1=1; cov1=0.0; s2=1; cov2=0.0; m1=zeros(p,1); m2=zeros(p,1);
20 end
21 psig1=zeros(p,p); psig2=zeros(p,p);
22 for i=1:p, for j=1:p %#ok<ALIGN>
23 if i==j, psig1(i,j)=s1; else psig1(i,j)=cov1; end
24 if i==j, psig2(i,j)=s2; else psig2(i,j)=cov2; end
25 end, end
26 a1=2*omega; a2=omega/2; c1=20*omega; c2=20*omega; B1=a1*psig1; B2=a2*psig2;
27
28 if isempty(init)
29 mu1=m1; mu2=m2; Sig1=psig1; Sig2=5*psig2; lam=0.8;
30 else
31 mu1=init.mu1; mu2=init.mu2; Sig1=init.Sig1; Sig2=init.Sig2; lam=init.lam;
32 end

ProgramListing 14.6: Estimates the parameters of theMix2Nd distribution using the EM algorithm
with quasi-Bayesian prior. (The code uses p instead of d for the dimension.) Input y is the n × dmatrix
of data. omega is the prior strength; pass 0 (default) for standard m.l.e., i.e., no prior information, or
pass a positive value as the strength. init contains initial values as as structure, i.e., init.mu1,
init.mu2, init.Sig1, init.Sig2, and init.lam. The default is []. rho indicates the weight
for hyperbolic weighted likelihood, with a weight of 1 yielding equally weighted (usual) likelihood, and
values less than 1 putting more weight on recent observations. Or pass vector [rho weightmeans
weightsigmas weightlam] where the latter three are boolean values and dictate which of the
parameters receive the weights. Default is to use only the 𝚺i. tol is the required tolerance for each
parameter to assume convergence.maxit is themaximumallowed number of iterations before giving
up. Continued in Listing 14.7.
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1 wscheme=2; % See below how this is used.
2 iter = 0; crit=0; pdftol=1e-200; eigtol=1e-12;
3 new = [mu1 ; mu2 ; Sig1(:) ; Sig2(:) ; lam];
4 while 1
5 iter=iter+1; old=new;
6 if iter==1000, iter, end
7 Sig1=(Sig1+Sig1')/2; Sig2=(Sig2+Sig2')/2; % sometimes off by a tiny amount
8
9 [V,D] = eig(Sig1); dd=diag(D);

10 if any(dd<eigtol), dd=max(dd,eigtol); D=diag(dd); Sig1=V*D*V'; end
11 [V,D] = eig(Sig2); dd=diag(D);
12 if any(dd<eigtol), dd=max(dd,eigtol); D=diag(dd); Sig2=V*D*V'; end
13
14 Comp1=mvnpdf(y,mu1',Sig1); Comp1=max(Comp1,pdftol);
15 Comp2=mvnpdf(y,mu2',Sig2); Comp2=max(Comp2,pdftol);
16 mixn =lam*Comp1+(1-lam)*Comp2; H1=lam*Comp1./mixn; H2=1-H1;
17
18 if weightmeans, G1=H1.*likew; G2=H2.*likew; else G1=H1; G2=H2; end
19 if wscheme==1, N1=sum(G1); N2=sum(G2); else N1=sum(H1); N2=sum(H2); end
20 rep1 = repmat(G1,1,p); rep2 = repmat(G2,1,p);
21 mu1 = ( c1*m1 + sum( rep1 .* y )' ) / (c1 + N1);
22 mu2 = ( c2*m2 + sum( rep2 .* y )' ) / (c2 + N2);
23
24 if weightsigmas, G1=H1.*likew; G2=H2.*likew; else G1=H1; G2=H2; end
25 if wscheme==1, N1=sum(G1); N2=sum(G2); else N1=sum(H1); N2=sum(H2); end
26 rep1 = repmat(G1,1,p); rep2 = repmat(G2,1,p);
27 ymm = y - repmat(mu1',n,1); ymmH = rep1 .* ymm; outsum1=ymmH'*ymm;
28 Sig1 = (B1 + c1*(m1-mu1)*(m1-mu1)' + outsum1 ) / (a1+N1);
29 ymm = y - repmat(mu2',n,1); ymmH = rep2 .* ymm; outsum2=ymmH'*ymm;
30 Sig2 = (B2 + c2*(m2-mu2)*(m2-mu2)' + outsum2 ) / (a2+N2);
31
32 if weightlam, G1=H1.*likew; else G1=H1; end
33 lam = mean(G1); new = [mu1 ; mu2 ; Sig1(:) ; Sig2(:) ; lam];
34 crit = max (abs (old-new)); if (crit < tol) || (iter >= maxit), break, end
35 end
36 loglik=sum(log(mixn));

Program Listing 14.7: Continuation of Listing 14.6.

In particular, to avoid FOR loops (being much slower than using the internal vectorized Matlab
functions), we make judicious use of the repmat function. This is also done in Matlab’s mvnpdf
function for the multivariate normal p.d.f., which is far faster for a large number of observations than
computing the density in a direct, less sophisticated way.

14.2.5 Density Forecasting: Optimal Shrinkage

We can compute 𝜋t(i, 𝑣) from (13.2), for a set of Mix2N30 models, estimated with shrinkage prior
(14.8) with a given value of𝜔, denoting this by𝜔.We do this using amovingwindow of size 𝑣 = 250,
starting at observation 𝜏0 = 𝑣 = 250, and updating parameter vector �̂� at each time increment (o = 1;
𝜁 = t − 1).
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Figure 14.11 Left: Plot of the standardized cusum C(h, 𝜔) − C(h, 0.1)where C is given in (14.21), versus h − 𝜏0 + 1, for
𝜏0 = 250 and several 𝜔 = 5, 10, 15, 20, 25. Right: The normalized sum of the realized predictive log likelihood (14.22)
as a function of prior strength hyper-parameter 𝜔, and based on estimation with a moving window of length 𝑣 = 250
(solid line) and 𝑣 = 1,000 (dashed line). For the latter, 𝜏0 is still 250, and we use the convention in (14.23). The star
shows the best obtained value, corresponding to a prior weight of 𝜔 = 50, and is the same star in both panels of
Figure 14.16, while the top-most horizontal line is the same line in the right panel of Figure 14.16, showing the
additional improvement from the methods discussed in Section 14.2.4.

The left panel of Figure 14.11 plots the cumulative sum (cusum) of the 𝜋t(𝜔, 250), normalized by
subtracting the cusum of 𝜋t(0.1, 250), that is, we plot C(h, 𝜔) − C(h, 0.1), where

C(h, 𝜔) =
h∑

t=𝜏0+1
𝜋t(𝜔, 250), h = 𝜏0 + 1,… ,T , (14.21)

versus h − 𝜏0 + 1, for 𝜔 = 5, 10, 15, 20, 25 and T = 1,945.
The code to construct the plot is given in Listing 14.8. It is possible, if not likely, that there exist

multiple plausible maxima of the likelihood function. Ideally, via use of many starting values, a local
optimum would be located that is, with high probability, the global one. We instead use just two
starting values, as follows: For a given window of observations, the first starting value is simply the
final value obtained from the previous window. As these two data sets just differ by two observations,
we expect the m.l.e.s from both of them to be close, so that this should be a very reasonable starting
value. Nevertheless, it is possible (and occurs with nonnegligible frequency; use the cnta and cntb
variables in the program in Listing 14.8 to see) that this leads precisely to an inferior local maximum.
As such, our second starting value is the simple, default one used in the estimation program given in
Listing 14.6.
The improvement in forecast accuracy is virtually monotonically increasing with both increasing

h and increasing 𝜔, providing very strong evidence that shrinkage estimation vastly outperforms the
use of the m.l.e. in this context. In fact, the gains from using the shrinkage estimator compared to the
m.l.e. are higher than indicated in Figure 14.11 because we used the benchmark model 0.1 instead
of the m.l.e. 0. This was done because the former is numerically far more reliable than use of no
prior information, which occasionally settles on a singularity in the mixture likelihood. What is not
clear is if the overall gain, C(T , 25) − C(T , 0.1) = 6,098 (the top of the graph), is “significant” in some
sense. The answer depends on the application and how the forecasts are to be used. If, for example,



Multivariate Mixture Distributions 635

1 [n,p]=size(data); omegavec=[0.1 5:25]; omegalen=length(omegavec);
2 win=250; up=n-win; logpdf=zeros(up,1);
3 for oloop=1:omegalen
4 omega=omegavec(oloop); init=[]; cnta=0; cntb=0;
5 for start=1:up, if mod(start,100)==0, start, end
6 use=data(start:(start+win-1),:); % data for estimation
7 y1=data(start+win,:); % what actually happens tomorrow
8 %%%%%%%%%%%%%%%%%%%%%%%%ESTIMATE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 [mu1a,mu2a,Sig1a,Sig2a,lama,lla] = mixnormEMm (use,omega,init);

10 [mu1b,mu2b,Sig1b,Sig2b,lamb,llb] = mixnormEMm (use,omega,[]);
11 if lla>llb % keep track of how often this happened
12 cnta=cnta+1; mu1=mu1a; mu2=mu2a; Sig1=Sig1a; Sig2=Sig2a; lam=lama;
13 else
14 cntb=cntb+1; mu1=mu1b; mu2=mu2b; Sig1=Sig1b; Sig2=Sig2b; lam=lamb;
15 end
16 Sig1=(Sig1+Sig1')/2; Sig2=(Sig2+Sig2')/2; % occasionally needed!
17 % use these parameter estimates as starts for the next window
18 init.mu1=mu1; init.mu2=mu2; init.Sig1=Sig1; init.Sig2=Sig2; init.lam=lam;
19 % compute the realized predictive log likelihood
20 Comp1=mvnpdf(y1,mu1',Sig1); Comp2=mvnpdf(y1,mu2',Sig2);
21 mixn =lam*Comp1+(1-lam)*Comp2;
22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23 logpdf(start)=log(mixn); % store the realized predictive log likelihood
24 end
25 eval(['logpdf',int2str(omega),'=logpdf;'])
26 end
27 vv=1:(length(data)-win); figure, hold on
28 plot(vv,cumsum(logpdf25)-cumsum(logpdf0),'m-','linewidth',3)
29 % further, similar plot commands
30 hold off

Program Listing 14.8: Constructs the left panel of Figure 14.11, assuming the returns are collected
inmatrix data. Code between the big comment lines is also used in Listing 14.9.

they are used for determining the weights in a financial portfolio, then one natural measure would be
the increase in average return for a given level of (some measure of ) risk.7
For now, we will normalize the value C(T , 𝜔) by dividing it by the number of time points used in

the sum, T − 𝜏0 (in this case 1,695), as was done in (13.3), and also by the dimension of the random
variable under study, in this case, d = 30. This facilitates comparison for different values of 𝜏0 and
d. That is, for a given model  and window size 𝑣, we take the normalized sum of the realized
predictive log-likelihood to be

S𝜏0,T (, 𝑣) = 1
(T − 𝜏0)d

T∑
t=𝜏0+1

𝜋t(, 𝑣), (14.22)

where d is the dimension of the data. It is thus the average realized predictive log-likelihood, averaged
over the number of time points used and the dimension of the random variable under study.

7 The clear bottom line in finance is, from the viewpoint of statistics, quite welcome because it provides a very explicit
objective function and method for comparison that most everybody agrees upon. Of course, this might also be deemed
distasteful: The expression sometimes used in the financial industry, CIMITYM, is a good case in point. It stands for: Cash Is
More Important Than Your Mother.
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The right panel of Figure 14.11 plots S250,1945(𝜔, 250) (solid line) as a function of 𝜔, the weight of
the shrinkage prior, from which we can see that the optimal amount of shrinkage based on 𝑣 = 250 is,
say, 𝜔∗(250) = 50. The plot also shows S250,1945(𝜔, 1000), i.e., having used a moving window of size
𝑣 = 1,000, and 𝜔∗(1000) ≈ 65. Observe that 𝜏0 < 𝑣, which, formally, does not make sense. We use the
convention that, for computing 𝜋t(, 𝑣), we use the previous

min(𝑣, t − 1) (14.23)

observations. So, for example, with 𝜏0 = 250 and 𝑣 = 1,000, at observation t = 251, we use the past
250 observations, at t = 252, we use the past 251 observations, etc., up to t = 1,000, for which we use
the past 999 observations; for t ⩾ 1,001, we use the previous 𝑣 = 1,000 observations in the informa-
tion set It−1. If we instead had used 𝜏0 = 𝑣 = 250 and 𝜏0 = 𝑣 = 1000 for the two cases shown in the
right panel of Figure 14.11, then comparison would still be possible because they are standardized by
dividing by T − 𝜏0, but it would be less desirable because the realized predictive log likelihoods for
t = 251,… , 1000 would be omitted from the 𝑣 = 1,000 case. If the d.g.p. is changing through time,
and that period was, say, relatively more difficult to estimate than later periods, then the comparison
would be biased.
The code to implement this is given in Listing 14.9; note that, to save space, the actual lines of

estimation code that are identical to those in Listing 14.8 are omitted.
From the right panel of Figure 14.11, we immediately see three facts, the first two of which are

well-known and intuitive, the third less so:

1) When using the m.l.e. (𝜔 = 0 in the plot), use of a larger sample size 𝑣 for estimation (in this case
1,000 versus 250) leads to improvement in the density forecasts.

2) The effect of shrinkage (or the prior in a Bayesianmethod) decreases as the sample size 𝑣 increases.
3) When using 𝜔∗(𝑣), the optimal amount of shrinkage for a given sample size 𝑣, the quality of the

density forecasts are not necessarily better as 𝑣 increases.

When we take these three observed facts together, it might seem somewhat puzzling, if not dis-
turbing, that forecast accuracy improves so much by using a shrinkage prior, and, when using it, the
accuracy gets worse as the window size is increased.This is because the assumed d.g.p. is wrong. One

1 [n,p]=size(data); omegavec=[0.1 1 3:3:75 80:4:120]; omegalen=length(omegavec);
2 spll=zeros(omegalen,1); winstart=250; winsize=1000; logpdf=zeros(n-winstart,1);
3 for oloop=1:omegalen
4 omega=omegavec(oloop); init=[]; cnta=0; cntb=0;
5 for track=(winstart+1):n
6 firstpoint=max(1,track-winsize);
7 use=data(firstpoint:(track-1),:); y1=data(track,:);
8 %%%%%% CODE FOR ESTIMATION SAME AS IN PREVIOUS PROGRAM %%%%%
9 logpdf(track-winstart)=log(mixn);

10 end
11 spll(oloop)=sum(logpdf);
12 end
13 norm1000=spll/(n-winstart)/p;

Program Listing 14.9: Similar to Listing 14.8 but allows for differing values of 𝜏0 (winstart) and
size of rolling window 𝑣 (winsize). The coded referred to in line 8 is from Listing 14.8.
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blatant reason it is wrong is because we assume an i.i.d. model, but the volatility is time-varying and
somewhat persistent (“mild” and “wild” observations tend to be followed by another mild or wild
observation, respectively). Moreover, from the right panel of Figure 14.10 we also see that long “cri-
sis” periods can occur. Both of these observations have in common the feature of persistence, so that
use of an i.i.d. model with a small window could be reasonably accurate.

The problem with using too short a window is that the estimated parameter vector �̂� will have
a high variance, while using too long a window will cause �̂� to be biased. Thus, we are in the
all–too-common situation of facing a bias-variance tradeoff, and seek the window length that
finds the optimal tradeoff between them.

In light of this, we could entertain finding the optimal window size, say 𝑣∗, given by

𝑣∗ = argmax
𝑣

S𝜏0,T (𝜔∗(𝑣), 𝑣), (14.24)

which, in this case, would be somewhere between 𝑣 = 1 and 𝑣 = 1,000. (In general, we require at least
k(d + 1) observations to estimate aMixkNd model, but because we use the shrinkage prior (14.8) with
𝜔 > 0, we can use less than this number of observations and still not land on a singularity in the
likelihood.) Figure 14.12 illustrates the idea by showing the normalized sum of the realized predictive
log-likelihood (14.22) versus window size 𝑣, for three values of hyper-parameter 𝜔 and two values of
𝜏0, 100 (left) and 600 (right). From the right panel, we see that use of 𝜔 = 50 dominates the other two
values of 𝜔 for all 𝑣, and that, irrespective of 𝜔 (at least for the three values considered), the optimal
choice of 𝑣 is between 250 and 275. Comparison with the left panel shows that the effect of the choice
of prior strength has a far greater impact on the performance when using a smaller 𝜏0, even though
the density forecasts for observations beyond t = 600 in the time series are the same for both values
of 𝜏0.
Comparing the two graphs corresponding to 𝜔 = 50 shows that (14.22) is lower for the 𝜏0 = 100

case for all 𝑣, in particular, 𝑣 = 100. Recalling that (14.22) standardizes by the number of 𝜋t in the
sum, this indicates that the density prediction of observations t = 101,… , 600 was, relative to the
remaining observations, less successful.

100 200 300 400 500 600
−1.84
−1.82
−1.8

−1.78
−1.76
−1.74
−1.72
−1.7

−1.68
−1.66
−1.64

Window length v

S100,1945(Mω,υ)

ω = 30
ω = 50
ω = 70

100 200 300 400 500 600
−1.596
−1.594
−1.592

−1.59
−1.588
−1.586
−1.584
−1.582

−1.58
−1.578

Window length v

S600,1945(Mω,υ)

ω = 30
ω = 50
ω = 70

Figure 14.12 Both panels show the normalized sum of the realized predictive log-likelihood (14.22) as a function of
moving window size 𝑣, 𝑣 = 100, 200,… , 600, for three values of prior strength hyper-parameter 𝜔. The left uses
𝜏0 = 100, while the right uses 𝜏0 = 600. In the left panel, the plot for 𝜔 = 50 (the one at the top) has the same shape as
the corresponding one in the right panel when the plot is magnified, with its maximum also at 𝑣 = 275.
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Remarks
a) It is a curious coincidence that use of one year of daily trading data is essentially optimal. Evenmore

interestingly, this is precisely the quantity of data often used in financial institutions, partly because
of regulatory requirements; see, e.g., the Bank for International Settlements: Basel Committee on
Banking Supervision (2009). Perhaps there is indeedmore of an enlightened basis to their decision
than just the natural human appeal of using precisely one calendar year, or perhaps it is because
so many people instinctively prefer the use of one year that it becomes a self-fulfilling prophecy,
though we will not concern ourselves with this speculation. Either way, it is only optimal after we
apply (a sizeable amount of ) shrinkage; without it, as we saw from Figure 14.11, it is not true, and
using more data is better.

b) Somewhat less intellectually intriguing, to get full LATEX equations into the title of the plot in Mat-
lab, use the code in Listing 14.10. For the legend in the plot, the interpreter option is not
supported by Matlab’s legend command, but the statements in Listing 14.11 will do the trick. ◾

In all the empirical analysis up to this point, we used all d = 30 series that constitute the DJIA.
However, it is of obvious interest to investigate the performance using different values of d.With d = 4
and using the first four series in the DJIA, namely 3M Company (MMM), Alcoa Inc. (AA), American
Express Company (AXP), and AT&T Inc. (T), the left panel of Figure 14.13 shows that a window size
of about 𝑣 = 150 is optimal, and for which 𝜔∗(150) ≈ 10. Similarly, we take p = 8, adding the next
four stocks to the set (Bank of America Corporation (BAC), Boeing Company (BA), Caterpillar Inc.
(CAT), and Chevron Corporation (CVX)). Again, 𝑣 = 150 is preferred, with 𝜔∗(150) ≈ 20.
This would appear to significantly temper our previous comment regarding the optimality of using

approximately one year of daily trading data. However, in Section 14.2.6 when we use weighted like-
lihood and moving averages of 𝜆, we will find that use of 𝑣 = 250 is still better than 𝑣 = 150; see
Figure 14.17. The reason for this is very appealing: While there is more information in a window of
250 observations than there is with 150, emphasis (via weighted likelihood and moving averages of
𝜆) needs to be placed on more recent observations. Without this, the 𝑣 = 150 case will outperform
the 𝑣 = 250 case simply because relatively less valuable observations have been removed from the
window.
From the plots in Figure 14.13,𝜔∗(250) ≈ 12 ford = 4, while ford = 8,𝜔∗(250) ≈ 22.Wewill use the

former result when investigating the d = 4 case below with respect to the aforementioned technique

1 str ='$S_{250,1945}(\mathcal{M}_{\omega},v)$';
2 title(str,'interpreter','latex','fontsize',20)
3 % basic LaTeX is easier: title('\Sigma_{\mu}')

Program Listing 14.10: Using LATEX in Matlab plots. The last line shows that (in titles, legends, axis
labels, text commands) that Greek letters, sub- and superscripts are supported with the usual LATEX.

1 h=legend('','','','','','Location','SouthEast');
2 str={'$v=250$','$v=200$','$v=150$','$v=100$','$v=50$'};
3 set(h,'String',str,'interpreter','latex','fontsize',20)

Program Listing 14.11: Using LATEX in Matlab legends in graphics.
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Figure 14.13 Similar to the right panel of Figure 14.11, except that here the left panel shows the results for only d = 4
assets (and four values of 𝑣), while the right is for d = 8. Observe that 𝜏0 = 300 for all four window sizes, so that the
density predictions were based on precisely the same data points, namely t = 𝜏0 + 1 = 301 to t = T = 1,945.

of usingweighted likelihood andmoving averages of𝜆. However, these optimal values of𝜔 for different
values of d contain further information that behooves us to investigate the situation more closely. In
particular, we might conjecture that 𝜔∗(250) is increasing in d. To investigate this, we conducted this
exercise with all seven non-overlapping subsets of d = 4 series (omitting series 29 and 30). Even better,
we do this for all 15 subsets of d = 2, all 10 subsets of d = 3, etc., for d = 2, 3,… , 10, as well as d = 15,
and also d = 20 (using series 1 through 20, and 11 through 30, so that, in this case, there is overlap),
d = 25 (series 1 through 25), and all d = 30 series. For each data set, values𝜔 = 1, 2,… , 60 were tried.
The results are shown in Figure 14.14. The left panel shows the value of 𝜔 ∈ {1, 2,… , 60} that

yielded the highest values of the attained normalized sum of the realized predictive log-likelihood
(14.22), denoted 𝜔∗(250), as well as the fitted regression line (in d and d2). The right panel shows
the corresponding maximal values of the predictive log-likelihoods (14.22). Recalling that (14.22)
divides by d, the values are comparable; we see that, as d increases, the quality of the forecasts tends
to increase, and also the variability decreases. This indicates that, at least with respect to predictive
log-likelihood, more assets are better than less, which is intuitively what we would expect (given that
they are all correlated), but is diametrically opposed to what is found in practice, with respect to port-
folio construction, using conventional models; see, e.g., DeMiguel et al. (2009b) and the references
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Figure 14.14 The optimal value of 𝜔 (left) and the corresponding values of the attained normalized sum of the
realized predictive log-likelihood (14.22) (right), for various subsets of the DJ-30 assets under study.
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Figure 14.15 Left: Overlays same plot in the right panel of Figure 14.14, and additionally shows, as crosses, the result
when taking 𝜔 to be from the regression line depicted in the left panel of Figure 14.14, i.e., round(X𝜷), where
X = [1, d, d2] and 𝜷 = [8.4272, 1.9604,−0.0240]′. The resulting values based on 𝜔∗(250) and 𝜔reg(250) are virtually
identical, except for the d = 30 case. Right: Same as left, but based on a fixed value of 𝜔 = 1.

therein. With respect to portfolio performance, the i.i.d. Mix2Nd model has the potential to do well;
recall Figure 11.7, which shows results based on use of the m.c.d. estimator.
The left panel of Figure 14.15 is the same as the right one in Figure 14.14, but uses the value of

𝜔 obtained from the aforementioned fitted regression line, denoted 𝜔reg(250). There is virtually no
difference in quality, except for the d = 30 case. As a comparison, the right panel of Figure 14.15 is
similar to the left, but uses the fixed value 𝜔 = 1 for all the data sets. In this case, the differences are
far more pronounced and they increase in d, as expected, given that 𝜔reg(250) increases in d.

14.2.6 Moving Averages of 𝝀

Keep inmind the threemost important aspects of real data analysis: compromise, compromise,
and compromise.

(Ed Leamer, 1997, p. 552)

Recall Figure 14.4, showing the final values of Ĥt,1, t = 1,… , 1,945, output from the EM algorithm,
based on the Mix2N30 model for the DJIA-30 dataset. Particularly from the right panel, it is apparent
that the Ĥt,1 are highly correlated, indicating that today’s value of Ĥt,1 might be a good predictor
of tomorrow’s. In the estimation schemes used up to this point, we ignored the information in the
sequence {Ĥt,1} and just used the m.l.e. �̂�1 = �̂�, which is just the mean of the Ĥt,1 from (14.6). One
natural suggestion would be to take �̂� used in for calculating the predictive density of Yt based on
a rolling window of 𝑣 = 250 observations to be the average of the latest, say, 𝑣𝜆 values of {Ĥ⋅,1}, which
we denote as �̂�𝑣,𝑣𝜆 , i.e.,

�̂�𝑣,𝑣𝜆 = 𝑣−1
𝜆

𝑣∑
t=𝑣−𝑣𝜆+1

Ĥt,1, 1 ⩽ 𝑣𝜆 ⩽ 𝑣. (14.25)

If 𝑣𝜆 = 𝑣, then �̂�𝑣,𝑣 is just the usual �̂�, while �̂�𝑣,1 is just the last value of {Ĥ⋅,1} in the window of obser-
vations.
The solid line in the right panel of Figure 14.16 shows S𝜏0,T (𝑣𝜆

, 𝑣), for 𝑣 = 𝜏0 = 250, as a function
of 𝑣𝜆, based on weighted likelihood parameter 𝜌 = 0.7 (applied only to the �̂�j), and where𝑣𝜆

is the
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Figure 14.16 Left: Normalized sum of the realized predictive log-likelihood, for 𝑣 = 250 and shrinkage
hyper-parameter 𝜔 = 50, as a function of hyper-parameter 𝜌, which controls the shape of the weights used in the
weighted likelihood calculation. The star at the bottom right of the left and right panels is the same star shown in the
right panel of Figure 14.11. Right: Normalized sum of the realized predictive log-likelihood, for 𝑣 = 250 and shrinkage
hyper-parameter 𝜔 = 50, as a function of 𝑣

𝜆
, which dictates howmany of the latest 𝑣

𝜆
values of {Ĥ⋅,1} are averaged to

form the value of �̂�. The big circle in both plots represents the same value. Both plots have the same y-axis range, so
that it is easy to see the improvement in using 𝑣

𝜆
= 70 with weighted likelihood for 𝜌 = 0.7 applied just to the �̂�j ,

compared to using 𝑣
𝜆
= 250 with weighted likelihood applied to all model parameters, including 𝜆. Finally, the

horizontal line at the top of the graph is the result of taking �̂� to be 0.75�̂�250,70 + 0.25�̂�250,1.

Mix2N30 model but such that �̂� is replaced by �̂�𝑣,𝑣𝜆 in (14.25). The dashed line is similar, but corre-
sponds to 𝜌 = 1, showing that virtually the same amount of improvement is gained with this method,
irrespective of 𝜌, and suggesting that the optimal value of 𝑣𝜆 is practically independent of 𝜌. Indeed,
we see that there are nearly monotone gains in forecast accuracy obtained as 𝑣𝜆 is decreased, and a
maximum is reached at about 𝑣𝜆 = 70, after which the quality drops off rather abruptly. As 𝑣𝜆 → 1, i.e.,
as we approach the strategy of taking �̂� to be the last value of {Ĥ⋅,1}, the performance turns abysmal,
and the graph was truncated.Thus, it appears that taking 𝑣𝜆 corresponding to about 14 weeks of daily
data is superior to use of the whole year.
The strong correlation among the Ĥt,1 apparent in Figure 14.4 would suggest that the previous day’s

value of Ĥt,1 should still somehow be of value. Some trial and error (and arguable possible indulgence
in backtest overfitting) reveals that taking �̂� to be

�̂�mix ∶= 0.75�̂�250,70 + 0.25�̂�250,1 (14.26)

results in further improvement, shown as the horizontal dotted line near the top of the graph in the
right panel of Figure 14.16.
While the graphics in Figure 14.16 impressively display the increase in density forecast performance

from using weighted likelihood with 𝜌 = 0.7 and from using 𝑣𝜆 = 70, the right panel of Figure 14.11
shows that these gains are relatively small compared to what is achieved from shrinkage. In that plot,
the horizontal dashed lines at the top show the incremental gains from the weighted likelihood for
the �̂�j with 𝜌 = 0.7, and the additional gain obtained by further taking �̂� to be (14.26). Thus, these
additional tools provide only modest improvements relative to what is achieved with shrinkage. A
more substantial improvement can bemade by improving upon the normality assumption, as detailed
in Section 14.5.2.
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Figure 14.17 Similar to Figure 14.16 but using d = 4 assets instead of 30. Top is window size 𝑣 = 250 and 𝜔 = 12 (as
ascertained from the left panel of Figure 14.13); bottom is window size 𝑣 = 150 and 𝜔 = 10. For both window sizes,
𝜏0 = 250 so that the results are directly comparable.

At the end of Section 14.2.5, we also considered the case with d = 4 and d = 8 assets. Figure 14.17
is similar to Figure 14.16, but is for the d = 4 case, and having used two window sizes: 𝑣 = 250 (with
shrinkage parameter 𝜔 = 12, in accordance with the results from the left panel of Figure 14.13) and
𝑣 = 150 (with 𝜔 = 10). The results are very similar qualitatively to the d = 30 case, particularly the
optimal value of 𝜌, which we take to be 0.65. However, observe that the optimal value of 𝑣𝜆 from
(14.25) is 10, though interestingly we see from the right panels of Figure 14.17 that there is a local
maximum at 𝑣𝜆 = 70, precisely the optimal value for the d = 30 case. Using values 0.75�̂�𝑣,70 + 0.25�̂�𝑣,1
and 0.75�̂�𝑣,10 + 0.25�̂�𝑣,1 gave results (not shown) that were very close to (and below) the optimal value
shown in the right panels as the large diamond. The rapid decline of the quality as 𝑣𝜆 decreases from
10 to 1 is alarming, so that use of 𝑣𝜆 = 70 might be a safer choice in practice. (A similar result was
found using a window size of 𝑣 = 500 observations—a global, and sharp, peak at 𝑣𝜆 = 10 and a local
maximum at 𝑣𝜆 = 70.)
Finally, comparing the two cases of 𝑣 = 250 and 𝑣 = 150 (note that the scaling of the y-axis is the

same in all four plots), we see that, while the 𝑣 = 150 case is superior without weighted likelihood and
just using the default of 𝑣𝜆 = 𝑣, the 𝑣 = 250 case at its optimal value, with weighted likelihood and
𝑣𝜆 = 10, is better than the 𝑣 = 150 case at its optimal value (albeit not by much). It is less a matter
that 𝑣 = 250 with weighted likelihood and 𝑣𝜆 = 10 is better than 𝑣 = 150, it is enough that they are
close: This indicates, as already briefly discussed in the previous section, that there is indeed more
information about the model parameters in the last 250 observations than in the last 150, but because
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Figure 14.18 Left: Overlays same plot in the right panel of Figure 14.14, and additionally shows, as crosses, the result
when taking 𝜔 to be from the regression line from the left panel of Figure 14.14 and additionally with (i) weighted
likelihood, with 𝜌 = 0.7 and just applied to the �̂�j , and (ii) a moving average of 𝜆 from (14.26), i.e.,

0.75�̂�250,70 + 0.25�̂�250,1. Right: Same as left, except that instead of the Mix2Nd distribution, we use the Mix2Lapd
distribution (14.41), introduced in Section 14.5.

the model is (without question in nearly every application) mis-specified, we need to weight more
recent observations and information relatively heavier than those further in the past.This is precisely
what weighted likelihood and use of (14.25) are accomplishing.
The left panel of Figure 14.18 illustrates the improvement fromweighted likelihood anduse of �̂�mix in

(14.26) for the same groups of assets used in Figures 14.14 and 14.15.The improvement is considerable
for smaller d, and it appears the only case for which there is a decrease in performance is for d =
30, though this is not because of the weighted likelihood and use of �̂�mix, but rather because of the
substantial difference with d = 30 between using 𝜔∗(250) and 𝜔reg(250), as shown in the left panel
of Figure 14.15. The right panel of Figure 14.18 shows the results when using the two-component
mixture of Laplace distribution, instead of the normal mixture, as introduced below in Section 14.5.2.
Its use bestows an improvement in forecast quality, particularly as d increases.

Example 14.1 Up to this point, we have only illustrated use of the Mix2Nd model on the stock
returns associated with the components of the DJIA-30. This was done using a prior (14.8) that was
“loosely calibrated” to that data, andwe found optimal choices from (i) weighted likelihood (13.1) with
𝜌 ≈ 0.7, (ii) use of window length 𝑣 ≈ 250, (iii) prior strength𝜔 as a function of d given in Figure 14.14,
and (iv) use of �̂�𝑣,𝑣𝜆 in (14.25) with 𝑣𝜆 ≈ 70 when d = 30.
Of interest is to see what happens when using a different data set of related type, namely stock

returns from a highly developed, liquid stock market. Because such markets have common stylized
facts, the hope is that theMix2Nd model is still applicable and the aforementioned tuning parameters
are nearly optimal. For the prior (14.8), one could study the performance characteristics as a function
of the set of associated fixed numeric values, though observe we did not do this with the DJIA-30 data:
Presumably, one could improve the density forecasting performance by finding more suitable values,
but this would be more of an exercise in backtest overfitting, as discussed in Section 13.3. As such, we
just adopt prior (14.8) with the values stated there.
In this exercise, we use the returns on the d = 20 stocks associated with the Swiss Market Index

(SMI-20), from November 10, 2000 to August 31, 2009, and investigate density forecasting perfor-
mance. Figure 14.19 assesses this as a function of 𝜔, 𝜌, and use of �̂�𝑣,𝑣𝜆 for the SMI-20. We see that
the optimal value of weighted likelihood parameter 𝜌 (applied just to the �̂�j) is between 0.6 and 0.7,
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Figure 14.19 Left: The normalized sum of the realized predictive log-likelihood (14.22) for the Mix2N20 based on the
2,208 daily returns for d = 20 returns on the SMI stocks as a function of shrinkage hyper-parameter 𝜔, for four values of
weighted likelihood parameter 𝜌 (applied just to the �̂�j), and based on moving windows of length 𝑣 = 250, with

𝜏0 = 500. The left uses a moving average of the estimated component weight 𝜆 �̂�
𝑣,𝑣𝜆

from (14.25) with 𝑣
𝜆
= 70. Right:

Similar, but uses (14.26).
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Figure 14.20 Top panels parallel those in Figure 14.14, but using the SMI-20 data (with the two points corresponding
to 15 assets refer to stocks 1 through 15, and 6 to 20, so that they do contain overlap). The bottom panels are similar to
those in Figure 14.18, showing the incremental improvement by using weighted likelihood and moving averages of 𝜆
(left) and by using the mixture Laplace distribution (right).
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precisely in agreement with the corresponding value for the DJIA-30 data, as shown in Figure 14.16,
and that use of the moving average (14.26) is superior to use of �̂�𝑣,𝑣𝜆 from (14.25) with 𝑣𝜆 = 70. Finally,
𝜔∗(20) = 38, which, interestingly, perhaps coincidentally, is precisely the value obtained from the
regression line shown in the left panel of Figure 14.14, referring to the DJIA-30 data.
Figure 14.20 shows the performance based on subsets of the SMI-20, and is similar to Figures 14.14

and 14.18. The results essentially mirror those obtained using the DJIA-30.
The reader is encouraged to explore other such markets (Nikkei-225, FTSE-100, DAX-30, S&P500,

etc.), but also others such as less liquid emerging stockmarkets, commodities, foreign exchange, fixed
income (via exchange traded funds), etc., with the hope that the model and the associated prior and
tuning parameters found for the DJIA-30 are roughly optimal. ◾

One should keep in mind a critique of our approach that we ignore, namely survivorship bias, as
already briefly discussed in Section 11.2.2. We have used the definition of the DJIA constituents in
2009, and similarly for the SMI-20, and then obtained the daily (closing, dividend and split-adjusted)
price data of those stocks. But, had we really been in the year 2000, the list will change as some com-
panies potentially go bankrupt and exit (and new ones enter).The reason we allow ourselves to ignore
this issue is that we are concentrating on the development of statistical methodology, though for real
applications, survivorship bias needs to be addressed in genuine backtesting studies, as well as other
issues such as transaction costs and related practicalities of trading.

14.3 MCD for Robustness andMix2Nd Estimation

The traditional purpose of the minimum covariance determinant method (m.c.d.) is to deliver esti-
mates of 𝝁 and 𝚺 for a set of data that are (purported to be) i.i.d. from a multivariate normal dis-
tribution such that they are resistant to outliers, i.e., robust. We have already seen an application of
m.c.d. above in Section 14.2.3, with Figures 14.9 and 14.10 showing its use and benefit for the robust
Mahalanobis distance. Our goal is to consider using m.c.d. in a different way than initially intended,
namely for estimation of the normal mixture model.
FromSection 14.2.1, recall howwe used the values {Ĥt,1}, output from the EMalgorithm, to split the

T = 1,945 observations into two groups, which we then analyzed separately for assessing normality.
It is of interest to see what happens if we use that method to separate the data, and then, to each of
the two groups, fit a (single-component) multivariate normal distribution. What has to be decided is
the cutoff value; recall above we used the criteria Ĥt,1 > 0.99. Below, we use Ĥt,1 > cEM for cEM = 0.99,
as well as 0.5 and 0.10.
Estimation of themultivariate normal distributionwith just one component, using our usual shrink-

age prior, just requires computing (14.6) and (14.7), with the Hij being either zero or one. There is no
iteration and the parameters are thus essentially instantaneously computed. Schematically,

Y → EM alg → Ht,1 < cEM? → {Yt → Y(1)}, (14.27)

t = 1,… ,T , where Y(1) denotes the collection of Yt assigned to the first component, and likewise for
Y(2). Then, the estimate of 𝜆 is just the fraction of observations assigned to the first component (the
mean of the Boolean r.v.s 𝕀(Ĥt,1 ⩾ 0.99), t = 1,… ,T), and estimates of the two location vectors and
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Figure 14.21 Left: Similar to the right panel of Figure 14.11, but such that the density forecasts were formed via
(14.27). Note the difference in the y-axis compared to the right panel of Figure 14.11: Use of (14.27) and fitting two
separate MVN distributions performs comparatively poorly. Right: Same, but based on the m.c.d. method of
separation (14.29), for different values of tuning parameter 𝛼, with overlaid graph from the right panel of Figure 14.11,
showing that use of the (prior-augmented) m.l.e. via the EM algorithm results in nearly the same as with use of the
m.c.d. split method. In fact, the latter, at all three cutoff values, is slightly better for 𝜔 ⩽ 40.

dispersion matrices are via (14.6) and (14.7). Schematically,

{Y(1),Y(2), �̂�} → {�̂�i, �̂�i; i = 1, 2}. (14.28)

The left panel of Figure 14.21 is similar to the right panel of Figure 14.11 (the normalized sum of
the realized predictive log-likelihood (14.22) as a function of prior strength 𝜔, based on a moving
window of length 𝑣 = 250) but, for eachmoving window of observations, having used the split (14.27)
and estimation (14.28). Note that the scales of these two plots are quite different, with the method of
individual component estimation based on splitting via the EM algorithm being vastly inferior to the
original method, shown in Figure 14.11, which involved joint estimation, via the EM algorithm, of all
the model parameters, 𝝁1, 𝝁2, 𝚺1, 𝚺2, and 𝜆. This result conflicts with our otherwise quite favorable
separation results indicated in Figure 14.4.
Recall the right panel of Figure 14.8, showing the robust Mahalanobis distance of each yt , based on

the m.c.d. estimator of the covariance matrix. It offers another way of splitting the data.
The only tuning parameter required is 𝛼, for the cutoff value c(𝛼, d) = F−1

𝜒2 (𝛼, d), the 100𝛼 per-
centile of the 𝜒2

d distribution, with d the dimension of each Yt (in our case, 30). In the right panels of
Figures 14.9, and 14.10, the cutoff value was based on 𝛼 = 0.975. Schematically,

Y → MCD alg → RMD (Yt; 𝛼) < c(𝛼, d)? → {Yt → Y(1)}, (14.29)

t = 1,… ,T , followed by (14.28), where the estimate of 𝜆 is the fraction of observations assigned to the
first component by the m.c.d. algorithm (and those of �̂�i, �̂�i, i = 1, 2, are based on (14.6) and (14.7),
respectively, as with the EM split).
The right panel of Figure 14.21 is similar to the left panel, but having used the m.c.d. method for

separation, and also overlays the same solid line as shown in the right panel of Figure 14.11. It is impor-
tant to emphasize that the method of estimation (single-component multivariate normal, applied to
each of the two components, and with our usual shrinkage prior) is identical: all that has changed is
the method of separating the two components. Now we see that the results are essentially identical
to (and actually slightly better than) those obtained from jointly estimating all the model parameters
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with (prior-augmented) maximum likelihood via the EM algorithm. This might appear difficult to
justify, as the m.l.e. is expected to be the best estimator as the sample size grows. The reason that the
m.c.d. method can outperform it is that the actual d.g.p. is not Mix2Nd.
This discovery would appear to imply that we can forego the joint estimation of the model

parameters, with its more time-consuming iterative computational method, and can instead use the
closed-form estimators, which also means a full avoidance of inferior local maxima of the likelihood.
While this is essentially true, the price to pay for this luxury is the computational complexity of the
m.c.d., being about 20 times slower.This, in turn, was addressed by Gambacciani and Paolella (2017),
who propose a variation of the m.c.d. method, called StepMCD, suitable for computing a large num-
ber of moving windows of time-series data (as required for assessing model performance). It deviates
from repeated m.c.d. estimation by using the final optimal h-subset from the previous window’s
m.c.d. estimation as the starting values for the new h-subset. In this way, a substantial reduction
in total computational time is obtained, while still keeping the robustness and the efficiency of the
m.c.d. estimator. This idea, besides the large increase in speed, actually leads to a (slight) increase in
out-of-sample performance compared to direct use of FASTMCD applied to each moving window.

14.4 Some Thoughts on Model Assumptions and Estimation

Econometric textbooks reveal a pronounced lack of concern for the foundations of probabil-
ity in regard to economic phenomena, while focusing on myopic accounts of estimation and
inference in some well-specified abstract models.

(Omar Hamouda and Robin Rowley, 1996, p. 133)

Some of our assumptions are so closely held that we will cling to them, even in the face of
overwhelming evidence.

(Rory Miller, 2008, p. 21)

We all have a tendency to think that the world must conform to our prejudices. The opposite
view involves some effort of thought, and most people would die sooner than think—in fact
they do so.

(Bertrand Russell, 1925, p. 166)

It is noteworthy that the proposed m.c.d. methodology for fitting a Mix2Nd distribution presented
in Section 14.3 deviates from the mainstream literature regarding parameter estimation. The over-
whelming majority of statistical modeling, as presented in both research and textbooks, and in both
the frequentist andBayesian paradigms,makes a separation between deciding on themodel to be used
for the data and its method of estimation. This separation is not discussed, but rather appears to be
understood. Indeed, there exist applications for which the d.g.p. might be relatively easy to character-
ize, so that this separation is valid, at least as a starting point. However, for complex data, particularly
multivariate, and certainly for (univariate and particularly multivariate) financial asset returns data,
this will almost surely not be the case.
Traditionally, a model is assumed, possibly a blatantly simple approximation to reality (particularly

in the classic time-series literature such as the ARMA class ofmodels fromPart II), and then extensive
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efforts are dedicated to devising methods of parametric inference, most notably point estimation.
(The author is guilty of this too; see, e.g., Section 7.6.) The statistics and econometrics literature is
dominated bymethodology for point estimation; though its inappropriateness for actual data analysis
has been noted by numerous academics; see, e.g., the excellent discussion and references in Berkson
(1980) and Hampel (1996). The quote from Hamouda and Rowley (1996) at the beginning of this
section embodies this idea precisely.
A different way of proceeding is to view the model, and its method of estimation, as a single unit.

It is crucial to acknowledge that a two- (or more) component multivariate MixN is surely not the
actual d.g.p. of financial returns data, rendering discussions about optimal unbiased estimators, biased
estimators that minimize the mean squared error, or estimators with ideal asymptotic properties
somewhat superfluous. Instead, recognizing that multivariate financial asset returns data are quite
complex, and surely not strictly stationary over long periods of time, one should choose the paramet-
ric functional form based on its practicality (e.g., the distribution of convolutions of theMixNmargins
is straightforward; see Section 14.1.4), its simplicity (particularly compared to numerous multivari-
ate GARCH models), and its ability to capture important stylized facts of asset returns, and, jointly,
choose a method of parameter estimation that may not enjoy classic properties of unbiasedness,
consistency, asymptotic normality, etc., under the purported but wrong model, but rather leads to
statistically verifiable and blatantly improved forecasts compared to alternative estimation methods.

The unit of {model, estimation method} is judged on (i) its ease of computability, (ii) its fore-
casting ability, and (iii) conveniently in finance, on a nearly universal ideal of being able to
generate improved asset allocation—which can be objectively ranked in terms of its risk/return
performance.

As discussed, this notion is contrary to much (but not all of ) of mainstream methodology, and the
quotes by Russell (2009) and Miller (2008) (both stated in completely different contexts) seem rather
appropriate here.The idea is certainly not new, for examplemanymethods and techniques inmachine
learning and analysis of big data embrace this idea as a core principle.
Risking beating the proverbial dead horse, one might envision the thoughts of a representative

employee concerned about the quality of her pension fund (particularly in light of the difficult demo-
graphic issues faced by pension funds in Europe and elsewhere, and the numerous contributions in
the media discussing their inadequate performance), and faced with the choice of her pension fund
manager using an investment strategy based on amodel that uses an unbiased, asymptotically efficient
estimator (such as the usual plug-in estimators for the mean and variance-covariance matrix under
an i.i.d. assumption on the returns, in the classic—but still used, see Allen et al. (2016)—Markowitz
framework), or one that is based on a different model that is (also) wrong w.p.1, uses a possibly incon-
sistent estimator (this being anyway ill-defined if the d.g.p. is not stationary), but that consistently
delivers better returns at lower risk. The bottom line desire should be quite clear.

All models (certainly in finance) are wrong; some can be useful, but might require leaving the
comforting, yet fictitious, assumptions from normative economics (how things should behave)
and the assumption that the d.g.p. is stationary through time.

In addition to the benefit conveyed from the m.c.d. method for the Mix2Nd in this context, having
the possibility to split the data via m.c.d. is valuable because wemight wish to replace the multivariate
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normal distribution in either or both components with a different one, for which joint estimation
might be complicated, but is straightforward for a single component.

14.5 The Multivariate Laplace andMixkLapd Distributions

Recall from Figure 14.6 how the estimated GAt parameters d̂ (not to be confused with the number
of dimensions, d) computed for each asset in the two components lie roughly between one and two,
and also how, when estimated tail parameter �̂� was constrained to lie above 90, d̂ moved towards
one. (If the data were truly Laplace, then, as the sample size grows, we expect d̂ to be close one,
and �̂�, without constraint, to be large.) This provides a modicum of motivation for us to consider a
multivariate Laplace distribution instead of the multivariate normal for each of the two components
of the mixture.
Our motivation is tempered by the fact that the same effect could occur for other heavy-tailed

distributions—by limiting �̂� in the GAt, its only recourse to account for the heavier tails is via parame-
terd. As such, a natural choicewould be to entertain amixture ofmultivariate Student’s t distributions,
say Mix2Td. This was done, but the Mix2Lapd was more successful (in terms of ability to numerically
compute the m.l.e.) because (i) the first component is close enough to normal, such that a leptokurtic
distribution with finite positive moments of all orders fits better than the Student’s t (being genuinely
fat-tailed and does not possess a moment generating function), and (ii) the distribution of the second
component, by itself, can be reasonably approximated by the Student’s t, but, when jointly conducted
for both components, the inappropriateness of theMix2Td manifests itself with difficulties in conver-
gence and relatively flat likelihoods of the two degrees of freedom parameters, most notably for the
first component.

Essentially, the mixture aspect of the model is already addressing much of the seeming
heavy-tailed nature of asset returns, so that what remains can be accommodated by a
non-Gaussian, leptokurtic, but thin-tailed distribution.

Remark It is worth emphasizing that the actual distribution of financial asset returns, while surely
not Gaussian, is not necessarily heavy-tailed; the demonstrations and arguments in Heyde and Kou
(2004) and Sections III.9.1 and III.9.2 should settle this point.This explains whymodels with different
tail behaviors (heavy, semi-heavy, and thin) can be used for successful VaR prediction, as discussed
in Sections 10.3.1, 10.6, and 11.1. Recall also that the determination of the tail behavior of a process
based on a finite amount of data is very difficult because, by definition, there are very few observations
in the tails (and it is not even clear where the tail “starts”; it is a limiting concept). ◾

The subsequent subsections are organized as follows. Sections 14.5.1 and 14.5.2 present the (single
component) multivariate Laplace distribution and theMixkLapd, respectively, as well as the EM algo-
rithms associated with prior-augmentedmaximum likelihood estimation of their parameters. Section
14.5.3 considers estimation and forecasting performance of the MixkLapd when using the m.c.d. split
and separate component estimation. Section 14.5.4 discusses how parameter vector b can be esti-
mated, while Section 14.5.5 gives the portfolio distribution and the expected shortfall associated with
theMixkLapd. Finally, Section 14.5.6 presents a method of fast evaluation of the required Bessel func-
tion under restrictions appropriate when using theMixkLapd distribution formodeling financial asset
returns data.
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14.5.1 The Multivariate Laplace and EM Algorithm

Example II.7.19 showed that the basic, univariate Laplace distribution results from a continuous nor-
mal variance mixture construction. We can extend this to the multivariate case; it will require the
integral form of the modified Bessel function of the third kind,

K𝑣(x) =
1
2 ∫

∞

0
u𝑣−1 exp

[
−x
2

(1
u
+ u

)]
du. (14.30)

While the various Bessel functions are conveniently available inMatlab and other computational pack-
ages, and evaluated relatively quickly and accurately, it turns out to be the bottleneck (the slowest
element) in the estimation procedure. We will see below that we will only require computing (14.30)
for a select set of 𝑣-values, and for which it can be evaluated exactly via a finite expansion, so that, after
having pre-computed the relevant coefficients in that expansion, its calculation is rendered nearly
instantaneous.
Let (Y ∣ G = g) ∼ Nd (𝝁, g𝚺) for 𝝁 ∈ ℝd and 𝚺 > 0, i.e., positive definite, and let G ∼ Gam (b, 1),

and set m = (y − 𝝁)′𝚺−1(y − 𝝁). Recall that |g𝚺| = gd|𝚺|. Then, with substitution u =
√
m∕2∕g (and

using the fact thatm > 0 and g > 0 with probability one), the p.d.f. ofY can be expressed via (III.A.79)
as

fY(y,𝝁,𝚺, b) = ∫
∞

0
fY∣G(y; g)fG( g) dg,

or

∫
∞

0

1|g𝚺|1∕2(2𝜋)d∕2 exp{−1
2
(y − 𝝁)′( g𝚺)−1(y − 𝝁)

} 1
Γ(b)

gb−1 exp(−g) dg

= 1|𝚺|1∕2(2𝜋)d∕2 1
Γ(b) ∫

∞

0
g−d∕2+b−1 exp

{
−m
2g

− g
}

dg

= 1|𝚺|1∕2(2𝜋)d∕2 2
Γ(b)

(m
2

)b∕2−d∕4 1
2 ∫

∞

0
ud∕2−b−1 exp

{
−
√
2m
2

(u + u−1)

}
du

= 1|𝚺|1∕2(2𝜋)d∕2 2
Γ(b)

(m
2

)b∕2−d∕4
Kb−d∕2(

√
2m), (14.31)

using the easily verified fact that K𝑣(x) = K−𝑣(x). We write Y ∼ Lap(𝝁,𝚺, b).
From the law of the iterated expectation, 𝔼[Y ] = 𝔼[𝔼[Y ∣ G]] = 𝔼[𝝁] = 𝝁, while use of the condi-

tional variance formula yields
𝕍 (Y) = 𝔼[𝕍 (Y ∣ G)] + 𝕍 (𝔼[Y ∣ G]) = 𝔼[G]𝚺 = b𝚺, (14.32)

recalling from (I.7.9) that 𝔼[G] = b. Further properties of this distribution are given in Podgórski and
Kozubowski (2001).

Remarks
a) Krzanowski andMarriott (1994, Eq. 2.38) state (without derivation) the density but using b = d∕2,

which yields a simplification such that the (m∕2) term in the density is no longer present, and refer
to that as the multivariate Laplace. Note, however, that the Bessel function K0(⋅) still remains, and
does not simplify to a less complicated expression.

b) Using the fact thatK1∕2(x) =
√
𝜋∕(2x) e−x for x > 0, we can choose values for b in (14.31) such that

the Bessel function is no longer present. In particular, these are b = (d − 1)∕2 or (d + 1)∕2, with
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the former only valid for d > 1. Using the latter, we get, after simplifying (and again with a location
parameter),

fY(y,𝝁,𝚺) =
|𝚺|−1∕2√
2(2𝜋)(d−1)∕2

exp(−
√
2m)

Γ((d + 1)∕2)
, (14.33)

wherem = (y − 𝝁)′𝚺−1(y − 𝝁). As a check, for d = 1 (and 𝝁 = 𝟎), (14.33) reduces to

fY ( y; 𝜎) =
1√
2𝜎

exp
(
−
√
2
|y|
𝜎

)
= 1

2
1

𝜎∕
√
2
exp

(
−

|y|
𝜎∕

√
2

)
,

a univariate Laplace density with scale term 𝜎∕
√
2.

c) Density (14.31) with b = 1 is a special case of the asymmetric multivariate Laplace distri-
bution studied in Kotz et al. (2000) and Kozubowski and Podgórski (2001). In particular,
with a = (a1,… , ad)′ a vector of asymmetry parameters, the density fY(y) is, again with
m = (y − 𝝁)′𝚺−1(y − 𝝁), given by

2 exp{(y − 𝝁)′𝚺−1a}|𝚺|1∕2(2𝜋)d∕2 ( m
2 + a′𝚺−1a

)𝑣∕2
K𝑣(

√
(2 + a′𝚺−1a)m), (14.34)

where 𝑣 = b − d∕2 = 1 − d∕2.They also provide a useful overview and references of the numerous
distributions that have been coined multivariate Laplace. See also the monograph dedicated to the
topic by Kotz et al. (2001). ◾

To get a sense of the leptokurtic nature of the distribution, Figure 14.22 shows a contour plot in the
bivariate case of the multivariate normal and the multivariate Laplace for three values of b, 𝝁 = 𝟎, and
identity dispersionmatrix scaled by b, so that 𝕍 (Y) is the same for each.The case with b = 90 is nearly
identical to the bivariate normal, suggesting that, as b → ∞, it converges in distribution to a normal.
For the case with 𝚺 = diag([𝜎2

1 ,… , 𝜎2
d]), (14.33) reduces to

exp
{
−
√

2
∑d

i=1 ( yi − 𝜇i)2∕𝜎2
i

}
Γ((d + 1)∕2) 𝜋(d−1)∕2

d∏
i=1

1√
2𝜎i

,

from which it is clear that the distribution does not factor into a product of marginals, so that there
is dependency among the elements of Y even if 𝚺 is diagonal (in which case the components are
uncorrelated). Figure 14.23 shows the joint density of two independent univariate Laplace random
variables for three values of b. For small b, these look quite different from the joint distributions shown
in Figure 14.22, though as b → ∞, it appears that the distribution approaches the normal. This is
indeed the case, and the reader is encouraged to prove it: From Section II.9.5.2 (and Table II.9.2),
the univariate Laplace converges to the normal distribution as b → ∞, provided a scale term 𝛿 is
introduced, and such that 𝛿∕b converges to a constant. This result also holds in the multivariate case.
We now develop an EM algorithm for estimating (14.31). Besides being of value in its own right,

it will help set the stage for the more complicated EM algorithm for the discrete mixture case given
below. Conditional on Gi, the distribution of Yi is normal, so let G1,G2,… ,GT be the latent, unob-
served, i.i.d. Gam(b, 1) random variables, and where we assume that b is known. Assuming known b
initially simplifies matters; in Section 14.5.4, after the more general context of the MixkLapd case is
presented, we address the estimation of parameter b.
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Multivariate Normal with Σ = I
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Figure 14.22 Examples of the bivariate Laplace distribution; top left is normal, for comparison. The contour lines have
the same height across plots.

Omitting constants that do not depend on 𝜽 = [𝝁′, vech (𝚺)′]′, the log joint density of Yt and Gt is
(after multiplying by two),

log fYt ,Gt
(yt, gt;𝝁,𝚺) = log fYt ∣Gt

(yt; gt) + log fGt
(gt)

∝ − log|𝚺| − g−1t (yt − 𝝁)′𝚺−1(yt − 𝝁),
so that the complete data log-likelihood is, withY = (Y1,… ,YT ),G = (G1,… ,GT ), and using the fact
that tr(AB) = tr(BA),

𝓁c(𝜽;Y,G) = −T log|𝚺| − T∑
t=1

G−1
t 𝚺−1(Yt − 𝝁)(Yt − 𝝁)′. (14.35)

The derivation of the m.l.e. of 𝝁 and 𝚺 follows similarly to that in Example III.3.8, and yields

�̂� =
∑T

t=1 G−1
t Yt∑T

t=1 G−1
t

, �̂� = T−1
T∑
t=1

G−1
t (Yt − �̂�)(Yt − �̂�)′. (14.36)
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Product of Independent Univariate
Laplace, b = 90

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Product of Independent Univariate
Laplace, b = 5

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Product of Independent Univariate
Laplace, b = 1

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 14.23 Bivariate distributions as products of i.i.d. univariate Laplace with scale 1∕b.

Next, withmt = (yt − 𝝁)′𝚺−1(yt − 𝝁),

fGt ∣Yt
( gt; yt) =

fYt ,Gt
(yt, gt;𝝁,𝚺)

fYt
(yt;𝝁,𝚺)

=
g−d∕2+b−1t exp{−mt∕(2gt) − gt}

2(mt∕2)b∕2−d∕4Kb−d∕2(
√
2mt)

𝕀(0,∞)( gt). (14.37)

This is the generalized inverse Gaussian (GIG) distribution (see Section II.9.4.1), with (Gt ∣ Yt) ∼
GIG(b − d∕2,mt, 2) and, using (II.9.18),

𝔼[G−1
t ∣ yt] =

Kb−d∕2−1(
√
2mt)

(mt∕2)1∕2Kb−d∕2(
√
2mt)

, (14.38)

which, for b = (d + 1)∕2, simplifies to (mt∕2)−1∕2.
As g−1t enters linearly in (14.35), the conditional expectation of the complete data log-likelihood,

𝔼𝜽(s) [𝓁c(𝜽;Y,G) ∣ Y], with respect to the hidden variables G, given the observed data Y, and the value
of parameter 𝜽 at the sth iteration just involves substituting (14.38) in place of g−1t in (14.35). The EM
algorithm then consists of iterating between (14.36) and (14.38) until convergence.
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Analogous to the quasi-Bayesian estimator for the MixkNd model given in (14.7), we augment
(14.36) by taking

�̂� =
cm +

∑T
t=1 G−1

t Yt

c +
∑T

t=1 G−1
t

(14.39)

and

�̂� =
B +

∑T
t=1 G−1

t (Yt − 𝝁)(Yt − 𝝁)′ + c(m − �̂�)(m − �̂�)′

a + T
, (14.40)

where, as with the MixkNd prior, a ⩾ 0 and c ⩾ 0 dictate the strength of the prior, and m and B are
the location and dispersion priors, respectively.

14.5.2 The MixkLapd and EM Algorithm

We say a d-dimensional random variable follows a k-component mixture of multivariate Laplace dis-
tributions, or MixkLapd, if its p.d.f. is given by

fMixkLapd (y;M,𝚿,𝝀,b) =
k∑
j=1

𝜆jfLap(y;𝝁j,𝚺j, bj), 𝜆j ∈ (0, 1),
k∑
j=1

𝜆j = 1, (14.41)

with fLap denoting the d-variate multivariate Laplace distribution given in (14.31), and where, similar
to our notation for the MixkNd distribution in Section 14.1,

M =
[
𝝁1 𝝁2 · · · 𝝁k

]
, 𝝁j = (𝜇1j, 𝜇2j,… , 𝜇dj)′, 𝚿 =

[
𝚺1 𝚺2 · · · 𝚺k

]
,

𝝀 = (𝜆1,… , 𝜆k)′, and b = (b1,… , bk)′.
We tacitly assume that this class of distributions is identified. See Holzmann et al. (2006), who

study identifiability of finite mixtures of elliptical distributions, and show, for example, that mixtures
of multivariate Student’s t distributions are identifiable.
Assume we observe the sequence of d-variate random variables Yt = (Yt,1,Yt,2,… ,Yt,d)′,

t = 1,… ,T , with Yt
i.i.d.∼ MixkLapd(M,𝚿,𝝀,b), and, for now, take vector b to be a set of known

constants (this will be relaxed below). Interest centers on estimation of the remaining parameters,

𝜽 = [vec(M), vech (𝚺1)′, vech (𝚺2)′, … vech (𝚺k)′, 𝝀
′]′, (14.42)

similar to (14.10), where the vech operator is defined.
As with the development of the EM algorithm for the MixkNd distribution, denote the hidden vari-

able associated with the tth observation Yt asHt = (Ht,1,… ,Ht,k), whereHt,j = 1 if Yt came from the
jth component, and zero otherwise, so that, with h = (h1,… , hk),

fHt
(h) =

k∏
j=1

𝜆
hj
j 𝕀{0,1}(hj)𝕀

( k∑
j=1

hj = 1

)
. (14.43)

Then, analogous to the MixkNd case, the joint density of Yt andHt is

fYt ∣Ht
(y,h;𝜽)fHt

(h;𝜽) =
k∏
j=1

[𝜆jfLap(y;𝝁j,𝚺j, bj)]hj 𝕀{0,1}(hj)𝕀

( k∑
j=1

hj = 1

)
,
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where 𝜽 is given in (14.42), and 𝔼[Ht,j ∣ Yt] = Pr(Ht,j = 1 ∣ Yt = yt) is

ℏt,j ∶=
𝜆jfLap(yt;𝝁j,𝚺j, bj)∑k
j=1 𝜆jfLap(yt;𝝁j,𝚺j, bj)

, t = 1,… ,T , j = 1,… , k. (14.44)

Recall that, from the construction of the single-component multivariate Laplace distribution,
(Yt ∣ Gt = gt) ∼ N(0, gt𝚺), whereGt ∼ Gam(b, 1), andG = (G1,… ,GT ) was part of the complete data
log-likelihood. In the mixture context, Gt can come from one of k distributions, Gam(bj, 1), with
p.d.f. fGam( gt; bj) = gbjt exp(−gt)∕Γ(bj)𝕀(0,∞)(gt), j = 1,… , k, so its specification requires conditioning
onHt . That is,

(Gt ∣ Ht) = (Gt ∣ Ht,j = 1) ∼ Gam(bj, 1) and (Yt ∣ Ht,j = 1,Gt = gt) ∼ N(0, gt𝚺).

Then fYt ,Gt ,Ht
(y, g,h;𝜽) = fYt ∣Gt ,Ht

(y; g,h,𝜽)fGt ∣Ht
(g;h,𝜽)fHt

(h;𝜽), where, noting that, conditional onHt
being ht with jth element one,

fYt ∣Gt ,Ht
(y, g,h;𝜽) =

k∏
j=1

[ fN(y;𝝁j, g𝚺j)]hj . (14.45)

Similarly,

fGt ∣Ht
( g;h) =

k∏
j=1

[ fGam( g; bj)]hj , (14.46)

so that, from (14.43), (14.45) and (14.46),

fYt ,Gt ,Ht
(y, g,h;𝜽) =

k∏
j=1

[𝜆jfN(y;𝝁j, g𝚺j)fGam( g; bj)]hj 𝕀{0,1}(hj)𝕀

( k∑
j=1

hj = 1

)
.

The complete data log-likelihood is

𝓁c(𝜽;Y,G,H) =
T∑
t=1

log fYt ,Gt ,Ht
(y, g,h;𝜽),

whereY = (Y1,… ,YT ),G = (G1,… ,GT ), andH = (H1,… ,HT ).Then, recalling that |g𝚺| = gd|𝚺| for
g ∈ ℝ>0, with d the dimension, 𝓁c(𝜽;Y,G,H) is given by

T∑
t=1

log fYt ∣Gt ,Ht
(y; g,h,𝜽) +

T∑
t=1

log fGt ∣Ht
( g;h,𝜽) +

T∑
t=1

log fHt
(h;𝜽)

=
T∑
t=1

k∑
j=1

hj
{
−d
2
log(2𝜋) − d

2
log( g) − 1

2
log|𝚺j| − 1

2
(y − 𝝁j)′( g𝚺j)−1(y − 𝝁j)

}

+
T∑
t=1

hj{bj log( g) − g − logΓ(bj)} +
T∑
t=1

k∑
j=1

hj log 𝜆j,

where, in the last expression after the equals sign, note that the elements of h = (h1,… , hk) and g are
changing at each time point t.
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Omitting terms that do not depend on 𝜽 from (14.42), keeping in mind that the bj are known, mul-
tiplying by two, and using capital letters for the Yt , Gt , and Ht to indicate them as random variables,
we can write

𝓁c(𝜽;Y,G,H) =
T∑
t=1

k∑
j=1

Ht,j{− log|𝚺j| − G−1
t (Yt − 𝝁j)′𝚺−1

j (Yt − 𝝁j)}

+ 2
T∑
t=1

k∑
j=1

Ht,j log 𝜆j. (14.47)

As in the case for MixkNd, the 𝜆j are disjoint from the other parameters in 𝜽, so that their m.l.e.s can
be determined separately, and, intuitively, yield the same result as (14.6), namely

�̂�j =
1
T

T∑
t=1

Ht,j, j = 1,… , k. (14.48)

Estimators for𝝁 and𝚺 from the complete data log-likelihood follow easily because of the binary nature
of theHt,j and that

∑k
j=1 Ht,j = 1, so that we have k independentmultivariate Laplace populations, each

with
∑T

t=1 Ht,j observations. Thus, we can apply (14.36), i.e.,

�̂�j =
∑T

t=1 Ht,jG−1
t Yt∑T

t=1 Ht,jG−1
t

, �̂�j =
∑T

t=1 Ht,jG−1
t (Yt − �̂�j)(Yt − �̂�j)′∑T

t=1 Ht,j

, (14.49)

j = 1,… , k. As a direct generalization of the quasi-Bayesian estimator (14.7) for the MixkNd model,
and (14.39) and (14.40) for the single-component multivariate Laplace, we take

�̂�j =
cjmj +

∑T
t=1 Ht,jG−1

t Yt

cj +
∑T

t=1 Ht,jG−1
t

, (14.50)

and

𝚺j =
Bj +

∑T
t=1 Ht,jG−1

t (Yt − �̂�j)(Yt − �̂�j)′ + cj(mj − �̂�j)(mj − �̂�j)′

aj +
∑T

t=1 Ht,j

, (14.51)

j = 1,… , k, and use the prior values given below in (14.54).
As usual in our EMalgorithmderivations, computation of (14.48) and (14.49) is not feasible because

G andH are not observed. Hence, the E-step: Conditional on the observed Yt and the value of �̂�, say
𝜽(s), in the sth step of the iterative scheme, we compute

Q(𝜽 ;𝜽(s)) = 𝔼𝜽(s) [𝓁c(𝜽;Y,G,H) ∣ Y = y],

the conditional expectation of the complete data log-likelihood with respect to the hidden random
variables, given the observed data y, and using as parameter 𝜽 the current value 𝜽(s). For this, we need
𝔼𝜽(s) [Ht,j ∣ Yt], which is just (14.44).
Next, for the tth observation but using the parameters of the jth component, let

mt,j = (yt − 𝝁j)′𝚺−1
j (yt − 𝝁j), t = 1,… ,T , j = 1,… , k,



Multivariate Mixture Distributions 657

and recall that, when conditioning onHt = h, the jth element of h is one (and the rest are zero).Then,
to compute 𝔼𝜽(s) [G−1

t ∣ Yt = y,Ht = h], we require fGt ∣Yt ,Ht
(g; y,h), or

fYt ,Gt ,Ht
(y, g,h;𝜽)

fYt ,Ht
(y,h;𝜽)

=
fYt ∣Gt ,Ht

(y; g,h,𝜽)fGt ∣Ht
( g;h,𝜽)

fYt ∣Ht
(y,h,𝜽)

fHt
(h;𝜽)

fHt
(h;𝜽)

=
∏k

j=1 [ fN(y;𝝁j, g𝚺j)fGam( g; bj)]hj∏k
j=1 [ fLap(y;𝝁j,𝚺j, bj)]hj

=
fN(y;𝝁j, g𝚺j)fGam( g; bj)

fLap(y;𝝁j,𝚺j, bj)
,

but this is the same density as given in (14.37), so that we can use the result from (14.38), just changing
b to bj andmt tomt,j, to get

𝜁t,j ∶= 𝔼𝜽(s) [G−1
t ∣ Yt = y,Ht = h] =

Kbj−d∕2−1(
√
2mt,j)

(mt,j∕2)1∕2Kbj−d∕2(
√
2mt,j)

, (14.52)

t = 1,… ,T , j = 1,… , k. Then, withW = 𝓁c(𝜽;Y,G,H) ∣ (Y = y), we have 𝔼[W ] = 𝔼[𝔼[W ∣ Ht]], or,
using (14.47) and (14.52),

𝔼𝜽(s) [𝓁c(𝜽;Y,G,H) ∣ Y = y]
= 𝔼𝜽(s) [𝔼𝜽(s) [𝓁c(𝜽;Y,G,H) ∣ Y = y;Ht = h] ∣ Y = y]

= 𝔼𝜽(s)

[ T∑
t=1

k∑
j=1

Ht,j{− log|𝚺j| − 𝜁t,j(Yt − 𝝁j)′𝚺−1
j (Yt − 𝝁j)}

+ 2
T∑
t=1

k∑
j=1

Ht,j log 𝜆j ∣ Y = y

]
, (14.53)

which follows because 𝔼𝜽(s) [Ht,jG−1
t ∣ Yt ,Ht] = Ht,j𝔼𝜽(s) [G−1

t ∣ Yt ,Ht]. As (14.53) is linear in theHt,j, we
need only the expectation of the Ht,j, conditional on Y = y and 𝜽(s), as given by (14.44).
Similar to (14.8), and in light of the variance, as given in (14.32), we take

a1 = 2𝜔, a2 = 𝜔∕2, c1 = c2 = 20𝜔, m1 = 𝟎d, m2 = −0.1𝟏d,

B1 =
a1
b1

[(1.5 − 0.6)Id + 0.6Jd], B2 =
a2
b2

[(10 − 4.6)Id + 4.6Jd],
(14.54)

where hyper-parameter 𝜔 controls the strength of the prior.
Thus, with a starting value 𝜽(0), the EM algorithm iterates between (14.44), (14.48), and (14.49),

where it is understood that, in (14.44), 𝜆j,𝝁j and𝚺j are themost current values from 𝜽(s), and in (14.48)
and (14.49), the expectations of Ht,j and G−1

t are used, these being ℏt,j in (14.44) and 𝜁t,j in (14.52),
respectively.

Remarks There are some issues related to computation that apply to both the normal and Laplace
mixture cases. During the EM iterations, roundoff error can induce �̂�1 or �̂�2 to deviate slightly from
symmetry, which would invalidate their status as covariance or dispersion matrices. A simple and
effective solution is just to set �̂�j = (�̂�j + �̂�′

j )∕2, j = 1,… , k. Less trivial is the possibility that one or
more of the �̂�j are rank deficient, which is analogous to one or more of the scale terms 𝜎j in the
univariate case approaching zero. It was found that simply setting eigenvalues of �̂�j lower than some
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threshold to that threshold during the iterationwas enough to prevent the algorithm fromceasing, and
allowing it to either find a more plausible solution or, on occasion, to return a near-rank-deficient �̂�j.
This latter case is preventable with the use of aj > 0; just taking Bj = Id and aj = 0.1 in (14.7) is

adequate, whereby an extremely small amount of prior information is enough to prevent the optimizer
from landing on a singularity point of the likelihood. (Another approach for ensuring full rank of the
�̂�j during estimation in the normal mixture case is proposed in Ingrassia and Rocci, 2007.)
As with the mixture of normals (both univariate and multivariate), we can safely presume that the

likelihood surface of the MixkLapd model (with its 991 parameters for k = 2, d = 30 and fixed b1
and b2) has more than one local maxima. In a time series context in which moving windows of data
are used for estimation, we suggest the following strategy. Perform two estimations, such that their
starting values are (i) the final values of the previous window and (ii) the prior values as given in
(14.54), i.e., 𝝁i = mi, 𝚺i = Bi∕ai, i = 1, 2. The one returning the higher likelihood value is used. ◾

14.5.3 Estimation via MCD Split and Forecasting

We have seen in Section 14.3 that the DJIA-30 stock returns data can be successfully decomposed
into two sets using the m.c.d. method. We can attempt the same idea for obtaining parameter esti-
mates of the Mix2Lap30 distribution: We apply the m.c.d. split, and then the two location vectors and
dispersion matrices associated with the Mix2Lap30 are separately estimated using the EM algorithm
developed in Section 14.5.1. The mixture weight of the first component, 𝜆 = 𝜆1, is, as in the Mix2Nd
case, just the fraction of observations assigned to the first component by the m.c.d. procedure. The
shape parameters b1 and b2 are determined as in Section 14.5.4.
Wewish to determine the optimal value of𝜔 for the shrinkage prior for theMix2Lap30, applied to the

DJIA-30 data, using the normalized sum of the realized predictive log-likelihood (14.22) as a function
of 𝜔, for a moving window of length 𝑣 = 250, and estimating the model via the use of the m.c.d. split
followed by separate estimation of each Laplace component. We do this for two sets of fixed values of
b1 and b2; the first are b1 = 7.5 and b2 = 3.5, whichwere found to be optimalwhen using the entire data
set for estimation, and b1 = b2 = 5.5, these being optimal when using only the last 500 observations
(see Section 14.5.4).This two-year period of observations (March 2007 toMarch 2009) occurs during
a full unfolding of the Global Financial Crisis, massive market downturns and relatively high market
volatility, and so it is not surprising that even the first component is picking up non-normality of the
data. This also suggests that it is not ideal to use “as much data as possible”, but rather a sample size
T such that performance is maximized. Thus, the sample size becomes a tuning parameter, though
better is to use weighted likelihood.
We conduct the same density forecasting exercise used to obtain the right panel of Figure 14.11,

based on the Mix2N30, and so, for comparison purposes, we replicate this in the right panel of
Figure 14.24, having only changed the scaling on the y-axis. The left panel shows the new results
as the solid and dashed lines. The use of the Laplace instead of the normal clearly leads to better
density forecasts, with the optimal value of 𝜔 being about 40. There is very little difference when
using either b1 = 7.5 and b2 = 3.5 or b1 = b2 = 5.5, though the latter gives the larger result. This is
comforting because joint estimation of all the parameters, including the bi, while straightforward, is
more time-consuming.
We also observe that the improvement as 𝜔 increases from 0.1 to 40 is far less than obtained with

the normal distribution.This makes good sense:Themis-specified normal distribution is such that its
tails are too thin for the data, and so its m.l.e. without shrinkage attempts to compensate by increasing
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Figure 14.24 Left: The normalized sum of the realized predictive log-likelihood versus 𝜔, based on the Mix2Lap30
estimated via m.c.d. split and prior-augmented m.l.e. via the EM algorithm for each separate Laplace component,
using a moving window of length 𝑣 = 250, and two sets of fixed (b1, b2) Laplace parameters (solid and dashed lines).
The dash-dot line is the result when having separated the components based on the EM algorithm output of Ĥt,1 for
the Mix2N30 distribution. Right: Same as the right panel of Figure 14.11 for 𝑣 = 250, except having changed the scaling
of the y-axis; it is just for comparison to the left panel graphic.

the variance parameters. Furthermore, under a Gaussian assumption, the m.l.e. of the mean is the
sample average, but we know this is not optimal for heavier-tailed distributions, so that it will tend to
be unduly influenced by outliers—which shrinkage is admirably able to counteract. The Laplace dis-
tribution is surely also mis-specified, but significantly less so than the normal, so that less “tinkering”
via shrinkage is required.
Superimposed on the plot with the dash-dot line are the results based on the same calculations, but

having used the EM algorithm (for the normal mixture) for component separation, as in (14.27) and
(14.28), instead of via the m.c.d. from (14.29). Analogous to the results from Section 14.3, separation
based on m.c.d. is far more successful.
The left panel of Figure 14.25 reproduces the graph of the normalized sum of the realized predictive

log-likelihood, based on the m.c.d. split, with b1 = b2 = 5.5, from the left panel of Figure 14.24 as
the dotted line, and overlays it with the analogous results based on jointly estimating all the model
parameters via the EM algorithm (hereafter, just “joint estimation”), and having used different priors.
In particular, the m.c.d. split and the solid line in the figure both use what we will call prior 1, as given
in (14.54). The use of joint estimation is superior to use of the m.c.d. split, though the latter gives a
smoother realized predictive log-likelihood as a function of 𝜔 than does joint estimation.
The second and third priors we consider are of the same form as (14.54), but with different weights

on the covariance matrices; they are given by

prior 1: a1 = 2𝜔, a2 = 𝜔∕2, c1 = c2 = 20𝜔,
prior 2: a1 = 1𝜔, a2 = 1𝜔, c1 = c2 = 20𝜔, (14.55)
prior 3: a1 = 1.5𝜔, a2 = 1.5𝜔, c1 = c2 = 20𝜔.

From the figure, we see that priors 2 and 3 not only yield better forecasts for all𝜔 in the relevant range,
but, particularly for prior 3, their plots are also much smoother, indicating more stable and reliable
estimation. The optimal amount of shrinkage for priors 2 and 3 are 𝜔∗(250) = 55 and 𝜔∗(250) = 40,
respectively, and yield nearly the same normalized sum of the realized predictive log-likelihood. In
what follows, we use prior 3 and 𝜔 = 40.
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Figure 14.25 Left: The normalized sum of the realized predictive log-likelihood versus 𝜔, based on the
two-component multivariate Laplace mixture distribution, using a moving window of length 𝑣 = 250, for
b1 = b2 = 5.5. The line labeled “MCD split Mix MVL” is the same graph as shown in Figure 14.24 with the label “MCD
split, b1 = 5.5, b2 = 5.5”. The others are the result of joint estimation, using the priors given in (14.55). The horizontal
solid line at the top of the graph shows the value obtained based on prior 3, 𝜔 = 40, when using weighted likelihood,
with 𝜌 = 0.75 and applied to just the 𝚺j . Right: This is an analog to the right panel of Figure 14.16: With

𝑣𝜆
the

Mix2Lap30 model with �̂� replaced by �̂�
𝑣,𝑣𝜆

the figure shows the normalized sum of the realized predictive log-likelihood
versus 𝑣

𝜆
, based on prior 3 for 𝜔 = 40, with two weighted likelihood values 𝜌 = 1 (corresponding to equal weights)

and 𝜌 = 0.75, applied to just the 𝚺j . The two horizontal lines are the result of taking �̂� to be 0.75�̂�250,70 + 0.25�̂�250,1, for
each of the two values of 𝜌.

The method of weighted likelihood via (13.1) is again applicable. The solid horizontal line at the
top of the left panel of Figure 14.25 shows the result; it is based on weighted likelihood applied just
to the �̂�j, with parameter 𝜌 = 0.75 (and using prior 3 from (14.55) with 𝜔 = 40). The right panel of
Figure 14.25 is similar to that in Figure 14.16, showing the normalized sum of the realized predic-
tive log-likelihood S𝜏0,T (𝑣𝜆

, 𝑣), for 𝑣 = 𝜏0 = 250, as a function of 𝑣𝜆, where 𝑣𝜆
is the Mix2Lap30

model with �̂� replaced by �̂�𝑣,𝑣𝜆 (and having used prior 3 given in (14.55), with 𝜔 = 40). Interestingly,
just as with the Mix2N30 model, we again obtain nearly monotone gains in forecast accuracy as 𝑣𝜆
is decreased, and a maximum is reached at about 𝑣𝜆 = 70. Also, again taking �̂� to be 0.75�̂�250,70 +
0.25�̂�250,1 results in further improvement, as indicated by the horizontal lines.
Figure 14.26 shows the analogous results for the d = 4 assets case. From the left panel, we see that

the optimal prior strength is 𝜔 = 15, and the improvement over and above this when using weighted
likelihood with prior 3 and 𝜌 = 0.65 is substantial. The right panel shows that 𝑣𝜆 between 5 and 7
is optimal, though we again observe the massive cutoff in performance at 𝑣𝜆 = 4 and below, so that
use of this optimal value seems risky—perhaps 10 is a better compromise that is nearly optimal, and
further away from the slippery slope. Also, there are local maxima between 𝑣𝜆 = 50 and 𝑣𝜆 = 70, as
with theMix2N4 model for d = 4, and coinciding with the global maximumwhen using d = 30 assets.

14.5.4 Estimation of Parameter b

The EM algorithm presented above for obtaining the (prior-augmented) m.l.e. of parameter vector 𝜽,
as given in (14.42), for the MixkLapd model so far assumed known b. We discuss here three ways of
estimating b, but implement only the third one.
The first way is to augment the EM algorithm such that, at each iteration, a new step maximizes the

likelihood with respect to the k unknown values in b, conditional on the other parameters, similar
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Figure 14.26 Left: Similar to the left panel of Figure 14.25, expect for d = 4 assets, and just showing the normalized
sum of the realized predictive log-likelihood based on joint estimation via the EM algorithm, based on prior 3 in
(14.55), and taking b1 = b2 = 5.5 (as with the d = 30 case). The horizontal solid line at the top of the graph shows the
value obtained when using prior 3, 𝜔 = 15 and weighted likelihood, with 𝜌 = 0.65 and applied to just the 𝚺j . Right:
Similar to the right panels of Figures 14.17 and 14.25, except based on the Mix2Lap4 model, d = 4, and just for the
weighted likelihood hyperparameter 𝜌 = 0.65 (as usual, applied just to the 𝚺j). The horizontal solid line is precisely the
same as the one in the left panel.

to the way the EM algorithm for a multivariate Student’s t, or mixtures of them, can be augmented
to estimate the unknown degrees of freedom parameter associated with each component (see, e.g.,
McLachlan and Peel, 2000, Sec. 7.5). While possible, this step requires use of generic optimization
routines, and will thus substantially increase the relative estimation time.
The second way is to use the EM algorithm as we present it, namely with a fixed value of b, and

do so for various b until the likelihood is maximized. A generic optimizer can be applied to this
k-dimensional problem, noting that k is typically only two or three, but for every one of its function
evaluations the above EM algorithm needs to be run. When tracing out the maximum log-likelihood
as a function of b, this results in the profile log-likelihood in b; recall Section 10.2. The resulting
choice of (b̂′ �̂�

′
)′ is the joint m.l.e., and is equivalent to the first method mentioned—and approxi-

mately equally time-consuming, though it might exhibit different convergence properties. We do not
pursue either of these methods, instead using the third way, which is much faster, but is not equiva-
lent to the previous twomethods, and is most certainly inferior from an estimation efficiency point of
view, though it turns out to be adequate in this model and application context; recall the discussion
in Section 14.3.
This third way entails splitting the data into two groups (either by m.c.d. or the EM algorithm) and

then examining the profile log-likelihood of the single-componentmultivariate Laplace distribution in
bi, i = 1, 2.The benefit of this is that the EM algorithm for the single-component multivariate Laplace
distribution with known b is very fast, and only a univariate optimum needs to be located.The down-
side is that the split into two data sets is imperfect—there is loss of information and introduction of
bias, and the resulting chosen b̂i values will not be the m.l.e.s, nor necessarily share the asymptotic
properties of the m.l.e. However, as the bi dictate the tail behavior of the distribution, the uncertainty
(statistical error) associated with their true m.l.e.s is substantial, and so the impact of using this much
faster method turns out to be minimal. Moreover, forecasting exercises conducted in Paolella (2015)
using a range of b̂i values indicate that this method is adequate—no gain in forecast quality is achieved
by choosing alternative values of the b̂i, while choosing values that are far from those selected by this
method indeed results in inferior forecasts.
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Figure 14.27 Profile log-likelihood as a function of the parameter b of the single-component multivariate Laplace
distribution fit to each of the two components of the T = 1,945 daily returns of the d = 30 stocks composing the Dow
Jones Industrial Index from June 13, 2001, to March 11, 2009. The data were decomposed into the two components
using the EM algorithm for the two-component multivariate Laplace distribution.

To conduct the split, we proceed as follows: (i) arbitrary values of b1 and b2 are chosen, (ii) the
EM algorithm for the two-component multivariate mixture Laplace distribution is run, and (iii) using
(14.44), those observations for which Ĥt,1 = ℏt,j > 0.99 are assigned to component 1, otherwise to
component 2. (The value of 0.99 of course represents a tuning parameter that will affect the final
results. Several reasonable values were tried, and the results were not sensitive to its choice.) Step (iv)
then estimates single-component multivariate Laplace distributions, for each of the two components,
over a grid of b1 and b2 values (the choice of grid being discussed below) and in (v) the optimal values of
the bi are obtained from the two profile log-likelihoods. These optimal values of the bi are then used
as the fixed values instead of those chosen in step (i), and the iterative method is conducted again,
starting with step (ii). This could be repeated “until convergence”, but we use just two iterations.
Figure 14.27 shows the results when this method is applied to the DJIA data. It depicts the profile

log-likelihood (divided by 10,000) of b1 and b2, for each of the two components (which have, respec-
tively, 1,312 and 633 observations). The estimations also use a shrinkage prior with weight 𝜔 = 50.
The maximum is approximately b̂ = (7.5, 3.5). From the plots, it is obvious that the sampling error
associated with b1 is higher than that of b2. The profile log-likelihood of b2 is far more peaked, with
a maximum around three, so that that the second component has higher kurtosis than the normal.
Thus, in the context ofmodeling dailymultivariate financial asset returns data, theMix2Lapd will have
a clear advantage over the Mix2Nd.
Also observe that use of the value b = (d + 1)∕2 = 15.5 is, particularly for component 2, highly

untenable, so that the simplified multivariate Laplace density without the Bessel function in (14.33),
and the simplification in (14.38), are unfortunately of no use.

14.5.5 Portfolio Distribution and Expected Shortfall

As with the MixkNd case, of interest is the distribution of P = Pt(a,𝜽) = a′Yt when Yt ∼
MixkLapd(M,𝚿,𝝀,b). First consider the case with L ∼ Lap(𝝁,𝚺, b) with density (14.31). Then,
for a ∈ ℝd, P = a′L ∼ Lap(a′𝝁, a′𝚺a′, b), where this is (14.31) with d = 1. The result is a special
case for normal mean–variance mixture distributions (in particular, the multivariate generalized
hyperbolic, or MGHyp, but also the multivariate noncentral t), as shown in, e.g., McNeil et al.
(2005, p. 76). Now let Y ∼ MixkLapd(M,𝚿,𝝀,b), with density (14.41), for M =

[
𝝁1 𝝁2 · · · 𝝁k

]
,
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𝚿 =
[
𝚺1 𝚺2 · · · 𝚺k

]
, b = (b1,… , bk)′, and 𝝀 = (𝜆1,… , 𝜆k). Let P = a′Y. Then, analogous to result

(14.12) and using the same format of proof, we find that

fP(x) =
k∑

c=1
𝜆c Lap(x; a′𝝁c, a′𝚺ca, bc). (14.56)

Notice that the univariate Laplace distributions in (14.56) are of the form (14.31), with d = 1. Similar
to (14.16), and in light of (14.32), we have, with 𝜇c = a′𝝁c and 𝜎2

c = a′𝚺ca, c = 1,… , k,

𝜇P = 𝔼[P] =
k∑

c=1
𝜆c𝜇c, 𝜎2

P = 𝕍 (P) =
k∑

c=1
𝜆c(bc𝜎2

c + 𝜇2
c ) − 𝜇2

P. (14.57)

Also, analogous to (14.17), and denoting the density and distribution function of the univariate
Laplace distribution in (14.56) as f and F , respectively, calculation shows that

ES(P, 𝜉) =
k∑
j=1

𝜆jF(cj, 0, 1, bj)
𝜉

(
𝜇j − 𝜎jbj

f (cj, 0, 1, bj + 1)
F(cj, 0, 1, bj)

)
, cj =

qP,𝜉 − 𝜇j

𝜎j
. (14.58)

The c.d.f. F can be calculated with numeric integration.

14.5.6 Fast Evaluation of the Bessel Function

We finally return to the issue of evaluating the Bessel function (14.30). An asymptotic expansion of
K𝑣(z) as given in Watson (1922, p. 202) is

K𝑣(z) =
√

𝜋

2z
e−z × E(𝑣, z), where

E(𝑣, z) = 1 + 4𝑣2 − 12
1!8z

+ (4𝑣2 − 12)(4𝑣2 − 32)
2!(8z)2

+ (4𝑣2 − 12)(4𝑣2 − 32)(4𝑣2 − 52)
3!(8z)3

+ · · · .

Thus, when 𝑣 is of the form 𝑣 = n − 1∕2, n = 1, 2,…, we have the exact relations

E(1∕2, z) = 1,
E(3∕2, z) = (1 + 1∕z),
E(5∕2, z) = (1 + 3∕z + 3∕z2),
E(7∕2, z) = 1 + 6∕z + 15∕z2 + 15∕z3,

and, in general, we find

E(𝑣, z) = 1 +
k∑
i=1

(k + i)!
2i(k − i)!i!

1
zi
, for 𝑣 = n − 1

2
, n ∈ ℕ. (14.59)

Based on Figure 14.27, it appears as though we can safely suffice ourselves with evaluating the
log-likelihood on a grid of half-integer b-values.

Remark For the disconcerted reader who objects to the use of a grid of half-integer b-values and
prefers to have the m.l.e. evaluated to near machine precision, we offer the gentle reminder that there
is always a trade-off in real applications between estimation speed and accuracy, and the purpose of



1 function K=quickbesselk(v,z)
2 v=abs(v); k=v-0.5;
3 if (k-floor(k)<1e-8) && (k<=12.01)
4 S=1; k=floor(k);
5 cmat=[
6 1 0 0 0 0 0 0 0 0 0 0 0
7 3 3 0 0 0 0 0 0 0 0 0 0
8 6 15 15 0 0 0 0 0 0 0 0 0
9 10 45 105 105 0 0 0 0 0 0 0 0

10 15 105 420 945 945 0 0 0 0 0 0 0
11 21 210 1260 4725 10395 10395 0 0 0 0 0 0
12 28 378 3150 17325 62370 135135 135135 0 0 0 0 0
13 36 630 6930 51975 270270 945945 2027025 2027025 0 0 0 0
14 45 990 13860 135135 945945 4729725 16216200 34459425 34459425 0 0 0
15 55 1485 25740 315315 2837835 18918900 91891800 310134825 654729075 654729075 0 0
16 66 2145 45045 675675 7567560 64324260 413513100 1964187225 6547290750 13749310575 13749310575 0
17 78 3003 75075 1351350 18378360 192972780 1571349780 9820936125 45831035250 151242416325 316234143225 316234143225
18 ];
19 for i=1:k
20 % First way: quicker than Matlab's besselk only for very small k
21 %coef = exp( gammaln(k+i+1)-gammaln(k-i+1)-gammaln(i+1) - i*log(2) );
22
23 % Second way: also not faster for large k, but delivers more accurate coefficients of the matrix above
24 % t1=fact(k+i); t2=fact(k-i); t3=fact(i); coef = t1/t2/t3/2ˆi
25
26 coef = cmat(k,i); % The fastest way!
27 S=S+ coef / zˆi;
28 end
29 K=sqrt(pi/2/z) * exp(-z) * S;
30 else
31 K=besselk(v,z);
32 end

Program Listing 14.12: Fast computation of the Bessel function K𝑣(z), based on (14.59) and pre-computation of the relevant
coefficients.
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the application should help dictate this. Recall the discussion in Section 14.3. If the goal is density
forecasting and financial portfolio optimization, then it turns out to make no appreciable difference
if the b̂i-values are restricted to the half-integer grid. Moreover, by changing the (often arbitrarily
chosen) length, T , of the data set (or the window size, when used in a backtesting exercise), the point
estimates of the b̂i can vary considerablymore than 0.5 or 1.0, thus rendering the concept of “the exact
m.l.e.” meaningless. ◾

Use of (14.59) is about 10 times faster to evaluate than Matlab’s implementation, but only when
having pre-computed the coefficients in (14.59).This is done for the function in Program listing 14.12,
and was constructed such that, for d = 30, we can deliver the values of the required Bessel function
for b = 0.5, 1.5,… , 27.5. It requires the following short program to evaluate the factorial function
without recourse to the gamma function:

1 function p=fact(n), if n-1<1e-14, p=1; else p=n*fact(n-1); end
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Part IV

Appendices
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Appendix A

Distribution of Quadratic Forms

Quadratic forms in normal variables play a key role in the distribution theory associated with linear
regression and time-series models. This appendix develops the tools necessary for understanding the
material in Chapters 1 to 5, as well as the more specialized material in Appendix B.
Function ℝn → ℝ is a quadratic form if it can be expressed as x → x′Ax, where A is an n × n real

symmetric matrix. Let A be such a matrix, and let X ∼ Nn(𝝁,𝚺) with 𝚺 > 0. The scalar random vari-
able (hereafter abbreviated r.v.) Y = X′AX is referred to as a quadratic form (in normal variables).
If Y = X′BX with B not symmetric, observe that, as a scalar, Y ′ = Y , i.e., (X′BX)′ = X′B′X so that

Y = X′(B+B′)X∕2 = X′AX with A = (B+B′)∕2. Matrix A is symmetric, so there is no loss in gen-
erality in working with symmetric matrices.
A more general structure is a bilinear quadratic form, X′AY, where X is n × 1, Y ism × 1 and A is

n ×m. If n = m and A is symmetric, then X′AY can be written as a quadratic form via

X′AY = Z′BZ for Z =
(
X
Y

)
, B = 1

2

(
𝟎 A
A 𝟎

)
.

A.1 Distribution andMoments

Let Y = X′AX with X ∼ Nn(𝝁,𝚺), 𝚺 > 0. While the density of X is tractable, Y is a very complicated
function of X, though it possesses a structure that lends itself to expression in simpler terms; this is
the key to studying its distribution.

A.1.1 Probability Density and Cumulative Distribution Functions

First, let 𝚺
1
2 be a matrix such that 𝚺

1
2𝚺

1
2 = 𝚺. Recall that 𝚺

1
2 is easily computed using the spectral

decomposition and is symmetric and positive-definite. Then 𝚺− 1
2X ∼ Nn

(
𝚺− 1

2𝝁, I
)
. Next, write

Y = X′AX = X′IAIX = X′𝚺− 1
2𝚺

1
2A𝚺

1
2𝚺− 1

2X, (A.1)

and let the spectral decomposition of 𝚺
1
2A𝚺

1
2 be given by P𝚲P′, where P is an orthogonal matrix and

𝚲 = diag([𝜆1,… , 𝜆n]) = Eig(𝚺
1
2A𝚺

1
2 ) = Eig(𝚺A) = Eig(A𝚺). Then, from (A.1),

FY (y) = Pr
(
X′𝚺− 1

2P𝚲P′Σ− 1
2X ⩽ y

)
= Pr(W′𝚲W ⩽ y), (A.2)

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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where

W = P′𝚺− 1
2X ∼ N(𝝂, In), 𝝂 = P′𝚺− 1

2𝝁 = (𝜈1,… , 𝜈n)′. (A.3)

This decomposition is sometimes referred to as the principle axis theorem; see Scheffé (1959, p. 397).
Recall the definition of a noncentral 𝜒2 random variable: If (X1,… ,Xn) ∼ Nn(𝝁, I), with

𝝁 = (𝜇1,… , 𝜇n)′, then X =
∑n

i=1 X2
i follows a noncentral 𝜒2 distribution with n degrees of freedom

and noncentrality parameter 𝜃 =
∑n

i=1 𝜇
2
i . We write X ∼ 𝜒2(n, 𝜃).

From (A.2) and (A.3),

W′𝚲W =
rank(A)∑
i=1

𝜆iW 2
i , W 2

i
ind∼ 𝜒2(1, 𝜈2i ), (A.4)

is a weighted sum of rank (A) independent noncentral 𝜒2 random variables, each with one degree
of freedom. Methods and programs for computing this distribution are detailed in Section II.10.1.5,
including inversion of the characteristic function and the saddlepoint approximation (s.p.a.).The pro-
gram in Listing A.1 implements this decomposition to compute the p.d.f. and c.d.f. using both ways.

Example A.1 Let X = (X1,… ,Xn)′ ∼ Nn(𝝁,𝚺) with 𝚺 > 0 and 𝝁 = (𝜇1,… , 𝜇n)′. Consider the sam-
ple variance of X1,… ,Xn, denoted S2. Let 𝟏n denote an n-length column vector of ones, Jn an n × n
matrix of ones, and

M = In − 𝟏n(𝟏′n𝟏n)−1𝟏′n = In − n−1Jn, (A.5)

so that MX = X − X̄. As detailed in Chapter 1, M is a rank m = n − 1 matrix with one eigenvalue
equal to zero and n − 1 eigenvalues equal to one. It is easy to confirm that M′ = M and MM = M,
so that

Y =
n∑
i=1

(Xi − X̄)2 = (MX)′(MX) = X′M′MX = X′MX

1 function [f,F,svec]=XAXdistribution(xvec,mu,Sigma,A,spa)
2 if nargin<5, spa=1; end
3 svec=[]; lx = length(xvec); f=zeros(lx,1); F=f;
4 [V,D]=eig(0.5*(Sigma+Sigma')); W=sqrt(D); Sighalf = V * W * V';
5 R=Sighalf*A*Sighalf; [P,Lam]=eig(R); lam=diag(Lam); % R = P Lam P'
6 v = P' * inv(Sighalf) * mu; nonc = v.ˆ2;
7 ok=abs(lam)>1e-7; nonc=nonc(ok); lam=lam(ok); dfvec=ones(length(lam),1);
8 if spa==1, [f,F,svec] = spaweightedsumofchisquare(2,xvec,lam,dfvec,nonc);
9 else [f,F]=weightedsumofchisquare(xvec,lam,dfvec,nonc);

10 end

Program Listing A.1: The p.d.f. and c.d.f. of 𝐗′AX evaluated at each element of xvec, where 𝐗 ∼
Nn (𝝁,𝚺), using either the inversion formulae and numeric integration or the saddlepoint approxi-
mation. Programsweightedsumofchisquare.m andspaweightedsumofchisquare.m use
the methods developed in Section II.10.1 and are available in the collection of programs. The reason
for using (𝚺 + 𝚺′)∕2 instead of simply 𝚺 in the fourth line of the program is that Matlab’s eigenval-
ue/vector routine eig is apparently quite sensitive to numerically small deviations from symmetry.
For symmetric matrix A, it should be the case that calling [V,D]=eig(A) yields orthogonal V
and real diagonal D such that A = VDV′. Perturbing A slightly can render V non-orthogonal and
A ≠ VDV′.
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Figure A.1 True (via inversion formula) and second-order s.p.a. density of the sample variance S2, for a sample of size
10 for X ∼ N(𝝁,𝚺)with 𝝁 = (−2,−1, 0, 1, 2, 2, 1, 0,−1,−2)′ and 𝚺 corresponding to an AR(1) process with parameter 𝜌.
In the left panel, for 𝜌 = 0.5, the two graphs are optically indistinguishable. The s.p.a. is about 14 times faster to
compute.

1 function [f,F]=samplevariancedistribution(xvec,mu,Sigma,spa)
2 if nargin<4, spa=1; end
3 n = length(mu); X = ones(n,1); A = eye(n) - X * inv(X'*X) * X';
4 m=length(mu)-1; [f0,F0]=XAXdistribution(m*xvec,mu,Sigma,A,spa);
5 f=m*f0; F=F0;

Program Listing A.2: The p.d.f. and c.d.f. at values in xvec of the sample variance S2 for data
𝐗 ∼ N (𝝁,𝚺) using either numeric inversion of the characteristic function or the saddlepoint approx-
imation.

is a quadratic form. The eigenvalues {𝜆i} of 𝚺
1
2M𝚺

1
2 are nonnegative because M is positive

semi-definite and 𝚺 is positive definite.1
A scale transformation yields the density fS2(s) = mfY (ms), m = n − 1, while the c.d.f. is given by

FS2 (s) = Pr(Y ⩽ ms). These can be computed via the program in Listing A.2.
To illustrate, let n = 10, 𝝁 = (−2,−1, 0, 1, 2, 2, 1, 0,−1,−2)′, and 𝚺 correspond to a first-order

autoregressive, or AR(1), process with parameter 𝜌, for which the (i, j)th element of 𝚺 is given by
𝜌|i−j|∕(1 − 𝜌2), as detailed in Chapter 4. Figure A.1 plots the density fS2 for two values of 𝜌 and
demonstrates the accuracy of the s.p.a. See also Problem A.1.2 ◾

A.1.2 Positive Integer Moments

Although the raw moments of Y = X′AX for X ∼ Nn(𝝁,𝚺) are straightforward to compute using the
decomposition in (A.4) and the moments for a noncentral 𝜒2, direct calculations are also possible.

1 To see this, first observe that, if 𝚺 positive definite, then 𝚺
1
2 can be constructed and is also positive definite, so that for any

vector w ∈ ℝn\𝟎, z ∶= 𝚺
1
2 w ≠ 𝟎. Next, w′𝚺

1
2 M𝚺

1
2 w = z′Mz ⩾ 0 becauseM is positive semi-definite. (Of course, z′Mz ⩾ 0

also follows simply because Y = (n − 1)S2 = X′MX cannot be negative.) Thus, the eigenvalues of 𝚺
1
2 M𝚺

1
2 are nonnegative.

2 As is also mentioned in Chapter 1, we use the tombstone, QED, or halmos, symbol ◾ to denote the end of proofs of
theorems, as well as examples and remarks, acknowledging that it is traditionally only used for the former, as popularized by
Paul Halmos.
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For the expected value of Y , begin with the obvious relationship Y = tr(Y ) and use the fact that, for
conformable matrices, tr(AB) = tr(BA) to get

𝔼[Y ] = 𝔼[tr(X′AX)] = 𝔼[tr(AXX′)] = tr𝔼[AXX′] = tr(A 𝔼[XX′]).

Next, as 𝚺 = 𝔼[(X − 𝝁)(X − 𝝁)′] = 𝔼[XX′] − 𝝁𝝁′, it follows that

𝔼[Y ] = tr(A(𝚺 + 𝝁𝝁′)) = tr(A𝚺) + 𝝁′A𝝁. (A.6)

Some more effort is required to show that

Cov(X′AX,X′BX) = 2tr(A𝚺B𝚺) + 4𝝁′A𝚺B𝝁, (A.7)

from which

𝕍 (Y ) = 2tr[(A𝚺)2] + 4𝝁′A𝚺A𝝁 (A.8)

follows. Proofs of (A.7) can be found in, e.g., Searle (1971, Sec. 2.5) (where original references can
be found), Graybill (1983, p. 367), Mathai and Provost (1992, pp. 53, 76), and Schott (2005, p. 418).
Also of interest is that Cov(CX,X′AX) = 2C𝚺A𝝁, the proof of which can be found in the previous
references.
The positive integer moments of Y are tractable when X ∼ N(𝟎 , I). From (A.4), we can write Y =∑n
i=1 𝜆iW 2

i , whereW
2
i
i.i.d.∼ 𝜒2(1) and {𝜆i} = Eig(A). As the moment generating function (m.g.f.) ofW 2

i
is (1 − 2s)−1∕2 for s < 1∕2,

𝕄Y (s) =
n∏
i=1

(1 − 2𝜆is)−1∕2, 𝕂Y (s) = log𝕄Y (s) = −1
2

n∑
i=1

log(1 − 2𝜆is), (A.9)

with rth derivative, r = 1, 2,…, easily verified to be

dr𝕂Y (s)
dsr

= 𝛼r

n∑
i=1

𝜆ri

(1 − 2𝜆is)r
, (A.10)

where 𝛼r = 2(r − 1)𝛼r−1 = (r − 1)!2r−1, in particular, 𝛼1 = 1, 𝛼2 = 2, 𝛼3 = 8, and 𝛼4 = 48. Recalling that
the rth derivative of 𝕂Y (s) evaluated at s = 0 is the rth cumulant 𝜅r , and the relationship between the
trace of a matrix and its eigenvalues, we have

𝜅r = 𝛼r

n∑
i=1

𝜆ri = 𝛼rtr, tr ∶=
n∑
i=1

𝜆ri = tr(Ar).

Next, using the relationship between cumulants and moments given by

𝔼[Yr] =
r−1∑
j=0

(
r − 1
j

)
𝜅j+1𝔼[Y r−1−j], r = 0, 1,… , (A.11)

(see, e.g., Severini, 2005, p. 114), we have, inserting the above expressions for 𝜅j+1 and 𝛼r , and reversing
the sum,

𝔼[Yr] = (r − 1)!
r−1∑
j=0

2j
tj+1𝔼[Yr−1−j]
(r − 1 − j)!

= (r − 1)!
r−1∑
i=0

2r−i−1
i!

tr−i𝔼[Y i]. (A.12)
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For r = 1, 𝔼[Y ] = tr(A), while for r = 2,

𝔼[Y 2] = 2 tr(A2) + [tr(A)]2, (A.13)

so that 𝕍 (Y ) = 2 tr(A2), which agrees with (A.8). Lastly, for r = 3, (A.12) simplifies to

𝔼[Y 3] = 8 tr(A3) + 6tr(A2) tr(A) + [tr(A)]3. (A.14)

Example A.2 For n = 10 and 𝝁 as given in Example A.1, with 𝜌 = 0.5, 𝔼[Y ] using decomposition
(A.4) is

∑9
i=1 𝜆i(1 + 𝜈2i ) = 29.9. Use of (A.6) yields the same.This gives 𝔼[S2] = 3.32. Similarly, 𝕍 (Y ) =∑9

i=1 𝜆
2
i (2 + 4𝜈2i ) = 186.3, agreeing with that from (A.8). ◾

Remark Theuse of quadratic forms and theirmoments arises in so-called delta-gammahedging in
financial risk management, in particular calculation of the value at risk (VaR) of non-linear portfolios.
See, e.g., Rounvinez (1997), Britten-Jones and Schaefer (1999), Castellacci and Siclari (2003), Jondeau
et al. (2007, Sec. 8.5.2), and the references therein. ◾

A.1.3 Moment Generating Functions

This section derives somem.g.f.s that are useful in various contexts. We begin with a different deriva-
tion than that used in (A.9) for the m.g.f. of Y = X′AX for X ∼ Nn(𝟎, I), then consider the m.g.f.
of Y = X′AX for X ∼ Nn(𝝁, I), and finally derive the joint m.g.f. of N = X′AX and D = X′BX for
X ∼ Nn(𝝁, I).
First observe that, from the (non-degenerate) n-dimensional multivariate normal distribution, we

immediately have the identity

|𝚺|1∕2 = ∫ℝn
(2𝜋)−n∕2 exp

{
−1
2
x′𝚺−1x

}
dx. (A.15)

Let X ∼ Nn(𝟎, I) and let A be a symmetric n × nmatrix with spectral decomposition A=ODO′ with
D = diag([𝜆1,… , 𝜆n]) the eigenvalues of A. The m.g.f. of Y = X′AX is

𝕄Y (s) = 𝔼
[
esX′AX] = ∫ℝn

(2𝜋)−n∕2 exp
{
sx′Ax − 1

2
x′x

}
dx

= ∫ℝn
(2𝜋)−n∕2 exp

{
−1
2
x′(I − 2sA)x

}
dx

(A.15)
= |I − 2sA|−1∕2. (A.16)

As 1 = |I| = |O′O| and the determinant of a product is the product of determinants,

|O′||I − 2sA||O| = |O′(I − 2sA)O| = |I − 2sD| = n∏
i=1

(1 − 2s𝜆i), (A.17)

so that (A.16) can also be expressed as in (A.9), with convergence strip determined as follows.Wewant
1 − 2s𝜆i > 0, i = 1,… , n, and if 𝜆i > 0, then 1 − 2s𝜆i > 0 ⇐⇒ s < 1∕(2𝜆i), and if 𝜆i < 0, then 1 − 2s𝜆i >
0 ⇐⇒ s > 1∕(2𝜆i). Let 𝜆 = 2 min 𝜆i and �̄� = 2 max 𝜆i. If 𝜆 > 0 (so that all 𝜆i are positive), then𝕄Y (s)
is finite for s < �̄� −1. If �̄� < 0 (so that all 𝜆i are negative), then 𝕄Y (s) is finite for s > 𝜆−1. Otherwise,
𝕄Y (s) exists for 𝜆−1 < s < �̄� −1.
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Turning now to the case with nonzeromean, the first fact we need is that them.g.f. ofW 2 ∼ 𝜒2(n, 𝜃)
is given by

𝕄W 2 (s) = (1 − 2s)−n∕2 exp
{ s𝜃
1 − 2s

}
, s < 1∕2, (A.18)

as was shown in twoways in Problem II.10.6. LetW 2
i
ind∼ 𝜒2(ni, 𝜈2i ), i = 1,… , n, and let S =

∑n
i=1 𝜆iW 2

i .
It follows from (A.18) and the independence of theW 2

i that

𝕄S(s) =
n∏
i=1

𝕄W 2
i
(𝜆is) =

n∏
i=1

(1 − 2𝜆is)−ni∕2 exp

{
𝜆is𝜈2i

1 − 2𝜆is

}
, (A.19)

with convergence strip determined exactly the same as was done after (A.17). The case with ni = 1,
i = 1,… , n is often of most interest, as in (A.4).
Let Y = X′AX, X ∼ Nn(𝝁, I), spectral decomposition A = P𝚲P′, 𝚲 = diag([𝜆1,… , 𝜆n]). Then, as

in (A.2) to (A.4), the m.g.f. of Y is the same as that of S =
∑n

i=1 𝜆iW 2
i , where W 2

i
ind∼ 𝜒2(1, 𝜈2i ) and

𝝂 = (𝜈1,… , 𝜈n)′ = P′𝝁. That is, 𝕄Y (s) is given in (A.19) with ni = 1, i = 1,… , n. This can be directly
written in matrix terms as

𝕄Y (s) = |In − 2s𝚲|−1∕2 exp{s𝝂′𝚲(In − 2s𝚲)−1𝝂} (A.20)

or, after a bit of algebra (Problem A.3),

𝕄Y (s) = |𝛀|− 1
2 exp

{
−1
2
𝝁′(In−𝛀−1)𝝁

}
, 𝛀 = In − 2sA, (A.21)

which generalizes (A.16) to the noncentral case.
Expression (A.21) can also be obtained directly as a special case of the last result we need in

this section: the joint m.g.f. of N = X′AX and D = X′BX, where, as before, X ∼ Nn(𝝁, I). The
result is just an application of the following fundamental result: Let A(x) = x′Ax+ x′a + a and
B(x) = x′Bx+ x′b + b be functions of x, where a, b ∈ ℝ, x , a ,b ∈ ℝn, and A and B are symmetric
n × nmatrices with B positive definite. Then

∫ℝn
A(x)e−B(x)dx = 1

2
𝜋n∕2|B|−1∕2 exp{1

4
(b′B−1b) − b

}
×
[
tr(AB−1) − b′B−1a + 1

2
b′B−1AB−1b + 2a

]
, (A.22)

as shown in, e.g., Graybill (1976, p. 48) and Ravishanker and Dey (2002, p. 142). We have

𝕄N ,D(s, t) = ∫ℝn
exp(sx′Ax + tX′BX) fX(x;𝝁, I)dx,

where fX(x;𝝁, I) = (2𝜋)−T∕2 exp
(
− 1

2
(x − 𝝁)′(x − 𝝁)

)
. Expanding and combining the two terms in the

exponent gives

𝕄N ,D(s, t) = (2𝜋)−T∕2∫ℝn
exp

(
−1
2
x′Sx + x′s + s0

)
dx,

where

S = S(s, t) = I − 2sA − 2tB, s = −𝝁, and s0 = −1
2
𝝁′𝝁.
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This integral is a special case of (A.22), with solution

𝕄N ,D(s, t) = (2𝜋)−T∕2 ⋅
1
2
𝜋T∕2||||12S||||−1∕2 exp

(
1
4
s′
(1
2
S
)−1

s − s0
)
⋅ 2

or

𝕄N ,D(s, t) = |S|−1∕2 exp(−1
2
𝝁′(I− S−1)𝝁

)
. (A.23)

Note that, when t = 0,𝕄N ,D(s, 0) = 𝕄N (s) reduces to (A.21).
The next example offers some practice with matrix algebra and the results developed so far, and

proves a more general result. It can be skipped upon first reading.

Example A.3 A natural generalization of the quadratic form X′AX is

Z = X′AX + a′X + d, X ∼ Nn(𝝁,𝚺), (A.24)

where a is an n × 1 vector and d is a scalar. We wish to show that the m.g.f. is

𝕄Z(s) = exp

{
s(d + 𝝁′A𝝁 + a′𝝁) + s2

n∑
i=1

c2i
1 − 2s𝜆i

} n∏
i=1

(1 − 2s𝜆i)−1∕2, (A.25)

where 𝚺1∕2A𝚺1∕2 = P𝚲P′ with P orthogonal, 𝚲 = diag([𝜆1,… , 𝜆n]), and

(c1,… , cn)′ = P′(𝚺1∕2a∕2 + 𝚺1∕2A𝝁).

To see this, from the multivariate normal p.d.f., the m.g.f. of Z is

𝔼[esZ] = 1
(2𝜋)n∕2|𝚺|1∕2∫ℝn

exp
{
sx′Ax + sa′x + sd − 1

2
(x − 𝝁)′𝚺−1(x − 𝝁)

}
dx,

and the exponent can be rearranged as

sx′Ax + sa′x + sd − 1
2
(x − 𝝁)′𝚺−1(x − 𝝁)

= −1
2
(𝝁′𝚺−1𝝁 − 2sd) + 1

2
(𝝁 + s𝚺a)′(I − 2sA𝚺)−1𝚺−1(𝝁 + s𝚺a)

− 1
2
(x −m)′(𝚺−1 − 2sA)(x −m),

where m = (𝚺−1 − 2sA)−1𝚺−1(𝝁 + s𝚺a). As 𝚺 > 0 and A is finite, there exists a neighborhood N0
around zero such that, for s ∈ N0, 𝚺−1 − 2sA > 0. Recognizing the kernel of the multivariate normal
distribution,

∫ℝn
exp

[
−1
2
(x −m)′(𝚺−1 − 2sA)(x −m)

]
dx = (2𝜋)n∕2|(𝚺−1 − 2sA)|−1∕2,

the integral becomes

𝕄Z(s) = |I − 2sA𝚺|−1∕2 × exp{E}, (A.26)

where

E ∶= −1
2
(𝝁′𝚺−1𝝁 − 2sd) + 1

2
(𝝁 + s𝚺a)′(I − 2sA𝚺)−1𝚺−1(𝝁 + s𝚺a). (A.27)
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Now let 𝚺1∕2 be the symmetric square root of 𝚺 and set 𝚺1∕2A𝚺1∕2 = P𝚲P′ with P orthogonal, and
𝚲 = diag([𝜆1,… , 𝜆n]) the eigenvalues of 𝚺1∕2A𝚺1∕2, the nonzero ones of which are the same as those
ofA𝚺.Then, with |P′P| = |I| = 1 and recalling that the determinant of a product is the product of the
determinants,|I − 2sA𝚺| = |𝚺−1∕2𝚺1∕2| |I − 2sA𝚺| = |𝚺−1∕2| |𝚺1∕2| |I − 2sA𝚺|

= |𝚺1∕2| |I − 2sA𝚺| |𝚺−1∕2| = |𝚺1∕2𝚺−1∕2 − 2s𝚺1∕2A𝚺𝚺−1∕2|
= |I − 2s𝚺1∕2A𝚺1∕2| = |I − 2sP𝚲P′| = |PP′ − 2sP𝚲P′|
= |P| |I − 2s𝚲| |P′| = |P′| |P| |I − 2s𝚲| = |P′P||I − 2s𝚲|
= |I − 2s𝚲| = n∏

i=1
(1 − 2s𝜆i),

so that

|I − 2sA𝚺|−1∕2 = n∏
i=1

(1 − 2s𝜆i)−1∕2. (A.28)

Next, we simplify E in (A.27). First recall that (AB)−1 = B−1A−1, so that

(I − 2sA𝚺)−1𝚺−1 = [𝚺(I − 2sA𝚺)]−1 = (𝚺 − 2s𝚺A𝚺)−1

= [𝚺1∕2(I − 2s𝚺1∕2A𝚺1∕2)𝚺1∕2]−1

= 𝚺−1∕2(I − 2s𝚺1∕2A𝚺1∕2)−1𝚺−1∕2.

Then

E = −1
2
[(𝚺−1∕2𝝁)′(𝝁𝚺−1∕2) − 2sd]

+ 1
2
(𝚺−1∕2𝝁 + s𝚺1∕2a)′(I − 2s𝚺1∕2A𝚺1∕2)−1(𝚺−1∕2𝝁 + s𝚺1∕2a)

= s(d + 𝝁′A𝝁 + a′𝝁)

+ (s2∕2)(𝚺1∕2a + 2𝚺1∕2A𝝁)′(I − 2s𝚺1∕2A𝚺1∕2)−1(𝚺1∕2a + 2𝚺1∕2A𝝁),

or

E = s(d + 𝝁′A𝝁 + a′𝝁)

+ (s2∕2)(𝚺1∕2a + 2𝚺1∕2A𝝁)′PP′(I − 2s𝚺1∕2A𝚺1∕2)−1PP′(𝚺1∕2a + 2𝚺1∕2A𝝁)

= s(d + 𝝁′A𝝁 + a′𝝁)

+ (s2∕2)(𝚺1∕2a + 2𝚺1∕2A𝝁)′P(P′P − 2sP′𝚺1∕2A𝚺1∕2P)−1P′(𝚺1∕2a + 2𝚺1∕2A𝝁),

or, with c = (c1,… , cn)′ = P′(𝚺1∕2a + 2𝚺1∕2A𝝁),

E = s(d + 𝝁′A𝝁 + a′𝝁) + s2
2
c′(I − 2s𝚲)−1c.

Putting this together with (A.26), (A.27), and (A.28) gives (A.25). ◾
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A.2 Basic Distributional Results

Let X ∼ Nn(𝝁,𝚺) with 𝚺 > 0, so that Z = 𝚺−1∕2X ∼ Nn(𝚺−1∕2𝝁, I). Recalling the definition of the
noncentral 𝜒2 distribution, it follows that Z′Z = X′𝚺−1X ∼ 𝜒2(n, 𝜃), where the noncentrality term is
𝜃 = (𝚺−1∕2𝝁)′(𝚺−1∕2𝝁) = 𝝁′𝚺−1𝝁. Important special cases include:

If X ∼ Nn(𝝁, 𝜎2In), then X′X∕𝜎2 ∼ 𝜒2(n, 𝜃), 𝜃 = 𝝁′𝝁∕𝜎2.

If X ∼ Nn(𝟎,𝚺), then Z′Z = X′𝚺−1X ∼ 𝜒2(n).

It is of both theoretical and practical interest to know the general conditions for matrix A such that
X′AX ∼ 𝜒2(r, 𝜃) for some r, 0 < r ⩽ n; in particular, if there are otherA besides𝚺−1.There are: it turns
out to be necessary and sufficient that rank (A𝚺) = r andA𝚺 is idempotent, i.e., thatA𝚺 = A𝚺A𝚺, in
which case 𝜃 = 𝝁′A𝝁. To show this, we first prove the following three results.

1) Let P be an n × n symmetric matrix. Then P is idempotent with rank r if and only if P has r unit
and n − r zero eigenvalues.

Proof :

a) (⇒) For any eigenvalue 𝜆 and corresponding eigenvector x of P, idempotency implies
𝜆x=Px=PPx=P𝜆x = 𝜆Px = 𝜆2x, i.e., 𝜆 = 𝜆2. The roots of the equation 𝜆2 − 𝜆 = 0 are zero
and one. From the symmetry ofP, the number of nonzero eigenvalues ofP equals rank (P) = r.3

b) (⇐) Let P = UDU′ with U orthogonal and D = diag(𝜆i), 𝜆1 = · · · = 𝜆r = 1 and 𝜆r+1 = · · · =
𝜆n = 0. From symmetry, rank(P) = r. Also, P2 = UDU′UDU′ = UDDU′ = UDU′ = P. ◾

2) Let X ∼ Nn(𝟎, I) and Y = X′AX, for A symmetric. Then Y ∼ 𝜒2(r, 0) if and only if A = AA with
rank (A) = r.

Proof :

a) (⇐) From 1(a),A can be written asUDU′ withD = diag(𝜆i), 𝜆1 = · · · = 𝜆r = 1 and 𝜆r+1 = · · · =
𝜆n = 0. With Z = U′X ∼ N(𝟎, I), Y = X′UDU′X = Z′DZ =

∑r
i=1 Z2

i ∼ 𝜒2(r).
b) (⇒) Let {𝜆i} be the eigenvalues of A. Equating the m.g.f. of X′AX from (A.9) and that of a

𝜒2(r, 0) r.v. from (A.18) implies
n∏
i=1

(1 − 2s𝜆i)−1∕2 = (1 − 2s)−r∕2,

whose square is a polynomial in s in a neighborhood of zero. As such, the two must have the
same degree and roots, implying that 𝜆1 = · · · = 𝜆r = 1 and 𝜆r+1 = · · · = 𝜆n = 0.The result now
follows from 1(b). ◾

3) Let X ∼ Nn(𝝁, I) and Y = X′AX. Then Y ∼ 𝜒2(r, 𝜃), 𝜃 = 𝝁′A𝝁, if and only if A is idempotent with
rank(A) = r.

3 Recall that, in general, if matrix A (possibly asymmetric) has r nonzero eigenvalues, then rank(A) ⩾ r, while if A is
symmetric and has r nonzero eigenvalues, then rank(A) = r; see, e.g., Magnus and Neudecker (2007).
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Proof :

a) (⇐) Similar to 2(a), but withZ = U′X ∼ N(v, I), where v = U′𝝁, so that Y = Z′DZ =
∑r

i=1 Z2
i ∼

𝜒2(r, 𝜃), where 𝜃 is determined by

𝜃 =
r∑

i=1
𝑣2i = v′Dv = 𝝁′UDU′𝝁 = 𝝁′A𝝁.

b) (⇒) AsA is symmetric, we can express it asA = O𝚲O′ withO orthogonal and𝚲 = diag(𝜆i) the
eigenvalues ofA. Let 𝝂 = (𝜈1,… , 𝜈n)′ = O′𝝁. By equating the m.g.f. ofX′AX, as given in (A.19)
(with ni = 1) with that of a 𝜒2(r, 𝜃) r.v., as given in (A.18), we see that

n∏
i=1

(1 − 2𝜆is)−1∕2 exp

{ n∑
i=1

𝜆is𝜈2i
1 − 2s𝜆i

}
= (1 − 2s)−r∕2 exp

{ s
1 − 2s

𝜃

}
must hold for all s in a neighborhood of zero. It can be shown4 that this implies the desired
condition on the 𝜆i, and the result follows from 1(b). ◾

The following two theorems, A.1 andA.2, are of great relevance forworkingwith theGaussian linear
model, notably in ANOVA. Original references, some history of their (at times faulty) development,
and references to alternative “accessible” proofs in the noncentral case, are provided in Khuri (2010,
Sec. 1.6).

Theorem A.1 Distribution of Quadratic Form Let X ∼ Nn(𝝁,𝚺) with 𝚺 positive definite.
The quadratic form X′AX follows a 𝜒2(r, 𝜃) distribution, where r = rank(A𝚺), A symmetric, and
𝜃 = 𝝁′A𝝁, if and only if A𝚺 is idempotent.

Proof : Let Z = 𝚺−1∕2(X − 𝝁) ∼ Nn(𝟎, In) with 𝚺1∕2𝚺1∕2 = 𝚺, so that

X′AX = (𝚺1∕2Z + 𝝁)′A(𝚺1∕2Z + 𝝁) = (𝚺1∕2(Z + 𝚺−1∕2𝝁))′A𝚺1∕2(Z + 𝚺−1∕2𝝁)
= (Z + 𝚺−1∕2𝝁)′𝚺1∕2A𝚺1∕2(Z + 𝚺−1∕2𝝁) = V′BV,

where V = (Z + 𝚺−1∕2𝝁) ∼ N(𝚺−1∕2𝝁, In) and B = 𝚺1∕2A𝚺1∕2. Let

𝜃 = (𝚺−1∕2𝝁)′B(𝚺−1∕2𝝁) = 𝝁′A𝝁.

From result 3 above, and that 𝚺−1∕2 and 𝚺−1 are full rank,5

V′BV ∼ 𝜒2(r, 𝜃)⇐⇒ BB = B, rank(B) = r
⇐⇒ 𝚺1∕2A𝚺1∕2𝚺1∕2A𝚺1∕2 = 𝚺1∕2A𝚺1∕2, rank(A) = r
⇐⇒A𝚺A = A, rank(A) = r
⇐⇒A𝚺A𝚺 = A𝚺, rank(A𝚺) = r.

The last condition is also equivalent to 𝚺A𝚺A = 𝚺A, seen by transposing both sides (and recalling
that both A and 𝚺 are symmetric). ◾

4 See, e.g., Ravishanker and Dey (2002, p. 175) and the references stated therein.
5 Recall that, if A is anm × nmatrix, B anm ×mmatrix, and C an n × nmatrix, and if B and C are nonsingular, then
rank(A) = rank(BAC). See, e.g., Schott (2005, p. 13).
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Theorem A.2 Independence of Two Quadratic Forms Let X ∼ Nn(𝝁,𝚺), 𝚺 > 0. The two
quadratic forms X′A1X and X′A2X are independent if A1𝚺A2 = A2𝚺A1 = 𝟎.

Proof : Let Z = 𝚺−1∕2X ∼ Nn(𝚺−1∕2𝝁, In) and A∗
i = 𝚺1∕2Ai𝚺1∕2, i = 1, 2, so that X′AiX=Z′A∗

i Z and
A∗

1A
∗
2 = 𝚺1∕2A1𝚺A2𝚺1∕2 = 𝟎. Let k = rank(A1), 0 < k ⩽ n, and takeA∗

1 = UDU′ forU orthogonal and
D = diag(𝜆i) with 𝜆k+1 = · · · = 𝜆n = 0. WithW = (W1,… ,Wn)′ = U′Z ∼ Nn(U′𝚺−1∕2𝝁, In),

X′A1X = Z′A∗
1Z = Z′UDU′Z = W′DW =

k∑
i=1

𝜆iW 2
i , (A.29)

and, with B = U′A∗
2U, X

′A2X = Z′A∗
2Z = W′U′A∗

2UW=W′BW. As

DB = U′A∗
1U U′A∗

2U = U′A∗
1A

∗
2U = 𝟎,

recalling the structure of D, it must be the case that B can be partitioned as, say, B =
(
𝟎k×n
B̃𝓁×n

)
;

𝓁 = n − k, but the symmetry of B then implies that B =
(
𝟎k×k 𝟎k×𝓁
𝟎𝓁×k B̌𝓁×𝓁

)
, i.e.,W′BW = X′A2X involves

onlyWk+1,… ,Wn. From (A.29), the result follows. ◾

Example A.4 As a partial converse ofTheorem A.2, letX ∼ Nn(𝟎, In) and assume the two quadratic
forms X′A1X and X′A2X are independent, each following a central 𝜒2 distribution. As the sum of
independent central 𝜒2 r.v.s is also 𝜒2, X′(A1 + A2)X is 𝜒2 and Theorem A.1 implies that A1 + A2 is
idempotent. Thus, as both A1 and A2 must also be idempotent,

A1 + A2 = (A1 + A2)2 = A1 + A1A2 + A2A1 + A2,

so that A1A2 + A2A1 = 𝟎. Pre-multiplying this with A1, and then post-multiplying it by A1, yields
A1A2 + A1A2A1 = 𝟎 and A1A2A1 + A2A1 = 𝟎, respectively. Thus

𝟎 = 𝟎 − 𝟎 = A1A2 + A1A2A1 − (A1A2A1 + A2A1) = A1A2 − A2A1,

and A1A2 = A2A1 = 𝟎. ◾

Problems A.6 and A.7 give some practice usingTheorems A.1 and A.2, while Problem A.8 asks the
reader to prove the following result.

Theorem A.3 Independence ofVector andQuadratic Form LetY ∼ Nn(𝝁,𝚺),𝚺 > 0. VectorBY,
with B a real q × nmatrix, is independent of Y′AY if B𝚺A=𝟎.

Proof : See Problem A.8. ◾

A.3 Ratios of Quadratic Forms in Normal Variables

For symmetric matrices A and B, the ratio given by

R = X′AX
X′BX

, X ∼ Nn(𝝁,𝚺), B ≠ 𝟎, B ⩾ 0, 𝚺 > 0, (A.30)
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arises in many contexts in which quadratic forms appear. The restriction that B is positive
semi-definite but nonzero ensures that the denominator is positive with probability one.6 Let 𝚺

1
2 be

such that 𝚺
1
2𝚺

1
2 = 𝚺, and let A∗ = 𝚺

1
2A𝚺

1
2 , B∗ = 𝚺

1
2B𝚺

1
2 , and Z=𝚺−1∕2X ∼ N(𝚺−1∕2𝝁, I). Then

R = X′AX
X′BX

= Z′A∗Z
Z′B∗Z

,

so that we may assume 𝚺 = I without loss of generality. Observe that, ifX ∼ N(𝟎, 𝜎2I), then 𝜎2 can be
factored out of the numerator and denominator, so that R does not depend on 𝜎2.

A.3.1 Calculation of the CDF

LetX ∼ Nn(𝝁, I). For computing the c.d.f. of ratio R in (A.30) at a given value r, construct the spectral
decomposition

A − rB = P𝚲P′, (A.31)

𝚲 = diag([𝜆1,… , 𝜆n]), and letW = P′X ∼ Nn(𝝂, I), where 𝝂 = P′𝝁 = (𝜈1,… , 𝜈n)′. Then

Pr(R ⩽ r) = Pr(X′AX ⩽ r X′BX) = Pr(X′(A − rB)X ⩽ 0)
= Pr(X′P𝚲P′X ⩽ 0) = Pr(W′𝚲W ⩽ 0) = FS(0), (A.32)

where S =
∑n

i=1 𝜆iW 2
i andW 2

i
ind∼ 𝜒2(1, 𝜈2i ), so that S is a weighted sum of noncentral 𝜒2 random vari-

ables, each with one degree of freedom and noncentrality parameter 𝜈2i , i = 1,… , n. The 𝜆i are the
eigenvalues of A − rB, some of which, depending on A and B, might be zero.
If B > 0, then both B1∕2 and B−1∕2 exist, and R can be written as

R = X′AX
X′BX

= X′B
1
2B− 1

2AB− 1
2B

1
2X

X′B
1
2B

1
2X

= Y′CY
Y′Y

, (A.33)

where Y = B1∕2X and C=B−1∕2AB−1∕2. The support of R is given by the following result.

Theorem A.4 Let x ∈ ℝT \ 𝟎 so that x′x > 0, and A be a symmetric real T × T matrix. Then

𝜆min ⩽
x′Ax
x′x

⩽ 𝜆max, (A.34)

where 𝜆min and 𝜆max are the (necessarily real) minimum and maximum eigenvalues ofA, respectively.

Proof : Order the T eigenvalues of A as

𝜆min = 𝜆1 ⩽ 𝜆2 ⩽ … ⩽ 𝜆T = 𝜆max,

and let S be an orthogonal T × T matrix such that S′AS = 𝚲 ∶= diag([𝜆1, 𝜆2,… , 𝜆T ]). Define
y = S′x. Then x′Ax = y′S′ASy = y′𝚲y and x′x = y′S′Sy = y′y. As a sum of squares, y′y ⩾ 0, so
that y′(𝜆minI)y ⩽ y′𝚲y ⩽ y′(𝜆maxI)y, i.e., 𝜆miny′y ⩽ y′𝚲y ⩽ 𝜆maxy′y. Substituting the previous two

6 If B has z zero eigenvalues, 0 < z < n, then there exists a z-dimensional hyperplane  in ℝn (e.g., a line for z = 1, etc.) such
that, for X ∈ , X′BX = 0. However,  has measure zero in ℝn so that, with probability one, X′BX > 0.
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1 function F=cdfratio(rvec,A,B,Sigma,mu,method)
2 if nargin<6, method=1; end
3 if nargin<5 || isempty(mu), mu=zeros(length(A),1); end
4 [V,D]=eig(0.5*(Sigma+Sigma')); W=sqrt(D); Sighalf = V*W*V'; SI=inv(Sighalf);
5 A=Sighalf*A*Sighalf; B=Sighalf*B*Sighalf; mu=SI*mu;
6 rl=length(rvec); F=zeros(rl,1); n=length(A);
7 for rloop=1:rl
8 r=rvec(rloop); [P,Lam] = eig((A-r*B)); Lam=real(diag(Lam)); v=P'*mu; nc=v.ˆ2;
9 if method==1

10 F(rloop)=myimhof(0,Lam,ones(n,1),nc);
11 else
12 [~,cdfval] = spaweightedsumofchisquare(2,0,Lam,ones(n,1),nc);
13 F(rloop)=cdfval;
14 end
15 end

Program Listing A.3: Computes the c.d.f. (A.32). Program myimhof.m is given in Listing II.10.6,
thoughwe recommend changing the integration function quadl to quadgk. Programs myimhof.m
(updated version) and spaweightedsumofchisquare.m use the methods developed in Section
II.10.1 and are available in the collection of programs.

equalities and dividing by x′x, the result follows. A different proof of this fundamental result,
using calculus, and not using the spectral decomposition, is given in Ravishanker and Dey (2002,
pp. 45–46). ◾

It then follows from (A.34) and the fact that Pr(Y′Y ⩽ 0) = 0 that the support of R is the interval
between the smallest and largest eigenvalues of matrix C in (A.33), or, equivalently, those of B−1A.
For values of r in the interior of the support, i.e., r such that 0 < FR(r) < 1, (A.32) states that

0 < Pr(R ⩽ r) = FS(0) = Pr

( n∑
i=1

𝜆i𝜒
2
i (1, 𝜈

2
i ) ⩽ 0

)
< 1,

(where, to be clear, the 𝜆i are the eigenvalues of A − rB), implying that at least one of the 𝜆i must be
negative and at least one positive, i.e., 𝜆min < 0 and 𝜆max > 0.
As the characteristic function and m.g.f. of S are tractable, the c.d.f. inversion formula or the s.p.a.

can be applied to compute FR(r) = FS(0).7 A program for computing (A.32) using either of these is
given in Listing A.3. Note that, for each value of r, (A.31) needs to be computed to obtain the 𝜈i and
𝜆i. For large n, this will be the most time-consuming part of the computation.

A.3.2 Calculation of the PDF

The characteristic function of R is not tractable in general, so that direct application of the inversion
formula is not possible. We consider three ways for its computation.

7 The application of the inversion formula in this context, and the s.p.a., are detailed in book II. See also Tanaka (1996,
Sec. 6.6), Helstrom (1996), Problem II.10.14, and Marsh (1998) for further aspects of the s.p.a. in this context.
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A.3.2.1 Numeric Differentiation
One obvious possibility is to numerically differentiate the c.d.f. in (A.32) as

fR(r) ≈
FR(r + 𝛿) − FR(r − 𝛿)

2𝛿
, (A.35)

for an appropriate choice of 𝛿 > 0. This will certainly be adequate for graphical purposes, but
to achieve very high accuracy FR would need to be evaluated to virtually machine precision and
higher-order numeric derivative expressions should be used.

Example A.5 Let X = (X1,X2)′ ∼ N(𝝁, I2) for 𝝁 = (𝜇1, 𝜇2)′ and observe that

R = X′AX
X′BX

=
X1X2

X2
1

=
X2

X1
, A =

(
0 1∕2

1∕2 0

)
, B =

(
1 0
0 0

)
, (A.36)

so that R is a Cauchy-like ratio. From Example II.2.18, its exact density is given by

fX2∕X1
(r) = exp

(
k2 − c
2

)
1
2𝜋

(
b
a

√
2𝜋
a
(1 − 2Φ(−k)) + 2a−1 exp

(
−k2

2

))
,

where a = 1 + r2, b = 𝜇1 + r𝜇2, c = 𝜇2
1 + 𝜇2

2, k = b∕
√
a, and Φ is the standard normal c.d.f.

For 𝝁 = (0, 0)′, the reduces the standard Cauchy density 𝜋−1(1 + r2)−1.
We consider the case with 𝝁 = (0.1, 2)′. The density is plotted in Figure A.4. The left panel of

Figure A.2 shows the relative percentage error (r.p.e.), defined as r.p.e. = 100(Approx − True)∕True,
of the approximation in (A.35) using the equally spaced grid of values r = −20,−19.9,… , 19.9, 20,
𝛿 = 10−7, and c.d.f. values computed by the inversion formula (see the figure caption for details). The
mean of the absolute r.p.e. values is about 10−5 and their median is about 4 × 10−6. ◾

A.3.2.2 Use of Geary’s formula
Let N and D be continuous r.v.s with joint c.f. 𝜑N ,D and such that Pr(D > 0) = 1 and 𝔼[D] < ∞.
Example II.1.24 details what we refer to as Geary’s formula, from Geary (1944), which shows that
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Figure A.2 Left: relative percentage error (r.p.e.) incurred when using (A.35) with 𝛿 = 10−7 for the p.d.f. of (A.36) with
𝝁 = (0.1, 2)′. Right: r.p.e. using the exact expression (A.39). For both the c.d.f. in (A.35) and the p.d.f. in (A.39), numeric
integration using Matlab’s integration routine quadgkwas used with default tolerance parameters for the absolute
and relative error. It is well-suited to these integrands because, paraphrasing from their documentation, “[it] may be
most efficient for oscillatory integrands and any smooth integrand at high accuracies. It supports infinite intervals and
can handle moderate singularities at the endpoints.”
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the density of R = N∕D can be written as

fR(r) =
1
2𝜋i ∫

∞

−∞

[
𝜕𝜑N ,D(s, t)

𝜕t

]
t=−rs

ds. (A.37)

With N = X′AX and D = X′BX, and from (A.23) we have

𝕄N ,D(s, t) = |𝛀|− 1
2 exp

{
−1
2
𝝁′(I−𝛀−1)𝝁

}
, 𝛀= I − 2(sA + tB),

and we assume 𝜑N ,D(s, t) = 𝕄N ,D(is, it). Then, we can rewrite (A.37) as

fR(r) =
1
𝜋 ∫

∞

0
Re[𝕄∗(is)] ds, (A.38)

where𝕄∗(s) ∶= [𝜕𝕄N ,D(s, t)∕𝜕t]t=−rs is given in Butler and Paolella (2008) as

𝕄∗(s) =

[ n∏
i=1

(1 − 2s𝜆i)−1∕2
]
exp

{
s

n∑
i=1

𝜆i𝜈
2
i

1 − 2s𝜆i

}[
tr D−1H + 𝝂′D−1HD−1𝝂

]
,

with spectral decompositionA − rB = P𝚲P′ as in (A.31),𝚲 = diag([𝜆1,… , 𝜆n]),P = [p1,… ,pn],D =
I − 2s𝚲,H = P′BP, 𝝂 = P′𝝁, and we have exploited the fact that Re[𝕄∗(is)] is an even function of s.
The following result is derived in Broda and Paolella (2009b). Let R = X′AX∕X′BX, where X ∼

Nn(𝝁, I), B ≠ 0,B ⩾ 0. Then the density of R is

fR(r) =
1
𝜋 ∫

∞

0

𝜌(u) cos 𝛽(u) − u𝛿(u) sin 𝛽(u)
2𝛾(u)

du, (A.39)

where

𝛽(u) = 1
2

n∑
i=1

arctan ai +
𝜃iai
ci

, 𝛾(u) = exp

{
1
2

n∑
i=1

𝜃ibi
ci

+ 1
4
ln ci

}
,

𝜌(u) = tr HF−1 + 𝝂′F−1(H − u2𝚲H𝚲)F−1𝝂, 𝛿(u) = tr H𝚲F−1 + 2𝝂′F−1H𝚲F−1𝝂,

ai = 𝜆iu, bi = a2i , ci = 1 + bi, 𝜃i = 𝜈2i = (p′
i𝝁)

2, and F = I + u2𝚲2.
Calculation of (A.39) is implemented in program ROQpdfgeary.m, which is not shown here but

included with the collection associated with the book. The right panel of Figure A.2 shows the r.p.e.
based on (A.39) for the same distribution as used in Example A.5; we see it delivers values virtually
identical to the analytic solution available in this special case.

A.3.2.3 Use of Pan’s Formula
Based on contour integration and building on the work of Grad and Solomon (1955), Pan Jie-Jian
(1964) developed what became a popular algorithm for the distribution of a weighted sum of inde-
pendent central 𝜒2

1 random variables, such that the weights are distinct. See also Durbin andWatson
(1971), Farebrother (1980, 1984, 1990, 1994), and the discussion in Section II.10.1.4. It can be reduced
to calculating a simple truncated infinite sum, with number of terms, say N , such that the accuracy
is a function of N . This is implemented in program ROQpdfpan.m, not shown here, but available in
the collection of programs.

Example A.6 Let R = 1∕(C + C−1), where C ∼ Cau(0, 1), with density fC(c) = 𝜋−1(1 + c2)−1. We
wish to calculate the exact p.d.f. of R via transformation, and, by expressing it as a ratio of quadratic
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forms, compare fR with the numeric methods using Geary’s formula, and Pan’s method, via programs
ROQpdfgeary.m and ROQpdfpan.m, respectively.
Differentiating r = 1∕(c + c−1) shows that r has its maximum at c = 1, so that |R| < 1∕2. Solving for

c is the same as solving for c2 − cr−1 + 1 = 0, or, for r > 0 and c > 0,

c = 1 − (1 − 4r2)1∕2
2r

,
dc
dr

= 1 −
√
1 − 4r2

2r2
√
1 − 4r2

= 1
2r2

(
1√

1 − 4r2
− 1

)
.

Note that, for 0 < r < 1∕2, 0 <
√
1 − 4r2 < 1, dc∕ dr > 0. Thus, from symmetry, and simplifying,

fR(r) = fC(c)
dc
dr

𝕀(r > 0) + fC(c)
dc
dr

𝕀(r < 0)

=
4r2(1 − sr)

𝜋r2sr(4r2 + (1 − sr)2)
𝕀
(|r| < 1

2

)
, sr =

√
1 − 4r2. (A.40)

In terms of quadratic forms, recalling that a Cauchy random variable can be expressed as a ratio of
independent standard normal r.v.s, say X1 and X2, we have

R = 1
X1

X2
+ X2

X1

=
X1X2

X2
1 + X2

2
= X′AX

X′X
, A =

[
0 1∕2
1∕2 0

]
.

Theeigenvalues ofA are−1∕2 and 1∕2, so that, from (A.34), |R| < 1∕2, in agreementwith the previous
result.
Thep.d.f. is plotted in the left panel of FigureA.3, based on a grid of 96 points. Its calculation over the

grid using (A.39) via program ROQpdfgeary.m takes about 0.5 seconds (on a typical PC at the time
of writing). Use of Pan’s method, based on N = 100 points, requires 0.2 seconds, but from the right
panel of Figure A.3, this is seen to be relatively inaccurate. Much higher accuracy is achieved using
N = 1,000, though it is still not as good as the use of (A.39), and requires over 190 seconds. Thus,
this example demonstrates a case when the Pan method is much slower than the Geary method. The
program in Listing A.4 was used for the calculation. ◾
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Figure A.3 Left: Exact density (A.40). Right: Discrepancy between exact density and use of the Geary and Pan
methods. The graph is truncated from below.
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1 r=[-0.48:0.01:-0.01 , 0.01:0.01:0.48]'; r2=r.ˆ2; s=sqrt(1-4*r2); d=1-s;
2 num = 4 * r2 .* d; den = pi * r2 .* s .* ( 4*r2 + d.ˆ2 ); f = num./den;
3 figure, set(gca,'fontsize',16)
4 plot(r,f,'b-','linewidth',2), title('Exact Density')
5 A=[0 1/2 ; 1/2 0]; B=eye(2);
6 tic, fPan2 = ROQpdfpan(r,A,B,100); toc
7 tic, fPan3 = ROQpdfpan(r,A,B,1000); toc
8 tic, fGeary=ROQpdfgeary(r,A,B,zeros(2,1)); toc
9 figure, set(gca,'fontsize',16)

10 plot(r,f-fPan2,'r-', r,f-fPan3,'g--', r,f-fGeary,'b-.','linewidth',2)
11 legend('Pan N=100','Pan N=1000','Geary','location','SouthEast')
12 title('Exact density minus inversion methods')

Program Listing A.4: Generates the graphics in Figure A.3. Programs ROQpdfpan and
ROQpdfgeary are available in the collection of programs associated with the book.

A.3.2.4 Saddlepoint Approximation
As before, let R = N∕D with N = X′AX and D = X′BX. The same derivation that leads to (A.37) also
shows that, with C the (constructed) random variable associated with m.g.f.

𝕄C(s) =
1

𝔼[D]
𝜕

𝜕t
𝕄N ,D(s, t)|t=−rs, (A.41)

the density of R is

fR(r) = 𝔼[D]fC(0), (A.42)

where fC is the density of C. We approximate fC with f̂C , the s.p.a. applied to 𝕄C , so that the s.p.a. of
the density of R is, from (A.42), f̂R(r) = 𝔼[D] f̂C(0), as was done in Daniels (1954, Sec. 9). As shown in
Butler and Paolella (2008), this leads to

f̂R(r) =
J(ŝ)√
2𝜋K ′′

S (ŝ)
exp{𝕂S(ŝ)}, (A.43)

where 𝕂S is the cumulant generating function (c.g.f.) of S in (A.32) and ŝ solves 𝕂 ′
S (ŝ) = 0. Quantity

J(ŝ) is computed from

J(s) = tr(UH) + 𝝂′UHU𝝂, (A.44)

with U = (I − 2s𝚲)−1, andH, P, 𝚲 and 𝝂 as in Section A.3.2.2.
A second-order saddlepoint density approximation for the general case can be derived. In particular,

from Butler (2007, p. 383),

f̃R(r) = f̂R(r)(1 + O), (A.45)

where f̂R(r) is given in (A.43),

O =
(
�̂�4

8
− 5

24
�̂�2
3

)
+

J ′r (ŝ)�̂�3

2Jr(ŝ)
√

K ′′
S (ŝ)

−
J ′′r (ŝ)

2Jr(ŝ)K ′′
S (ŝ)

, (A.46)

�̂�i = K (i)
S (ŝ)∕K ′′

S (ŝ)
i∕2, and J ′r (ŝ) = 2tr(U𝚲UH) + 4𝝂′U𝚲UHU𝝂.
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1 function [pdf,cdf,svec]=sparatio(rvec,A,B,Sigma,mu,DANIELS)
2 if nargin<6, DANIELS=2; end
3 pdf=zeros(length(rvec),1); cdf=pdf; svec=pdf;
4 n=length(A);
5 if length(Sigma)==1
6 Sighalf=eye(n);
7 nullcase = (max(max(abs(B-eye(n)))) < 1e-12) & (DANIELS==1);
8 if nargin>=5, if length(mu)>1, nullcase=0; end, end
9 else

10 nullcase=0;
11 [V,D]=eig(makesym(Sigma)); % see end of program
12 W=sqrt(D); Sighalf = V*W*V';
13 end
14 SI=inv(Sighalf); rl=length(rvec); s=0;
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16 % nullcase is 1 (i.e., true) if
17 % 1. B=Identity 2. Sigma = Identity
18 % 3. mu is zero 4. DANIELS=1 (i.e., 1st order SPA)
19 % If so, this runs faster, particularly for large n
20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21 if nullcase==1
22 zi=eig(A);
23 else
24 A=Sighalf * A * Sighalf; B=Sighalf * B * Sighalf;
25 end
26 for rloop=1:rl
27 r=rvec(rloop);
28 if nullcase==1, nc=zeros(n,1); Lam=zi-r;
29 else
30 [P,Lam] = eig(makesym((A-r*B))); Lam=diag(Lam);
31 if nargin<5 % mu not passed, so set it to 0
32 nu=zeros(n,1); nc=nu;
33 elseif length(mu)==1 % mu passed as scalar. Set to 0
34 nu=zeros(n,1); nc=nu;
35 else
36 nu=P'*SI*mu; nc=nu.ˆ2;
37 end
38 end

Program Listing A.5: Computes the saddlepoint p.d.f. and c.d.f. approximations of (A.30). To
use this program, we need to modify the header of program spaweightedsum in Listing II.10.3
to[pdf,cdf,svec,K,Kpp,kap3,forboth] = spaweightedsumofchisquare(...in
order to pass back the necessary quantities for computing the p.d.f. Pass Sigma as a scalar to take
𝚺 = 𝐈. If mu is not passed, or if mu is passed as a scalar, then 𝝁 is taken to be the zero vector. Set
DANIELS=2 (default value if not passed) to use the higher order term in (A.46). The program is
continued in Listing A.6.
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1 [garbage,cdf_,s,K,Kpp,kap3,forboth] = ...
2 spaweightedsumofchisquare(DANIELS,0,Lam,ones(n,1),nc,s);
3
4 cdf(rloop)=cdf_; svec(rloop)=s;
5 if nullcase==1
6 ubiq=1-2*Lam*s;
7 pdf(rloop) = n*exp(sum(-0.5*log(ubiq))) / ...
8 sqrt(4*pi*sum(Lam.ˆ2 .* ubiq.ˆ(-2)));
9 else

10 H = P'*B*P; L=diag(Lam); I=eye(length(Lam)); U = inv(I-2*s*L);
11 UH=U*H; tt = UH*U*nu; J = sum(diag(UH)) + nu'*tt;
12 pdf(rloop) = real( J * exp(K) / sqrt(2*pi*Kpp) );
13 if DANIELS==2
14 Jp = 2*sum(diag(U*L*U*H)) + 4*nu'*U*L*tt;
15 % Now numerically calculate Jpp, the 2nd deriv of J(s)
16 stol=1e-6; sm=s-stol; su=s+stol;
17 Um = inv(I-2*sm*L); Uu = inv(I-2*su*L);
18 ttm = Um*H*Um*nu; ttu = Uu*H*Uu*nu;
19 Jpm = 2*sum(diag(Um*L*Um*H)) + 4*nu'*Um*L*ttm;
20 Jpu = 2*sum(diag(Uu*L*Uu*H)) + 4*nu'*Uu*L*ttu;
21 Jpp = (Jpu-Jpm)/(2*stol);
22 term3=Jp*kap3 / 2 / J / sqrt(Kpp); term4=Jpp / 2 / J / Kpp;
23 O=real( forboth + term3 - term4 );
24 pdf(rloop) = pdf(rloop)*(1+O);
25 end
26 end
27 end
28
29 function X=makesym(Z), X = 0.5*(Z+Z');

Program Listing A.6: Continuation of Listing A.5.

The second derivative of Jr , as required in (A.46), could also be algebraically formulated, but it is
easily and accurately numerically obtained.The program in Listing A.5 computes (A.43) and (A.45).

Remarks
a) An important special case of the general ratio R is when 𝝁 = 𝟎. Then 𝝂 = 𝟎, and (A.43) easily

reduces to

f̂R(r) =
tr (I − 2ŝ𝚲)−1H√
4𝜋

n∑
i=1

𝜆2i (1 − 2𝜆iŝ)−2

n∏
i=1

(1 − 2𝜆iŝ)−1∕2, (A.47)

which was first derived by Lieberman (1994a,b).
b) If, further,𝝁 = 𝟎,𝚺 = 𝜎2I, andB= I, thenmatters simplify considerably. First, tr (I − 2ŝ𝚲)−1H = n,

seen by noting thatH=P′P= I, implying

tr (In − 2ŝ𝚲)−1 =
n∑
i=1

(1 − 2ŝ𝜆i)−1.
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Next, as the saddlepoint equation solves 0 = 𝕂 ′
S (ŝ) =

∑n
i=1 𝜆i(1 − 2ŝ𝜆i)−1, it follows that∑n

i=1 (1 − 2ŝ𝜆i)−1 = n, because

n =
n∑
i=1

1 − 2ŝ𝜆i
1 − 2ŝ𝜆i

=
n∑
i=1

1
1 − 2ŝ𝜆i

− 2ŝ
n∑
i=1

𝜆i

1 − 2ŝ𝜆i
.

Thus, from (A.47), f̂R(r) can be expressed as

f̂R(r) =
n
∏n

i=1 (1 − 2𝜆iŝ)−1∕2√
4𝜋

∑n
i=1 𝜆

2
i (1 − 2𝜆iŝ)−2

. (A.48)

It is easy to confirm that the eigenvalues of (A − rI) are given by

𝜆i = 𝜁i − r, 𝜻 = Eig(A). (A.49)

These need to be calculated only once, so that density (A.48) is easily computed as a function of r.
This seemingly very special case actually arises in various applications, typically as the distribution
of a statistic under a null hypothesis. ◾

Example A.7 Continuing with the Cauchy-like ratio in Example A.5 with 𝝁′ = (𝜇1, 𝜇2) = (0.1, 2),
Figure A.4 shows the exact density and s.p.a. (A.43). We see that the first-order s.p.a. does not pick
up the bimodality of the true p.d.f., and evaluating the r.p.e. for ever larger values of r indicates that it
converges to 21.62 in the right tail.
This corresponds to a limiting ratio of limr→∞fR(r)∕f̂R(r), of 0.8222. It is possible to analytically deter-

mine this limiting ratio for the general ratio of quadratic forms under various conditions on A and B,
as detailed in Butler and Paolella (2008).
For this example, the relevant expression is

lim
r→∞

fR(r)
f̂R(r)

=
√
2𝜋(1 − 2t0)(2t0)

n−1
2 u0e−𝜂2

B
(

1
2
,
n+1
2

)
n
2

1F1

(
n
2
; 1
2
;
𝜈20

2

)
, (A.50)

where

t0 =
1
4n

{2n − 1 + 𝜈20 −
√

(𝜈20 + 2n − 1)2 − (2n − 1)2 + 1},

u0 =

√
n − 1
2

+
2t20

(1 − 2t0)2
+

4𝜈20 t
2
0

(1 − 2t0)3
, 𝜂2 =

𝜈20

2(1 − 2t0)
,

and, for this case, n = 2 and 𝜈0 = 𝜇2 = 2.8 Computing (A.50) indeed yields 0.8222. Expression (A.50)
also applies to the ratio of tail areas, limr→∞ Pr(R > r)∕P̂r(R > r), where P̂r refers to use of the
first-order c.d.f. saddlepoint approximation.
Figure A.4 also shows the second-order s.p.a. (A.45). Observe that it can pick up the bimodality of

R. The r.p.e. of the second-order approximation is still high near the two peaks and, far into the tail, it
stays constant at about 2.1%, which is far better than the first-order approximation r.p.e. of 21.62.

8 In general, 𝜈0 is a more complicated function of A, B and 𝝁; see Butler and Paolella (2008, Lemma 7).
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Figure A.4 Exact density (solid), second-order s.p.a. (A.45) (dashed) and normalized first-order s.p.a. (A.43) (dash-dot)
of R in (A.36) using 𝝁 = (0.1, 2)′.

Of course, in most statistical contexts, vectorX in ratio Rwill be of length equal or close to the sam-
ple size (usually far greater than two), which has the effect of making the distribution of R somewhat
more like that of a normal random variable, with correspondingly higher accuracy of the s.p.a.s. ◾

A.4 Problems

It’s quite satisfying—hell, it’s incredibly satisfying—to face some important problem and find a
solution that works.

(Jack Kilby)9

I’m old enough to know you can’t close your mind to new ideas. You have to test out every
possibility if you want something new.

(Dr. John Goodenough)10

Problem 1.1 Recall Example A.1, which detailed the calculation of the distribution of the sample
variance. Construct a program that plots the density s.p.a. for a given value of 𝝁 and AR(1) param-
eter 𝜌 of the𝚺matrix. Howwould you expect the density to behave as a function of 𝜌 for, say,𝝁 = 𝟎?
Plot it for several 𝜌. Also make the program such that it can also plot a kernel density estimate of
the p.d.f. based on simulation.

9 Unlike Thomas Edison, Alexander Graham Bell, Henry Ford, and the Wright Brothers, the Kansas engineer Jack St. Clair
Kilby (1923–2005) is not an American household name, though he deserves to be. His invention of the integrated circuit has
permanently changed human civilization. It has won him numerous awards, including the National Medal of Science in 1970
and the Nobel Prize in Physics in 2000.
10 Quoted in Kennedy (2017). Goodenough started university studies at the age of 23, and was informed by a physics
professor that he was already too old to succeed in the field (and thus not living up to his last name). In 1980, at the age of 57,
he co-invented the lithium-ion battery. At the age of 94, with his team at the University of Texas at Austin, he filed a patent for
a new type of solid-state battery that is much safer, lighter, cheaper, more durable, and lasts longer than anything of its kind,
and is poised to revolutionize the electric car industry.
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Problem 1.2 In the proof of Theorem A.1, the last line states A𝚺A = A ⇐⇒ A𝚺A𝚺 = A𝚺. This
exercise just details this a bit, and practices some basic linear algebra. Let B and C be symmetric
n × n matrices, not necessarily of full rank, and let F be n × n. Trivially, B = C⇒BF = CF. If
BF = CF and F is full rank, then F−1 exists, and BF = CF⇒BFF−1 = CFF−1 ⇒B = C. For n = 2,
construct an F, B and C such that BF = CF but B ≠ C.

Problem 1.3 Derive (A.21) from (A.20).

Problem 1.4 For X ∼ Nn(𝟎,𝚺), derive the joint m.g.f. of vector N and scalar D, where D = X′X and
N = (X′A1X,X′A2X,… ,X′AmX)′.

Problem 1.5 Construct a Matlab program that simulates the ratio of normal random variables in
(A.36) and produces a kernel density estimate. Do so for

𝝁 =
[
1
2

]
, 𝚺 =

[
1 −0.9

−0.9 1

]
,

and overlay the resulting graph with the s.p.a.

Problem 1.6 Let A and B be symmetric matrices such that A+B= I. Let Z ∼ Nn(𝟎, I).
a) Prove: If A=A2, then B=B2 and AB=𝟎.
b) Prove: If Z′AZ ∼ 𝜒2

k , then Z′BZ ∼ 𝜒2
n−k and Z′AZ ⟂ Z′BZ.

Problem 1.7 Let A, B and C be n × n symmetric matrices such that A+B+C= I and C ⩾ 0. Let
Z ∼ Nn(𝟎 , I).
a) Prove: If A=A2 and B=B2, then AB=AC=BC=𝟎 and C=C2. Hint: For a T × k matrix X,

the column space of X, denoted (X) is the set of all vectors that can be generated as a linear
sum of the columns of X, such that the coefficient of each vector is a real number, i.e.,

(X) = {y ∶ y=Xb,b ∈ ℝk}. (A.51)

In words, if y ∈ (X), then there exists b ∈ ℝk such that y=Xb. This is used extensively in
Chapter 1, and (A.51) is the same as (1.38). The hint now consists of letting a ∈ (A).

b) Prove: IfZ′AZ ∼ 𝜒2
k andZ

′BZ ∼ 𝜒2
m, thenZ′CZ ∼ 𝜒2

n−k−m andZ′AZ,Z′BZ andZ′CZ aremutu-
ally independent.

Problem 1.8 ProveTheorem A.3: Let Y ∼ Nn(𝝁,𝚺), 𝚺 > 0. Vector BY, with B a real q × nmatrix, is
independent of Y′AY if B𝚺A=𝟎.
a) First prove it in the case for which 𝚺= I by setting A=UDU′, where U is orthogonal,

D = diag([𝜆1,… , 𝜆k , 0,… , 0]) and k = rank(A). Let Z=U′Y and B∗ = BU, and show that
B∗D=𝟎.

b) Prove the general case by setting Z = 𝚺−1∕2Y, B∗ = B𝚺1∕2, and using the previous special case.

A.A Appendix: Solutions

1) The program in Listing A.7 serves as a basis. One can add more “features”.
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1 function s2sim(sim,n,rho,xhi)
2 mu=zeros(n,1); % mu = ([1 2 3 4 5 5 4 3 2 1] - 3)';
3 Sigma = makevarcovAR1(n,rho); % see below
4 xvec=0.05:0.05:xhi; fspa=samplevariancedistribution(xvec,mu,Sigma,1);
5 figure, plot(xvec,fspa,'b-','linewidth',2)
6 if sim>0
7 S2 = zeros(sim,1); [V,D]=eig(0.5*(Sigma+Sigma'));
8 W=sqrt(D); Sighalf = V * W * V';
9 for i=1:sim, X = mu + Sighalf * normrnd(0,1,n,1); S2(i) = var(X); end

10 pdf = ksdensity(S2,xvec); hold on
11 plot(xvec,pdf,'r--','linewidth',2), hold off
12 legend('saddlepoint','Simulated')
13 end
14 set(gca,'fontsize',16)
15
16 function S = makevarcovAR1(n,rho);
17 S=zeros(n,n);
18 for i=1:n
19 for j=i:n, v=rhoˆ(j-i); S(i,j)=v; S(j,i)=v; end
20 end
21 S=S/(1-rhoˆ2);

Program Listing A.7: Simulates sample variance, S2, and plots kernel density (computed with
Matlab’s function ksdensity which is part of its statistics toolbox). Compare to Figure A.1.

2) Take F to be a matrix of rank one, B and C symmetric, say

F =
[
1 2
1 2

]
, B =

[
1 2
2 3

]
, C =

[
c1 c2
c2 c3

]
.

Then [
3 6
5 10

]
= BF = CF =

[
c1 + c2 2c1 + 2c2
c2 + c3 2c2 + 2c3

]
,

and taking c1 = 2 implies c2 = 1, which implies c3 = 4, or

C =
[
2 1
1 4

]
, and By=Cy ∀ y ∈ (F) = y

[
1
1

]
, y ∈ ℝ,

but clearly, By≠Cy ∀y∈ℝ2. If (F) = ℝ2, then By=Cy ∀ y ∈ (F) = ℝ2, and B=C.
3) To see the first term (the determinant), note that P′P = I and |P′P| = |P′||P| and 𝚲 = P′AP, so

that |𝛀|− 1
2 = |P′P|− 1

2 |𝛀|− 1
2 = |P′|− 1

2 |𝛀|− 1
2 |P|− 1

2 = |P′𝛀P|− 1
2

= |P′(In − 2sA)P|− 1
2 = |(P′InP − 2sP′AP)|− 1

2 = |(In − 2s𝚲)|− 1
2 .

For the term in the exponent, with 𝝂 = P′𝝁, I = P′P and 𝚲 = P′AP,

s𝝂′𝚲(I − 2s𝚲)−1𝝂 = s(𝝁′P)P′AP(P′P − 2sP′AP)−1(P′𝝁)
= s(𝝁′P)P′AP(P′(I − 2sA)P)−1(P′𝝁)
= s(𝝁′P)P′APP′(I − 2sA)−1P(P′𝝁)
= s𝝁′A(I − 2sA)−1𝝁.
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It remains to show that this is equal to

−1
2
𝝁′(I − (I − 2sA)−1)𝝁.

Observe that
I = (I − A)(I − A)−1 = (I − A)−1 − A(I − A)−1

or, rearranging and replacing A by kA,

A(I − kA)−1 = −1
k
(I − (I − kA)−1),

from which the result follows using k = 2s.
4) This is the same as the m.g.f. of B = (X′A1X,… ,X′AmX,X′IX), which, with s = (s1,… , sm+1), is

given by

𝕄B(s) = 𝔼

[
exp

{m+1∑
i=1

siX′AiX

}]
,

or

𝕄B(s) = ∫ℝn
(2𝜋)−n∕2|𝚺|−1∕2 exp{−1

2

[
x′
(
𝚺−1 − 2

m+1∑
i=1

siAi

)
x

]}
dx.

Letting z =
(
𝚺−1 − 2

∑m+1
i=1 siAi

)1∕2
x, and recalling the method of multivariate transformation

using the Jacobian (see, e.g., Sec. I.9.1), it follows that

dx =
||||||𝚺−1 − 2

m+1∑
i=1

siAi

||||||
−1∕2

dz,

and

𝕄 B(s) = |𝚺|−1∕2||||||𝚺−1 − 2
m+1∑
i=1

siAi

||||||
−1∕2

∫ℝn
(2𝜋)−T∕2e−

1
2
z′z dz

=
||||||I − 2

m+1∑
i=1

siAi𝚺
||||||
−1∕2

.

Thus,

𝕄N,D (s, t) =
|||||In − 2

m∑
i=1

siAi𝚺 − 2t𝚺
|||||
−1∕2

.

5) The program in Listing A.8 performs the required calculations and Figure A.5 shows the desired
plots.

6) .a) Squaring B= I−A gives
B2 = (I−A)(I−A) = I−A−A+A2 = I−A−A+A = I−A=B

and
AB=A(I−A) = A−A2 = A−A=𝟎 .
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1 A=[0 1/2 ; 1/2 0]; B=[1 0 ; 0 0]; rho=-0.9; Sig=[1 rho; rho 1]; mu=[1 2]';
2 r=-12:0.025:12; [pdf,cdf,svec]=sparatio(r,A,B,Sig,mu,2);
3 sim=15000; rr = zeros(sim,1); [V,D]=eig(0.5*(Sig+Sig'));
4 W=sqrt(D); Sighalf = V * W * V';
5 for i=1:sim, X = mu + Sighalf * randn(2,1); rr(i) = X(2)/X(1); end
6 pdfrr = ksdensity(rr,r);
7 figure, plot(r,pdfrr,'r--',r,pdf,'b-','linewidth',2)
8 set(gca,'fontsize',16), grid, axis([-12 12 0 0.32])

Program Listing A.8: Simulates ratio of independent normal random variables, computes and plots
kernel density estimate and compares it with the saddlepoint approximation.
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Figure A.5 Saddlepoint (solid) and kernel density estimate (dashed) of X2∕X1, where (X1, X2)′ ∼ N(𝝁,𝚺), 𝝁 = (1, 2)′
and 𝚺 such that 𝕍 (X1) = 𝕍 (X2) = 1 and Corr(X1, X2) = −0.9.

b) Theorem A.1 with 𝚺 = I implies that A=A2. The previous part then implies that B=B2 and
AB=𝟎, so that, again fromTheorem A.1, Z′BZ ∼ 𝜒2

n−k . As

𝟎 = 𝟎′ = (AB)′ = B′A′ = BA, (A.52)

Theorem A.2 implies that Z′AZ ⟂ Z′BZ.
7) .a) From the hint, let a ∈ (A), so that ∃b such that a = Ab, and this implies Aa=AAb=Ab= a.

Next, a= Ia = (A+B+C)a = a+Ba+Ca, so that (B+C)a = 𝟎 or a′Ba + a′Ca = 0. AsB′ = B
and B=B2, we have

a′Ba = a′BBa = a′B′Ba = (Ba)′(Ba) ⩾ 0. (A.53)

It was given that C ⩾ 0, so that a′Ba + a′Ca = 0 implies that a′Ba = a′Ca = 0. Now, (A.53)
implies that, if 0 = a′Ba, then Ba = 𝟎. But, as Aa= a, this means that BAa = 𝟎, or that BA = 𝟎.
It then follows from (A.52) that AB=𝟎. Next, the condition

A+B+C= I (A.54)

implies that A2 + AB+AC=A, or A2 + AC=A, or A + AC=A, so that AC = 𝟎. Similarly,
postmultiplying (A.54) by B gives AB+B2 +CB=B, or B+CB=B, so that CB=𝟎 and, from
the symmetry ofC and B, (A.52) can be used to see that BC=𝟎. Finally, postmultiplying (A.54)
by C gives AC+BC+C2 = C, or C2 =C.
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b) Theorem A.1 with 𝚺 = I implies that A=A2 and B=B2, so that the previous part implies that
AB=AC=BC=𝟎 and C=C2. As AB=𝟎, Theorem A.2 implies that Z′AZ ⟂ Z′BZ. As a sum
of independent 𝜒2 r.v.s is also 𝜒2 (see Example II.2.3), Z′AZ + Z′BZ = Z′(A + B)Z ∼ 𝜒2

k+m, so
that, fromTheorem A.1, A + B is idempotent. This also easily follows, as

(A + B)(A + B) = A2+B2 +AB+BA=A+B.

Then, as (A + B) + C = I, the results from Problem A.6 imply that Z′CZ ∼ 𝜒2
n−k−m.

Finally, as AC=BC=𝟎, Theorem A.2 implies that Z′AZ ⟂ Z′CZ and Z′BZ ⟂ Z′CZ.
8) .a) From the hint, with A=UDU′, U orthogonal and D = diag([𝜆1,… , 𝜆k]), where k = rank(A),

let Z=U′Y ∼ N(U′𝝁, I), so that Y=UZ, and let B∗ = BU (where B and B∗ are q × n) so that
B=B∗U′. Then

BY=BUZ=B∗Z,

Y′AY=Y′UDU′Y=Z′DZ=
k∑
i=1

𝜆iZ2
i , (A.55)

and, as U′ is full rank,

𝟎 = BA = B∗U′UDU′ = B∗DU′ ⇐⇒ B∗D=𝟎.

From the structure ofD, the first k columns of B∗ must be zero, so that B∗Z=BY is a function
only of Zk+1,… ,Zn. This and (A.55) show the independence of Y′AY and BY.

b) From the hint, let Z = 𝚺−1∕2Y ∼ N(𝚺−1∕2𝝁, I), so that Y=𝚺1∕2Z, and let B∗ = B𝚺1∕2, so that
BY=B𝚺1∕2Z=B∗Z. Then, with A∗=𝚺1∕2A𝚺1∕2,

Y′AY=Z′𝚺1∕2A𝚺1∕2Z=Z′A∗Z,

andB∗A∗ = B𝚺1∕2𝚺1∕2A𝚺1∕2 = (B𝚺A)𝚺1∕2 = 𝟎, because of the assumption thatB𝚺A = 𝟎. From
the previous part, B∗A∗ = 𝟎 means that Z′A∗Z=Y′AY is independent of B∗Z=BY, as was to
be shown.
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Appendix B

Moments of Ratios of Quadratic Forms

AppendixApresentedmethods for the calculation of the density and cumulative distribution function
of (ratios of ) quadratic forms. This appendix considers their moments and some applications.
Relatively straightforward expressions are available for the mean and variance of a quadratic form

in normal variables, and also for higher moments via recursion (A.12) in the special case with X ∼
N(𝟎, 𝜎2I). Matters are not as nice when working with ratios of such forms, but results are available.
Unsurprisingly, these increase in complexity as we move from X ∼ N(𝟎 , I) to X ∼ N(𝝁,𝚺). We con-
sider these in turn. Throughout, let R = X′AX∕X′BX.
Note: In an effort to use interesting, illustrative examples throughout this appendix, some basic

notions of the linear regression, AR(1), and ARX(1) models, as developed in Chapters 1, 4, and 5,
respectively, are required.

B.1 For X ∼ Nn(𝟎, 𝝈2I) and B= I

First note that 𝜎2 > 0 can be set to one, without loss of generality, as it can be factored out of X and
it cancels from the numerator and denominator. Let the spectral decomposition of A be given by
A = P𝚲P′, with 𝚲 = diag([𝜆1,… , 𝜆n]) the eigenvalues of A. Then

R = X′AX
X′X

= X′P𝚲P′X
X′PP′X

= Y′𝚲Y
Y′Y

, (B.1)

where Y = P′X ∼ Nn(𝟎, I). Thus, R can be expressed as

R =
∑n

i=1 𝜆i𝜒
2
i∑n

i=1 𝜒
2
i

=∶ U
V
, (B.2)

where U and V are defined to be the numerator and denominator, respectively, and the 𝜒2
i are i.i.d.

central 𝜒2
1 random variables. From (A.34), 𝜆min ⩽ R ⩽ 𝜆max, where 𝜆min and 𝜆max refer respectively

to the smallest and largest eigenvalues of A. Thus, R has finite support, and all positive integer
moments exist.

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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As in Example II.2.22, let Xi be a set of i.i.d. r.v.s with finite mean and such that Pr(Xi = 0) = 0, and
define S ∶=

∑n
i=1 Xi and Ri ∶= Xi∕S, i = 1,… , n. As

∑n
i=1 Ri is not stochastic, it equals its expected

value, i.e.,

1 =
n∑
i=1

Ri = 𝔼

[ n∑
i=1

Ri

]
= n𝔼[R1],

and (as was intuitively obvious), 𝔼[Ri] = n−1. Note that, if the Xi are positive r.v.s (or negative r.v.s),
then 0 < Ri < 1, and the expectation exists. Now let the Xi be i.i.d. positive r.v.s and let 𝜆i, i = 1,… , n,
be a set of known constants. The expectation of

R ∶=
∑n

i=1 𝜆iXi∑n
i=1 Xi

=
∑n

i=1 𝜆iXi

S
=

n∑
i=1

𝜆iRi

is

𝔼[R] =
n∑
i=1

𝜆i𝔼[Ri] = n−1
n∑
i=1

𝜆i.

To connect to our setting, let Xi
i.i.d.∼ 𝜒2

1 . As 𝔼[Xi] = 1,

𝔼[R] =
∑n

i=1 𝜆i

n
=

𝔼
[∑n

i=1 𝜆iXi
]

𝔼
[∑n

i=1 Xi
] .

Thus, we see an example for which the expectation of a nonlinear function is, uncharacteristically,
the function of the expectations. The reason is because it is a ratio, and this result holds somewhat
more generally; see Heijmans (1999) for discussion. The result hinges on work from Basu in 1955,
and is referred to as Basu’s lemma or theorem.1 In this case, Basu’s lemma can be used to elegantly
show that, in (B.2), R is independent of V , in which case 𝔼[RV ] = 𝔼[R]𝔼[V ], so that U = RV implies
𝔼[U] = 𝔼[R]𝔼[V ].
We show now an alternative, older proof of this independence that was discovered by Pitman, in

1937; see Stuart and Ord (1994, p. 529).

Theorem B.1 Independence of Ratio and Denominator Ratio R in (B.1) is independent of its
denominator.

Proof : Let Q = q(X) = X′X and let H = h(X) be any scale-free function of X (such as R). As fX(x) =
(2𝜋)−n∕2 exp(−x′x∕2), with 𝜃k = itk , k = 1, 2, the joint c.f. of H and Q is

𝜑H,Q(t1, t2) = 𝔼[exp(𝜃1H + 𝜃2Q)]

= ∫
∞

−∞
· · ·∫

∞

−∞
exp[it1h(x) + it2q(x)]fX(x) dx1 … dxn

∝ ∫
∞

−∞
· · ·∫

∞

−∞
exp[𝜃1h(x)] exp

[
−1
2
(1 − 2𝜃2)q(x)

]
dx1 … dxn.

1 The development of Basu’s lemma requires the important concept of ancillarity in mathematical statistics. Accessible and
detailed discussions of these issues can be found in, e.g., Boos and Hughes-Oliver (1998), Ghosh (2002), Casella and Berger
(2002), and Davison (2003). A basic development of Basu’s lemma with correct proof of necessary and sufficient conditions is
given in Koehn andThomas (1975).
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Let yi = (1 − 2𝜃2)1∕2xi, so dxi = (1 − 2𝜃2)−1∕2 dyi, q(x) = x′x = (1 − 2𝜃2)−1y′y and h(x) = h(y)
(because h is scale-free). Then

𝜑H,Q(t1, t2) ∝ ∫
∞

−∞
· · ·∫

∞

−∞
exp[𝜃1h(y)] exp

[
−1
2
y′y
]
(1 − 2𝜃2)−n∕2 dy1 … dyn

= (1 − 2𝜃2)−n∕2𝔼[exp(𝜃1h(y))],
∝ 𝔼[exp(𝜃1H)],

which does not involve Q, showing that H and Q are independent. ◾

The consequence of Theorem B.1 is that U = RV implies 𝔼[U] = 𝔼[R]𝔼[V ], and, more generally,
Up = (RV )p implies 𝔼[Up] = 𝔼[Rp]𝔼[Vp] for all p such that the expectations exist, i.e.,

𝔼 [Rp] = 𝔼 [Up]
𝔼 [Vp]

. (B.3)

It is this latter fact that is critical for the easy evaluation of the moments of R. Calculating the raw
moments of R has been reduced to deriving the raw moments of both U and V .
From (A.6) with𝝁 = 𝟎 and𝚺 = I, the numerator expected value is𝔼[U] = 𝔼[Y′𝚲Y] = tr(A), so that,

with tp =
∑

i𝜆
p
i = tr(Ap),

𝔼[R] = 𝔼[U]
𝔼[V ]

= tr(A)
n

=
t1
n
.

Likewise, for the variance, (A.8) implies 𝕍 (U) = 2 tr(A)2, so that

𝔼[U2] = 𝕍 (U) + (𝔼[U])2 = 2 tr(A)2 + [tr(A)]2,

and

𝕍 (R) = 𝔼[R2] − (𝔼[R])2 = 𝔼[U2]
𝔼[V 2]

−
t21
n2

= 2 tr(A)2 + [tr(A)]2

𝕍 (𝜒2
n ) + (𝔼[(𝜒2

n )])2
−

t21
n2

=
2t2 + t21
2n + n2

−
t21
n2

= 2
nt2 − t21
n2(n + 2)

.

More generally, as V is a central 𝜒2 with n degrees of freedom, it is straightforward to show (see
Example I.7.5) that its pth raw moment, p = 1, 2,… , is given by

𝔼[V ] = n, 𝔼[Vp] = n(n + 2)(n + 4) · · · (n + 2(p − 1)). (B.4)

The positive integer moments ofU are given in (A.12), and recalling from (I.4.47) that raw and central
moments are related by

𝜇p = 𝔼[(R − 𝜇)p] =
p∑
i=0

(−1)i
(p
i

)
𝜇′
p−i𝜇

i,

some basic algebra gives 𝜇3 and 𝜇4, so that skewness and kurtosis can be computed. Summarizing,

𝜇 =
t1
n
, 𝜇2 = 2

nt2 − t21
n2(n + 2)

, 𝜇3 = 8
n2t3 − 3nt1t2 + 2t31
n3(n + 2)(n + 4)

, (B.5)
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and

𝜇4 = 12
n3(4t4 + t22) − 2n2(8t1t3 + t2t21) + n(24t21t2 + t41) − 12t41

n4(n + 2)(n + 4)(n + 6)
,

where tp =
∑

i𝜆
p
i = tr(Ap). With 𝜂p ∶=

∑n
i=1(𝜆i − �̄�)p, these can also be expressed as

𝜇 = 𝔼[R] = �̄�, 𝜇2 =
2𝜂2

n(n + 2)
,

𝜇3 =
8𝜂3

n(n + 2)(n + 4)
, 𝜇4 =

48𝜂4 + 12𝜂22
n(n + 2)(n + 4)(n + 6)

.

(B.6)

The next example involves an application based on the famous and still-popular Durbin andWatson
(1950, 1971) autocorrelation test statistic. It will be used in subsequent examples, and is discussed
further in Section 5.3.4.

Example B.1 Durbin–Watson, no regressors
The Durbin–Watson test can be used to test if a time series of observations exhibits first-order serial
autocorrelation. This is the topic of Chapter 4, though for now we just require the model, which is
Yt = aYt−1 +Ut , t = 1,… ,T , whereUt

i.i.d.∼ N(0, 𝜎2), and the observations are consecutive, having been
observed at equally spaced time points. For Y = (Y1,… ,YT )′, the test statistic is given by

D =
∑T

t=2 (Yt − Yt−1)2∑T
t=1 Y 2

t

= Y′AY
Y′Y

, (B.7)

where A is the tri-diagonal Toeplitz (diagonal-constant) matrix given by

A = D′D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2 −1
⋱ ⋱ ⋱

−1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (B.8)

and D is the (T − 1) × T Toeplitz matrix with first rows and columns given by [−1, 1, 0,… , 0]
and [−1, 0,… , 0]′, respectively. As we will need to compute this matrix, we give the code for it in
Listing B.1.
The null hypothesis is that a = 0, so that Y ∼ NT (𝟎, 𝜎2I). Under this assumption, the moments of

D can be computed using (B.6), though simplified expressions are given below. Conveniently, von

1 function A=makeDW(T)
2 A=2*eye(T); A(1,1)=1; A(T,T)=1;
3 for i=1:(T-1), A(i,i+1)=-1; A(i+1,i)=-1; end

Program Listing B.1: Computes matrix 𝐀 in (B.8).
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Neumann (1941) showed that the eigenvalues of A are given by

𝜆h = 2 − 2 cos
(
𝜋(h − 1)

T

)
= 4 sin 2

(
𝜋(h − 1)

2T

)
, h = 1,… ,T , (B.9)

which are clearly positive for h ⩾ 2 and zero for h = 1, so that matrix A is positive semi-definite with
rank T − 1. The corresponding eigenvectors are given by

𝝂1 = T−1∕2(1, 1,… , 1)′,

𝝂i =
√

2
T

(cos ki, cos 3ki,… cos ki(2T − 1))′, i = 2,… ,T , (B.10)

where ki ∶= 𝜋(i − 1)∕(2T). From (A.34) and (B.9), the support of D is

D = [0, 𝜆max], with 𝜆max = 4 sin2
(
𝜋(T − 1)

2T

)
< 4. (B.11)

The p.d.f. ofD can be calculated by the methods discussed in Section A.3.2. As an illustration, for two
(unrealistically small) values of T , the p.d.f. under the null hypothesis of a = 0 is shown in Figure B.1,
along with histograms based on simulated values. ForT = 4, the p.d.f. has quite a non-Gaussian shape
that even the second-order s.p.a. is not able to capture. Matters change already for T = 6.
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Figure B.1 Top: The exact density of D in (B.7) for Y ∼ NT (𝟎, 𝜎2I) (solid) and via the first-order (dashed) and
second-order (dash-dot) s.p.a. Bottom: Histograms of 100,000 simulated values.
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From (B.5) and A in (B.8),

𝔼[D] = tr(A)
T

= 2(T − 2) + 2
T

= 2(T − 1)
T

.

For the variance, it is easy to verify that diag(A2) = (2, 6, 6,… , 6, 2), so that t2 = tr(A2) = 6(T − 2) +
4 = 6T − 8 and, from (B.5),

𝜇2 = 𝕍 (D) = 2
nt2 − t21
n2(n + 2)

= 2T(6T − 8) − (2(T − 1))2

T2(T + 2)
= 4 T2 − 2

T2(T + 2)
, (B.12)

which approaches 4∕T in the limit as T → ∞.
Some computation reveals that diag(A3) = (5, 19, 20, 20,… , 20, 19, 5), so that t3 = 10 + 38 +

20(T − 4) = 20T − 32 and

𝜇3 = 8
T2t3 − 3Tt1t2 + 2t31
T3(T + 2)(T + 4)

= 32 T − 2
T3(T + 4)

.

Thus,

skew(D) =
𝜇3

𝜇
3∕2
2

= 4T − 2
T + 4

( T + 2
T2 − 2

)3∕2
= 4

T3∕2

(
1 + O

( 1
T

)) T→∞
−−−−−→ 0.

Further computation shows diag(A4) = (14, 62, 70, 70,… , 70, 62, 14), so that

t4 = 28 + 124 + 70(T − 4) = 70T − 128.

Using a symbolic computing package such as Maple, define
t1 = 2T − 2, t2 = 6T − 8,
t3 = 20T − 32, t4 = 70T − 128,

and simplify the expression for 𝜇4 to get

𝜇4 = 12
T3(4t4 + t22) − 2T2(8t1t3 + t2t21) + T(24t21t2 + t41) − 12t41

T4(T + 2)(T + 4)(T + 6)

= 48T
5 + 6T4 − 4T3 − 16T2 + 4T − 48

T4(T + 2)(T + 4)(T + 6)
.

Computing (with Maple) then gives

kurt(D) =
𝜇4

𝜇2
2
= 3 Q(T + 2)

(T + 4)(T + 6)(T2 − 2)2
,

where Q = T5 + 6T4 − 4T3 − 16T2 + 4T − 48. Deleting all but the two highest-order terms in Q and
simplifying gives

kurt(D) ≈ 3 T6 + 6T5

T6 + 10T5 ,

which converges to 3 as T → ∞.
This suggests thatD is asymptotically normally distributed, i.e., using our informal asymptotic nota-

tion, for large T , D app∼ N(2, 4∕T). This can be rigorously proven; see, e.g., Srivastava (1987) and the
references therein. ◾
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Figure B.2 Exact mean (solid), and the mean plus and minus 1.96 times the exact standard deviation (dashed) of the
Durbin–Watson test statistic (B.7) under the null hypothesis of no autocorrelation, versus sample size, starting at T = 6.

Figure B.2 plots 𝔼[D], along with 𝔼[D] plus and minus 1.96 times the square root of the variance,
as a function of sample size T . This could form the basis of a trivially computed, approximate test of
the null hypothesis of zero correlation with significance level 0.05 that should be very accurate for
“reasonable” sample sizes. This luxury is lost in the next example, which illustrates the more popular,
but more complicated, application of the Durbin–Watson test. The ability to compute the c.d.f. via
the inversion formula or saddlepoint methods will then be of great use.

Example B.2 Durbin–Watson, with regressors
The Durbin–Watson test was actually designed to test for first order autocorrelation in the ordinary
least squares (o.l.s.) regression residuals. (The reader not familiar with regression might wish to have
a look at the beginnings of Chapters 1, 4, and 5. We put the example here, as the main emphasis is on
working with quadratic forms.) The model is

Yt = x′t𝜷 + 𝜖t , (B.13)

where x′t , t = 0, 1,… ,T , is a set of 1 × k known constants such that X = [x1,… , xT ]′ is a full rank
T × k matrix, Y = (Y1,… ,YT )′ is the observed random variable, and

𝜖t = a𝜖t−1 +Ut , Ut
i.i.d.∼ N(0, 𝜎2). (B.14)

Vector 𝜷 , along with a and 𝜎, are the unknown parameters of the model. Under the null hypothesis
of no autocorrelation, a in (B.14) is zero and 𝜖t

i.i.d.∼ N(0, 𝜎2).
The o.l.s. estimator is 𝜷 = (X′X)−1X′Y and the residual vector �̂� ∶= Y − X𝜷 can be expressed asMY,

where

M = I − X(X′X)−1X′. (B.15)

AsMX = 𝟎, the residuals are �̂� = MY = M𝝐. We give the trivial code for computingM in Listing B.2
because will make use of it often.

1 function M=makeM(X); [T,col]=size(X); M=eye(T)-X*inv(X'*X)*X';

Program Listing B.2: Computes matrix𝐌.
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Figure B.3 Exact mean (solid), and the mean ±1.96 times the square root of the exact variance (dashed) of the
Durbin–Watson test statistic (B.18) under the null hypothesis of no autocorrelation, versus sample size, starting at
T = 6. The Xmatrix consists of a column of ones and a time-trend vector, 1, 2,… , T .

The test statistic is

D =
∑T

t=2 (𝜖t − 𝜖t−1)2∑T
t=1 𝜖

2
t

= �̂�
′A�̂�
�̂�
′
�̂�

= 𝝐′M′AM𝝐

𝝐′M′M𝝐
= 𝝐′MAM𝝐

𝝐′M𝝐
. (B.16)

Observe that (B.16) is not of the form (B.1) because the denominator matrixM ≠ I. However, under
the null hypothesis,D can be expressed asZ′𝚲Z∕Z′Z, whereZ ∼ NT−k(𝟎, 𝜎2I). Crucially, observe that
the dimension is T − k, and not T . This is referred to as canonical reduction, and can be shown in
(at least) three ways, as detailed directly below.
Thus, D in (B.16) under the null hypothesis can be expressed as in (B.1), with T − k components,

and as such, the moments can be computed as usual. To illustrate, Figure B.3 shows the exact mean of
D as a function of the sample size, along with lines indicating the range of the 95% confidence interval,
based on model

Yt = 𝛽1 + 𝛽2t + 𝜖t , (B.17)

so that the Xmatrix consists of a constant and linear time trend, which we denote by X = [𝟏, t]. This
can be compared to Figure B.2, showing the case without a regressor matrix. ◾

We now show three ways to conduct the canonical reduction of (B.16) (and related statistics).

1) The first method is the easiest, when using Theorem 1.3 from Chapter 1, which states thatM can
be expressed asM=G′G, where G is (T − k) × T and such that GG′ = IT−k and GX=𝟎. Then,

D = 𝝐′MAM𝝐

𝝐′M𝝐
= 𝝐′G′GAG′G𝝐

𝝐′G′G𝝐
= Z′ÃZ

Z′Z
=
∑T−k

i=1 𝜆i𝜒
2
i∑T−k

i=1 𝜒2
i

, (B.18)

where Ã = GAG′ is (T − k) × (T − k), and Z = G𝝐 ∼ NT−k(𝟎, 𝜎2I). Note that G does not need to
be computed, as the nonzero eigenvalues of Ã = GAG′ are the same as the nonzero eigenvalues of
G′GA = MA. Nevertheless, code for computingG is given in Listing 1.2 in Chapter 1, as it will be
used elsewhere.
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1 T=10; k=2; X=randn(10,2); % Just pick a random X matrix
2 C=ones(T,1); M1=makeM(C); % M1 is a "centering matrix".
3 Z=M1*X; sum(Z) % Z are the centered columns of X. Check that they sum to zero
4 M=makeM(Z); A=makeDW(T); rank(M*A) % rank is 7, not 10-2=8.

Program Listing B.3: Inspection of rank(𝐌𝐀).

2) If full rank X contains a constant term, or if all the columns of X do not have zero mean, then one
can verify that rank(MA) = T − k. The code in Listing B.3 verifies that, when X is centered and
still full rank, rank(MA) = T − k − 1.

When rank(MA) = T − k, the distribution of D follows directly from Theorems B.2 and B.3,
detailed in Section B.5 below. That is, as rank(M) = rank(MAM) = T − k and M ⋅MAM=
MAM ⋅M we can take P to be an orthogonal matrix that simultaneously diagonalizes
MAM and M, say P′MAMP=D1 and P′MP=D2 with D1 = diag([𝜆1,… , 𝜆T−k , 0,… , 0])
and D2 = diag([1,… , 1, 0,… , 0]), where D2 contains T − k ones. Thus

D = 𝝐′MAM𝝐

𝝐′M𝝐
=

𝝐′PD1P′𝝐

𝝐′PD2P′𝝐
=

Z′D1Z
Z′D2Z

=
∑T−k

i=1 𝜆i𝜒
2
i∑T−k

i=1 𝜒2
i

,

where Z = P′𝝐 ∼ N(𝟎, 𝜎2IT ).
3) A more tedious (but still quite instructional) method for canonical reduction was used by Durbin

and Watson in their seminal 1950 paper. With 𝝐 ∼ NT (𝟎 ,𝛔2I) and assuming that the regression
matrix X is full rank k, let L be the orthogonal matrix such that

L′ML =
[
IT−k 𝟎
𝟎 𝟎

]
,

and define 𝝃 = L′𝝐. As L′L = LL′ = I, we see that 𝝃 ∼ N(𝟎 ,𝛔2I) and that

D = 𝝐′MAM𝝐

𝝐′M𝝐
= 𝝐′LL′MLL′ALL′MLL′𝝐

𝝐′LL′MLL′𝝐
=

𝝃′
[
IT−k 𝟎
𝟎 𝟎

]
L′AL

[
IT−k 𝟎
𝟎 𝟎

]
𝝃

𝝃′
[
IT−k 𝟎
𝟎 𝟎

]
𝝃

. (B.19)

If we defineH to be the upper left (T − k) × (T − k)matrix of L′AL, and defineK to be the orthog-
onal matrix such that K′HK = 𝚲 = diag([𝜆1,… , 𝜆T−k]) (noting that K′K = KK′ = I) and define

𝜻 =
[
K 𝟎
𝟎 Ik

]′
𝝃,

so that 𝜻 ∼ N(𝟎, 𝜎2I), we get, continuing (B.19),

D =
𝝃′
[
H 𝟎
𝟎 𝟎

]
𝝃

𝝃′
[
IT−k 𝟎
𝟎 𝟎

]
𝝃

=
𝝃′
[
K 𝟎
𝟎 Ik

] [
𝚲 𝟎
𝟎 𝟎

] [
K 𝟎
𝟎 Ik

]′
𝝃

𝝃′
[
K 𝟎
𝟎 Ik

] [
IT−k 𝟎
𝟎 𝟎

] [
K 𝟎
𝟎 Ik

]′
𝝃

=
𝜻 ′
[
𝚲 𝟎
𝟎 𝟎

]
𝜻

𝜻 ′
[
IT−k 𝟎
𝟎 𝟎

]
𝜻

.
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We see the last equation in the above line is just a ratio of weighted 𝜒2 random variables, namely
that given at the end of (B.18), with the 𝜆i the nonzero eigenvalues of[

IT−k 𝟎
𝟎 𝟎

]
L′AL

[
IT−k 𝟎
𝟎 𝟎

]
= L′MLL′ALL′ML = L′MAML,

which are also the eigenvalues of LL′MAM = MAM or those ofMMA = MA.

Example B.3 Durbin–Watson, constant regressor
An important special case of the regression model used in the previous example is Yt = 𝛽 + 𝜖t , so that
all the Yt have the same expected value. This corresponds to an Xmatrix consisting of just a column
of ones, in which case M = In − n−1JT and the least squares estimator reduces to the sample mean,
T−1∑T

t=1 Yt .
From the structure of A in (B.8), it is clear that JA=𝟎, so that MA=A. Similarly, it is easy to

see that MAM=A; this also follows because M and A are symmetric, so that taking transposes of
MA=A gives AM=A, so that (MA)M=AM=A. A bit of intuition can be added to this: Without
mean-adjusting (centering) the data, D is given by

D0 =
∑T

t=2(Yt − Yt−1)2∑T
t=1 Y 2

t

= Y′AY
Y′Y

,

while centering results in

D1 =
∑T

t=2((Yt − Ȳ ) − (Yt−1 − Ȳ ))2∑T
t=1(Yt − Ȳ )2

=
∑T

t=2(Yt − Yt−1)2∑T
t=1(Yt − Ȳ )2

= Y′AY
Y′MY

,

which has the same numerator as D0. This would not work if the regression terms Ȳ were replaced
with their more general counterparts x′t𝜷 and x′t−1𝜷 .
From the discussion just after (B.18), and the fact that A always has one zero eigenvalue, the T − 1

values of 𝜆i are the nonzero eigenvalues of the T × T matrix A. Thus, for example, the support will
not extend to zero, as was the case without regressors in Example B.1 above. From (B.9), observe
that, for any given T ⩾ 2, cos(𝜋∕T) = − cos(𝜋(T − 1)∕T) (draw the unit circle to see this), so that
𝜆2 + 𝜆T = 4. Similarly, 𝜆3 + 𝜆T−1 = 4, etc., so that the set {𝜆i ∶ i = 1,… ,T} = {4 − 𝜆i ∶ i = 1,… ,T}.
Thus, for 𝜆min < d < 2,

Pr(D ⩽ d) = Pr

( T−1∑
i=1

𝜆i𝜒
2
i ⩽ d

T−1∑
i=1

𝜒2
i

)
= Pr

( T−1∑
i=1

(4 − 𝜆i)𝜒2
i ⩽ d

T−1∑
i=1

𝜒2
i

)

= Pr

( T−1∑
i=1

𝜆i𝜒
2
i ⩾ (4 − d)

T−1∑
i=1

𝜒2
i

)
= Pr(D ⩾ 4 − d),

and the p.d.f. is symmetric about two. Figure B.4 illustrates this. While indeed symmetric, the p.d.f.s
for very small T are quite far from that of the normal distribution. In these cases, the second-order
s.p.a. captures the tails reasonably well, but not the sharp peak or flat top of the true p.d.f. for T < 7.
For the moments of D in this case, we require the T − 1 eigenvalues of ÃT−1, where the subscript

denotes the size of the matrix and Ã = GAG′ as in (B.18). But, as MA=A, these are just the T − 1
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Figure B.4 The exact density of D in (B.16) for the model Yt = 𝛽 + 𝜖t (solid) and the first-order (dashed) and
second-order (dash-dot) s.p.a.

positive eigenvalues of AT , say 𝜆1,… , 𝜆T−1 (take 𝜆T = 0). Using (B.5), and noting that tp = tr(Ap
T ) =∑T

i=1 𝜆
p
i =
∑T−1

i=1 𝜆
p
i ,

𝔼[D] =
tr(AT )
T − 1

= 2(T − 2) + 2
T − 1

= 2,

as we knew, given the symmetry of D about 2. For the variance, first observe that diag(A2) =
(2, 6, 6,… , 6, 2), implying tr(A2

T ) = 6(T − 2) + 4. Then, from (B.5),

𝕍 (D) = 2
(T − 1)tr(A2

T ) − (tr(AT ))2

(T − 1)2(T − 1 + 2)
= 4 (T − 2)

(T − 1)(T + 1)
, (B.20)

after simplifying, which obviously is approximately 4∕T for large T . Higher moments could be simi-
larly computed. ◾

We now examine a different statistic that is of great importance in time-series analysis. As in
Example B.2, consider the regression model Yt = x′t𝜷 + 𝜖t , where x′t , t = 0, 1,… ,T , is a set of 1 × k
known constants such that X = [x1,… , xT ]′ is a full rank T × k matrix, Y = (Y1,… ,YT )′, and the
residuals are �̂� = MY = M𝝐. The sth sample autocorrelation is given by

Rs =
∑T

t=s+1 𝜖t𝜖t−s∑T
t=1 𝜖

2
t

=
�̂�
′As�̂�

�̂�
′
�̂�

, (B.21)
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where s ∈ {1, 2,… ,T − 1} and the (i, j)th element ofAs is given by 𝕀{|i − j| = s}∕2, i, j = 1,… ,T . For
example, with T = 5,

A1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1
2

0 0 0
1
2

0 1
2

0 0
0 1

2
0 1

2
0

0 0 1
2

0 1
2

0 0 0 1
2

0

⎤⎥⎥⎥⎥⎥⎥⎦
and A2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 1
2

0 0
0 0 0 1

2
0

1
2

0 0 0 1
2

0 1
2

0 0 0
0 0 1

2
0 0

⎤⎥⎥⎥⎥⎥⎥⎦
.

The Rs are discussed in detail in Chapter 8. Here, we are only concerned about their low-order
moments under the null hypothesis that 𝜖t

i.i.d.∼ N(0, 𝜎2). As in (B.16) and (B.18),

Rs =
�̂�
′As�̂�

�̂�
′
�̂�

=
𝝐′M′AsM𝝐

𝝐′M′M𝝐
=

𝝐′M′AsM𝝐

𝝐′M𝝐
=

𝝐′G′GAsG′G𝝐
𝝐′G′G𝝐

=
Z′ÃsZ
Z′Z

, (B.22)

where Ãs = GAsG′ is (T − k) × (T − k) and Z = G𝝐 ∼ NT−k(𝟎, 𝜎2I). Thus, the first two moments are
given by (B.5), where, using the fact that tr(AB) = tr(BA) for conformable matricesA and B such that
AB and BA are square,

t1 = tr(Ãs) = tr(GAsG′) = tr(G′GAs) = tr(MAs),
and

t2 = tr(Ã2
s ) = tr(GAsG′GAsG′) = tr(G′GAsG′GAs) = tr(MAsMAs).

That is,

𝔼[Rs] =
tr(MAs)
T − k

and 𝕍 (Rs) = 2
(T − k)tr(MAs)2 − tr2(MAs)

(T − k)2(T − k + 2)
, (B.23)

where tr(A)2 = tr(A2) and tr2(A) = [tr(A)]2. Expressions for the third and fourthmoments follow sim-
ilarly.
Now consider the important special case when k = 1 and X = 𝟏. As in Paolella (2003),

MAs =
(
IT − 1

T
𝟏𝟏′
)
As = As −

1
T
B,

where

B =
⎧⎪⎨⎪⎩
[
1
2
𝟏T×s ∣ 𝟏T×(T−2s) ∣

1
2
𝟏T×s
]
, if s ⩽ T∕2,[

1
2
𝟏T×(T−s) ∣ 𝟎T×(2s−T) ∣

1
2
𝟏T×(T−s)

]
, if s > T∕2,

and 𝟎r×s (𝟏r×s) denotes the r × s matrix of zeros (ones). Perhaps more clearly, for s ⩽ T∕2, B can be
expressed as
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Denote the (ij)th element of M by mij and the (ij)th element of As by aij. Then, from the structure of
M and As,

tr(MAs) =
T∑
i=1

( T∑
j=1

mijaji

)
=

T∑
i=1

miiaii +
T∑ T∑
i≠j

mijaji

= − 1
T

T∑ T∑
i≠j

aji = −T − s
T

.

Thus, from (B.23), when X = 𝟏,

𝔼[Rs] = − T − s
T(T − 1)

, s = 1, 2,… ,T − 1. (B.24)

The sign of 𝔼[Rs] was to be expected because the residuals sum to zero, so that a small amount of
negative correlation is induced.
For the variance, denote the (ij)th element of B as bij, and observe that

B2 =
{

[c𝟏T×s ∣ d𝟏T×(T−2s) ∣ c𝟏T×s], if s ⩽ T∕2,
[c𝟏T×(T−s) ∣ 𝟎T×(2s−T) ∣ c𝟏T×(T−s)], if s > T∕2,

where c = 1
2

(
1
2
⋅ s ⋅ 2 + (T − 2s)

)
= (T − s)∕2 and d = T − s. It follows from the symmetry ofAs that

tr(A2
s ) =

T∑
i=1

T∑
j=1

a2ij =
(1
2

)2
⋅ 2 ⋅ (T − s) = T − s

2
,

tr(BAs) =
T∑
i=1

T∑
j=1

ajibji = 2 ⋅ 1
2

{ s
2
+ (T − 2s), if s ⩽ T∕2,

s
2
(T − s), if s > T∕2,

=

{
T − 3

2
s, if s ⩽ T∕2,

s
2
(T − s), if s > T∕2,

and

tr(B2) =
{

2sc + d(T − 2s), if s ⩽ T∕2,
2(T − s)c, if s > T∕2,

= (T − s)2,
having used that fact that, for matrixHwith (ij)th element hij, tr(H′H) =

∑T
i=1
∑T

j=1 h2ij (see, e.g., Gray-
bill, 1983, p. 300). Combining terms,

tr(MAs)2 = tr
(
A2

s −
1
T
BAs −

1
T
AsB + 1

T2B
2
)

= 1
2T2

{
T3 − sT2 − 2T2 + 2sT + 2s2, if s ⩽ T∕2,
T3 − sT2 − 2sT + 2s2, if s > T∕2,

which, from (B.23), yields an expression for 𝕍 (Rs) when X = 𝟏 as⎧⎪⎨⎪⎩
T4 − (s + 3)T3 + 3sT2 + 2s(s + 1)T − 4s2

(T − 1)2(T + 1)T2 , if 0 < s ⩽ T∕2,

T4 − (s + 1)T3 − (s + 2)T2 + 2s(s + 3)T − 4s2

(T − 1)2(T + 1)T2 , if T∕2 < s < T .
(B.25)
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This expressionwas also derived byDufour andRoy (1985) andAnderson (1993) using differentmeth-
ods of proof.2 For 1 ⩽ s ⩽ T∕2 (essentially the only relevant part in practice), the reader can verify that
the approximation

𝕍 (Rs) ≈
T − 2
T2 − T − 3

T3 s ,

derived from (B.25), is extremely accurate (and is not poor on the other half ), though offers no sub-
stantial computational benefit over the exact calculation. However, it prominently shows that the
variance is practically (affine) linear in s, with a negative slope, implying that low values of s (precisely
the ones required in practice) have the highest variance.

Remark There is another interesting consequence of Theorem B.1. Again with R = U∕V for U =
X′AX,V = X′X,X ∼ Nn(𝟎, 𝜎2I), and 𝜻 = Eig(A), the independence of R andV implies, for r such that
min 𝜁i < r < max 𝜁i,

FR(r) = Pr(R ⩽ r) = Pr(R ⩽ r ∣ V = 1) = Pr(U ⩽ r ∣ V = 1).

The joint m.g.f. of U and V is

𝕄U,V (s, t) = 𝔼[exp{sU + tV}]

= 𝔼

[
exp

{
s

n∑
i=1

𝜁i𝜒
2
i + t

n∑
i=1

𝜒2
i

}]
= 𝔼

[
exp

{ n∑
i=1

(s𝜁i + t)𝜒2
i

}]

=
n∏
i=1

[1 − 2(s𝜁i + t)]−1∕2. (B.26)

Based on this, the conditional saddlepoint approximation discussed in Section II.5.2.1 is applicable,
and it would be of interest to compare the accuracy of the c.d.f. approximation from its use with the
one discussed in Section A.3.1. However, it turns out that they are identical, as proven in Butler and
Paolella (1998) in a more general setting, and shown for this case in Appendix B.6. ◾

B.2 For X ∼ N(𝟎,𝚺)

LetX ∼ N(𝟎,𝚺), with𝚺 > 0.3 As such, we can compute amatrix𝚺−1∕2 > 0 such that𝚺−1∕2𝚺−1∕2 = 𝚺−1.
First write

R = X′AX
X′BX

= X′𝚺−1∕2𝚺1∕2A𝚺1∕2𝚺−1∕2X
X′𝚺−1∕2𝚺1∕2B𝚺1∕2𝚺−1∕2X

= Y′A∗Y
Y′B∗Y

, (B.27)

whereA∗ = 𝚺1∕2A𝚺1∕2, B∗ = 𝚺1∕2B𝚺1∕2, and Y = 𝚺−1∕2X ∼ N(𝟎, I). Observe that, if B = 𝚺−1, then the
analysis in Section B.1 is still valid.
We now proceed as in Sawa (1978). From (A.23), the joint m.g.f. of A = Y′A∗Y and B = Y′B∗Y is

given by𝕄A,B(t1,t2) = |IT − 2t1A∗ − 2t2B∗|−1∕2. Let the spectral decomposition of B∗ be P′𝚲P, where

2 Dufour and Roy (1985) falsely state the top expression (B.25) for all s.
3 In most applications, it is useful to take X ∼ N(𝟎, 𝜎2𝚺), where 𝜎 > 0 is a scale term. Observe that such a scaling factor
cancels out in the ratio, so we can take it to be unity without loss of generality.
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𝚲 = diag([𝜆1,… , 𝜆n]) are the eigenvalues of B∗ and P′P = IT . Then

𝕄A,B(t1,t2) = |P′P|−1∕2|IT − 2t1A∗ − 2t2B∗|−1∕2
= |P′|−1∕2|IT − 2t1A∗ − 2t2B∗|−1∕2|P|−1∕2
= |P′P − 2t1P′A∗P − 2t2P′B∗P|−1∕2
= |IT − 2t1C− 2t2𝚲|−1∕2 = |R(t1, t2)|−1∕2,

where C=P′A∗P, with (i, j)th element cij, and R(t1, t2) = IT − 2t1C − 2t2𝚲. For convenience, we sub-
sequently write R = R(t1, t2), though the dependence on t1 and t2 must be kept in mind.
The pth moment, p ∈ ℕ, is now obtainable using the Sawa (1972) result derived in (II.1.24),

𝔼[Rp] = 𝔼
[(A

B

)p]
= 1

Γ(p) ∫
∞

0
(t2)p−1

[
𝜕p

𝜕 tp1
𝕄A,B(t1,−t2)

]
t1=0

dt2. (B.28)

Observe that
𝜕R
𝜕 t1

= −2C. (B.29)

For p = 1, (B.29) and (B.72) from Section B.5 below imply
𝜕

𝜕t1
|R| = −2|R| ⋅ tr(R−1C), (B.30)

so that
𝜕

𝜕t1
𝕄A,B(t1, t2) = −1

2
|R|− 3

2

(
𝜕

𝜕 t1
|R|) = |R|− 1

2 tr (R−1C). (B.31)

Thus,
𝜕

𝜕t1
𝕄A,B(t1,−t2) = |IT − 2t1C + 2t2𝚲|− 1

2 tr[(IT − 2t1C + 2t2𝚲)−1C],

and, evaluated at t1 = 0,
𝜕

𝜕 t1
𝕄A,B(t1,−t2)

||||t1=0 = |IT + 2t2𝚲|− 1
2 tr[(IT + 2t2𝚲)−1C]

=
T∏
i=1

(1 + 2𝜆it2)
− 1

2

T∑
j=1

cjj
1 + 2𝜆jt2

. (B.32)

For p = 2, it is convenient to first define

S1 = S1(t1, t2) ∶= tr2(R−1C) = (trR−1C)2 and
S2 = S2(t1, t2) ∶= tr(R−1C)2 = tr(R−1CR−1C).

Then,
𝜕2|R|
𝜕 t21

(B.30)
= 𝜕

𝜕 t1
(−2|R| ⋅ trR−1C)

= 𝜕

𝜕 t1
(−2|R|) ⋅ trR−1C − 2|R| 𝜕

𝜕 t1
(trR−1C)
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(B.70)
=

(B.71)
4|R|S1 − 2|R|tr(R−1 𝜕C

𝜕 t1
+ 𝜕R−1

𝜕 t1
C
)

(B.73)
= 4|R|S1 − 2|R|tr(𝟎 − R−1 𝜕R

𝜕 t1
R−1C

)
(B.29)
= 4|R|(S1 − S2), (B.33)

and
𝜕2𝕄A,B(t1, t2)

𝜕 t21

(B.31)
= 𝜕

𝜕 t1

(
−1
2
|R|− 3

2
𝜕|R|
𝜕 t1

)
= 3

4
|R|− 5

2

(
𝜕|R|
𝜕 t1

)
2 − 1

2
|R|− 3

2
𝜕2|R|
𝜕 t21

(B.30)
=

(B.33)

3
4
|R|− 5

2 (4|R|2S1) − 1
2
|R|− 3

2 4|R|(S1 − S2)

= |R|− 1
2 (S1 + 2S2). (B.34)

Finally,

S1(0,−t2) = tr2[(IT + 2t2𝚲)−1C]

=
T∑
i=1

cii
1 + 2𝜆it2

T∑
j=1

cjj
1 + 2𝜆jt2

=
T∑
i=1

T∑
j=1

ciicjj
(1 + 2𝜆it2)(1 + 2𝜆jt2)

.

For S2(0,−t2), a small example is helpful: With T = 3 and ki ∶= (1 + 2𝜆it2)−1,

R−1C =
⎡⎢⎢⎢⎣
k1

k2
k3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
k1c11 k1c12 k1c13
k2c21 k2c22 k2c23
k3c31 k3c32 k3c33

⎤⎥⎥⎥⎦
so that the (ii)th element of R−1CR−1C is ki

∑
jkjcijcji = ki

∑
jkjc2ij, because C is symmetric. Summing

over i to form the trace gives the result, which is, for general T ,

S2(0,−t2) =
T∑
i=1

T∑
j=1

c2ij
(1 + 2𝜆it2)(1 + 2𝜆jt2)

.

Thus,

𝜕2𝕄A,B(t1,−t2)
𝜕 t21

|||||t1=0 =
T∏
i=1

(1 + 2𝜆it2)
− 1

2 ⋅
T∑
i=1

T∑
j=1

ciicjj + 2c2ij
(1 + 2𝜆it2)(1 + 2𝜆jt2)

. (B.35)

Substituting (B.32) and (B.35) into (B.28) and changing the variable of integration from t2
to t gives expressions for the first two moments, summarized as follows: For R = X′AX∕X′BX
with X ∼ N (𝟎,𝚺), let B∗ = 𝚺1∕2B𝚺1∕2 = P′𝚲P for 𝚲 = diag([𝜆1,… , 𝜆n]) and cij = [P′A∗P]ij, with
A∗ = 𝚺1∕2A𝚺1∕2. Then, with

𝜁i = 1 + 2𝜆it and �̄�(t) =
T∏
i=1

𝜁
−1∕2
i ,
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𝔼[R] = ∫
∞

0

n∑
j=1

𝜁−1i �̄�(t) cjj dt, (B.36)

and

𝔼[R2
l ] = ∫

∞

0

n∑
i=1

n∑
j=1

𝜁−1i 𝜁−1j t �̄�(t) (ciicjj + 2c2ij) dt . (B.37)

A program to compute (B.36) and (B.37) is given in Listing B.4.

Remarks
a) The integrals can be approximated by numerical integration over a finite range, say 0 to t∗. De

Gooijer (1980) gave approximate expressions for the roundoff error of the finitely evaluated inte-
grals for the first and second moments, as well as formulae for their truncation errors. Paolella
(2003) studied the behavior of the upper limit t∗, for a given accuracy level, as a function of n, 𝚺,
and regressor matrices. It was found that t∗ was less than (the unexpectedly small value of ) two

1 function [mom1,mom2]=sawa(A,B,Sigma)
2 [V,D]=eig(0.5*(Sigma+Sigma')); S12=V*sqrt(D)*V';
3 Astar=S12*A*S12; Bstar=S12*B*S12;
4 tol=1e-8; [P,lambda]=eig(0.5*(Bstar+Bstar'));
5 lambda=diag(lambda); C=P'*Astar*P; c=diag(C);
6 upper=1e-3;
7 while abs(sawaint1(upper,c,lambda))>tol, upper=upper*2; end;
8 mom1=quadl(@sawaint1,0,upper,tol,0,c,lambda);
9 if nargout>1

10 upper=1e-3;
11 while abs(sawaint2(upper,C,lambda))>tol, upper=upper*2; end;
12 mom2=quadl(@sawaint2,0,upper,tol,0,C,lambda);
13 end
14
15 function I=sawaint1(uvec,c,lambda)
16 I=zeros(size(uvec));
17 for loop=1:length(uvec)
18 t=uvec(loop); zeta=1+2*lambda*t; lambar=prod(zeta.ˆ(-1/2));
19 I(loop)=lambar*sum( c./zeta );
20 end;
21
22 function I=sawaint2(uvec,C,lambda)
23 I=zeros(size(uvec)); c=diag(C);
24 for loop=1:length(uvec)
25 t=uvec(loop); zeta=1+2*lambda*t; lambar=prod(zeta.ˆ(-1/2));
26 K=zeros(size(C));
27 for i=1:length(C), for j=1:length(C)
28 K(i,j)=(c(i)*c(j)+2*C(i,j)ˆ2)/zeta(i)/zeta(j);
29 end, end
30 K=K*lambar*t; I(loop)=sum(sum(K));
31 end;

Program Listing B.4: Computes the mean, mom1, and, if nargout = 2, the second raw moment,
mom2, of the ratio of quadratic forms 𝐘′𝐀𝐘∕𝐘′𝐁𝐘 where 𝐘 ∼ N (𝟎,𝚺).



712 Linear Models and Time-Series Analysis

for all cases considered, and that, of the three factors, the sample size n appears to exerts the most
influence on t∗.

b) Extensions to the third and fourth moments were given by De Gooijer (1980) as

𝔼[R3
l ] =

1
2 ∫

∞

0

n∑
i=1

n∑
j=1

n∑
r=1

𝜁−1i 𝜁−1j 𝜁−1r t2�̄�(t)

× (ciicjjcrr + 6c2ijcrr + 8cijcjrcri) dt

and

𝔼[R4
l ] =

1
6 ∫

∞

0

n∑
i=1

n∑
j=1

n∑
r=1

n∑
s=1

𝜁−1i 𝜁−1j 𝜁−1r 𝜁−1s t3 �̄�(t)

× (ciicjjcrrcss + 32cijcjrcricss + 12c2ijcrscsr + 48cijcjrcrscsi) dt.

Ali (1984) presented a simplification of the formulae that leads to a decrease in computation time
for the higher moments. ◾

Example B.4 Morin-Wahhab (1985) gave analytic expressions (in terms of hypergeometric func-
tions of many variables) for the positive integer moments of∑p1

i=1 aiXi +
∑p3

j=1 cjZj∑p2
i=1 biYi +

∑p3
j=1 djZj

, (B.38)

whereXi, i = 1,… , p1, Yj, j = 1,… , p2, and Zk , k = 1,… , p3, are independent central 𝜒2 random vari-
ables with 𝓁i, mj, and nk integer degrees of freedom, respectively. Using the fact that C ∼ 𝜒2

n can be
expressed as the sum of n i.i.d. 𝜒2

1 r.v.s, (B.38) can be expressed as the ratio Z′CZ∕Z′DZ, where

C = diag ([a1J𝓁1
,… , ap1J𝓁p1

, 𝟎m•
, c1Jn1

,… , cp3Jnp3
]),

D = diag ([𝟎𝓁•
, b1Jm1

,… , bp2Jmp2
, d1Jn1

,… , dp3Jnp3
]),

Jh (𝟎h) denotes an h-length vector of ones (zeros), 𝓁• =
∑p1

i=1 𝓁i, m• =
∑p2

j=1 mj, n• =
∑p3

k=1 nk , Z ∼
Nn(𝟎, I), and n = 𝓁• +m• + n•. As the analytic expressions are not readily evaluated numerically, it is
more expedient to use (B.36) and (B.37) and the Ali (1984) results for higher-order moments. ◾

Example B.5 Examples B.1–B.3 cont.
The first two moments of the Durbin–Watson statistic (B.16), but now under the alternative hypoth-
esis that a in (B.14) is not zero, can be determined via (B.36) and (B.37), as programmed in Listing
B.4. For this time-series model, the (i, j)th element of 𝚺 is given by

a|i−j|
1 − a2

, (B.39)

as was also used in Example A.1, and derived in (4.13).
Simulation can also be used to compute the first two (and, conveniently, higher) moments, and also

serves as a check on the derivation, programming, and numeric accuracy of the integral formulae.The
reader should now be quite comfortable with such programming tasks, but, recognizing repetition as
our didactic friend, we give a program for such in Listing B.5.
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1 T=10; a=0.5; Sigma = toeplitz((a).ˆ(0:(T-1)))/(1-aˆ2);
2 [V,D]=eig(0.5*(Sigma+Sigma')); S=V*sqrt(D)*V';
3 X=[ones(T,1) (1:T)']; M=makeM(X); B=M; A=M*makeDW(T)*M;
4 sim=1e7; D=zeros(sim,1);
5 for i=1:sim, r=S*randn(T,1); D(i)=(r'*A*r)/(r'*B*r); end
6 simulated_mean_var = [mean(D), var(D)]
7 [mom1,mom2]=sawa(A,B,Sigma); true_mean_var = [mom1 mom2-mom1ˆ2]

Program Listing B.5: Simulation and exact calculation for obtaining the mean and variance of the
Durbin–Watson statistic under the alternative hypothesis (in this case,with 𝐗 = [1 t]). Programs
makeDW and makeM are given in Example B.2.

Figure B.5 shows the mean and T times the variance of the Durbin–Watson statistic as a function
of a, where we multiply by T in light of (B.12) and (B.20). This is done for three sample sizes, T = 10,
20, and 40, and three Xmatrices, the intercept model considered in Example B.3, intercept and time
trend, denoted X=[𝟏 t], and X=[𝟏 t v], where v is the eigenvector 𝝂i in (B.10) with i = round(T∕3).
This latter choice might seem strange, but the cyclical nature of the 𝝂i is also a common feature in
economic data, so that use of 𝝂i, along with an intercept and time trend, yields an X matrix that is
somewhat typical in econometrics (see, e.g., Dubbelman et al., 1978 and King, 1985a, p. 32).
AsX increases in complexity (moving from the top to the bottom panels in Figure B.5), we see that,

for small sample sizes, the mean and, particularly, the variance, deviate greatly from what appears to
be their asymptotic values. ◾

B.3 For X ∼ N(𝝁, I)

Expressions for the moments of the ratio

R = X′HX
X′KX

=∶ N
D
, X ∼ NT (𝝁, I), (B.40)

are still tractable when certain restrictions on the (without loss of generality, symmetric) matrices
H and K are fulfilled. In particular, (i) K is idempotent, (ii) H and K commute, i.e., HK=KH, and
(iii) r ∶= rank(H) = rank(K) = rank(HK) for 1 ⩽ r ⩽ T . We also requireK ⩾ 0 so that Pr(D > 0) = 1,
but this is automatically fulfilled if K is symmetric and idempotent (in which case its eigenvalues are
either zero or one). There are important applications in which these conditions are fulfilled, so that
they are not as restrictive as they perhaps appear. We show the derivation from Ghazal (1994). Before
commencing, note that, if X ∼ N(𝝁, 𝜎2I), then

R = X′HX
X′KX

𝜎−2

𝜎−2 =
(X∕𝜎)′H(X∕𝜎)
(X∕𝜎)′K(X∕𝜎)

= Y′HY
Y′KY

,

where Y = Y∕𝜎 ∼ N(𝝁∕𝜎, I), i.e., we can take 𝜎 = 1 without loss of generality.
The joint moment generating function of D = X′KX and N = X′HX follows directly from (A.23),

with the only difference being that we use𝕄D,N instead of𝕄N ,D because it is slightly more convenient.
With

S = S(t1, t2) = I − 2t1K − 2t2H, s = −𝝁, and s0 = −1
2
𝝁′𝝁,
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Figure B.5 For the three sample sizes T = 10 (solid), T = 20 (dashed) and T = 40 (dash-dot), the mean (left) and T
times the variance (right) of the Durbin–Watson statistic (B.16), as a function of the autoregressive parameter a in
(B.14), for the intercept model X=[𝟏] (top panels), intercept and time trend X=[𝟏 t] (middle panels), and intercept,
time trend and cyclical, X=[𝟏 t v] (bottom panels), where v is the eigenvector 𝝂 i in (B.10) with i = round(T∕3).

we have

𝕄D,N (t1, t2) = |S|−1∕2 exp(−1
2
𝝁′(I− S−1)𝝁

)
. (B.41)

The necessity of the conditions onH andK stated above will now become clear. If they are satisfied,
thenTheorem B.3 in Section B.5 can be employed as follows. There exists a matrixQ such that

Q′Q=QQ′ = IT , (B.42)

Q′KQ =∶ 𝛀 =
[
Ir 𝟎
𝟎 𝟎

]
= diag([𝜔1, 𝜔2,… , 𝜔T ]), (B.43)
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where 𝜔1 = 𝜔2 = · · · = 𝜔r = 1, 𝜔r+1 = 𝜔r+2 = · · · = 𝜔T = 0, and

Q′HQ =∶ 𝚲 =
[
𝚲r 𝟎
𝟎 𝟎

]
= diag([𝜆1, 𝜆2,… , 𝜆T ]), (B.44)

where 𝜆1,… , 𝜆r are the r nonzero eigenvalues ofH and 𝜆r+1 = · · · = 𝜆T = 0. Together, (B.42), (B.43),
and (B.44) imply

S = Q(I − 2t1𝛀 − 2t2𝚲)Q′. (B.45)

From (B.42) and (B.45), and recalling that the determinant of a product is the product of the determi-
nants, |S| = |I − 2t1𝛀 − 2t2𝚲| =∏T

i=1(1 − 2t1 − 2t2𝜆i), and (B.43) and (B.44) then imply that

|S| = r∏
i=1

(1 − 2t1 − 2t2𝜆i). (B.46)

Now let [𝜇∗
1 , 𝜇

∗
2 ,… , 𝜇∗

T ]
′ ∶= 𝝁∗ ∶= Q′𝝁. Clearly, 𝝁∗′𝝁∗ = 𝝁′QQ′𝝁 = 𝝁′𝝁. Also

r∑
i=1

𝜇∗2
i = 𝝁∗′𝛀𝝁∗ = 𝝁′Q𝛀Q′𝝁 = 𝝁′K𝝁 =∶ 2𝛿, (B.47)

implying
∑T

i=r+1 𝜇
∗2
i = 𝝁′𝝁 − 2𝛿.

From (B.42) and (B.45), S−1 = Q(I − 2t1𝛀 − 2t2𝚲)−1Q′, so that

−1
2
𝝁′(I− S−1)𝝁 = −1

2
𝝁′𝝁 + 1

2
𝝁′S−1𝝁 = −1

2
𝝁∗ ′𝝁∗ + 1

2
𝝁∗ ′(I − 2t1𝛀 − 2t2𝚲)−1𝝁∗

= −1
2

T∑
i=1

𝜇∗2
i + 1

2

T∑
i=1

𝜇∗2
i

1 − 2𝜔it1 − 2t2𝜆i

= −1
2

T∑
i=1

𝜇∗2
i + 1

2

r∑
i=1

𝜇∗2
i

1 − 2t1 − 2t2𝜆i
+ 1

2

T∑
i=r+1

𝜇∗2
i

1

= −1
2

r∑
i=1

𝜇∗2
i + 1

2

r∑
i=1

𝜇∗2
i

1 − 2t1 − 2t2𝜆i
(B.47)
= −𝛿 +

r∑
i=1

𝜇∗2
i ∕2

1 − 2t1 − 2t2𝜆i
. (B.48)

Now, (B.46) and (B.48) allow writing (B.41) as

𝕄D,N (t1, t2) =
r∏

i=1
(1 − 2t1 − 2t2𝜆i)

− 1
2 exp

(
−𝛿 +

r∑
i=1

𝜇∗2
i ∕2

1 − 2t1 − 2t2𝜆i

)
, (B.49)

which lends itself to differentiation. From Sawa (1972) (see p. II.15–16 for derivation):

(Sawa, 1972) LetX1 andX2 be r.v.s such that Pr(X1 > 0) = 1, with jointm.g.f.𝕄X1,X2
(t1, t2), which

exists for t1 < 𝜖 and |t2| < 𝜖, for 𝜖 > 0.Then the kth order moment, k ∈ ℕ, of X2∕X1, if it exists,
is given by

𝔼
[(X2

X1

)
k
]
= 1

Γ(k) ∫
0

−∞
(−t1)k−1

[
𝜕k

𝜕 tk2
𝕄X1,X2(t1, t2)

]
t2=0

dt1. (B.50)
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Differentiating (B.49) is simplified by using the fact that, for any positive differentiable function f (x),
df (x)
dx

=
d exp(ln(f (x)))

dx
= f (x) ⋅ d

dx
ln(f (x)).

The first derivative of (B.49) is now
𝜕𝕄D,N (t1, t2)

𝜕t2
= 𝕄D,N (t1, t2) ⋅

𝜕

𝜕t2
ln𝕄D,N (t1, t2), (B.51)

and
𝜕 ln𝕄D,N (t1, t2)

𝜕t2
= 𝜕

𝜕t2

[
−1
2

r∑
i=1

ln(1 − 2t1 − 2t2𝜆i) − 𝛿 +
r∑

i=1

𝜇∗2
i ∕2

1 − 2t1 − 2t2𝜆i

]

=
r∑

i=1

𝜆i

1 − 2t1 − 2t2𝜆i
+

r∑
i=1

𝜆i𝜇
∗2
i

(1 − 2t1 − 2t2𝜆i)2
, (B.52)

so that
𝜕𝕄D,N (t1, t2)

𝜕t2

|||||t2=0 =
r∏

i=1
(1 − 2t1)

− 1
2 exp

(
−𝛿 +

r∑
i=1

𝜇∗2
i ∕2

1 − 2t1

)

×

[ r∑
i=1

𝜆i

1 − 2t1
+

r∑
i=1

𝜆i𝜇
∗2
i

(1 − 2t1)2

]
.

For convenience, define

𝛾m ∶= 𝝁′Hm𝝁 = 𝝁′Q𝚲mQ′𝝁 = 𝝁∗ ′𝚲m𝝁∗ =
r∑

i=1
𝜆mi 𝜇

∗2
i , m ∈ ℕ, (B.53)

and

𝛼m ∶= tr(Hm) =
r∑

i=1
𝜆mi , m ∈ ℕ. (B.54)

Using these and that 𝛿 = 1
2

∑r
i=1 𝜇

∗2
i from (B.47), we get4

𝜕𝕄D,N (t1, t2)
𝜕t2

|||||t2=0 =
[

𝛼1

(1 − 2t1)r∕2+1
+

𝛾1

(1 − 2t1)r∕2+2

]
× exp

(
−𝛿 + 𝛿

1 − 2t1

)
.

In order to simplify this, define

h(x, c, 𝛿,m) ∶= 1
(1 − 2x)c+m

exp
{
−𝛿 + 𝛿

1 − 2x

}
, (B.55)

so that
𝜕𝕄D,N (t1, t2)

𝜕t2

|||||t2=0 = 𝛼1h
(
t1,

r
2
, 𝛿, 1
)
+ 𝛾1h

(
t1,

r
2
, 𝛿, 2
)
.

4 This differs from Ghazal (1994, Eq. 2.24) because of a minor error in that presentation.
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From (B.50), we require

H(c, 𝛿,m, n) ∶= 1
Γ(n) ∫

0

−∞
(−x)n−1h(x, c, 𝛿,m) dx.

Substituting t = 1∕(1 − 2x) leads to

H(c, 𝛿,m, n) = e−𝛿
2nΓ(n) ∫

1

0
tc+m−n−1(1 − t)n−1e𝛿t dt.

Now, using the integral expression for the confluent hypergeometric function (II.5.27),

1F1(a, b; z) =
1

B(a, b − a) ∫
1

0
ya−1(1 − y)b−a−1ezy dy,

and Kummer’s transformation (II.5.29), 1F1 (a, b, x) = ex 1F1 (b − a, b,−x), gives

H(c, 𝛿,m, n) = Γ(c +m − n)
Γ(c +m)

1
2n 1F1(n, c +m; −𝛿), c +m > n. (B.56)

Thus, we finally arrive at the pleasantly compact expression

𝔼[R] = 𝛼1f (1, 1) + 𝛾1f (2, 1), (B.57)

where f (m, n) ∶= H
(

r
2
, 𝛿,m, n

)
. A similar calculation verifies that

𝔼[R2] = (2𝛼2 + 𝛼2
1)f (2, 2) + 2(2𝛾2 + 𝛼1𝛾1)f (3, 2) + 𝛾21 f (4, 2), (B.58)

and further tedious work, as done by Ghazal (1994), shows that

𝔼[R3] = [8𝛼3 + 6𝛼2𝛼1 + 𝛼3
1] f (3, 3) + 3[8𝛾3 + 4𝛼1𝛾2 + 𝛾1(2𝛼2 + 𝛼2

1)] f (4, 3)
+ 3𝛾1(4𝛾2 + 𝛼1𝛾1) f (5, 3) + 𝛾31 f (6, 3),

and

𝔼[R4] = [48𝛼4 + 32𝛼3𝛼1 + 12𝛼2𝛼2
1 + 12𝛼2

2 + 𝛼4
1] f (4, 4)

+ 4[48𝛾4 + 24𝛼1𝛾3 + 6𝛾2(2𝛼2 + 𝛼2
1) + 𝛾1(8𝛼3 + 6𝛼2𝛼1 + 𝛼3

1)] f (5, 4)
+ 6[16𝛾3𝛾1 + 8𝛾2(𝛾2 + 𝛼1𝛾1) + 𝛾21 (2𝛼2 + 𝛼2

1)] f (6, 4)
+ 4𝛾21 (6𝛾2 + 𝛼1𝛾1)f (7, 4) + 𝛾41 f (8, 4).

A program to compute (B.57) and (B.58) is given in Listing B.6.

Example B.6 Example B.2 cont.
We wish to see if the Durbin–Watson statistic D in (B.16) is a suitable candidate for (B.40). This
requires setting H=MAM and K=M. As M is idempotent, condition (i) (after (B.40)) is satisfied
and so is condition (ii), becauseHK=MAMM=MAM=MMAM=KH. For condition (iii) to hold,
recall that, if the T × k full-rank matrix X contains a constant term (as is usual), or if all the columns
of X do not have zero mean, then rank(MA) = T − k = rank(M) (see the second canonical reduc-
tion argument on page 703). So, we require this condition on X in order for rank(MA) = rank(M) to
hold, and condition (iii) would follow if rank(MA) = rank(MAM), but this is true, as MA=MMA
andMAM have the same nonzero eigenvalues.
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1 function [mom1,mom2] = ghazal(H,K,mu)
2 if matdif(H,H') > 1e-12, error('H not symmetric'), end
3 if matdif(K,K') > 1e-12, error('K not symmetric'), end
4 if matdif(K,K*K) > 1e-12, error('K not idempotent'), end
5 if matdif(H*K,K*H) > 1e-12, error('H and K do not commute'), end
6 rh=rank(H); rk=rank(K); rhk=rank(H*K);
7 if (rh~=rk) | (rk~=rhk), error('ranks do not agree') else r=rh; end
8 if r==0, error('rank is zero'), end
9

10 delta = 0.5 * mu' * K * mu; gam1 = mu' * H * mu; gam2 = mu' * Hˆ2 * mu;
11 alf1 = trace(H); alf2 = trace(Hˆ2);
12 mom1 = alf1*HH(r/2,delta,1,1) + gam1*HH(r/2,delta,2,1);
13 mom2 = (2*alf2+alf1ˆ2)*HH(r/2,delta,2,2) ...
14 + 2*(2*gam2+alf1*gam1)*HH(r/2,delta,3,2) ...
15 + gam1ˆ2*HH(r/2,delta,4,2);
16
17 function d = matdif(A,B), d = max(max(abs(A-B)));
18 function v = HH(c,delta,m,n)
19 k = gamma(c+m-n) / gamma(c+m) / 2ˆn;
20 if exist('hypergeom','file')
21 v = k * hypergeom(n,c+m,-delta); % in the symbolic toolbox in Matlab
22 else
23 v = k * f11(n,c+m,-delta); % the Laplace approximation from page II.197
24 end

Program Listing B.6: Computes (B.57) and (B.58).

Before proceeding, we can verify that (B.57) and (B.58) indeed reduce to the expression given in
Section B.1 when 𝝁 = 𝟎. In this case, 𝛿 = 𝛾m = 0, and, as

1F1(a, b, 0) =
Γ(b)

Γ(a) Γ(b − a) ∫
1

0
ta−1(1 − t)b−a−1 dt = 1,

it follows that

H
( r
2
, 0,m, n

)
= 1

2n
Γ
(

r
2
+m − n

)
Γ
(

r
2
+m
) .

Thus, for the mean,

𝔼[R] = 𝛼1f (1, 1) = tr(H)1
2

Γ
(

r
2
+ 1 − 1

)
Γ
(

r
2
+ 1
) = tr(H)

r
= tr(MAM)

T − k
= tr(MA)

T − k
,

which, in conjunction with (B.18), agrees with (B.5). The second moment is

𝔼[R2] = (2𝛼2 + 𝛼2
1)f (2, 2) = (2 tr(H2) + tr2(H)) 1

22
Γ
(

r
2
+ 2 − 2

)
Γ
(

r
2
+ 2
)

= 2 tr(H2) + tr2(H)
r(r + 2)

,
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so that

𝕍 (R) = 2 tr(H2) + tr2(H)
r(r + 2)

− tr2(H)
r2

= 2 r tr(H
2) − tr2(H)

r2(r + 2)
,

which is precisely as given in (B.5).
Now consider an example for which the expectation of the regression error term is not zero. In

particular, let the true model be

Y = X𝜷 + Z𝜶 + 𝜼, 𝜼 ∼ N(𝟎, 𝜎2I). (B.59)

We estimate the under-specified model Y = X𝜷 + 𝝐, where 𝝐 = Z𝜶 + 𝜼 ∼ N(𝝁, 𝜎2I), with 𝝁 = Z𝜶,
which is unknown (and wrongly assumed to be zero).Then, withM = I − X(X′X)−1X′ and �̂� = MY =
M𝝐 = M(Z𝜶 + 𝜼), and using the symmetry and idempotency ofM,

D = �̂�
′A�̂�
�̂�
′
�̂�

=
(Z𝜶 + 𝜼)′MAM(Z𝜶 + 𝜼)
(Z𝜶 + 𝜼)′M(Z𝜶 + 𝜼)

.

We consider a special case for illustration. Assume that a particular time series is generated by the
model Yt = 𝛽1 + 𝛽2t + 𝛼𝑣t + 𝜂t , t = 1,… ,T , where 𝜂t

i.i.d.∼ N(0, 𝜎2), 𝛽1, 𝛽2 and 𝛼 are unknown coeffi-
cients, and v = (𝑣1,… , 𝑣T )′ is the vector used in Example B.5.
We are interested in themean and variance of the Durbin–Watson statistic,D, if themodel is incor-

rectly specified by omitting vector v from the regression, which, with its sinusoidal form, represents
a variable that describes the cyclical nature of the Yt series. With 𝜎 = 1, Figure B.6 plots the mean
of D corresponding to the under-specified model Yt = 𝛽1 + 𝛽2t + 𝜖t , along with 1.96 times the square
root of its variance, as a function of 𝛼. (The reader should confirm that the values of 𝛽1 and 𝛽2 are
irrelevant).
We see that the mean of D decreases as 𝛼 moves away from zero (the same values result using

negative values of 𝛼), and the variance decreases. The horizontal dashed lines serve to indicate where
Dwould lie, with 95% probability, if 𝛼 were truly zero. For 𝛼 larger than about six, the Durbin–Watson
test would tend to reject its null hypothesis of zero autocorrelation in the residuals, even though there
is no autocorrelation in the true residuals. What is happening is that, because the omitted regressor
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Figure B.6 The mean of D, and the mean plus and minus 1.96 times its standard deviation, as a function of 𝛼, when
using the mis-specified model that erroneously assumes 𝛼 = 0.
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has sinusoidal behavior and is part of the residual of the under-specifiedmodel, it mimics the behavior
of an autocorrelated series, so that, as its presence increases (via increasing |𝛼|), the distribution of D
deviates further from the null case.
This effect is well-known in econometrics, so that significance of the Durbin–Watson test can

be interpreted as evidence that the model is mis-specified. Given that (reliable) data on certain
economic variables are sometimes not available, such an occurrence is more of the rule than the
exception in econometrics. Because the desired data are not available, the correct model cannot be
estimated, but one can instead estimate the under-specified model together with an autoregressive
process like (B.14), which could lead to more accurate estimation of 𝜷 and produce better forecasts
of Yt . ◾

Remark Themore general case of 𝔼[Np∕Dq] from (B.40), for p, q ⩾ 0 and p not necessarily an inte-
ger, and with less restrictions than we used, is addressed in Bao and Kan (2013). See also Roberts
(1995) and Ullah et al. (1995). ◾

B.4 For X ∼ N(𝝁,𝚺)

This is the most general case we consider, and is naturally the most difficult. First observe that we can
always write

R = X′HX
X′KX

= X′𝚺−1∕2𝚺1∕2H𝚺1∕2𝚺−1∕2X
X′𝚺−1∕2𝚺1∕2K𝚺1∕2𝚺−1∕2X

= Z′LZ
Z′NZ

,

whereZ=𝚺−1∕2X ∼ N(𝚺−1∕2𝝁, IT ),L = 𝚺1∕2H𝚺1∕2, andN = 𝚺1∕2K𝚺1∕2. If the conditionK𝚺H = H𝚺K
holds, then

LN = 𝚺1∕2H𝚺1∕2𝚺1∕2K𝚺1∕2 = 𝚺1∕2H𝚺K𝚺1∕2

= 𝚺1∕2K𝚺H𝚺1∕2 = 𝚺1∕2K𝚺1∕2𝚺1∕2H𝚺1∕2 = NL,

and the commutative property necessary in Section B.3 holds. Condition K𝚺H = HΣKmight not be
fulfilled in real applications, but moreover N needs to be idempotent, and the rank condition also
needs to be met.Thus, the results of Section B.3 are not generally applicable when 𝚺 ≠ 𝜎2I, and other
methods will have to be entertained.
Analytic results are available: Magnus (1986) derives a computable integral expression for H sym-

metric and K positive semi-definite. See also Bao and Kan (2013) and the references therein. We
discuss two alternative, somewhat easier methods.
The first simply uses a Taylor series approximation: LetX = X′HX and Y = X′KX, so that R = X∕Y .

From (II.2.32) and (II.2.33),

𝔼[R] ≈
𝜇X

𝜇Y

(
1 + 𝕍 (Y )

𝜇2
Y

− Cov(X,Y )
𝜇X𝜇Y

)
, (B.60)

𝕍 (R) ≈
𝜇2
X

𝜇2
Y

(
𝕍 (X)
𝜇2
X

+ 𝕍 (Y )
𝜇2
Y

− 2 Cov(X,Y )
𝜇X𝜇Y

)
, (B.61)
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where 𝜇X = 𝔼[X], 𝜇Y = 𝔼[Y ] and, from (A.6), (A.7), and (A.8),

𝜇X = tr(H𝚺) + 𝝁′H𝝁, 𝕍 (X) = 2 tr(H𝚺HΣ) + 4𝝁′H𝚺H𝝁,

𝜇Y = tr(K𝚺) + 𝝁′K𝝁, 𝕍 (Y ) = 2 tr(K𝚺KΣ) + 4𝝁′K𝚺K𝝁,

and Cov(X,Y ) = 2 tr(H𝚺KΣ) + 4𝝁′H𝚺K𝝁.
It is difficult to state when these expressions will be accurate, as they depend on many variables,

though we can be confident that (B.60) will usually be more accurate than (B.61). Often, R will be a
statistic associated with a particular model, and as the sample size increases, so will the accuracy of
(B.60) and (B.61), all other things being equal. This is best demonstrated with an example.

Example B.7 Example B.6 cont.
We continue to examine the behavior of the Durbin–Watson statistic when themodel is mis-specified
and there are regressors missing from the observation equation (B.13). As in Example B.6, the true
regression model is Yt = 𝛽1 + 𝛽2t + 𝛽3𝑣t + 𝜖t , t = 1,… ,T , along with an autoregressive error term
𝜖t = a𝜖t−1 +Ut , Ut

i.i.d.∼ N(0, 𝜎2).
We compute the mean and variance of D as a function of the autoregressive parameter a when

the model is under-specified by omitting the regressor v, so that the error term has mean 𝝁 = 𝛽3v
(and covariance matrix 𝚺 from the AR model). This is done for T = 20 and 𝛽3 = 6, and shown in
Figure B.7.The solid line shows the exact values (computed using the method described below), while
the dashed lines were computed with (B.60) and (B.61). We see that the mean is approximated very
well with (B.60), while (B.61) breaks down as a → −1.
For comparison, the mean and variance of D when 𝛽3 = 0 are also plotted as dash-dot lines. The

inscribed arrows show that, if the true autoregressive parameter a is near −0.74, then the expected
value ofD computed under the mis-specified model will be near the value that one expects under the
null hypothesis of no autocorrelation!This sinister fact should be kept in mind when confronted with
the results of an econometric regression analysis that claims non-significance of the Durbin–Watson
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Figure B.7 The mean (left) and variance (right) (not multiplied by T), of the Durbin–Watson statistic, as a function of

the autoregressive parameter a. The true model is Yt = 𝛽1 + 𝛽2t + 𝛽3𝑣t + 𝜖t , t = 1,… , T , 𝜖t = a𝜖t−1 + Ut , Ut
i.i.d.∼ N(0, 𝜎2),

with 𝛽3 = 6, T = 20, and vector v = (𝑣1,… , 𝑣T )′ is the same as used in Example B.6, but the regression model is
mis-specified as Yt = 𝛽1 + 𝛽2t + 𝜖t . The solid lines are the exact values; the dashed lines were computed from (B.60)
and (B.61). The dash-dot lines show the exact mean and variance when 𝛽3 = 0 (so that the model would not be
under-specified). The arrows in the left plot indicate how to determine that value of a such that the mean of Dwould
be precisely the same value if there were no autocorrelation (a = 0) and if the model were not mis-specified; it is
a = −0.74.
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Figure B.8 Same as Figure B.7 but using T = 80 (top) and T = 400 (bottom).

statistic. It would render the parameter estimates biased, jeopardizing conclusions drawn from them
(and possibly answering the embarrassing question as to why the coefficients sometimes “have the
wrong sign”). There is some good news: The under-specified model can potentially still be used to
produce forecasts: they will obviously not be as good as ones produced with a correctly specified
model, and their confidence intervals will be wrong, because they depend on the Xmatrix.
Figure B.8 is similar to Figure B.7, but uses T = 80 and T = 400. The approximation to the mean is

virtually exact in both cases, and the variance approximation has improved greatly. In addition, we see
that the effect of model under-specification diminishes as the sample size grows. Finally, for T = 400,
there were numeric problems with the computation of the exact moments for most of the values of
a < 0. Conveniently, for large sample sizes, (B.60) and (B.61) are very accurate and much faster to
compute than the exact values. ◾

An obvious way of calculating the nth moment of R, provided it exists, to a high degree of accuracy
is just to numerically compute it as

𝔼[Rn] = ∫ rnfR(r) dr, (B.62)

using the exact or saddlepoint methods for the p.d.f. Alternatively, one can use the c.d.f. of R via the
expression

𝔼[Rn] = ∫
∞

0
nrn−1(1 − FR(r)) dr − ∫

0

−∞
nrn−1FR(r) dr, (B.63)
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which was derived in Problem I.7.13. As an example with the Durbin–Watson test, it is clear from
(B.16) that D ⩾ 0, so that (B.63) simplifies to

𝔼[Dn] = ∫
∞

0
nrn−1(1 − FD(r)) dr.

This can be further refined by recalling from (B.18) that D can be expressed as Z′ÃZ∕Z′Z, where the
nonzero eigenvalues of Ã are the same as those of MA, so that (A.34) implies 0 ⩽ dmin < D < dmax,
where dmin and dmax are the minimum and maximum eigenvalues ofMA. Thus,

𝔼[Dn] = ∫
dmax

dmin

nrn−1(1 − FD(r)) dr = ∫
dmax

dmin

nrn−1 dr − ∫
dmax

dmin

nrn−1FD(r) dr

= dn
max − dn

min − n∫
dmax

dmin

rn−1FD(r) dr. (B.64)

Because FD(r) = 0 for r < dmin, it is easy to verify that dmin could be replaced by a non-negative number
less than dmin, in particular, zero, the lower bound of D. Similarly, as FD(r) = 1 for r > dmax, the value
dmax could be replaced by any number larger than it, such as 4, which is the upper bound of D: This
follows from (A.34) and (B.16), withD = �̂�′A�̂�∕�̂�′�̂�, and (B.11). Thus, we can also write the pleasantly
simple looking

E[Dn] = 4n − n∫
4

0
rn−1FD(r) dr.

As an aside, another way to see that 0 < D < 4 is by comparing it to the first sample autocorrelation,
R1, given in (B.21). Because it is a sample correlation, |R1| < 1, and the reader can check that

D = 2(1 − R1) −
𝜖21 + 𝜖2T∑T

t=1 𝜖
2
t

,

which implies that 0 < D < 4.
The program in Listing B.7 computes (B.64) for a given Xmatrix, choice of n, and values for 𝝁 and

𝚺. The parameter method allows the choice between using the exact c.d.f. or the s.p.a. The program

1 function m=dwmoment(n,X,method,Sigma,mu)
2 [T,k]=size(X); M=makeM(X);
3 if nargin<3, method=1; end
4 if nargin<4, Sigma=eye(T); end
5 if nargin<5, mu=zeros(T,1); end
6 A=M*makeDW(T)*M; B=M; ee=eig(A); dmin=min(ee); dmax=max(ee);
7 m = dmaxˆn - dminˆn - n*quadgk(@(rvec)fun(rvec,n,A,B,Sigma,mu,method),dmin,dmax);
8 m=real(m); % remove possible roundoff error
9

10 function I=fun(rvec,n,A,B,Sigma,mu,method)
11 I = rvec.ˆ(n-1) .* cdfratio(rvec,A,B,Sigma,mu,method)';

Program Listing B.7: Computes the nth moment of the Durbin–Watson statistic for regression
model 𝐘 = 𝐗𝜷 + 𝝐, and 𝝐 ∼ NT (𝝁,𝚺). Matrix 𝚺 corresponds in our applications in this chapter to
the AR(1) model, and is given by (B.39). Pass method as 1 (default) to use exact c.d.f. calculation
(numeric inversion of the c.f.) or pass 2 to use the s.p.a.
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Figure B.9 The relative percentage error 100(Approx − Exact)∕Exact, as a function of parameter a, based on the s.p.a.
for the mean (left) and variance (right) of the Durbin–Watson statistic using the same parameter values as those in
Figure B.7.

is quite short, because all the real work is done by calling function cdfratio, given in Listing A.3,
which itself calls routines for the inversion formula for the c.d.f., or the saddlepoint approximation. As
a check on its implementation, it can be used to compute the mean and variance shown in Figure B.6;
use of (B.57) and (B.58) takes about 2/3 of the computing time compared to (B.64).
To assess the error introduced via use of the s.p.a., Figure B.9 shows the relative percentage error,

defined as r.p.e. = 100(Approx − Exact)∕Exact between them, as a function of parameter a. We see
that use of the s.p.a. for computing (B.64) for themean yields less than one tenth of 1% error for almost
the entire parameter space of a, though it begins to break down for values of a extremely close to −1.
This is the same behavior that the Taylor series approximation exhibited, though on a much smaller
scale. For the variance, the percentage error is under a tenth of 1% for −0.6 < a < 0.4, and under 2%
for |a| < 0.98, and begins to break down as a → −1. Again, this behavior is similar to that of the Taylor
series approximation, but with a vastly higher accuracy.

Example B.8 Recall the sample autocorrelation Rs from (B.21), with |Rs| ⩽ 1.5 Thus, from (B.63),
the mean of Rs can be expressed as

𝔼[Rs] = ∫
1

0
(1 − FRs

(r)) dr − ∫
0

−1
FRs

(r) dr = 1 − ∫
1

−1
FRs

(r) dr,

and, in general,

𝔼[Rn
s ] = 1 − n∫

1

−1
rn−1FRs

(r) dr. (B.65)

This is readily computed using an obvious modification of the code in Listing B.7. ◾

5 The support of Rs could be even smaller, however, depending on the eigenvalues of As via relation (A.34). With T = 10 and
s = 1, the eigenvalues range between ±0.9595. If the mean of the data is subtracted before computing R1 (corresponding to
regression residuals with an Xmatrix equal to a column of ones), then, along the lines of (B.18), the support of R1 is bound by
the smallest and largest (nonzero) eigenvalues ofMA1, which, for T = 10, are −0.9595 and 0.8413. From (B.24), the mean in
this case is −1∕10.
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B.5 Useful Matrix Algebra Results

The following small collection of matrix results are standard and can be found in numerous books
dedicated to the subject, e.g., Searle (1982), Graybill (1983), Horn (1994), Harville (1997), Schott
(2005), Abadir and Magnus (2005), Magnus and Neudecker (2007), Gentle (2007), and Khuri and
Searle (2017). More succinct accounts emphasizing the required results for studying linear models
(with proofs) can be found in Ravishanker and Dey (2002, Ch. 1–3), and Seber and Lee (2003, App.
A), both of which also serve as excellent compliments to this book for augmentingChapters 1, 2, and 3.
If A and B are two conformable matrices, then

rank(AB) ⩽ min(rank(A), rank(B)). (B.66)

If A and B are two matrices of the same size, then

rank(A+B) ⩽ rank(A) + rank(B). (B.67)

If A and B are n × n and n × k matrices, respectively, k ⩾ 1, then

rank(AB) ⩾ rank(A) + rank(B) − n. (B.68)

If A, B, and C are three matrices such that the following products are defined, then

rank(AB) + rank(BC) ⩽ rank(B) + rank(ABC). (B.69)

Note that if B= I, (B.69) reduces to (B.68).
If A is a square matrix whose diagonal elements are differentiable functions of x, then

𝜕 tr(A)
𝜕x

= tr
(
𝜕A
𝜕x

)
. (B.70)

If A and B are matrices whose elements are differentiable functions of x and such that the product
AB is defined, then

𝜕AB
𝜕x

= 𝜕A
𝜕x

B+A𝜕B
𝜕x

. (B.71)

If A is a symmetric matrix whose elements are differentiable functions of x, then
𝜕|A(x)|

𝜕x
= |A|tr(A−1 𝜕A

𝜕x

)
, (B.72)

(see Searle, 1982, p. 337, eq. (38) and (39)) and
𝜕A−1(x)

𝜕x
= −A−1

(
𝜕A
𝜕x

)
A−1, (B.73)

(see Searle, 1982, p. 335, eq. (22)).

Theorem B.2 If A and B are two T × T symmetric matrices, then a necessary and sufficient condi-
tion for an orthogonal matrix P to exist such that P′AP=DA and P′BP=DB where both DA and DB
are diagonal and the elements ofDA are the eigenvalues ofA, is thatA and B commute, i.e.,AB=BA.
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Proof :
(⇐)AssumeAB=BA. Following Searle (1982, p. 312) and Graybill (1983, p. 406), we take R to be the

orthogonal matrix, and DA to be the diagonal matrix, such that

R′AR=DA = diag(𝜆iImi
) =
⎡⎢⎢⎢⎣
𝜆1Im1

𝟎 · · · 𝟎
𝟎 𝜆2Im2

· · · 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 · · · 𝜆sIms

⎤⎥⎥⎥⎦ ,
where 𝜆i is one of the s distinct eigenvalues of A of multiplicitymi, and

∑s
i=1 mi = T . Define

C=R′BR = (Ci,j)i,j =

⎡⎢⎢⎢⎢⎣
C11 C12 · · · C1s
C21 C22 · · ·
⋮ ⋮ ⋱ ⋮
Cs1 · · · Css

⎤⎥⎥⎥⎥⎦
, (B.74)

where the partition of C is the same as that of DA. As R is full rank and orthogonal, and AB=BA,
DAC=R′ARR′BR=R′ABR=R′BAR=R′BRR′AR=CDA.

EquatingCDA andDAC easily shows thatCi,j𝜆j = 𝜆iCi,j ∀ (i, j). However, as 𝜆i ≠ 𝜆j for i ≠ j,Ci,j = 𝟎
for i ≠ j. This shows that C is block diagonal, diag(Ci,i), and, as B is symmetric, so is C, implying
that the Ci,i are also symmetric. Thus, there exists orthogonal matrices Qi and diagonal matrices
Di, i = 1,… , s, such thatQ′

iCi,iQi = Di.
DefineQ ∶= diag(Qi,i) and DB ∶= diag(Di), so thatQ′CQ = DB, or

Q′R′BRQ=DB,

withQ orthogonal and block diagonal. Observe that the block structures ofQ andDA are the same,
and as DA = diag(𝜆iImi

),Q and DA commute, implyingQ′DAQ = DA, or

Q′R′ARQ=DA.

Let P=RQ. As both R and Q are orthogonal, multiplying shows that PP′ =P′P= I, i.e., P is an
orthogonal matrix diagonalizing both A and B.

(⇒) To prove that AB=BA is necessary, assume an orthogonal matrix P exists such that P′AP=DA
and P′BP=DB with DA and DB diagonal. As DADB is diagonal (and thus equal to its transpose),
DADB = DBDA, so that

AB = PDAP′PDBP′ = PDADBP′ = PDBDAP′ = PDBP′PDAP′ =BA,
proving the theorem. ◾

The following extension is used in Example B.2 and is also fundamental to the results of Section B.3.

Theorem B.3 Let A ,B ∈ ℝT×T be symmetric matrices that commute. If B is also idempotent and
of rank r ⩽ T , then DB is in fact the diagonal matrix of eigenvalues of B, with r ones and T − r zeros.
If in addition

rank(B) = rank(A) = rank(BA) = r,
then DB has its ones in the same i, i position in DB as the nonzero 𝜆i in DA.
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Proof : Using the same notation as in the proof ofTheorem B.2, forDB to have the required structure,
each Di must consist of nothing but zeros and ones on its diagonal. This holds iff Ci,i is both sym-
metric and idempotent ∀i, or, recalling that C = diag(Ci,i), iff C is symmetric and idempotent. From
(B.74) and the fact that R is orthogonal, this is equivalent to B being symmetric and idempotent, i.e.,
a projection matrix. As P is orthogonal, rank(DB) = rank(B) = r, so thatDB consists of exactly r ones
and T − r zeros. For the second statement in the theorem, observe that rank(BA) = rank(PDBDAP′).
As PDBDAP′ is symmetric, its rank is equal to the number of its nonzero eigenvalues, which is equal
to the number of nonzero eigenvalues ofDBDA, which is a diagonal matrix with rank r only whenDB
has its ones in the same i, i position in DB as the nonzero 𝜆i in DA. ◾

We now turn to the Poincaré separation theorem, as needed to establish a result given in (5.23).
The following presentation is based on Magnus and Neudecker (2007, p. 232–237). We start with a
theorem and two lemmas needed to prove the theorem.

Theorem B.4 IfA is anm × nmatrix andB is an n ×mmatrix, n ⩾ m, then the nonzero eigenvalues
of AB are the same as those of BA, and the latter has an additional n −m zero eigenvalues.

Proof : See, e.g., Magnus and Neudecker (2007, p. 16) or Rao et al. (2008, p. 498). ◾

Lemma B.1 Let A be a real, symmetric, T × T matrix with ordered eigenvalues 𝜆1 ⩽ 𝜆2 ⩽ … ⩽ 𝜆T ,
and S = (s1, s2,… , sT ) orthogonal such that S′AS = diag(𝜆1, 𝜆2,… , 𝜆T ). Let x be anyT × 1 real vector,
and let Rk ∶= (s1, s2,… , sk), and Tk ∶= (sk , sk+1,… , sT ). Then

𝜆k = min
x∶R′

k−1x=0

x′Ax
x′x

, k = 2,… ,T , 𝜆k = max
x∶T′

k+1x=0

x′Ax
x′x

, k = 1,… ,T − 1. (B.75)

Proof : Let y = S′x. Partition S and y as S=(Rk−1,Tk) and y =
(

y1
y2

)
, respectively, so that

x= Sy=Rk−1y1 + Tky2. As
(

y1
y2

)
=
(

R′
k−1
T′

k

)
x,

R′
k−1x = 𝟎 ⇐⇒ y1 = 𝟎 ⇐⇒ x = Tk y2.

As S is an orthogonal matrix that diagonalizes A,

s′isj =
{

1, if i = j,
0, if i ≠ j, s′iAsj =

{
𝜆j, if i = j,
0, if i ≠ j,

and, in particular, T′
kAT

′
k = diag([𝜆k , 𝜆k+1,… , 𝜆T ]). This gives

min
R′

k−1x=0

x′Ax
x′x

= min
x=Tky2

x′Ax
x′x

= min
y′2(T

′
kAT

′
k)y2

y′2y2
= 𝜆k ,

where the last equality follows from Theorem A.4. The second equality in (B.75) is proved similarly,
partitioning S as (Rk ,Tk+1). ◾

Lemma B.2 Let A be defined as in Lemma B.1 above. For every T × (k − 1) matrix B, and every
T × (T − k)matrix C,

min
x∶B′x=0

x′Ax
x′x

⩽ 𝜆k ⩽ max
x∶C′x=0

x′Ax
x′x

, 1 ⩽ k ⩽ T ,

with only the first (second) equality applying when k = T (k = 1).
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Proof : Let R ∶= Rk and S be defined as in Lemma B.1, so that R′R= Ik , and

R′AR = diag([𝜆1, 𝜆2,… , 𝜆k]).

As there can be at most k − 1 independent columns in the (k − 1) × k matrix B′R, there exists a p ≠ 𝟎
such that

B′Rp = 𝟎. (B.76)

Thus, the restriction B′x = 𝟎 is equivalent to setting x=Rp when p satisfies (B.76). It follows that

min
B′x=0

x′Ax
x′x

= min
x=Rp

x′Ax
x′x

= min
p∶B′Rp=0

p′(R′AR)p
p′p

⩽ max
p∶B′Rp=0

p′(R′AR)p
p′p

= 𝜆k ,

where the last equality follows fromTheorem A.4.
The proof of the second inequality in the lemma follows similarly, using T∶=Tk defined in the

previous lemma in place of R. ◾

Theorem B.5 Poincaré Separation Theorem Let A be defined as in Lemma B.1 above, with
eigenvalues 𝜆1 ⩽ 𝜆2 ⩽ … ⩽ 𝜆T . Let G be a T × k matrix, 1 ⩽ k ⩽ T , such that G′G= Ik , and denote
the sorted eigenvalues of G′AG by 𝜇1 ⩽ 𝜇2 ⩽ … ⩽ 𝜇k . Then 𝜆i ⩽ 𝜇i ⩽ 𝜆n−k+i, i = 1, 2,… , k.

Proof : For k = 1,G is aT × 1 vector. Renaming it x, and noting that 𝜇1 = x′Ax, we see this is a restate-
ment of Theorem A.4. For k = T , the theorem states that A and G′AG have the same eigenvalues,
which follows fromTheorem B.4.
For 2 ⩽ k ⩽ T − 1, let S, R∶=Ri−1 and T ∶= TT−j be defined as in Lemma B.1. For 1 ⩽ i ⩽ k,

𝜆i = min
x∶R′x=0

x′Ax
x′x

⩽ min
R′x=0
x=Gy

x′Ax
x′x

= min
y∶R′Gy=0

y′G′AGy
y′y

⩽ 𝜇i .

The first equality follows from Lemma B.1 for i > 1, and fromTheoremA.4 for i = 1, whereby x is not
restricted.The second equality holds because of the added restriction that x lies in the k-dimensional
subspace spanned by the columns of G. The last inequality follows from Lemma B.2, taking B (which
was arbitrary) to be R′G.
Next, let T − k + 1 ⩽ j ⩽ T − 1. By a similar argument,

𝜆j = max
x∶T′x=0

x′Ax
x′x

⩾ max
T′x=0
x=Gy

x′Ax
x′x

= max
y∶T′Gy=0

y′G′AGy
y′y

⩾ 𝜇k−T+j .

The result follows by taking j = T − k + i. ◾

Corollary 1 Let A be defined as in Lemma B.1 above, with eigenvalues 𝜆1 ⩽ 𝜆2 ⩽ … ⩽ 𝜆T , and let
M be a T × T projection matrix of rank k, 1 ⩽ k ⩽ T . Denoting the nonzero ordered eigenvalues of
MAM as 𝜇1 ⩽ 𝜇2 ⩽ … ⩽ 𝜇k , we have, for i = 1, 2,… , k,

𝜆i ⩽ 𝜇i ⩽ 𝜆n−k+i .

Proof : Theorem 1.3 shows that M can be expressed as M = GG′, where G′G= Ik . The result now
follows from Theorem B.4, i.e., the positive eigenvalues of GG′AGG′ are the same as those of
G′AG. ◾
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B.6 Saddlepoint Equivalence Result

We prove the result stated after (B.26), this being a special case of the results in Butler and Paolella
(1998). In order to do so, we first repeat the relevant saddlepoint formulae from Chapter II.5. The
Lugannani and Rice (1980) expression for the s.p.a. to the c.d.f. of continuous r.v. X is given by

F̂X(x) = Φ(�̂�) + 𝜙(�̂�)
{ 1
�̂�

− 1
û

}
, x ≠ 𝔼[X], (B.77)

where Φ and 𝜙 are the c.d.f. and p.d.f. of the standard normal distribution, respectively, and

�̂� = sgn(ŝ)
√
2ŝx − 2 𝕂X(ŝ), û = ŝ

√
𝕂′′

X(ŝ). (B.78)

We refer to this as the single-saddlepoint.
The Skovgaard (1987) double-saddlepoint result is as follows. Let 𝕂(s, t) denote the joint c.g.f. for

continuous random variables X and Y , assumed convergent over  , an open neighborhood of (0, 0).
The gradient of 𝕂 is 𝕂′(s, t) = (𝕂′

s(s, t),𝕂′
t(s, t))′, where

𝕂′
s(s, t) ∶=

𝜕

𝜕s
𝕂(s, t), 𝕂′

t(s, t) ∶=
𝜕

𝜕t
𝕂(s, t),

and

𝕂′′(s, t) ∶=
[
𝕂′′

ss(s, t) 𝕂′′
st(s, t)

𝕂′′
ts(s, t) 𝕂′′

tt(s, t)

]
, 𝕂′′

ss(s, t) =
𝜕2

𝜕s2
𝕂(s, t), etc., (B.79)

is the Hessian.
Let  be the interior of the convex hull of the joint support of (X,Y ). Skovgaard (1987) derived a

double-saddlepoint approximation for the conditional c.d.f. of X at x given Y = y, for (x, y) ∈  . In
this case, the gradient is a one-to-one mapping from the convergence strip  onto  . There are two
saddlepoints to compute when using this approximation; the first is the unique pre-image of (x, y) in
 , denoted (s̃, t̃), computed as the solutions to

𝕂′
s(s̃, t̃) = x, 𝕂′

t(s̃, t̃) = y. (B.80)

This is the numerator saddlepoint in the approximation.The second is found by fixing s = 0 and solv-
ing𝕂′

t(0, t̃0) = y for the unique value of t̃0 in {t ∶ (0, t) ∈ }.This is the denominator saddlepoint.The
c.d.f. approximation is then given by

Pr(X ⩽ x ∣ Y = y) ≈ Φ(�̃�) + 𝜙(�̃�){�̃�−1 − ũ−1}, s̃ ≠ 0, (B.81)

where

�̃� = sgn(s̃)
√
2
√

s̃x + t̃y − 𝕂(s̃, t̃) − t̃0y + 𝕂(0, t̃0), (B.82)

ũ = s̃
√|𝕂′′(s̃, t̃)| ∕ 𝕂′′

tt(0, t̃0). (B.83)

Because the forms of the Lugannani–Rice (B.77) and Skovgaard (B.81) approximations are the
same, this amounts to showing that �̂� = �̃� and û = ũ, where hats and tildes indicate single- and
double-saddlepoint quantities, respectively.
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In particular, for the (first-order) single-s.p.a., from (A.32) and (A.49), F̂R(r) = F̂S(0), where
S =
∑n

i=1(𝜁i − r)𝜒2
i , with 𝜒2

i
i.i.d.∼ 𝜒2(1), i = 1,… , n, 𝜁i are the eigenvalues ofA, and min𝜁i < r < max𝜁i.

For

𝕂S (s) = −(1∕2)
n∑
i=1

ln(1 − 2s(𝜁i − r)),

(B.78) is

�̂� = sgn(ŝ)
√
−2 𝕂S (ŝ), û = ŝ

√
𝕂′′

S (ŝ),

where saddlepoint ŝ is the unique root of
n∑
i=1

𝜁i − r
1 − 2ŝ(𝜁i − r)

= 𝕂′
S (ŝ) = 0 (B.84)

in
0 = {s ∶ 1 − 2s(𝜁i − r) > 0, i = 1,… , n}.

For the double-s.p.a., from (B.26),

𝕂 (s, t) = 𝕂U,V (s, t) = −(1∕2)
n∑
i=1

ln(1 − 2(s𝜁i + t)),

and s̃, t̃ are the unique values in
1 = {(s, t) ∶ t < (1 − 2s𝜁i)∕2, i = 1,… , n}

=
{
(s, t) ∶ t < 1

2
min(1 − 2smini𝜁i, 1 − 2smaxi𝜁i)

}
that satisfy

n∑
i=1

𝜁i

1 − 2(s̃𝜁i + t̃)
= 𝕂′

s(s̃, t̃) = r, (B.85a)

n∑
i=1

1
1 − 2(s̃𝜁i + t̃)

= 𝕂′
t(s̃, t̃) = 1. (B.85b)

From (B.82) and (B.83) with x = r and y = 1,

�̃� = sgn(s̃)
√
2
√

s̃r + t̃ − 𝕂(s̃, t̃) − t̃0 + 𝕂(0, t̃0), ũ = s̃

√|𝕂′′(s̃, t̃)|
𝕂′′

tt(0, t̃0)
,

where𝕂′′(s, t) denotes the Hessian (B.79). Observe that𝕂S takes one argument, and refers to the c.g.f.
for the single-s.p.a., while 𝕂 with two arguments, e.g., 𝕂(s, t), refers to the c.g.f. for the double-s.p.a.,
so there should be no source of confusion.
We first show that (s̃, t̃) is related to ŝ according to

s̃ = nŝ, (B.86a)

t̃ = 1 − n(1 + 2ŝr)
2

, (B.86b)
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a relationship ascertained by trial and error. The true value of (s̃, t̃) is characterized as the unique
solution to (B.85) in region 1. To show that the right side of (B.86) solves these equations, simply
substitute for (s̃, t̃) in terms of ŝ; each equation then reduces to the single-saddlepoint equation. To
illustrate, for (B.85a), this is

0 =
n∑
i=1

𝜁i

1 − 2(s̃𝜁i + t̃)
− r =

n∑
i=1

𝜁i

1 − 2(s̃𝜁i + t̃)
− r

n

n∑
i=1

1 − 2(s̃𝜁i + t̃)
1 − 2(s̃𝜁i + t̃)

=
n∑
i=1

𝜁i −
r
n
+ 2 r

n
(s̃𝜁i + t̃)

1 − 2(s̃𝜁i + t̃)
=

n∑
i=1

𝜁i −
r
n
+ 2 r

n

(
nŝ𝜁i +

1−n(1+2ŝr)
2

)
1 − 2

(
nŝ𝜁i +

1−n(1+2ŝr)
2

)
= 2rŝ + 1

n

n∑
i=1

𝜁i − r
1 − 2ŝ(𝜁i − r)

,

which is equivalent to (B.84). A similar calculation using (B.85b) yields the same result. As ŝ is unique
in 0, the right-hand side of (B.86) indeed solves (B.85). To be the unique root in 1 and, hence, the
true value of (s̃, t̃), it must lie in 1. To see that this is true, note that

(s̃, t̃) ∈ 1 ⇐⇒ t̃ <
1 − 2s̃𝜁i

2
∀i,

and substituting, this is

1 − n(1 + 2ŝr)
2

<
1 − 2nŝ𝜁i

2
∀i ⇐⇒ 1 + 2ŝ(𝜁i − r) > 0 ∀i ⇐⇒ ŝ ∈ 0.

The value of t̃0 for the denominator saddlepoint is the solution to (B.85b) with s̃ fixed to 0, i.e., the
solution to

∑n
i=1(1 − 2t̃0)−1 = 1, or t̃0 = (1 − n)∕2.

Thus, substituting into the expression for �̃�,

�̃� = sgn(s̃)
√
2
√

s̃r + t̃ − 𝕂(s̃, t̃) − t̃0 + 𝕂(0, t̃0)

= sgn(nŝ)
√
2

√√√√√√ nŝr + 1−n(1+2ŝr)
2

+ 1
2

∑n
i=1 ln

(
1 − 2

(
nŝ𝜁i +

1−n(1+2ŝr)
2

))
− 1−n

2
− 1

2

∑n
i=1 ln

(
1 − 2

(
1−n
2

))
= sgn(ŝ)

√
2

√√√√ 1−n
2

+ 1
2

∑n
i=1 ln(n(1 − 2ŝ(𝜁i − r)))

− 1−n
2

− n ln n
2

= sgn(ŝ)

√√√√ n∑
i=1

ln(1 − 2ŝ(𝜁i − r)) = �̂�.

Showing û = ũ is more difficult, with a direct comparison being of no use. Instead, differentiating
both sides of equality s̃ = nŝ with respect to r to yields|𝕂′′(s̃, t̃)| = 2n−3𝕂′′

S (ŝ), (B.87)
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which is shown below. Then, using

𝕂′′
tt(s, t) = 2

n∑
i=1

(1 − 2(s𝜁i + t))−2 so that 𝕂′′
tt(0, t̃0) =

2
n
,

(B.87) implies the final result needed for the proof:

ũ = s̃

√|𝕂′′(s̃, t̃)|
𝕂′′

tt(0, t̃0)
= nŝ

√
2n−3𝕂′′

S (ŝ)
2∕n

= ŝ
√

𝕂′′
S (ŝ) = û.

For the derivation of (B.87), compute the derivative of the double saddlepoint equations (B.85) with
respect to r, using the chain rule (I.A.147), to get

𝜕𝕂′
s(s̃, t̃)
𝜕r

=𝕂′′
ss(s̃, t̃)

𝜕s̃
𝜕r

+ 𝕂′′
st(s̃, t̃)

𝜕t̃
𝜕r

= 𝜕r
𝜕r

= 1 and

𝜕𝕂′
t(s̃, t̃)
𝜕r

=𝕂′′
ts(s̃, t̃)

𝜕s̃
𝜕r

+ 𝕂′′
tt(s̃, t̃)

𝜕t̃
𝜕r

= 𝜕0
𝜕r

= 0,

and write this as the system of equations

𝕂′′(s̃, t̃)
[
𝜕s̃∕𝜕r
𝜕t̃∕𝜕r

]
=
[
1
0

]
.

Use of Cramer’s rule (see, e.g., Trench, 2003, p. 374; or Munkres, 1991, p. 21) then gives

𝜕s̃
𝜕r

=

|||| 1 𝕂′′
st(s̃, t̃)

0 𝕂′′
tt(s̃, t̃)

|||||||| 𝕂′′
ss(s̃, t̃) 𝕂′′

st(s̃, t̃)
𝕂′′

st(s̃, t̃) 𝕂′′
tt(s̃, t̃)

||||
=

𝕂′′
tt(s̃, t̃)|𝕂′′(s̃, t̃)| , (B.88)

and, substituting for s̃ and t̃,

𝕂′′
tt(s̃, t̃) = 2

n∑
i=1

(1 − 2(s̃𝜁i + t̃))−2 = 2
n2

n∑
i=1

(1 − 2ŝ(𝜁i − r))−2. (B.89)

To determine 𝜕ŝ∕𝜕r, differentiate the single-saddlepoint equation 𝕂′
S(ŝ) = 0 in (B.84) using the chain

rule to get

0 =
n∑
i=1

𝜕𝕂′
S(ŝ)

𝜕(𝜁i − r)
𝜕(𝜁i − r)

𝜕r
+

𝜕𝕂′
S(ŝ)
𝜕ŝ

𝜕ŝ
𝜕r

= −
n∑
i=1

1
(1 − 2ŝ(𝜁i − r))2

+ 𝕂′′
S (ŝ)

𝜕ŝ
𝜕r

,

which, from (B.89), implies

n2
2
𝕂′′

tt(s̃, t̃)
𝕂′′

S (ŝ)
= 𝜕ŝ

𝜕r
.

But, as s̃ = nŝ, this and (B.88) implies

1
n

𝕂′′
tt(s̃, t̃)|𝕂′′(s̃, t̃)| = 1

n
𝜕s̃
𝜕r

= 𝜕ŝ
𝜕r

= n2
2
𝕂′′

tt(s̃, t̃)
𝕂′′

S (ŝ)
,

and simplifying yields 2n−3𝕂′′
S (ŝ) = |𝕂′′(s̃, t̃)|, which is (B.87).
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Appendix C

Some Useful Multivariate Distribution Theory

This appendix serves to collect some useful results that fall in the domain of probability and
distribution theory associated with multivariate random variables. We begin in Section C.1 with a
simple derivation of the characteristic function of the Student’s t distribution, along with that for
weighted linear sums of the univariate margins from the multivariate case. Besides being of general
interest, this material will be of use in Chapter 12.
Section C.2 provides a rather detailed introduction to the important concept of ellipticity.This class

of distributions arises in a wide variety of statistical applications, and, in particular, is highly relevant
for quantitative risk management; see, e.g., McNeil et al. (2015). Throughout Part III, we refer to
the notion, and show evidence, that the unconditional distribution of daily stock returns tends to
be non-elliptic. As such, it is important to understand what ellipticity entails. This is all the more
important because conditional models for the data generating process of financial asset returns that
yield the best performance in terms of (multivariate) density forecasts and portfolio construction
often are such that the predictive distribution is indeed elliptic; see, in particular, the evidence and
discussions in Paolella et al. (2018a,b).

C.1 Student’s t Characteristic Function

Recall that the moment generating function (m.g.f.) of r.v. X is given by𝕄X(t) = 𝔼[etX]. It exists if it is
finite on a neighborhood of zero, i.e., if there exists an h > 0 such that, ∀t ∈ (−h, h),𝕄X(t) < ∞. If the
m.g.f. of random variableX exists, then the largest (open) interval  around zero such that𝕄X(t) < ∞
for t ∈  is referred to as the convergence strip (of the m.g.f. of X). When it exists, the m.g.f. uniquely
determines, or characterizes, the distribution, i.e., for a given m.g.f. there is a unique corresponding
c.d.f. (up to sets of measure zero). This fact is useful when the m.g.f. of a random variable is known,
but not its p.d.f. or c.d.f. In addition, if the m.g.f. of random variable X exists, then its mean is given
by 𝜇X = 𝕄′

X(0), and higher-order raw moments 𝜇′
j (X) can be computed as 𝕄(j)

X (0), j = 2, 3,…, where
𝕄(j)(t) denotes the jth derivative with respect to t.
Trivially but usefully, if𝕄Z(t) is the m.g.f. of r.v. Z and X = 𝜇 + 𝜎Z for 𝜎 > 0, then

𝕄X(t) = 𝔼[etX] = 𝔼[et(𝜇+𝜎Z)] = et𝜇𝕄Z(t𝜎). (C.1)

Them.g.f. of vectorX = (X1,… ,Xd)′ is defined to be𝕄X(t) = 𝔼[et′X], where t = (t1,… , td)′. As in the
univariate case, this characterizes the distribution ofX and, thus, all the (univariate and multivariate)

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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margins as well. In particular, observe that
𝕄X((0,… , 0, tj, 0,… , 0)′) = 𝔼[etjXj ] = 𝕄Xj

(tj), j = 1,… , d, (C.2)

so that knowledge of 𝕄X implies knowledge of 𝕄Xj
, j = 1,… , d, similar to knowledge of fX implies

knowledge of all the d univariate marginal p.d.f.s fXj
, but knowing all the fXj

(or all the 𝕄Xj
) does not

convey a full characterization of fX (or𝕄X).
For r.v. Z = (Z1,… ,Zd)′ with m.g.f. 𝕄Z, let X = 𝝁 + 𝚺1∕2Z, for vector 𝝁 = (𝜇1,… , 𝜇d)′ ∈ ℝd and

d × d positive definite matrix 𝚺, which, in general, we denote with the shorthand 𝚺 > 0, with typical
entry denoted 𝜎ij and diagonal elements denoted 𝜎2

j , j = 1,… , d. Then, the extension of (C.1) to the
multivariate case takes the form

𝕄X(t) = et′𝝁𝕄Z(𝚺1∕2t). (C.3)
The characteristic function (c.f.) of r.v. X is given by 𝜑X(t) = 𝔼[eitX] for t ∈ ℝ, and where i denotes
the imaginary unit such that i2 = −1. Unlike the m.g.f., it exists for all random variables, though in
some cases obtaining an analytic expression can be difficult. The uniqueness theorem states that a
distribution is uniquely determined by its c.f., i.e., if random variables X and Y have c.d.f.s FX and FY ,
and c.f.s 𝜑X and 𝜑Y , respectively, and 𝜑X(t) = 𝜑Y (t) for all t ∈ ℝ, then FX = FY “almost everywhere”,
meaning, they can differ only on sets of measure zero. This is what is meant when we say “the unique
c.f. of r.v. X is 𝜑X”. This is written as

X
d
=Y ⇐⇒ 𝜑X = 𝜑Y. (C.4)

If the m.g.f. 𝕄X(t) exists, then, under further conditions that are satisfied in most cases used in sta-
tistical inference (see the discussion and references in Section II.1.2.4), 𝜑X(t) can be determined by
simply evaluating𝕄X(it), though observe that the latter is not formally defined, as them.g.f. is defined
as a mapping from the real line.
Similar to the vector m.g.f., the c.f. of random vector X = (X1,… ,Xd)′ is uniquely given by

𝜑X(t) = 𝔼[eit′X], where t = (t1,… , td)′ ∈ ℝd. (C.5)
We will also need the modified Bessel function of the third kind. It is given by

Kz(x) =
1
2 ∫

∞

0
uz−1 exp

[
−x
2

(1
u
+ u

)]
du, z ∈ ℝ, x ∈ ℝ+. (C.6)

An introduction is provided in Section II.9.2, where further references can be found. In Matlab, Kz(x)
can be computed with the built-in function besselk(z,x).
We now turn to the derivation of the c.f. of a Student’s t random variable with 𝑣 degrees of freedom

(denoted, in short, as t(𝑣) or t𝑣). The proper generalized hyperbolic, or proper GHyp (where proper
refers to the parameters being in an open subset of the parameter space, so that the m.g.f. exists), has
p.d.f. given by, with yx =

√
𝛿2 + (x − 𝜇)2,

fGHyp(x; 𝜆, 𝛼, 𝛽, 𝛿, 𝜇) =
(𝛼2 − 𝛽2)

𝜆

2 y
𝜆− 1

2
x√

2𝜋𝛼𝜆− 1
2 𝛿𝜆K𝜆(𝛿

√
𝛼2 − 𝛽2)

K𝜆− 1
2
(𝛼yx)e𝛽(x−𝜇), (C.7)

for 𝜆 ∈ ℝ, 𝛼 > 0, 𝛽 ∈ (−𝛼, 𝛼), 𝛿 > 0, 𝜇 ∈ ℝ, and Kz(x) defined in (C.6). The m.g.f. is

𝕄X(t) = e𝜇t
K𝜆(𝛿

√
𝛼2 − (𝛽 + t)2)

K𝜆(𝛿
√
𝛼2 − 𝛽2)

(
𝛼2−(𝛽+t)2
𝛼2−𝛽2

)𝜆∕2 = e𝜇t
K𝜆(

√
𝜒𝜓t)

K𝜆(
√
𝜒𝜓)(𝜓t∕𝜓)𝜆∕2

, (C.8)
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where𝜓t = 𝛼2 − (𝛽 + t)2, 𝜒 = 𝛿2 and𝜓 = 𝛼2 − 𝛽2 > 0.The convergence strip is given by−𝛼 − 𝛽 < t <
𝛼 − 𝛽. See Section II.9.5.2.1 for derivations of (C.7) and (C.8).
For 𝜆 < 0 and, in the limit as 𝛼 = |𝛽| → 0, the proper GHyp converges to a t(𝑣) distribution and

𝑣 = 𝛿2 = −2𝜆 (see Section II.9.5.2.3). As the supremum of themaximally existingmoment ofX ∼ t(𝑣)
is 𝑣, the m.g.f. cannot exist on an open neighborhood of zero, but the c.f. can be obtained by taking
the limit of 𝜑X(t) = 𝕄X(it) in (C.8). Setting location and asymmetry terms 𝜇 and 𝛽 to zero, and fixing
𝜆 = −𝑣∕2,√

𝜒𝜓 = 𝑣1∕2𝛼, lim
𝛼→0

√
𝜒𝜓it = 𝑣1∕2|t|,

lim
𝛼→0

(
𝜓it

𝜓

)𝜆∕2

= lim
𝛼→0

(
𝛼2 + t2
𝛼2

)−𝑣∕4

= lim
𝛼→0

(√
𝛼2 + t2
𝛼2

)−𝑣∕2

= |t|−𝑣∕2 lim
𝛼→0

𝛼𝑣∕2.

Then, using the well-known results Kz(x) = K−z(x) and Kz(x) ≃ Γ(z)2z−1x−z, for x ↓ 0, z > 0 (where a
derivation of the latter can be found in Song et al., 2014), we have, with 𝜆 = −𝑣∕2,

𝜑X(t; 𝑣) = lim
𝛼→0

K𝑣∕2(
√
𝜒𝜓it)

K𝑣∕2(
√
𝜒𝜓)(𝜓it∕𝜓)𝜆∕2

= lim
𝛼→0

K𝑣∕2(𝑣1∕2|t|)|t|𝑣∕2𝛼𝑣∕2

Γ(𝑣∕2)2𝑣∕2−1𝑣−𝑣∕4𝛼𝑣∕2
=

K𝑣∕2(𝑣1∕2|t|)(𝑣1∕2|t|)𝑣∕2
Γ(𝑣∕2)2𝑣∕2−1

, (C.9)

as was given by Hurst (1995), based on a different method of derivation. Note that 𝜑X(t; 𝑣) is real
because X is symmetric about zero.

Remark According to Dreier and Kotz (2002), the derivation of (C.9) “has been a topic of some con-
troversy and difficulties in statistical literature for the last 30 years. Several approaches were suggested
involving incomplete, complicated and sometimes convoluted proofs.” Result (C.9) is stated (without
reference or derivation) in the reference work of Kotz and Nadarajah (2004, p. 40), while Platen and
Heath (2006, p. 37) and Seneta (2004, p. 186) attribute it to Hurst (1995). Seneta (2004) also remarks
that the result was essentially given in a different context and is related “by a simple duality argument”
in Madan and Seneta (1990).
Special cases were known before themore elegant general result (C.9). In particular, for odd degrees

of freedom,

𝜑X(t; 3) = (1 + |t√3|) exp(−|t√3|), (C.10)

which was used in Example II.4.27, and

𝜑X(t; 5) =
(
1 + |t√5| + 5

3
t2

)
exp(−|t√5|). (C.11)

To confirm (C.10), use (C.9) and

K𝑣(z) =
√

𝜋

2z
e−z × E(𝑣, z), (C.12)

where

E(𝑣, z) = 1 + 4𝑣2 − 12
1!8z

+ (4𝑣2 − 12)(4𝑣2 − 32)
2!(8z)2

+ (4𝑣2 − 12)(4𝑣2 − 32)(4𝑣2 − 52)
3!(8z)3

+ · · · (C.13)
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fromWatson (1922, p. 202) to write, with Γ(3∕2) =
√
𝜋∕2,

𝜑X(t; 3) =
33∕4|t|3∕2

23∕2−1Γ(3∕2)
K3∕2

(|t|√3
)

= 33∕4|t|3∕2
23∕2−2

√
𝜋

√
𝜋

2|t|√3
e−(|t|√3)

(
1 + 1|t|√3

)
= e−(|t|√3)

(
1 + |t|√3

)
.

See Johnson et al. (1995, p. 367) for further special cases, and Dreier and Kotz (2002) for further
references on methods of derivation. ◾

The c.f. of the multivariate t distribution is similar in form to (C.9), as discussed next. The
d-dimensional, zero-location (vector), identity-scale (matrix), multivariate Student’s t distribution
with 𝑣 > 0 degrees of freedom has density

fX(x; 𝑣) =
Γ

(
𝑣+d
2

)
Γ

(
𝑣

2

)
(𝑣𝜋)d∕2

(
1 + x′x

𝑣

)−(𝑣+d)∕2

, (C.14)

for x = (x1,… , xd)′, and we typically write X ∼ t𝑣 or X ∼ t𝑣(𝟎, I), the latter anticipating the
location-scale case given below. The c.f. corresponding to (C.14) was first (correctly) given by
Sutradhar (1986) (without use of the Bessel function, but with different expressions for when 𝑣 is odd,
even, and fractional), while Song et al. (2014) derive it (and that of a type of generalized multivariate
t) by extending the method for the univariate case from Hurst (1995), resulting in a much more
compact expression in terms of the Bessel function. With t = (t1,… , td)′ ∈ ℝd, it is given by

𝜑X(t; 𝑣) =
K𝑣∕2(‖√

𝑣t‖)(‖√
𝑣t‖)𝑣∕2

Γ(𝑣∕2)2𝑣∕2−1
, ‖t‖ =

√
t′t, (C.15)

which strongly parallels the univariate case (C.9). See Kotz and Nadarajah (2004, Ch. 2) and the ref-
erences therein for further discussion.
For vector 𝝁 = (𝜇1,… , 𝜇d)′ ∈ ℝd and d × d dispersion matrix 𝚺 > 0 with typical entry denoted 𝜎ij

and diagonal elements denoted 𝜎2
j , j = 1,… , d, the location-scale version of (C.14) is given by

fX(x;𝝁,𝚺, 𝑣) =
Γ

(
𝑣+d
2

)
Γ

(
𝑣

2

)
(𝑣𝜋)d∕2|𝚺|1∕2

(
1 + (x − 𝝁)′𝚺−1(x − 𝝁)

𝑣

)−(𝑣+d)∕2

, (C.16)

and we typically write X ∼ t𝑣(𝝁,𝚺). This distribution arises as follows. First recall that r.v. X is said to
follow an inverse gamma (IGam) distribution if its p.d.f. is given by

fX(x; 𝛼, 𝛽) = [𝛽𝛼∕Γ(𝛼)]x−(𝛼+1) exp{−𝛽∕x}𝕀(0,∞)(x), 𝛼 > 0, 𝛽 > 0. (C.17)

As in Problem I.7.9 (and as the reader should quickly confirm),

𝔼[Xr] = Γ(𝛼 − r)
Γ(𝛼)

𝛽r, 𝛼 > r, (C.18)
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so that, for example,

𝔼[X] = 𝛽

𝛼 − 1
, 𝕍 (X) = 𝛽2

(𝛼 − 1)2(𝛼 − 2)
, (C.19)

if 𝛼 > 1 and 𝛼 > 2, respectively. LetG ∼ IGam(𝑣∕2, 𝑣∕2), 𝑣 ∈ ℝ>0. Realizations ofG can be simulated
by use of the following code in Matlab:

1 v=4; T=1000; Y=gamrnd(v/2,1,[T 1]) / (v/2); G=1./Y;
2 % Or this: chi2=random('chi2',v,T,1); G = 1./(chi2/v);

Now let Z = (Z1,Z2,… ,Zd)′ ∼ Nd(𝟎,𝚺). Then

X = (X1,X2,… ,Xd)′ = 𝝁 +
√
GZ (C.20)

follows a d-variate multivariate Student’s t distribution with 𝑣 degrees of freedom, location parameter
𝝁, and dispersion matrix 𝚺. From (C.18),

𝔼[G1∕2] =
√
𝑣∕2

Γ
(

𝑣−1
2

)
Γ

(
𝑣

2

) , 𝑣 > 1, (C.21)

so that, for 𝑣 > 1, 𝔼[X] exists, and, from (C.20), 𝔼[X] = 𝝁 + 𝔼[G1∕2]𝔼[Z] = 𝝁. From (C.19),

𝔼[G] = 𝑣∕(𝑣 − 2), if 𝑣 > 2, (C.22)

implying

𝔼[X] = 𝝁, if 𝑣 > 1, 𝕍 (X) = 𝑣

𝑣 − 2
𝚺, if 𝑣 > 2. (C.23)

Expression (C.20) is equivalent to saying that (X ∣ G = g) ∼ N(𝝁, g𝚺), in which case we can write,
similar to Example II.7.21,

fX(x;𝝁,𝚺, 𝑣) = ∫
∞

0
fX∣G(x; g)fG(g; 𝑣∕2, 𝑣∕2) dg. (C.24)

From the c.f. analog of (C.3), the c.f. corresponding to (C.16) is

𝜑X(t;𝝁,𝚺, 𝑣) = 𝔼[eit′X] = eit′𝝁
K𝑣∕2(‖√

𝑣𝚺1∕2t‖)(‖√
𝑣𝚺1∕2t‖)𝑣∕2

Γ(𝑣∕2)2𝑣∕2−1
. (C.25)

Let j ∈ {1, 2,… , n} and define t = (0,… , 0, t, 0,… , 0)′, where t appears in the jth position. Similar to
(C.2), we can compute the marginal c.f. corresponding to Xj. Observe that, with 𝚺1∕2 symmetric (as
can be obtained via the spectral decomposition method of calculating it), ‖√

𝑣𝚺1∕2t‖ =
√
𝑣
√
t′𝚺t =√

𝑣|t|𝜎j. Thus,

𝜑Xj
(t) = eitj𝜇j

K𝑣∕2(𝑣1∕2|t|𝜎j)(𝑣1∕2|t|𝜎j)𝑣∕2
Γ(𝑣∕2)2𝑣∕2−1

, (C.26)
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so that, from the uniqueness theorem and (C.9),Xj ∼ t𝑣(𝜇j, 𝜎j). See Ding (2016) for a simple derivation
of (and corrections to mistakes in previous literature) of the conditional distribution of subsets of X
given a different subset, paralleling the result for the multivariate normal in (8.40).
Let X = (X1,… ,Xd)′ ∼ t𝑣(𝝁,𝚺) with p.d.f. (C.16), and define S =

∑d
j=1 aiXi = a′X for a =

(a1,… , ad)′ ≠ 𝟎, i.e., S is a non-zero weighted sum of the univariate margins. Then

𝜑S(t) = 𝔼S[eitS] = 𝔼X[eita
′X] = 𝔼X[ei(ta)

′X] = 𝜑X(ta;𝝁,𝚺, 𝑣)

= eita′𝝁
K𝑣∕2(‖√

𝑣t𝚺1∕2a‖)(‖√
𝑣t𝚺1∕2a‖)𝑣∕2

Γ(𝑣∕2)2𝑣∕2−1

= eit𝜇S
K𝑣∕2(𝑣1∕2|t|𝜅)(𝑣1∕2|t|𝜅)𝑣∕2

Γ(𝑣∕2)2𝑣∕2−1
= eit𝜇S𝜑T (𝜅t; 𝑣), (C.27)

where T ∼ t𝑣, 𝜇S = a′𝝁 and 𝜅 = ‖𝚺1∕2a‖ =
√
a′𝚺a > 0. Thus, from the c.f. analog of (C.1), S

d
= 𝜇S +

𝜅T , a location-scale Student’s t with 𝑣 degrees of freedom, where
d
= means equality in distribution

(and is not to be confused with the dimension d of X).
This method of proof can be extended to show a more general result encompassing (C.26) and

(C.27). Let X ∼ t𝑣(𝝁,𝚺). For 1 ⩽ k ⩽ d, c ∈ ℝk , and B a k × d real matrix,

c + BX ∼ t𝑣(c + B𝝁,B𝚺B′). (C.28)

This result also follows from the more general statement for elliptic random variables given in
Theorem C.14 of Section C.2 below.
It is important to remember that the (weighted) sum of two or more independent Student’s t r.v.s is

not Student’s t. In particular, it is not the case that, if Xi
ind∼ t𝑣i(𝜇i, 𝜎i), i = 1,… , d, then

∑d
i=1 Xi follows

some t distribution. One might wonder if this is possible when the 𝑣i are all equal: It is still not the
case. This can be confirmed by applying the convolution formula for d = 2 and confirming that the
resulting expression does not agreewith the p.d.f. of a t r.v.This implies that, unless 𝑣 → ∞, one cannot
construct density (C.16) such that theXi are independent. Indeed, for d = 2, 𝜇1 = 𝜇2 = 0, 𝜎1 = 𝜎2 = 1,
0 < 𝑣 < ∞, and Xi

ind∼ t𝑣(0, 1), i = 1, 2,

fX1
(x1)fX2

(x2) =
Γ

(
𝑣+1
2

)
𝑣

𝑣

2√
𝜋 Γ

(
𝑣

2

) (𝑣 + x21)
− 𝑣+1

2 ×
Γ

(
𝑣+1
2

)
𝑣

𝑣

2√
𝜋 Γ

(
𝑣

2

) (𝑣 + x22)
− 𝑣+1

2

≠
Γ

(
𝑣+2
2

)
Γ

(
𝑣

2

)
(𝑣𝜋)

(
1 + x′x

𝑣

)−(𝑣+2)∕2

= fX(x;𝝁,𝚺, 𝑣), (C.29)

where the latter density is the joint distribution of X = (X1,X2)′ ∼ t𝑣(𝝁,𝚺) from (C.16), for
𝝁 = (𝜇1, 𝜇2)′ and 𝚺 = I2.
This result can be confirmed from the formulation of the multivariate Student’s t as a continu-

ous scale mixture of normals in (C.24). Note that each univariate marginal is affected by the mixing
random variable g, so that they can never be independent (unless 𝑣 → ∞, resulting in the normal
distribution).
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C.2 Sphericity and Ellipticity

This section was written together with Christian Frey.

C.2.1 Introduction

In the multivariate setting, it is useful to distinguish between elliptic and non-elliptic distributions.
Informally, an elliptic distribution preserves a type of rotational symmetry. For univariate random
variables, the concept of ellipticity reduces to symmetry of the p.d.f. The multivariate normal and
Student’s t are among the canonical examples of elliptic distributions. The latter, with zero location
and identity matrix for the dispersion, is given in (C.14), and is also spherical, this being a special case
of elliptic distributions, as discussed below.
To gain an appreciation for their study, let Zi

i.i.d.∼ N(0, 1), i = 1, 2. This could also be stated as
Z = (Z1,Z2)′ ∼ N(𝟎, I2), and, as we will see below, the distribution of Z is spherical. Recall that
C = Z1∕Z2 ∼ Cau(0, 1). Similarly, if Z ∼ t𝑣(𝟎, I2) with density (C.14), then it is still the case that
C = Z1∕Z2 ∼ Cau(0, 1), for any 𝑣 > 0. This “Cauchy ratio property” holds whenever Z comes from a
spherical distribution (and Pr(Z2 = 0) = 0).
It is important to emphasize that this result does not hold when Zi

i.i.d.∼ t𝑣(0, 1), i = 1, 2; recall (C.29).
In this latter case, with 𝑣 = 1, Zi

i.i.d.∼ Cau(0, 1), i = 1, 2, and the distribution of C = Z1∕Z2 is given in
(III.A.149); it is not Cauchy. It is only in the limit as 𝑣 → ∞ for Zi

i.i.d.∼ t𝑣(0, 1), i = 1, 2, in which case Z1
and Z2 are (independent and) Gaussian. The code in Listing C.1 informally demonstrates the Cauchy
ratio result for the case with 𝑣 = 1 andZ ∼ t𝑣(𝟎, I2), comparing it to the histogram generated by taking
ratios of i.i.d. standard normals.
The reason this result holds is because a multivariate t random vector X = (X1,X2)′ can be

expressed as in (C.20), namely, as a continuous univariate random variable, say R, independent of
Z = (Z1,Z2)′ ∼ N(𝟎, I2), such that Pr(R > 0) = 1, multiplied by Z. Thus, X1∕X2 = Z1∕Z2. This is, in
fact, the inherent structure of spherical r.v.s, as will be seen below in Theorem C.1(d) (as well as
Theorem C.2 and Example C.8).
As another example, letZ = (Z1,… ,Zn)′ ∼ N(𝟎, 𝜎2In) andR be a continuous randomvariable, inde-

pendent of Z, such that Pr(R > 0) = 1. Then, with

TZ =
Z̄n

Sn∕
√
n
, where Z̄n = n−1

n∑
i=1

Zi, S2n = (n − 1)−1
n∑
i=1

(Zi − Z̄n)2,

1 sim=1e5; df=1; T=mvtrnd(eye(2),df,sim); C=T(:,1)./T(:,2);
2 C=C(abs(C)<14); figure, hist(C,100)
3 % Now using ratio of indep standard normals
4 C=randn(sim,1)./randn(sim,1); C=C(abs(C)<14); figure, hist(C,100)

Program Listing C.1: Graphically compares the distribution of a ratio of independent standard nor-
mals, which is Cauchy, to the ratio of two random variables from the multivariate Student’s t distribu-
tion with identity dispersion matrix and arbitrary (positive) degrees of freedom. Function mvtrnd is
built intoMatlab and (as the name suggests) generates i.i.d. realizations of amultivariate t distribution
with the specified dispersion matrix and degrees of freedom.
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we know that TZ ∼ tn−1, i.e., Student’s t with n − 1 degrees of freedom; see Section II.3.7 for a detailed
derivation. Now let X = RZ. It is simple to see that the above T statistic, computed based on X, alge-
braically reduces to TZ . Thus, all spherical random vectors have this “t-statistic property”.
We now mention some prominent distributions that are not elliptic. The proper MGHyp (C.7)

with asymmetry parameter vector 𝜸 ≠ 𝟎, the non-degenerate multivariate discrete mixture of nor-
mals from Chapter 14 with location parameters 𝝁i not all equal, and the multivariate noncentral t
(MVNCT) given in (12.5), with finite degrees of freedom and asymmetry parameter vector 𝜸 ≠ 𝟎, are
all examples of non-elliptic distributions.

Remark Observe that, within the MVNCT setting, for example, the point 𝜸 = 𝟎 has measure zero
inℝd, so that, if 𝜸 were sampled from a continuous multivariate distribution (an idea comfortable for
Bayesians) with support being some open subset of ℝd including the origin, then the distribution of
the resulting random vector will be elliptic with probability zero (w.p. 0). This line of reasoning holds
for any non-elliptical distribution that nests an elliptic one as a special case such that the associated
parameter (vector) assumes a measure-zero value.
As such, the formally correct answer to the question “Is the unknown distribution that generated

the data elliptic?” is “No, w.p.1”. What might be meant, however, is “(Based on inspection of the data,)
is the distribution that generated them close enough to being elliptic that we can, for application
purposes, assume so?”This is amore reasonable question, and can be decided based upon a likelihood
ratio test if one assumes a parametric framework and (heroically) the class of distribution is known.
Without such a distributional assumption, testing for ellipticity is more challenging; some tests, and
a demonstration, are given in Section C.2.4.
One might indeed consider use of a parametric distributional class because one requires, say, a pre-

dictive distribution for some application, e.g., financial risk measurement or portfolio construction.
In that case, instead of being concerned with a Neyman–Pearson hypothesis testing and dichoto-
mous decision framework, it is more useful to base the decision on a comparison of criteria related
to the purpose of the modeling exercise, using both the unrestricted (non-elliptic) and restricted
(elliptic) cases. Continuing with the finance example, such criteria might include the performance
of out-of-sample density or risk measurement forecasting or exercises, or (risk-adjusted) portfolio
performance. ◾

Our goal here is to highlight the main concepts and results associated with elliptic distributions.
The key insight concerning elliptic (and as a special case, spherical) distributions, formulated in
Theorem C.1(d), is due to Schoenberg (1938) and marks the starting point for building a theory
around elliptical distributions. In addition to several references given throughout the discussion,
Schoenberg (1938), Kelker (1970), Cambanis et al. (1981), Fang et al. (1989), Gupta and Varga (1993),
and Frahm (2004) are primary sources for proofs of the stated results.

C.2.2 Sphericity

Recall (from, say, the beginning of Section 1.3.1) that an n-dimensional orthonormal matrix is a real
n × n matrix whose rows, or columns, constitute an orthonormal basis for ℝn. Equivalently, a real
n × nmatrixU with ith column ui is orthonormal ifU′U = In, or u′

iuj = 1 if i = j, and zero otherwise.
Hereafter, we will use the terms orthonormal and orthogonal interchangeably, as use of the latter is
common in the literature. Notice that this orthogonality implies U−1 = U′, so that UU′ = In as well.
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Remark Multiplication by an orthogonal matrix does not change the length of a column vector
x ∈ ℝn, as||Ux||2 = x′U′Ux = x′x = ||x||2, (C.30)

but induces only a rotation or reflection. Result (C.30) turns out to be a necessary and sufficient
condition, and thus can also be used as a definition. In particular, if U is orthogonal, then (C.30)
shows that ||Ux||2 = ||x||2. Now only assume that ||Ux||2 = ||x||2 for all x ∈ ℝn. Then, with x = ei =
(0, 0,… , 0, 1, 0,… , 0)′ the column vector of all zeros except in the ith position having a one, ||Ux||2 =||x||2 implies that

1 = ||ei||2 = ||x||2 = ||Ux||2 = ||ui||2 = u′
iui,

i.e., u′
iui = 1, i = 1,… , n. Now let x = ei + ej, i, j ∈ {1, 2,… , n}, with i ≠ j. Then

2 = ||x||2 = ||Ux||2 = ||ui + uj||2 = ||ui||2 + ||uj||2 + 2u′
iuj = 2 + 2u′

iuj,

so that u′
iuj = 0. That is, if ||Ux||2 = ||x||2 holds for all x ∈ ℝn, then U is orthogonal (orthonormal). ◾

The n-dimensional column random vector X is said to have a spherically symmetric distribution
if, for every H ∈ (n), X d

=HX, where (n) is the set of all n × n orthogonal matrices, and
d
= means

equality in distribution.

Example C.1 Denote byUn a column randomvector distributed uniformly on the unit sphere inℝn.
For every orthogonal matrix H, HUn

d
=Un because multiplying by H preserves lengths and induces

only rotations on the sphere. Thus, Un has a spherically symmetric distribution. ◾

IfXhas density fX and is spherically symmetric, then fX(x) is a function of x only via x′x. For example,
the multivariate normal and multivariate Student’s t (C.16) in the uncorrelated, equal scales, zero
mean case are spherically symmetric. Observe that this cannot serve as a definition, as not all r.v.s
possess density functions, e.g., the stable Paretian.

Example C.2 From Chapter II.8 and Section III.A.16, recall that the c.f. of a scaled univariate
symmetric stable r.v. is 𝜑X(t; 𝛼, c) = exp{−c𝛼|t|𝛼}, for 0 < 𝛼 ⩽ 2 and c > 0. If the elements of
X = (X1,X2,… ,Xn)′ are i.i.d. with this c.f., then their joint c.f. is of the form exp

(
−c𝛼

∑n
i=1 |ti|𝛼) (and

that of their sum S is 𝜑S(t; 𝛼, c) = exp{−nc𝛼|t|𝛼}). This motivates the following definition. Random
vector X is said to have an 𝜶-symmetric distribution if its c.f. is of the form

𝜑X(t) = g(|t1|𝛼 + |t2|𝛼 +…+ |tn|𝛼), t = (t1, t2,… , tn)′, (C.31)

for some function g; see Cambanis et al. (1983). Use of 𝛼 = 2 results in the spherically symmetric
distributions. ◾

Example C.3 Let X ∼ N(𝟎, In). The c.f. of a univariate standard normal distribution is
𝜑X(t) = exp(−t2∕2), and that of X is, with t = (t1,… , tn)′,

𝜑X(t) = exp
(
−1
2
t′t

)
= exp

(
−1
2
(t21 + t22 +…+ t2n)

)
, (C.32)

so that, from (C.31), the multivariate standard normal distribution is spherically symmetric, or
𝛼-symmetric, with 𝛼 = 2.
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This also follows because, for every H ∈ (n), as H is orthonormal, HH′ = In, and as 𝕍 (HX) =
HInH′ = In,HX ∼ N(𝟎, In), so that X

d
=HX, and thus by definition, X is spherically symmetric. ◾

Random vector X = (X1,X2,… ,Xn)′ is called an n -dimensional version of the univariate r.v. Y
if 𝝀′X

d
= c(𝝀)Y for all 𝝀 ∈ ℝn for some function c(⋅) such that c(𝝀) > 0 if 𝝀 ≠ 𝟎. In particular, tak-

ing c(𝝀) = (𝝀′𝝀)1∕2 results in a spherical distribution, while taking c(𝝀) = c(𝝀; 𝛼) =
(∑n

1=1 |𝜆i|𝛼)1∕𝛼 ,
0 < 𝛼 ⩽ 2, yields an 𝛼-symmetric distribution.

Example C.4 Again with X ∼ Nn(𝟎, In) and letting Y ∼ N(0, 1), we know (see, e.g., Chapter II.3)
that, for all 𝝀 = (𝜆1,… , 𝜆n)′ ∈ ℝn\{𝟎} and c(𝝀) = (𝝀′𝝀)1∕2, 𝝀′X ∼ N(0,𝝀′𝝀), which has the same
distribution as c(𝝀)Y . Thus, the usual multivariate normal distribution is an n-dimensional version
of the univariate case. ◾

The next theorem introduces some relevant notation, and characterizes spherical symmetry. Recall
the definition of the multivariate characteristic function of random vectorX in (C.5), and the unique-
ness theorem regarding c.f.s and the distribution of X.

Theorem C.1 For random vector X = (X1,X2,… ,Xn)′, statements (a) through (d) are equivalent:

a) X
d
=HX for everyH ∈ (n).

b) The unique c.f. of X, 𝜑X(t), t = (t1,… , tn)′, can be expressed in the form 𝜑(t′t), for some 𝜑 ∈ 𝚽n,
where 𝜑 is the characteristic generator of the spherical distribution X and

𝚽n = {𝜑(t) ∶ 𝜑(t21 + t22 +…+ t2n) is an n-dimensional c.f.} (C.33)
is the family of all possible characteristic generators for dimension n.WewriteX ∼ Sn(𝜑). Observe
the notational distinction between 𝜑X and 𝜑. For the latter, one could use, say, 𝜑[X] or �̃�X or 𝜙X or
𝜓X or 𝜓 , for more clarity.

c) For any a ∈ ℝn, a′X
d
= ||a||X1.

d) One can express X as

X
d
=RUn (C.34)

for a continuous univariate random variable R, such that Pr(R ⩾ 0) = 1, independent ofUn, where
Un is uniformly distributed on the unit sphere surface in ℝn. Random variable R is referred to as
the generating variate or radial random variable, FR the unique generating c.d.f., and Un the
uniform base of the spherical distribution.

e) For Un in part (d), 𝔼[Un] = 𝟎 and 𝕍 (Un) = In∕n.

Proof of (a) ⇒ (b) ⇒ (c) ⇒ (a):
(a) ⇒ (b) For anyH ∈ (n),

𝜑X(t) ≡ 𝜑HX(t) = 𝔼[eit′HX] = 𝔼[ei(H′t)′X] = 𝜑X(H′t),
where use of ≡ denotes invocation of the assumption made, here (a). For these character-
istic functions to be equal for anyH ∈ (n), it must be the case that 𝜑X(t) depends only on
the length of t, i.e., if 𝜑X(t) can be expressed in the form 𝜑(t′t), for some 𝜑 ∈ 𝚽n.
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(b) ⇒ (c) For any a ∈ ℝn, with t scalar, 𝜑a′X(t) is

𝔼[eit(a′X)] = 𝔼[ei(ta)′X] = 𝜑X(ta) ≡ 𝜑(t2a′a) = 𝔼[eit2(a21X1+···+a2nXn)].

Likewise,

𝜑||a||X1
(t) = 𝔼[eit||a||X1] ≡ 𝜑(t2||a||2) = 𝔼[eit2(a21X1+···+a2nX1)].

Recalling that X1,… ,Xn have the same law, 𝜑a′X(t) = 𝜑||a||X1
(t), so that, by the uniqueness

theorem (C.4), (c) follows.
(c) ⇒ (a) For anyH ∈ (n),

𝜑HX(t) = 𝔼[eit′HX] = 𝔼[ei(H′t)′X] ≡ 𝔼[ei||H′t||X1 ] = 𝔼[ei||t||X1 ] ≡ 𝔼[eit′X] = 𝜑X(t).

The proof of part (d) is more involved than the simple proofs for (a) to (c), and given
separately below, along with that of part (e). ◾

Example C.5 Example C.3 cont.
By direct inspection of (C.32), it immediately follows that the characteristic generator ofX ∼ N(𝟎, In)
is 𝜑(u) = exp(−u2∕2), where u = ||t||2. ◾

TheoremC.1: Proof of (a) ⇐⇒ (d): Weprove a slightly extended version of the equivalence between
(a), (b), and (d). Recalling (C.33), a function 𝜑(⋅) is contained in the set𝚽n if and only if

𝜑(||t||2) = ∫
∞

0
Ωn(||t||2r2) dFR(r), (C.35)

where Ωn(||t||2) is the c.f. of the uniformly distributed random variable Un on the unit sphere, and
FR(r) is the c.d.f. of the univariate random variable R with support [0,∞).
Let

Sn−11 = {s ∈ ℝn ∶ s′s = ||s||2 = 1}, n ⩾ 2,

be the unit sphere inℝn, and observe that Sn−11 has n − 1 dimensions because of the norm constraint.
Next, let

Sn−11 = ∫s∈Sn−11

dS(s) = 2𝜋n∕2

Γ(n∕2)
, (C.36)

which is derived inTheorem C.6 below. Note that, for n = 2 and radius r, this is the familiar length of
a circle, i.e., 2𝜋r = d

dr
𝜋r2. Here, dS(⋅) is the area element of the unit sphere, Sn−11 is the surface integral

(surface area) of the unit sphere inℝn, andwe set dS ∶= dSn−11 for notational simplicity. (Introductions
to surface integrals can be found in Apostol, 1969, Ch. 12, and Trench, 2003, p. 452). Then

Ωn(||t||2) = 1
Sn−11

∫s∈Sn−11

exp{it′s} dS(s) = ∫u∈Sn−11

exp{it′u} dFU(u), (C.37)

where

dFU(⋅) =
1

Sn−11

dS(⋅) =
Γ(n∕2)
2𝜋n∕2 dS(⋅).
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Note that
dFU(⋅)
dS(⋅)

= fU(⋅) =
1

Sn−11

=
Γ(n∕2)
2𝜋n∕2 (C.38)

is the density of the uniformly distributed r.v. Un on the unit sphere, as is derived in Theorem C.6
below, where, as already defined, Sn−11 is its total surface and Ωn(||t||2) is the c.f. of the uniformly
distributed r.v. Un on the unit sphere.
We wish to show that the stochastic representation

X
d
=RUn

holds, where Un is uniformly distributed on the surface of the unit sphere Sn−11 , random variable R is
independent of Un and such that Pr(R ⩾ 0) = 1, and R ∼ FR is related to 𝜑 by (C.35).
Necessity:Assume that 𝜑(⋅) can be expressed as in (C.35). Let r.v. R be independent ofUn and have

c.d.f. FR such that Pr(R ⩾ 0) = 1. The c.f. of RUn is
𝜑RUn

(t) = 𝔼[exp{it′RUn}] = 𝔼[ 𝔼[exp{it′RUn} ∣ R] ]

= ∫
∞

0
Ωn(r2||t||2) dFR(r) = 𝜑(||t||2), (C.39)

where the third equality follows by noting that Un ∈ Sn(𝜑) and using C.1(b). Hence, 𝜑(⋅) ∈ 𝚽n, and,
by C.1(b)⇒ C.1(a), X = RUn ∈ Sn(𝜑).
Sufficiency: Assume 𝜑(⋅) ∈ 𝚽n. Then, g(t1,… , tn) ≡ 𝜑(t′t) is, by (a) ⇐⇒ (b) in Theorem C.1, a c.f.

of some r.v. X ∈ Sn(𝜑) with c.d.f. FX. Hence, g(t1,… , tn) is a rotational/radial symmetric function of
t1,… , tn. As g(||t||) = g(||t||s1,… , ||t||sn) = g(||t||s) for every s ∈ Sn−11 , setting again dS ∶= dSn−11 for
notational simplicity and using (C.38), we have

𝜑(t′t) = 1
Sn−11

⋅ g(||t||) ⋅ Sn−11

= 1
Sn−11

∫s∈Sn−11

g(||t||) ⋅ dS(s)
= 1

Sn−11
∫s∈Sn−11

g(||t||s) dS(s)
= ∫u∈Sn−11

[
∫ℝn

ei||t||u′x dFX(x)
]
dFU(u)

= ∫ℝn

[
∫u∈Sn−11

ei||t||u′x dFU(u)

]
dFX(x)

= ∫ℝn
Ωn(||t||2||x||2) dFX(x) = ∫

∞

0
Ωn(||t||2r2) dF||X||(r), (C.40)

where the interchange of integrals in the fourth line can be justified by Fubini’s theorem because the
integrand exp{i||t||u′x} is non-negative, and Ωn is the usual notation for the characteristic generator
of a r.v. distributed on the unit sphere.The first equality in the last line follows becauseUn ∈ Sn(𝜑) and
by C.1(a)⇒ C.1(b) (as in the necessity direction). The last equality in the last line follows by defining

F||X||(r) ∶= ∫||x||⩽r dFX(x) = Pr(||X|| ⩽ r),
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so that F||X||(⋅) is a c.d.f. over [0,∞).This is possible because ||X|| takes only values on the non-negative
half line. Further, (C.40) and (C.39) are equivalent, implying

𝜑(||t||2) = ∫
∞

0
Ωn(||t||2r2) dF||X||(r) = ∫

∞

0
Ωn(||t||2r2) dFR(r),

and observing that a probability measure is, similarly to the uniqueness theorem (C.4) for the c.f.,
uniquely defined by its Laplace transform (see, e.g., Kallenberg, 2002,Thm. 4.3, for a proof, or Paolella,
2007, Eq. 1.17, 1.18, for the statement). Result F||X||(r) = FR(r) follows and therefore (C.35). Compar-
ing (C.40) with (C.39), we see that (C.40) is the c.f. of RUn, where R is a r.v. with c.d.f. F||X||. The
representation X

d
=RUn thus follows. ◾

Remark Result (C.34) is due to Schoenberg (1938). His main motivation was to investigate the con-
nection between Fourier–Stieltjes integrals and the class of Laplace–Stieltjes integrals.The former are
positive definite functions. See also Bochner’s Theorem (mentioned in, e.g., Paolella, 2007, p. 24) for
the relation between positive definite functions and characteristic functions.The latter are completely
monotone functions.
Schoenberg expected a certain relation between the two, as in both cases (i) the defining kernel is

the exponential function and (ii) both classes are convex, multiplicative and closed; see Schoenberg
(1938, p. 813) for details. A subclass of positive definite functions of particular interest in the current
context are characteristic functions that are of rotational (or radial) symmetry as in C.1(b). He shows
in his Theorem C.1 that these r.v.s can be completely described by (C.35).
In words, (C.35) says that the c.f. of rotational (or radial) symmetric functions equals the one-sided

Laplace–Stieltjes transform of the c.f. of a uniformly distributed random variable on the unit sphere.
This can immediately be translated to the intuitive statementX

d
=RUn, which says that a spherical r.v.

X (forming an n-dimensional sphere) can be decomposed in distribution into a random radius R and
uniformly distributed random points on the unit sphere. ◾

The following theorem helps to understand the nature of R given the distribution ofX, and has been
used in forming a test for (conditional) elliptical symmetry (Zhu and Neuhaus, 2003).

Theorem C.2 SupposeX
d
=RUn ∼ Sn(𝜑) and Pr(X = 𝟎) = 0. Consider additionally the factorization

of Un = (U1,U2), where U1 ism × 1 and U2 is (n −m) × 1 for integers 1 ⩽ m < n.

a) ||X|| and X∕||X|| are independent, and
||X|| d

=R and X∕||X|| d
=Un. (C.41)

b) (U1,U2)
d
=(BU1, (1 − B2)1∕2U2), where B ⩾ 0, U1, and U2 are independent and B2 ∼ Beta(m∕2,

(n −m)∕2).

Proof : (This follows Cambanis et al., 1981)

a) This result relies on Schoenberg’s key insight in Theorem C.1(d), namely that every spherical
random variable X can be decomposed in distribution as X

d
=RUn. Recall that a necessary

and sufficient condition for two random variables Y and Z to have the same distribution is
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𝔼[f (Y)] = 𝔼[f (Z)] for every non-negative (or bounded) Borel-measurable function f ; see, e.g.,
Problem III.A.17(24). Thus,

X′X
d
=RU′

nUnR
d
=R2, (C.42)

which follows by computing 𝔼[f (RU′
nUnR)] = 𝔼[f (R2)] giving the last equality. Hence, we have

(||X||,X∕||X||) d
=(R,Un), as the mapping x → (||x||, x∕||x||) is (Borel-)measurable on ℝ\{0}. This

result will be often used below.
b) Without loss of generality, take X = (X1,X2) ∼ N(𝟎, In), where X1 is m × 1 and X2 is (n −m) × 1.

As X1 and X2 are independent, it follows fromTheorem C.2(a) that

X1∕||X1|| = U1, X2∕||X2|| = U2, ||X1||, ||X2||,
are jointly independent. Define B ∶= X1∕||X||. Then B, U1, and U2 are independent. Now

B2 =
||X1||2||X||2 =

||X1||2||X1||2 + ||X2||2 ∼ Beta(m∕2, (n −m)∕2),

because ||X1||2 ∼ 𝜒2
m, ||X2||2 ∼ 𝜒2

n−m, and both are independent. As

BU1 =
||X1||||X|| ||X1||||X1|| = B, 1 − B2 =

(
1 −

||X1||||X||
)

=
||X|| − ||X1||||X|| =

||X2||||X|| ,
Theorem C.2(a) implies

(U1,U2) = Un
d
= X||X|| =

( X1||X|| , X2||X||
)

= (BU1, (1 − B2)1∕2U2),

showing the result. ◾

We can now complete the proof of Theorem C.1.

Theorem C.1: Proof of (e): We wish to show that 𝔼[Un] = 𝟎 and 𝕍 (Un) = In∕n. Without loss of
generality, take X ∼ Nn(𝟎, In). From Theorem C.2(a), X

d
= ||X||Un, where ||X|| is independent of Un.

Note that 𝔼[X] = 𝟎 and 𝕍 (X) = In. As ||X||2 ∼ 𝜒2
n , 𝔼[||X||] > 0 and 𝔼[||X||2] = n, the statement imme-

diately follows. ◾

Theorem C.3 Let X
d
=RUn ∼ Sn(𝜑) and X = (X1,X2), where X1 ism × 1 and X2 is (n −m) × 1. Pro-

vided that the conditional random variable X2 ∣ (X1 = x1) exists, it is also spherically distributed and
can be represented stochastically by

X2 ∣ (X1 = x1)
d
=R∗U2, (C.43)

where U2 is (n −m) × 1 and uniformly distributed on Sn−m−1, the generating variate R∗ is

R∗ = R(1 − B2)1∕2 ∣ (RBU1 = x1), (C.44)

U1 ism × 1 and uniformly distributed on Sm−1, B2 ∼ Beta(m∕2, (n −m)∕2), and R, B2, U1, and U2 are
mutually independent.
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Proof : (As in Fang et al., 1989) FromTheorem C.2(b),

(U1,U2)
d
=(BU1, (1 − B2)1∕2U2),

hence

(X1,X2)
d
=R(BU1, (1 − B2)1∕2U2).

Note that the random variables R, B2, U1, and U2 are mutually independent. ◾

Example C.6 Another use of Theorem C.2 is that it yields an immediate method for simulating Un
by taking X ∼ N(𝟎, In) in (C.41). This method of generation turns out to be among the most efficient
as n grows; see Harman and Lacko (2010) and the references therein. Figure C.1 depicts the n = 3
case. ◾
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Figure C.1 The unit sphere for n = 3 with 200 (a), 1000 (b), and 3000 (c) random uniformly distributed points.
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Example C.7 For X ∼ N(𝟎, In) with 𝜑(u) = exp(−u∕2), we know from Example C.3 that X is spher-
ical, so that, from Theorem C.1, it has the representation X

d
=RUn. From Theorem C.2, R

d
= ||X|| and||X||2 ∼ 𝜒2

n . ◾

Example C.8 LetZ ∼ N(𝟎, In), independent of S2 ∼ 𝜒2
k , and letX =

√
kZ∕S, noting that Pr(S = 0) =

0. Then, paralleling the univariate case, X has a multivariate Student’s t distribution with k degrees
of freedom, or X ∼ tk . From Example C.7, we can also write X =

√
kRUn∕S for R2 ∼ 𝜒2

n . As R, Un,
and S are independent,X has a spherical distribution. Let R∗ =

√
kR∕S, so that X = R∗Un. Then R2

∗ =
R2∕(S2∕k) and R2

∗∕n = (R2∕n)∕(S2∕k) ∼ F(n, k). ◾

Example C.9 If the characteristic generator of X is given by 𝜑(x′x) = exp(−c(x′x)𝛼), where c ∈ ℝ>0
and 0 < 𝛼 ⩽ 2, we say that it follows a symmetric multivariate stable law. Setting 𝛼 = 1 results in
the family of multivariate Cauchy distributions. ◾

Before progressing to elliptic distributions, we remark the following, which is subsumed in
Theorem C.6 below. Random variable X ∼ Sn(𝜑) does not necessarily possess a density, but when it
does, it must be of the form g(x′x) for some non-negative function g of a scalar variable. This can be
used to define a density Cng(x′x) for some spherical distribution, if and only if

hn = ∫
∞

0
tn∕2−1g(t) dt < ∞, (C.45)

where t = x′x, and

Cn =
Γ(n∕2)
𝜋n∕2

1
hn

. (C.46)

In this case, we write X ∼ Sn(g) and call g the density generator of the spherical distribution.

C.2.3 Ellipticity

LetX ∼ N(𝟎, In) as in Example C.3, and letY = 𝝁 + 𝚺1∕2X ∼ N(𝝁,𝚺), for symmetric𝚺 > 0, as detailed
in Section II.3.3. This location scale transform, also called an affine transformation, is used to extend
the class of spherically symmetric distributions to elliptically symmetric. The condition that the scale
matrix is square can be relaxed. We have the following definition.
An n-dimensional random vector Y has an elliptically symmetric distribution with loca-

tion parameter 𝝁 and dispersion matrix 𝚺 if Y
d
=𝝁 + A′X, where X ∼ Sk(𝜑), 𝝁 ∈ ℝn, A ∈ ℝk×n,

rank(A) = k, A′A = 𝚺, hence rank(𝚺) = k. We use the notation Y ∼ ECn(𝝁,𝚺, 𝜑). Note that
Sn(𝜑) ⊆ ECn(𝝁,𝚺, 𝜑) and Sn(𝜑) = ECn(𝟎, I, 𝜑).

Remarks
a) An n-variate density function can be defined not only on ℝn, but on the lower dimensional

subspace ℝk , 0 < k < n. As we will need inverses and determinants of non-square (rectangular)
matrices, we give a short introduction to generalized inverses related to the current context. For
every finite matrix A ∈ ℝk×n, there exists a unique matrix A− ∈ ℝn×k , called the Moore–Penrose
(or pseudo-/generalized inverse), satisfying the following (Penrose) equations

AA−A = A, A−AA− = A−, (C.47)
(AA−)′ = AA−, (A−A)′ = A−A, (C.48)
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where A′ denotes the usual transpose. If A is square and non-singular, then A− = A−1 satisfies
the four Penrose equations. It can be shown that the Moore–Penrose inverse is unique, see, e.g.,
Ben-Israel and Greville (2003, Sec. 1.2). As A ∈ ℝk×n has column rank k, (AA′) is invertible. This
leads to A− being given by A− = A′(AA′)−1, because

AA−A = A[A′(AA′)−1]A = (AA′)(AA′)−1A = A.

A− is said to be a right-inverse, because AA− = Ik . Moreover, as the reader should quickly con-
firm, (A−)′A′ = Ik . As (AA′)−1 is a symmetric square matrix, the spectral decomposition theorem
implies that we can write

(AA′)−1 = OD−1O′,

where O is an orthonormal n × n square matrix and D is an n × n diagonal matrix containing the
eigenvalues of A′A. Further, D−1 is diagonal, with reciprocals of the positive main diagonal ele-
ments ofDwhereas all zero elements ofD are retained unchanged.We can then define the absolute
value of the pseudo-determinant of a rectangular matrix A ∈ ℝk×n in a natural way as

|A| ≡ | det(A)| ∶= n∏
i=1

√
Dii, (C.49)

whereDii is the ith diagonal element ofD, i = 1,… , n. Note that both the Moore–Penrose inverse
and the absolute pseudo-determinant are generalizations of their standard function counterparts.
In the following, we interchangeably use |A| ≡ | det(A)| for the standard absolute determinant (i.e.,
for non-singular matrices) and for the pseudo-determinant for rectangular matrices. It will always
be clear from the dimensionality of the matrix which one is meant.

b) In the probability literature, and in particular on elliptical distributions, one frequently encoun-
ters the terminology of an “absolutely continuous” distribution. The following explanations
serve as a short introduction to this measure theoretic topic. A random variable X defined as
a (Borel-)measurable function from the probability space (ℝ,(ℝ),Pr(⋅)) to the measurable
space (ℝ,(ℝ)) is said to be absolutely continuous if and only if there is a non-negative
Borel-measurable function f on ℝ such that

F(x) = ∫
x

−∞
f (t) dt, x ∈ ℝ,

where f is the density function of X (because F(x) → 1 as x → ∞ and ∫ ∞
−∞ f (x) dx = 1). If X is abso-

lutely continuous with density f , then it follows that

Pr(X(B)) = ∫B
f (x) dx for each B ∈ (ℝ).

Themeasure 𝜆 defined by 𝜆(B) ∶= ∫B f (x) dx,B ∈ (ℝ) satisfies 𝜆(a, b] = F(b) − F(a), a < b, where
𝜆 is the Lebesgue–Stieltjes measure corresponding to F , implying Pr(X) = 𝜆. Hence, absolute con-
tinuity of X means equivalently

Pr(X(A)) = 0 ⇒ 𝜆(A) = 0, ∀A ∈ (ℝ).
In words, the Lebesgue–Stieltjesmeasure 𝜆 has the same null sets as the probabilitymeasure Pr(X).
If Pr(X) has additionally the same null sets as the Lebesgue–Stieltjes measure, then both measures
are called equivalent. A concrete example where this does not hold is ifX is aDirac delta function,
i.e., Pr(X = c) = 1 but 𝜆(X = c) = 0. Note that the considerations above hold equivalently for the
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multivariate case where all marginal random variables are independent from each other, as then
Pr(X = c) = 0. For more details on this topic, we refer to a measure-theoretic probability book
such as Ash and Doléans-Dade (2000, p. 175). ◾

The next theorem characterizes elliptic random variables.

Theorem C.4 Y ∼ ECn(𝝁,𝚺, 𝜑) if and only if

a) the c.f. of Y is 𝜑Y(t) = exp{it′𝝁}𝜑(t′𝚺t) for some scalar function 𝜑

b) there exists a continuous, non-negative univariate random variableR, independent ofUk , such that

Y
d
=𝝁 + RA′Uk , A′A = 𝚺. (C.50)

Proof : (Motivated from Fang et al., 1989)

a) Sufficiency:The c.f. of Y is
𝜑Y(t) = 𝔼[exp(it′Y)] = 𝔼[exp(it′(𝝁 + A′X))] = exp(it′𝝁)𝔼[exp(it′A′X)]

= exp(it′𝝁)𝔼[exp(it′A′At)] = exp(it′𝝁)𝜑(t′𝚺t), (C.51)

where the second to last equality follows fromTheorem C.1(b).
Necessity: Define X ∶= (Y − 𝝁)′A−, where, as before, A− denotes the Moore–Penrose pseudo
inverse such that A=AA−A. As A has column rank k, (AA′) is invertible, and A− is given as
A− = A′(AA′)−1, whereA− is n × k. Moreover, we need (A′)− which is given by (A′)− = (AA′)−1A,
where (A′)− is k × n. This can be verified by computing A′(A′)−A′ = A′, i.e. A′(AA′)−1AA′ = A′.
Thus, with the if direction inTheorem C.4(a), the c.f. of X is

𝜑X(t) = 𝜑Y−𝝁((A−)t) = 𝜑(t′(A′)−𝚺(A−)t)
= 𝜑(t′(A′)−(A′A)(A−)t)
= 𝜑(t′((AA′)−1A)(A′A)(A′(AA′)−1)t)
= 𝜑(t′(AA′)−1(AA′)(AA′)(AA′)−1t) = 𝜑(t′t), t ∈ ℝk .

Note that the last equality can also be derived from the third equality by noting that (A′)−A′ = Ik
and AA− = Ik . Then, by theorem C.1(b)⇒ (a), X ∼ Sn(𝜑), and, hence, Y ∼ ECn(𝝁,𝚺, 𝜑).

b) Sufficiency:This is an immediate consequence of Theorem C.1(c).
Necessity:Again withX ∶= (Y − 𝝁)′A−, the c.f. ofX is given by 𝜑X(t) = 𝜑(t′t), t ∈ ℝk , so that, by
Theorem C.1(b)⇒ (d), X can be written as X

d
=RUk . Hence, with X = RUk = (Y − 𝝁)′A−, we have

Y
d
=𝝁 + RA′Uk

d
=𝝁 + A′X ∼ ECn(𝝁,𝚺, 𝜑). ◾

Theorem C.5 Let Y ∼ ECn(𝝁,𝚺, 𝜑). Then Q(Y) = (Y − 𝝁)′𝚺−(Y − 𝝁)
d
=R2, where 𝚺− is the general-

ized inverse of 𝚺. For k = n and 𝚺 full rank, 𝚺− = 𝚺−1.

Proof : (From Cambanis et al., 1981) First note that
𝚺A−(A−)′𝚺 = (A′A)A−(A−)′(A′A) = A′(AA−)((A−)′A′)A

= A′(AA−)(AA−)′A = A′IkIkA = A′A = 𝚺,
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where the first equality in the second line follows because, as before,AA− = AA′(AA′)−1 = Ik . Hence,

𝚺− = A−(A−)′ (C.52)

by the definition of the generalized inverse. From the full rank representation (C.50),

Q(Y) = R2UkA(A−(A−)′)A′Uk
d
=R2Uk(AA−)(AA−)′Uk

d
=R2UkIkIkUk

d
=R2,

as claimed. ◾

Example C.10 Example C.7 cont.
Let X ∼ N(𝟎, In) and Y = 𝝁 + 𝚺1∕2X ∼ N(𝝁,𝚺), for symmetric 𝚺 > 0. Then, fromTheorem C.4(c),

Q(Y) = (Y − 𝝁)′𝚺−1(Y − 𝝁) = (Y − 𝝁)′𝚺−1∕2′𝚺−1∕2(Y − 𝝁)
d
=X′X = ||X||2 ∼ 𝜒2

n ,

which is indeed the distribution of R2 in this case. ◾

The next theorem provides a complete characterization of density functions for elliptically con-
toured distributions.

Theorem C.6 LetY ∼ ECn(𝝁,𝚺, 𝜑) and assume thatA′A = 𝚺 and rank(𝚺) = k. Further, assume that
the density of Y, fY(y), exists and

hk = ∫
∞

0
tk∕2−1gk(t) dt < ∞, t ∈ [0,∞). (C.53)

Then

fY(y) =
Ck|A| ⋅ gk((y − 𝝁)′𝚺−(y − 𝝁)), where Ck =

Γ(k∕2)
𝜋k∕2

1
hk

. (C.54)

If, additionally, k = n, so that 𝚺 has full rank, then

fY(y) =
Cn|𝚺|1∕2 ⋅ gn((y − 𝝁)′𝚺−1(y − 𝝁)). (C.55)

Further, g(⋅) is the density generator of Y and given by

gk(t) =
Γ(k∕2)
2𝜋k∕2 ⋅ t−1∕2(k−1) ⋅ fR(t1∕2), t > 0. (C.56)

Note that, for an elliptical r.v. Y,

t = ((y − 𝝁)′A−)((y − 𝝁)′A−)′ = (y − 𝝁)′𝚺−(y − 𝝁). (C.57)

where 𝚺− = 𝚺−1 if rank(𝚺) = n. For X spherical, t = x′x, and, hence, gn(x′x) follows.
The first term of the density generator of Y is the density of a r.v. distributed uniformly on the unit

sphere Sk−11 , denoted (as before) by fU(⋅), and fR is the p.d.f. of R. In this case, we write Y ∼ ECn(𝝁,𝚺, 𝜑)
and call g(⋅) the density generator of the elliptical distribution.

Proof : (From Huber, 1982, Anderson, 2003, and Frahm, 2004) We show first the functional form of
fY(y). Assume that Y ∼ ECn(𝝁,𝚺, 𝜑) so that, by Theorem C.4(b), Y

d
=𝝁 + RA′Uk , A′A = 𝚺. As (i) R is



752 Linear Models and Time-Series Analysis

independent ofUk , (ii) the p.d.f. ofR is absolutely continuous on (0,∞), and (iii) Pr(R = 0) = FR(0) = 0,
the joint density of X = RUk is given by

fR,Uk
(r,u) = fR(r) ⋅ fUk

(u), r > 0, u ∈ Sk−11 . (C.58)

To derive the density of X, define the transformation h ∶ (r,u) → ru = x and note that h is injective.
The p.d.f. of X is then given by

fX(x) = fR,Uk
(h−1(x)) ⋅ |Jh|−1, x ≠ 𝟎, (C.59)

where Jh is the Jacobian determinant of 𝜕(ru)∕𝜕(r,u). Denote by

Sk−1r = {x ∈ ℝk ∶ x′x = ||x||2 = r, r > 0}, n ⩾ 2, (C.60)

the unit sphere with radius r.
We now show two methods for determining the Jacobian in (C.59).
(First approach) The Jacobian matrix of the transformation h ∶ (r,u) → ru = x is not lower

triangular, so a direct computation results in mixed terms for |Jh| and no tractable expression is
available. Instead we parameterize the transformation as h ∶ u → ru = x, where r is taken as the
parameter because we can always identify rk−1 by the fundamental relationship in Theorem (C.2)(a)
as rk−1 = ||x||k−1, recalling that the unit sphere has k − 1 dimensions. The Jacobian determinant of
the parameterized transformation is then given by

|Jh| =
⎡⎢⎢⎢⎢⎣
r 0 0 … 0
0 r ⋱ 0 0
⋮ ⋱ ⋱ 0 0
0 0 … ⋱ 0
0 0 … 0 r

⎤⎥⎥⎥⎥⎦
= rk−1 = ||x||k−1, x ≠ 0.

(Second approach) As 𝜕ru∕𝜕r has unit length and is orthogonal to each tangent plane 𝜕ru∕𝜕u of the
surface of the sphere Sk−1r , we can write[

𝜕(ru)∕𝜕r
𝜕(ru)∕𝜕u

] [
𝜕(ru)∕𝜕r, 𝜕(ru)∕𝜕u

]
=

[
𝟏 𝟎′
𝟎 r2Ik−1

]
.

The Jacobian 𝜕(ru)∕𝜕(r,u) is then given by

𝜕(ru)
𝜕(r,u)

=
[
𝟏 𝟎′
𝟎 rIk−1

]
,

and the absolute value of the determinant is

|Jh| = det
([

𝟏 𝟎′
𝟎 rIk−1

])
= rk−1 = ||x||k−1, x ≠ 𝟎.

Moreover, h−1(x) = (r,u) = (||x||, x∕||x||) byTheorem C.2(a), so that the p.d.f. of X is

fX(x) = fR,Uk
(||x||, x∕||x||) ⋅ ||x||−(k−1)

= fUk
(u) ⋅ ||x||−(k−1) ⋅ fR(||x||).

Define now the mapping q ∶ x → 𝝁 + A′x = y and note that q is injective as AA− = Ik . The absolute
value of the Jacobian determinant of 𝜕(𝝁 + A′x)∕𝜕x is equal to |Jq| = | det(A)|, where | det(A)|
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corresponds to the pseudo-determinant defined in (C.49), and thus the p.d.f. of Y
d
=𝝁 + A′X is

given by

y → fY(y) = fX(q−1(y)) = fX((y − 𝝁)′A−) ⋅ | det(A)|−1.
Hence, the p.d.f. of Y can finally be written as

fY(y) = Ck| det(A)|−1 ⋅ fUk
(u) ⋅ ||(y − 𝝁)′A−||−(k−1) ⋅ fR(||(y − 𝝁)′A−||),

where the normalizing constant Ck is determined in (C.63).
With t = ((y − 𝝁)′A−)((y − 𝝁)′A−)′ and g(t) = fUk

(u) ⋅ t−1∕2(k−1) ⋅ fR(t1∕2), (C.56) follows, up to the
normalizing constant to be derived below in (C.63). As||(y − 𝝁)′A−||2 = [(y − 𝝁)′A−(A−)′(y − 𝝁)]1∕2

and since by (C.52),

𝚺− = A−(A−)′

it follows that

fY(y) =
Ck| det(A)| ⋅ g((y − 𝝁)′𝚺−(y − 𝝁)),

where g(⋅) is as in (C.56) and where |A| ≡ | det(A)|, so that (C.54) follows. For k = n and if 𝚺 has full
rank, then| det(A)|−1 = [det(A) det(A′)]−1∕2 = [det(𝚺)]−1∕2 = |𝚺|−1∕2.
Result (C.55) follows.
Necessity of assumption (C.53):1 Set r ∶=

√
t in (C.56), so that

g(r2) =
Γ(k∕2)
2𝜋k∕2 ⋅ r−(k−1) ⋅ fR(r), (C.61)

noting that fR(r) is an absolutely continuous density function with support (0,∞). By rearranging
(C.61) and integrating,

1 = ∫
∞

0
fR(r) dr = ∫

∞

0

2𝜋k∕2

Γ(k∕2)
⋅ rk−1g(r2) dr. (C.62)

Thus, the integrability condition

∫
∞

0
rk−1g(r2) dr < ∞

is required such that g(r2) qualifies as a valid density. Set t = r2, so that dt = 2r dr, and hence dr =
dt∕2r, so that (C.62) is equivalent to

∫
∞

0

2𝜋k∕2

Γ(k∕2)
t1∕2(k−1)g(t) dt

2r
= 𝜋k∕2

Γ(k∕2) ∫
∞

0
tk∕2−1g(t) dt = 1,

1 For the following relatively elementary statement, it is noteworthy that it does not appear in Frahm (2004) (his density
function does not integrate to one because he leaves off the normalizing constant), nor in this form in Cambanis et al. (1981).
Kelker (1970) just mentions the integrability condition. Fang et al. (1989) conclude the same integrability condition, but based
on a quite different approach, via the Dirichlet distribution and not directly via the derived density generator. It is of course
simple, once one recognizes that fR(r) is a density function and can then use (C.56).
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showing (C.53). For g(⋅) to be a valid density such that ∫ ∞
0 g(t) dt = 1, introduce the normalizing

constant

Ck ∶=
Γ(k∕2)
𝜋k∕2

1
hk

, (C.63)

and (C.54) follows.
In the next step, the density of a uniformly distributed r.v. on the unit sphere, fUk

(⋅), as given in
(C.56), is derived, and follows Anderson (2003, p. 47). Recall from Theorem C.1 that fU(⋅) = 1∕Sk−11 ,
dS ∶= dSk−11 for notational simplicity and that Sk−11 = ∫s∈Sk−11

dS(s).Therefore, it is sufficient to compute

Sk−11 . Define the surface area of the sphere with radius r to be Sk−1r ∶= ∫s∈Sk−1r
dS(s), where Sk−1r = {s ∈

ℝk ∶ ||s|| = r > 0} as in (C.60). The volume Vk
1 of the unit sphere is then given by adding infinitely

thin spherical shells of radius 0 < r ⩽ R, where the parametrization R is used for the upper limit of
the integral, as interest does not center on computing the volume of the sphere Vk

1 in what follows;
see (C.68). Hence,

Vk
1 = ∫

R

0
Sk−1r (r) dr = ∫

R

0 ∫s(r)∈Sk−1r

dS(s(r)) dr (C.64)

= ∫
R

0 ∫x(r)∈Sk−1r

x(r) dr, R = 1, (C.65)

where x(r) is the chosen parametrization of the area element dS(s(r)). In the case of a sphere, this
parametrization is particularly simple as it can be chosen to depend only on the radius r. By the (first)
fundamental theorem of calculus,

Sk−11 =
𝜕(Vk

1 )
𝜕(R)

, R = 1, (C.66)

With a basic coordinate transformation in the Euclidean space of dimension k from Cartesian
coordinates to polar coordinates, we can choose a parametrization of x(r) depending only on r for
k ⩾ 3, as

x1 = r sin 𝜃1,

xj = r

( j−1∏
l=1

cos 𝜃l

)
sin 𝜃j, 2 ⩽ j ⩽ k − 1,

xk = r

( k−1∏
l=1

cos 𝜃l

)
,

where 0 < r ⩽ 1 and −𝜋∕2 ⩽ 𝜃l ⩽ 𝜋∕2 for l = 1,… , k − 2, and −𝜋 ⩽ 𝜃k−1 ⩽ 𝜋. An accessible intro-
duction to polar coordinates is given in Apostol (1969) and Trench (2003, Sec. 6.3).
By (rotational) symmetry, we could equivalently also write sin instead of cos and vice versa in the

above products. Then the absolute value of the Jacobian determinant |J𝑣| ≡ | det(J𝑣)| of the transfor-
mation 𝑣 ∶ (x1,… , xk) → (𝜃1,… , 𝜃k−1, r) is

|J𝑣| = |||||det
(

𝜕(x1,… , xk)
𝜕(𝜃1,… , 𝜃k−1, r)

)||||| = rk−1cosk−2𝜃1cosk−3𝜃2 · · · cos 𝜃k−2.
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Remark Inmost textbooks in which this result appears, no proof is given, or it is simply claimed that
this result is easy to verify by induction; see, e.g., Hassani (1999, p. 594). However, as Nguyen (2014)
states, this claim is not only wrong, but also a common claim whenever the Jacobian of k-dimensional
polar coordinates is stated. The main problematic issue is that in the general k-dimensional case,
there is a lack of a recursive relation between the Jacobians of different orders, so that no inductive
proof exists so far. The few rigorous proofs of this result can be found in Muirhead (2005, Thm. 2.13)
by means of so-called exterior differential forms, and in Richter (2007, Thm. 2), and Nguyen (2014,
Sec. 2.3). ◾

Having this result, we then get

Vk
1 = ∫

R

0 ∫x(r)∈Sk−1r

x(r) dr

= ∫
𝜋∕2

−𝜋∕2
· · ·∫

𝜋∕2

−𝜋∕2 ∫
𝜋

−𝜋 ∫
R

0
rk−1cosk−2𝜃1cosk−3𝜃2 · · · cos 𝜃k−2 d𝜃1 · · · d𝜃k−1 dr

=
k−2∏
l=1

∫
𝜋∕2

−𝜋∕2
(cos 𝜃l)k−l−1d𝜃l ∫

𝜋

−𝜋
d𝜃k−1 ∫

R

0
rk−1 dr, R = 1, k ⩾ 3. (C.67)

Recall that the beta function is defined asB(a, b) ∶= ∫ 1
0 xa−1(1 − x)b−1 dx. Substituting x = cos2𝜃l gives

dx = 2 cos 𝜃l sin 𝜃ld𝜃l, and, with 𝜃l = arccos(1) and 𝜃l = arccos(0), the integration domain is [0, 𝜋∕2],
so that

B(a, b) = 2∫
𝜋∕2

0
(cos2𝜃l)a−1(sin2𝜃l)b−1 cos 𝜃l sin 𝜃l d𝜃l

= 2∫
𝜋∕2

0
(cos 𝜃l)2a−1(sin 𝜃l)2b−1 d𝜃l.

With a = (k − l)∕2, b = 1∕2, B(a, b) = Γ(a)Γ(b)∕Γ(a + b), Γ(1∕2) =
√
𝜋, and by symmetry of the inte-

gral, we get

∫
𝜋∕2

−𝜋∕2
(cos 𝜃l)k−l−1d𝜃l = 2 ⋅

Γ
[
1
2
(k − l)

]
Γ( 1

2
)

Γ
[
1
2
(k − l + 1)

] = 2 ⋅
Γ

[
1
2
(k − l)

] √
𝜋

Γ
[
1
2
(k − l + 1)

] .
Next,

k−2∏
l=1

Γ
[
1
2
(k − l)

] √
𝜋

Γ
[
1
2
(k − l + 1)

] ⋅ ∫
𝜋

−𝜋
d𝜃k−1

=
Γ

[
1
2
(k − 1)

] √
𝜋 ⋅ Γ

[
1
2
(k − 2)

] √
𝜋 · · · tΓ

[
1
2
(3)

] √
𝜋 ⋅ Γ[1]

√
𝜋

Γ
[
1
2
(k)

]
⋅ Γ

[
1
2
(k − 1)

]
· · · Γ

[
1
2
(3)

] ⋅ 2𝜋

= Γ(1)𝜋k∕2−1

Γ(k∕2)
⋅ 2𝜋 = (2𝜋)k∕2

Γ(k∕2)
,
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where the last equality follows because Γ(1) = 1. Finally, we can write (C.67) as

Vk
1 = (2𝜋)k∕2

Γ(k∕2) ∫
R

0
rk−1 dr, R = 1.

With (C.66), we get

Sk−11 =
𝜕(Vk

1 )
𝜕(R)

= (2𝜋)k∕2

Γ(k∕2)
𝜕

(
∫

R

0
rk−1 dr

)
∕𝜕R = (2𝜋)k∕2

Γ(k∕2)
⋅ 1, R = 1, (C.68)

and, therefore, fU(⋅) = 1∕Sk−11 so that (C.56) follows. ◾

Remark In the following, we give an alternative, short, self-contained proof for the surface of a
k-dimensional sphere, following Huber (1982). Note that, by (C.64), the volume Vk

1 of the unit sphere
is given as

Vk
1 = ∫

1

0
Sk−1r (r) dr = ∫

1

0 ∫s(r)∈Sk−1r

dS(s(r)) dr. (C.69)

Another way to define the volume of the unit sphere is

Vk
1 = ∫

1

0
Sk−1r (r)rk−1 dr, (C.70)

where from now on the explicit dependence on r is dropped, i.e., Sk−1r ∶= Sk−1r (r) and dS(s) dr ∶=
dS(s(r)) dr. Note that r = ||s|| = (∑k

i=1 s2i
)1∕2

denotes the usual Euclidean norm.Hence, we can equate
both expressions and get

∫
1

0 ∫s∈Sk−1r

dS(s) dr = ∫
1

0
Sk−1r rk−1 dr. (C.71)

Recall that, by definition, Γ(a) ∶= ∫ ∞
0 xa−1e−x dx, a > 0. Our interest is for x = b2, and dx = 2b db, so

that

Γ(a) = ∫
∞

0
(b2)a−1e−b22b db = 2∫

∞

0
b2a−1e−b2 db, (C.72)

and letting a = 1∕2 gives, by the symmetry of the integration domain,

Γ
(1
2

)
= 2∫

∞

0
e−b2 db = ∫

∞

−∞
e−b2 db =

√
𝜋. (C.73)

Multiplying now the right-hand side of (C.71) by exp (−s2) and integrating over the domain (−∞,+∞)
(instead of (0, 1]) yields

∫
+∞

−∞

(
Sk−1r rk−1

)
e−s2 dr = 2∫

+∞

0

(
Sk−1r rk−1

)
e−s2 dr,

by symmetry of the integration domain, so that, with (C.72),

∫
+∞

0

(
Sk−1r rk−1

)
e−s2 dr = 1

2
Sk−1r Γ

(1
2
k
)
. (C.74)
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Using the integration domain (−∞,+∞)k , multiplying the left-hand side of (C.71) by exp(−s2), and
using s = (s1, s2,… , sk), r2 = ||s||2 = s21 + s22 +…+ s2k gives

∫(−∞,+∞)k
e−r2 dS(s) = ∫

+∞

−∞
· · ·∫

+∞

−∞
e−r2

k∏
i=1

dS(si)

= ∫
+∞

−∞
· · ·∫

+∞

−∞

k∏
i=1

(e−s2i dS(si)) =
k∏
i=1

∫
+∞

−∞
e−s2i dS(si)

=
(
∫

+∞

−∞
e−s2i dS(si)

)k

= 𝜋k∕2, (C.75)

where the last equality follows by (C.73). Equating the last expression in (C.75) and (C.74) gives

Sk−11 = (2𝜋)k∕2

Γ(k∕2)
, (C.76)

so that, as above, fU(⋅) = 1∕Sk−11 and (C.56) follows. ◾

Note that the converse toTheorem C.6 holds as well: Given the density function in (C.55), it is easy
to see that, with X ∶= (Y − 𝝁)′A−, the c.f. of X has the functional form inTheorem C.1(b), henceX is
spherical and, thus, Y is elliptical.

Example C.11 Let g(y) = exp(−y∕2), so that hn = ∫ ∞
0 yn∕2−1e−y∕2 dy = 2n∕2Γ(n∕2) < ∞ and

Cn = 2−n∕2𝜋−n∕2, giving Cng(x′x∕2) = (2𝜋)−n∕2e−x′x∕2, which, from (8.39), is the multivariate normal
distribution with zero location vector and identity variance–covariance matrix. ◾

Theorem C.7 If Y ∼ ECn(𝝁,𝚺, 𝜑), then Y possesses a density generator g if and only if R has p.d.f.
fR, and

fR(r) =
2𝜋n∕2

Γ(n∕2)
rn−1g(r2) (C.77)

dictates the relationship between g and fR.

Proof : This is a direct consequence of Theorem C.6. Note that, if Y ∼ ECn(𝝁,𝚺, 𝜑), then Theorem
C.6 says that the density generator has the functional form in (C.56). Rearranging yields (C.77). This
shows necessity as well as sufficiency. ◾

Example C.12 Example C.7 cont., density generator of X ∼ N(𝟎, In)
Let X ∼ N(𝟎, In) with generating variate R such that R2 ∼ 𝜒2

n , and p.d.f. fX(x) = (2𝜋)−n∕2e−x′x∕2.
Recall that the p.d.f. of 𝜒2

n corresponds to

f(𝜒2
n )
(x) = xn∕2−1 ⋅ e−x∕2

2n∕2 ⋅ Γ(n∕2)
, x ⩾ 0.

Let C ∼ 𝜒2
n , so that r =

√
c. Then, a simple univariate transformation and the fact that fR(r) is abso-

lutely continuous on (0,∞) yields

fR(r) =
|||| dcdr |||| fC(c) = 2r ⋅ f(𝜒2

n )
(r2)𝕀(0,∞) =

2−n∕2+1
Γ(n∕2)

rn−1e−r2∕2𝕀(0,∞)(r).
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The density generator of X
d
=R ⋅Un

d
=

√
𝜒2
n ⋅Un is then given by (C.56) so that

g√
𝜒2
n
(t) =

Γ(n∕2))
2𝜋n∕2 ⋅ t−1∕2(n−1) ⋅ 2t1∕2 ⋅ f(𝜒2

n )
(t) = 1

(2𝜋)n∕2
exp(−t∕2),

corresponding to the generator of the multivariate normal distribution. ◾

Example C.13 We wish to derive the density fR corresponding to the n-dimensional vector
X ∼ t𝑣(𝝁,𝚺). Recalling (C.16), the p.d.f. of the multivariate t-distribution is

fX(x;𝝁,𝚺, 𝑣) =
Γ((n + 𝑣)∕2)

Γ(𝑣∕2)
⋅
(
det(𝚺−1)
(𝑣𝜋)n

)1∕2

⋅
(
1 + (x − 𝝁)′𝚺−1(x − 𝝁)

𝑣

)−(n+𝑣)∕2

,

where 𝑣 > 0 and 𝚺 is positive definite. By (C.54) and (C.56), the density generator of X is

g(tn)(t) =
Γ((n + 𝑣)∕2)

Γ(𝑣∕2)
⋅

1
(𝑣𝜋)n∕2

⋅
(
1 + t

𝑣

)−(n+𝑣)∕2
.

With (C.77),

fR(r) =
2𝜋n∕2

Γ(n∕2)
rn−1g(tn)(r

2)

= 2r
n

⋅
Γ((n + 𝑣)∕2)

Γ(n∕2) ⋅ Γ(𝑣∕2)
⋅
(n
𝑣

)n∕2
⋅
(
r2
n

)n∕2−1

⋅
(
1 + n

𝑣

r2
n

)−(n+𝑣)∕2

= 2r
n

⋅ fF
(
r2
d

)
,

where fF is the p.d.f. of an Fn,𝑣 random variable. ◾

Theorem C.8 Let X ∼ Sn(𝜑) have the stochastic representation X
d
=RUn and Pr(X = 𝟎) = 0.

Assume thatX is partitioned as (X1,X2), whereX1 ism × 1 andX2 is (n −m) × 1, 1 ⩽ m < n. Further,
let X1, X2 have the stochastic representation X1

d
=R1U1 and X2

d
=R2U2 with associated distribution

functions FR1
and FR2

.

a) R1
d
=BR, where B2 ∼ Beta(m∕2, (n −m)∕2) and is independent of R.

b) The distribution of R1 is absolutely continuous on (0,∞) with p.d.f.

fR1
(r) =

2sm−1Γ(n∕2)
Γ(m∕2)Γ((n −m)∕2) ∫

∞

0
r−(n−2)(r2 − s2)(n−m)∕2−1 dFR(r), 0 < s < ∞. (C.78)

c) X1 is absolutely continuous on (0,∞) with p.d.f.

fX1
(x1) =

Γ(n∕2)
𝜋m∕2Γ((n −m)∕2) ∫

∞

||x1|| r
−(n−2)(r2 − x′1x1)

(n−m)∕2−1 dFR(r). (C.79)

Proof : (From Cambanis et al., 1981, and Gupta and Varga, 1993)

a) X = (X1,X2)
d
=RUn ∼ Sn(𝜑) by C.1 (d) ⇐⇒ (a), where X1 is of size m × 1 and X2 is of size

(n −m) × 1. Then, X1
d
=R1U1 ∼ Sm(𝜑). From Theorem C.2(b), X1

d
=R1U1

d
=BRU1 where R, B,
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and U1 are independent. Thus, X1 has two representations and uniqueness in law of the two
representations as well as uniqueness of FR fromTheorem C.1(d) implies R1

d
=BR.

b) Recall that the beta density function is given by

fB(x; p, q) =
Γ(p + q)
Γ(p)Γ(q)

xp−1(1 − x)q−1, 0 ⩽ x ⩽ 1, p, q > 0.

From Theorem C.8(a), we have R1
d
=BR, where B2 ∼ Beta(m∕2, (n −m)∕2). Thus, Pr(R1 = 0) =

Pr(R = 0) = FR(0), showing thatR1 has an atomwithmeasure FR1
(0) = 0 at zero and so is absolutely

continuous on (0,∞). Hence we can write
Pr(0 < R1 ⩽ c) = Pr(0 < BR ⩽ c) = 𝔼[𝕀{0 < BR0 ⩽ c}] = 𝔼[ 𝔼[𝕀{0 < BR ⩽ c} ∣ R] ]

= ∫
∞

0
Pr

(
0 < B2 ⩽ c2

R2

)
dFR(r)

= ∫
∞

0

Γ(n∕2)
Γ(m∕2)Γ((n −m)∕2) ∫

min(1,c2∕r2)

0
xm∕2−1(1 − x)(n−m)∕2−1 dx dFR(r).

(C.80)
Define x = s2∕r2, with dx = 2s ds∕r2, so that the last line of (C.80) can be written as

∫
∞

0

Γ(n∕2)
Γ(m∕2)Γ((n −m)∕2) ∫

min(r,c)

0

(2s
r2

) ( s
r

)m−2
(
1 − s2

r2

)(n−m)∕2−1

ds dFR(r)

=
2sm−1Γ(n∕2)

Γ(m∕2)Γ((n −m)∕2) ∫
∞

0 ∫
min(r,c)

0
r−2−m+2−(n−m)+2(r2 − s2)(n−m)∕2−1 ds dFR(r)

= ∫
c

0

2sm−1Γ(n∕2)
Γ(m∕2)Γ((n −m)∕2)

(
∫

∞

s
r−(n−2)(r2 − s2)(n−m)∕2−1 dFR(r)

)
ds, (C.81)

where the last line in (C.81) follows by Fubini’s Theorem. (In particular, the integrand
r−(n−2)(r2 − s2)(n−m)∕2−1 is non-negative.) Thus, by the (first) fundamental theorem of calculus, the
p.d.f. in (C.78) can be identified by the c.d.f. in the last line of (C.81).

c) FromTheoremC.8(b) it follows thatX1 is absolutely continuous, and, asX1
d
=R1U1 is the stochastic

representation of X1, R1 has the p.d.f. in Theorem C.8(b). Further, from (C.77),

fR1
(r) = 2𝜋m∕2

Γ(m∕2)
rm−1gm(r2), r > 0,

so that, with (C.78), we get (setting s = r)

gm(r2) =
Γ(n∕2)

𝜋m∕2Γ((n −m)∕2) ∫
∞

s
r−(n−2)(r2 − s2)(n−m)∕2−1 dFR(r). (C.82)

As X1 has an elliptic distribution, its p.d.f. is of the form fX1
(x1) = g(x′1x1) byTheorem C.6. More-

over, by Theorem C.2(a), x′1x1 = r2. Hence, (C.79) follows by setting s2 = x′1x1 in (C.82). ◾

Theorem C.9 Let X ∼ Sn(𝜑) with p.d.f. fX(x) = g(x′x). Let X be partitioned as X = (X1,X2), where
X1 ism × 1, 1 ⩽ m < n. Then, X1 is absolutely continuous and its p.d.f. is

fX1
(x1) =

𝜋(n−m)∕2

Γ((n −m)∕2) ∫
∞

x′1x1
(t − x′1x1)

(n−m)∕2−1h(t) dt. (C.83)
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Proof : (From Gupta and Varga, 1993)Let X = RUn be the stochastic representation of X and FR(r)
the c.d.f. of R. Then, fromTheorem C.6, equation (C.56), the p.d.f. of R is

fR(r) =
2𝜋n∕2

Γ(n∕2)
rn−1g(r2),

so that, with (C.79),

fX1
(x1)

=
Γ(n∕2)

𝜋m∕2Γ((n −m)∕2) ∫
∞

||x1|| r
−(n−2)(r2 − x′1x1)

(n−m)∕2−1 2𝜋n∕2

Γ(n∕2)
rn−1g(r2) dr

= 2𝜋(n−m)∕2

Γ((n −m)∕2) ∫
∞

||x1|| r(r
2 − x′1x1)

(n−m)∕2−1g(r2) dr.

Let u = r2, so that, with dr = du∕2r,

fX1
(x1) =

𝜋(n−m)∕2

Γ((n −m)∕2) ∫
∞

x′1x1
(u − x′1x1)

(n−m)∕2−1g(u) du,

which is (C.83). ◾

The next theorem characterizes marginal densities (marginal density generators) of X ∼ Sn(𝜑) and
the fundamental relationship between them.

Theorem C.10 LetX ∼ Sn(𝜑)with p.d.f. fX(x) = g(x′x). LetX be partitioned asX = (X1,X2), where
X1 ism × 1. Let X1 have the p.d.f. fX1

(x1) = gm(x′1x1).

a) For 1 ⩽ m ⩽ n − 2, the marginal densities X1 are related by

gm(u) = 𝜋 ∫
∞

u
gm+2(t) dt. (C.84)

b) The marginal densities of dimension 1 ⩽ m ⩽ n − 1 are continuous and the marginal densities of
dimension 1 ⩽ m ⩽ n − 2 are differentiable almost everywhere (a.e.).

c) The univariate marginal densities for n ⩾ 2 are non-decreasing on (−∞, 0) and non-increasing on
(0,∞).

d) For 1 ⩽ m ⩽ n − 2, the (marginal) density generators are related by

gm+2(t) = (−1∕𝜋)g′m(t), t > 0 almost everywhere (a.e.), (C.85)

where g′m(⋅) is the derivative of gm(⋅) with respect to t.
e) Equation (C.85) allows the construction of all marginal densities knowing only the univariate

marginal density.

Proof :
a) To verify gm(u) = 𝜋 ∫ ∞

u gm+2(y) dy, set m = n − 2, and use (C.79). This yields gn−2 = 𝜋 ∫ ∞
u gn(t) dt,

and (C.84) follows for any 1 ⩽ m ⩽ n − 2.
b) Continuity is intuitively clear, and follows from differentiability. Differentiability follows from

the fundamental theorem of calculus for Lebesgue integrals; see, e.g., Stein and Shakarchi (2005,
Thm. 3.11).
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c) This follows by setting t ∶= x2 in (C.56), where for x ∈ (−∞, 0), (C.56) is non-decreasing and for
x ∈ (0,∞), (C.56) is non-increasing.

d) This follows as in Theorem C.10(b) and by noting that the derivative g′. (t) in (C.85) with respect
to t is well-defined: In (C.56), the square root is uniformly continuous on [0,∞) and fR(t1∕2) is, by
assumption, continuous and non-decreasing on [0,∞) (see the proof of Theorem C.1(d)). Thus,
f ′R(t

1∕2) exists (i.e., is finite) with probability one by the Lebesgue differentiation theorem (see, e.g.,
Stein and Shakarchi, 2005, Cor. 3.7), hence all terms in (C.56) are differentiable with respect to t.

e) This is immediate from (C.84). ◾

The following result, given as Theorem C.11, is used in the proof of the subsequent Theorem C.12.

Theorem C.11 Let X be a random variable with characteristic function 𝜑X . If there exists an 𝜖 > 0
such that |𝜑X(t)| = 1 for all t ∈ [−𝜖, 𝜖], then X is degenerate. That is, there exists a c ∈ ℝ such that
Pr(X = c) = 1.

Proof : Let t′ ∈ ℚ ∩ [−𝜖, 𝜖]\{0}. If |𝜑X(t′)| = 1, then there exists 𝜃 = 𝜃(t′) such that 𝜃 ∈ [0, 2𝜋) and
𝜑X(t′) ∶= ei𝜃 . Hence,

𝔼[1 − ei(t′X−𝜃)] = 0, so that 𝔼[Re(1 − ei′(t′X−𝜃))] = 0.

As Re(1 − ei(t′X−𝜃)) ⩾ 0, this yields
Pr(ei(t′X−𝜃) = 1) = Pr(cos(t′X − 𝜃) + i sin(t′X − 𝜃) = 1)

= Pr(cos(t′X − 𝜃) + i cos(𝜋∕2 − (t′X − 𝜃) = 1), (C.86)

so that we need

X(t′) ∈
{
x ∶ x = 𝜃

t′
+ 2𝜋z

t′
, z ∈ ℤ, 𝜃 ∈ [0, 2𝜋)

}
,

for (C.86) to hold. Now take t′′ ∈ ℚ ∩ [−𝜖, 𝜖]\{0} such that t′′ ≠ t′ on the set ℚ ∩ [−𝜖, 𝜖]\{0}. Then

Pr(X(t′) = X(t′′)) = 1

by (C.86), so that

X ∈ {X(t′) ∩ X(t′′)} = {c}

is at most a singleton (i.e., contains at most one element) because t′ and t′′ are disjoint on the setℚ ∩
[−𝜖, 𝜖]\{0}. By a standard argument (ℚ is dense in ℝ, i.e., every real number can be approximated by
a sequence of rational numbers), this holds for t ∈ [−𝜖, 𝜖]\{0}, therefore X(t) = {c} for all t ∈ ℝ\{0}.
Hence, Pr(X = c) = 1. ◾

The next theorem shows that the stochastic as well as the parametric representation of non-
degenerated elliptically contoured distributions are essentially unique, meaning, up to scaling with a
positive constant.

Theorem C.12 Let Y be a random vector from a non-degenerate distribution (i.e. Pr(Y = c) ≠ 1).

a) If Y ∼ ECn(𝝁,𝚺, 𝜑) and Y ∼ ECn(𝝁∗,𝚺∗, 𝜑∗), there exists a constant c such that

𝝁∗ = 𝝁, 𝚺∗ = c𝚺, 𝜑∗(t) = 𝜑(c−1t).
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b) If Y
d
=𝝁 + RA′Um and Y

d
=𝝁∗ + R∗A∗′Um∗ , where m∗ ⩽ m, then there exists a constant c > 0 such

that

𝝁∗ = 𝝁, A∗′A∗ = cA′A, R∗ d
= RB√

c
,

where B is independent of R, B2 ∼ Beta(m∗∕2, (m −m∗)∕2) ifm∗ < m and B ≡ 1 ifm∗ = m.

Proof : (Motivated from Cambanis et al., 1981, and Gupta and Varga, 1993)

a) Uniqueness of 𝝁: Y − 𝝁 and Y − 𝝁∗ are both symmetric around 𝟎, so Y − 𝝁
d
=−(Y − 𝝁) and

Y − 𝝁∗ d
=−(Y − 𝝁∗). Therefore,

(Y − 𝝁) = 𝝁 − 𝝁∗ − (Y − 𝝁∗)
d
=𝝁 − 𝝁∗ + (Y − 𝝁∗)

d
=Y − (2𝝁∗ − 𝝁),

implying 𝝁∗ = 𝝁.
Uniqueness (up to scaling with positive constant) of 𝚺:
Write 𝚺 = (𝜎ij)1⩽i,j⩽n, 𝚺∗ = (𝜎∗

ij)1⩽i,j⩽n and 𝝁 = (𝜇1,… , 𝜇n). As Y = (Y1,… ,Yn) is non-degenerate,
at least one of its components Yj is non-degenerate. As both representations have the same law,
𝜑Yj−𝜇j

(u) = 𝜑∗
Yj−𝜇j

(u), u ∈ ℝ (see the uniqueness theorem in (C.4)), so that byTheorem C.4(a),

exp(iu𝜇j)𝜑(𝜎jju2) = exp(iu𝜇j)𝜑∗(𝜎∗
jju

2), 𝜎jj, 𝜎∗jj > 0.

Then, 𝜑 ∗ (⋅) = 𝜑(c−1, ⋅) where c = 𝜎∗
jj∕𝜎jj. Hence, the characteristic generator of Y − 𝝁 is given,

again, by the same argument (uniqueness theorem in (C.4)), as 𝜑(t′𝚺t) = 𝜑∗(t′𝚺∗t) = 𝜑(c−1t′𝚺∗t),
t ∈ ℝn.
Now, suppose to the contrary, 𝚺∗ ≠ c𝚺. We will show that Y is necessarily degenerate (i.e.
Pr(Y= c) = 1): For some t0 ∈ ℝn, we then have t′0𝚺t0 ≠ ct′0𝚺t0. The c.f. of Y at ut0 is

𝜑(u(t′0𝚺t0)) = 𝜑∗(uc(t′0𝚺t0)),
where the c.f.s of both representations need to be equal, as both representations have the same
distribution by assumption; see (C.4). On the other hand, the c.f. of Y at ut0 can be expressed as
𝜑∗(u(t′0𝚺∗t0)), so that we require

𝜑∗(uc(t′0𝚺t0)) = 𝜑∗(u(t′0𝚺∗t0)). (C.87)

Case 1: t′0𝚺t0 = 0 or t′0𝚺∗t0 = 0. From (C.87), 𝜑∗(u, ⋅) = 1 has to hold for every u ∈ ℝ, implying
by Theorem C.11 that Y is degenerate. But this is impossible, as Y is non-degenerate by
assumption.

Case 2: t′0𝚺t0 ≠ 0 and t′0𝚺∗t0 ≠ 0. Define

d ∶= c
t′0𝚺t0
t′0𝚺∗t0

.

Then, by the assumption t′0𝚺t0 ≠ ct′0𝚺t0, either d ∈ (0, 1) or d ∈ (1,∞) and with (C.87) we
get 𝜑∗(u, ⋅) = 𝜑∗(du). By induction, we further have the two equivalent identities

𝜑∗(u, ⋅) = 𝜑∗(dmu) and 𝜑∗(u, ⋅) = 𝜑∗
(( 1

d

)m
u
)
, m ∈ ℕ+.
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Now either limm→∞dm = 0 if d ∈ (0, 1) or limm→∞

(
1
d

)m
= 0 if d ∈ (1,∞) so that, by

dominated convergence, 𝜑∗(0) = 1, and from the (uniform) continuity of characteristic
functions, we have𝜑∗(u) = 1 for every u ∈ ℝ. Hence, fromTheoremC.11,Y is degenerate.
By the non-degeneracy assumption of Y, this yields a contradiction.

As such, 𝚺∗ = c𝚺.
b) ByTheorem C.4(b),

Y ∼ ECn(𝝁,A′,A, 𝜑) and Y ∼ ECn(𝝁∗,A∗′,A∗, 𝜑∗),

so that, by Theorem C.12(a), 𝝁∗ = 𝝁, A∗′A∗ = cA′A, 𝜑∗(⋅) = 𝜑(c−1⋅).
If m∗ < m, then it follows from Theorem C.8(a) with R ∶= Rm and R1 ∶= Rm∗ = c1∕2R∗ that
Rm∗

d
=BRm, where B = Ym∗∕||Ym||. Therefore, we have R∗ d

= c−1∕2BR.
If m∗ = m, then the uniqueness of FR in Theorem C.1(d) implies Rm∗

d
=Rm, and therefore

R∗ d
= c−1∕2R, so B ≡ 1. ◾

The next theorem shows that the sum of independent elliptical random variables with the same
dispersion matrix is elliptical. Moreover, the sum of two independent elliptical random vectors with
the same dispersionmatrix, which are dependent only through their radial parts, is also elliptical.This
theorem is due to Hult and Lindskog (2002).

Theorem C.13

a) Let Yi ∼ ECn(𝝁i,𝚺, 𝜑i). Then the sum of independent elliptically distributed random variables Yi,
i = 1,… , n, with identical dispersion matrices, is also elliptical.

b) Let Y1 and Y2 be two n × 1 elliptically distributed random variables with respective stochastic
representations

Y1
d
=𝝁1 + R1AU1 ∼ ECn(𝝁1,𝚺, 𝜑1),

Y2
d
=𝝁2 + R2AU2 ∼ ECn(𝝁2,𝚺, 𝜑2),

where (R1,R2),U1, andU2 aremutually independent, whereasR1 andR2 may depend on each other.
Then,Y1 + Y2 ∼ ECn(𝝁1 + 𝝁2,𝚺, 𝜑), where𝚺 = A′A. Moreover, if R1 and R2 are independent, then
𝜑(t) = 𝜑1(t)𝜑2(t).

Proof : (From Hult and Lindskog, 2002, with more details)

a) Define 𝝁 ∶=
∑n

i 𝝁i and compute

𝔼

[
exp

(
it′

n∑
i
(Yi − 𝝁i)

)]
=

n∏
i=1

𝔼[exp(it′(Yi − 𝝁i))]

=
n∏
i
𝜑(Yi−𝝁i)(t

′𝚺t) ≡ g(t′𝚺t),

which shows that the last expression has the same functional form as in Theorem C.4(a). Hence,
the sum of independent elliptically distributed random variables is elliptically distributed.
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b) Without loss of generality, assume 𝝁1 = 𝟎, 𝝁2 = 𝟎 (or just consider the centered random variables,
Y1 − 𝝁1 and Y2 − 𝝁2) and set Z1 ∶= AU1 and Z2 ∶= AU2. Let 𝜑(r1) be the characteristic generator
of (R2 ∣ R1 = r1)Z2, let Ω1 be the characteristic generator of Z1, and let FR1

(r1) be the distribution
function of R1. Then, as Y1 and Y2 are independent, R1Z1 and R2Z2 are independent, and, for all
t ∈ ℝn,

𝜑R1Z1+R2Z2
(t) = 𝜑R1U1

(t)𝜑R2Z2
(t) = 𝔼[ 𝔼[𝜑R1Z1

(t)𝜑R2Z2
(t) ∣ R1] ]

= ∫
∞

0
𝜑r1Z1

(t)𝜑(R2∣R1=r1)Z2
(t) dFR1

(r1)

= ∫
∞

0
𝔼[eit′r1Z1 ]𝔼[eit′(R2∣R1=r1)Z2 ] dFR1

(r1)

= ∫
∞

0
𝔼[eir21t′(AU1)′(AU1)t]𝔼[ei(R2∣R1=r1)2t′(AU2)′(AU2)t] dFR1

(r1)

= ∫
∞

0
Ω1(r2t′𝚺t)𝜑(r1)(t′𝚺t) dFR1

(r1), (C.88)

where the (crucial) fourth line follows from the fact thatU1 andU2 are spherical random variables,
and byTheorem C.1(a)⇒ (b), i.e., the characteristic function of a spherical random variable 𝜑X(t)
has necessarily the functional form 𝜑(||t||2). By Theorem C.4(a) or by Theorem C.1(b) ⇒ (a) (by
setting without loss of generality 𝚺 = In), it follows that the last line in (C.88) has the desired func-
tional form of an elliptic distributed random variable. Hence, we getY1 + Y2 ∼ ECn(𝝁1 + 𝝁2,𝚺, 𝜑),
where (setting u ∶= t′𝚺t)

𝜑(u) ∶= ∫
∞

0
Ω1(r2u)𝜑(r1)(u) dFR1

(r1). (C.89)

Moreover, if R1 and R2 are independent, then 𝜑(r1)(u) = 𝜑2(u) and (C.89) becomes

𝜑(u) ∶ = ∫
∞

0
Ω1(r2u)𝜑(r1)(u) dFR1

(r1)

= 𝜑2(u)∫
∞

0
Ω1(r2u) dFR1

(r1) = 𝜑1(u)𝜑2(u),

where the last equality follows by the identity in (C.35) (setting u ∶= t′t), stated in the proof of
Theorem C.1(d), i.e., we have 𝜑1(u) = ∫ ∞

0 Ω1(r2u) dFR1
(r1). ◾

Remarks
a) Essentially, the sum of i.i.d. elliptical random variables is elliptical. But this does not imply that the

sum is of the same type, i.e., it usually does not belong to the location-scale family of its compo-
nents. This is only given for the class of multivariate sum-stable distributions; see, e.g., Embrechts
et al. (2000, p. 522) and Rachev and Mittnik (2000, Sec. 7.1).

b) The property in Theorem C.13(b) is useful for time-series analysis when assuming a sequence
R1,R2,… of dependent (i.e., heteroskedastic) generating (or radial) variates. See the next
example. ◾

Example C.14 A natural application of Theorem C.13 is in the context of multivariate time series.
Let Yt = 𝜎tZt , t ∈ ℤ, where the random variables Zt ∼ ECn(𝟎,𝚺, 𝜑t) are mutually independent and
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independent of the non-negative (univariate) random variable 𝜎t for all t. The 𝜎t , on the other hand,
are allowed to be dependent. Then, for every t ∈ ℤ, by Theorem C.13(b), Yt is elliptically distributed
with dispersion matrix 𝚺 and so are all partial sums, ST =

∑T
t=1 Yt . ◾

The following theorem states that a linear combination of r.v.s whose joint distribution is ellipti-
cally symmetric is also elliptically symmetric, and, thus, that the marginal distributions of Y are also
elliptically symmetric with the same characteristic generator.

Theorem C.14 Let Y be elliptically symmetric with Y ∼ ECn(𝝁,𝚺, 𝜑). For vector v ∈ ℝm and real
n ×mmatrix B, v + B′Y ∼ ECm(v + B′𝝁,B′𝚺B, 𝜑).

Proof : We have

v + B′Y
d
= v + B′(𝝁 + RA′Uk)

d
=(v + B′𝝁) + R(AB)′Uk ,

from the definition of elliptically distributed r.v.s andTheorem C.4(b). ◾

Example C.15 The three results (C.26), (C.27), and (C.28) given above are all special cases of
Theorem C.14. ◾

The following theorem gives the first two moments of this class of distributions.

Theorem C.15 Let Y ∼ ECn(𝝁,𝚺, 𝜑) and 𝔼[R] < ∞, where R is from the representation in (C.50).
Then

𝔼[Y] = 𝝁, Cov(Y) = 𝔼[R2]
rank(𝚺)

𝚺 = −2𝜑′(0)𝚺, (C.90)

𝔼[YY′] = 𝝁𝝁′ − 2𝜑′(0)𝚺, (C.91)

where 𝜑′ is the first derivative of 𝜑.

Proof : Denoting k = rank(𝚺), we have Y
d
=𝝁 + RA′Uk . By Theorem C.1(e) (i.e., 𝔼[Uk] = 𝟎 and

𝕍 (Uk) = Ik∕k), we obtain

𝔼[Y] = 𝝁 + 𝔼[R]A′𝔼[Uk] = 𝝁

and

Cov(Y) = Cov(RA′Uk) = 𝔼[R2]A′ Cov(Uk)A

= 𝔼[R2]1
k
A′IkA = 1

k
𝔼[R2]𝚺.

Assume without loss of generality that 𝝁 = 𝟎 and 𝚺 = In. Let X = (Y − 𝝁)′A−. The c.f. of X is then
𝜑X(t) = 𝜑(t′t), where t = (t1,… , tn). Then

𝜕𝜑X(t)

𝜕ti
=

𝜕𝜑
(∑n

i=1 t2i
)

𝜕ti
= 2ti𝜑′

( n∑
i=1

t2i

)
.
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Hence,
𝜕2𝜑X(t)

𝜕2ti
= 2𝜑′

( n∑
i=1

t2i

)
+ 4t2i 𝜑

′′

( n∑
i=1

t2i

)
, i = j,

and
𝜕𝜑X(t)

𝜕ti𝜕tj
= 4titj𝜑′

( n∑
i=1

t2i

)
, i ≠ j.

Therefore,
𝜕2𝜑X(t)

𝜕2ti𝜕tj

|||||t=0 = 2𝜑′(0), i = j,
𝜕2𝜑X(t)

𝜕2ti𝜕tj

|||||t=0 = 0, i ≠ j.

From 𝜑X(t), it follows that Cov(X) = −2𝜑′(0), so that, with X = (Y − 𝝁)A−, we have 𝔼[YY′] = 𝝁𝝁′ −
2𝜑′(0)𝚺. Thus, Cov(Y) = −2𝜑′(0)𝚺. ◾

Example C.16 (Example C.8 cont.)
We found for X =

√
kZ∕S ∼ tk that R2

∗∕n ∼ F(n, k), and, from (just after) Example I.9.8, 𝔼[F] =
k∕(k − 2) for F ∼ F(n, k), so that Cov(X) = {k∕(k − 2)}In. ◾

Remarks
a) In the ANOVA setting, Butler (1986) shows that, if the assumption of spherically symmetric errors

is not specifically tied to the sample size, then the standard F test must be UMPI. More specifi-
cally, this means that, if the error distribution is what is called 1-extendible, then the standard F
test must be UMPI. An n × 1 error distribution is said to be 1-extendible if it is the marginal distri-
bution of an (n + 1) × 1 error distribution that is also spherically symmetric. In other words, if one
more observation were sampled in addition to the n observations, and the spherically symmetric
assumption wasmaintained with the sample of size n + 1, then the F test must be UMPI.
Similar results from Butler (1986) show that Hotelling’s T2-test in MANOVA is UMPI if the
assumption of left orthogonal invariance for the n × k error matrix is not tied to sample size n.
More specifically, if the n × k matrix error distribution is k-extendible as the marginal distribution
of an (n + k) × n error matrix that is also left orthogonally invariant, then Hotelling’s T2-test
in MANOVA is UMPI. This extends previous results of Dawid (1977), Jensen (1981), and
Kariya (1981a,b).

b) There are several ways of testing a data set for ellipticity; see Zhu and Neuhaus (2003), Bodnar and
Schmid (2007), Huffer and Park (2007), Su (2012), Bianco et al. (2017), and the references therein,
as well as the discussion and illustrations inMcNeil et al. (2005, Sec. 3.3.5). Below in Section C.2.4,
we illustrate the use of one test on financial asset returns data.

c) A confidence set for themean of a spherically symmetric distribution based on bootstrap inference
is developed by Samworth (2005).

d) Formulae for the expected shortfall (see, e.g., Section III.A.7) associated with a portfolio (weighted
sums of margins) from an elliptic distribution have been derived by Landsman and Valdez (2003),
Kamdem (2005), and Dobrev et al. (2017). Let X ∼ Sn(g), where g is the density generator. Let
P = w′X be the weighted linear combination of interest.Then, with q = VaR(P, 𝜉) being the 𝜉-level
tail quantile (where VaR is the value-at-risk) for some 0 < 𝜉 < 1, Dobrev et al. (2017) show that

ES(P, 𝜉) = 1
𝜉

𝜋(n−1)∕2

2Γ((n + 1)∕2) ∫
∞

q2
(u − q2)(n−1)∕2g(u) du.
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ForX ∼ ECn(𝝁,𝚺, 𝜑), the VaR quantile and the ES are just linear transforms of their corresponding
elliptic values, with the location being w′𝝁 and scale (w′𝚺w)1∕2.

e) Stein’s lemma (see, e.g., Section III.A.7) can be generalized to the elliptic setting; see Landsman
and Nes̆lehová (2008).

f ) Quadratic forms in elliptic random vectors have been studied. See, e.g., King (1980), Fang et al.
(1989, p. 149), Díaz-García (2013), and the references therein.

g) Frahm (2004) introduces the class of generalized elliptical distributions given by

Y
d
=𝝁 + RAUk , (C.92)

whereUk is, as before, a k × 1 random variable distributed uniformly on Sk−1, R is a (not necessarily
non-negative) random variable, and A ∈ ℝd×k .
In contrast to elliptical distributions, the generating variate R may become negative and even
depend on the direction determined by Uk . Hence, the dependence structure of R and Uk consti-
tutes the multivariate c.d.f. of Y. In particular, X does not need to be radially symmetric anymore.
See Frahm (2004), Chapter 3.2 for details.
Frahm (2004) shows that the density function of general elliptic distributed random variables still
has the functional form as in Theorem C.6, where the density generator is now given by two
additively separable terms, i.e.,

g(t) ∶=
Γ(k∕2)
2𝜋k∕2 ⋅ t−1∕2(k−1) ⋅

(
fR∣Uk=−u(−t

1∕2) + fR∣Uk=u(t
1∕2)

)
, t > 0, (C.93)

and fR∣Uk=u is the conditional p.d.f. of R underUk = u ∈ Sk−1.The proof follows along the same lines
as inTheorem C.6, by noting that the transformation h ∶ (r,u) → ru is no longer injective (due to
the domain of R) giving rise to the two additively separable terms in (C.93). Naturally, Schoenberg’s
key insight as stated inTheorem C.1(d), does not hold, as Y is not radial symmetric anymore. The
class of generalized elliptical distribution contains the class of conditional scale distributions (see
Frahm, 2004, Example 13) giving rise to asymmetric density contours and heavy tails prominent
in empirical finance.

h) The class of meta-elliptical distributions is constructed from specified marginal distributions
with a given dependence structure, where the margins can be arbitrarily chosen.The density func-
tion of a meta-elliptical distribution can be decomposed into the density weighting function and
the product of the marginal densities. An example of their use is given in Chapter 12.
Consider the case Z ∼ ECn(𝟎,R, g), where g is a density generator and R is given by (12.2). In this
case, all the marginal distributions of Z are identical, with p.d.f.

qg(x) =
𝜋(n−1)∕2

Γ((n − 1)∕2) ∫
∞

x2
(y − x2)(n−1)∕2−1g(y) dy (C.94)

and c.d.f.

Qg(x) =
1
2
+ 𝜋(n−1)∕2

Γ((n − 1)∕2) ∫
x

0 ∫
∞

u2
(y − x2)(n−1)∕2−1g(y) dy du. (C.95)

Let X = (X1,… ,Xn)′ be a random variable with each component Xi having a given continuous
density fi and c.d.f. Fi. Let Z = (Z1,… ,Zn)′ ∼ ECn(𝝁,R, g). Suppose that

zi = Q−1
g (Fi(xi)), i = 1,… , n, (C.96)
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where Q−1
g is the inverse of Qg . The determinant of the Jacobian of the transformation is

J{(z1,… , zn)′ → (x1,… , xn)′} =
n∏
i=1

dzi
dxi

=
n∏
i=1

fi(xi)
qg(Q−1

g (Fi(xi)))
(C.97)

and the p.d.f. of X is given by

h(x1,… , xn) = 𝜙(Q−1
g (F1(x1)),… ,Q−1

g (Fn(xn);R)
n∏
i=1

fi(xi), (C.98)

where 𝜙(⋅) is the n-variate density weighting function

𝜙(z1,… , zn;R) = Cn|R|−1∕2g(x′R−1X)
/ n∏

i=1
qg(zi) (C.99)

and Cn is the normalizing constant defined in Theorem C.6. The n × 1 random vector X is
said to have a meta-elliptical distribution if its density function is given by (C.98), and denoted
X ∼ MEn(𝟎,R, g; F1,… , Fn). ◾

C.2.4 Testing Ellipticity

This section was written with Christian Frey and Ludovic Mathys, who also researched and
programmed the tests.

There have been several ways proposed for testing a data set for ellipticity; some of these were
mentioned above in Remark (b). We consider here those from Schott (2002), Manzotti et al. (2002),
and Huffer and Park (2007). A more recent approach such as Su (2012) builds directly on Manzotti
et al. (2002), while that from Bianco et al. (2017) is an extension of Zhu and Neuhaus (2003) (which
is based on the computation of the empirical characteristic function) where the assumption about
existence of fourth moments for the asymptotic validity of the test statistic distribution is relaxed.
Su (2012) and Bianco et al. (2017) rely on bootstrapping procedures, making their implementation
computationally too expensive for a large number of dimensions and data points.
As shown in a simulation study by Huffer and Park (2007), their test (hereafter, H-P) and that of

Manzotti et al. (2002) (hereafterMPQ) have higher power than the test from Schott (2002), when used
for samples drawn from a multivariate generalized Laplace distribution (see Huffer and Park, 2007,
Tables 1, 2, and 3 for details). As such, we investigate the performance of H-P andMPQ inmore detail.
Both of these tests are conceptually of the same complexity and both are computationally intractable
for large dimensions d. More precisely, H-P requires generating all possible combinations of diagonal
matrices with entries +1∕ − 1 for a given sample, leading to 2d diagonal matrices. Likewise, the MPQ
test requires a nested computation of spherical harmonics (polynomials) of different degrees, where
the numbers of required polynomials of a particular degree is linked to d. For large d (say, 50), this
implies the nested computation of several hundreds or even thousands of polynomials, and becomes
computationally intractable on a modern (at the time of writing) desktop computer.
For these reasons, the H-P test (which also enjoys accurate finite sample properties) is chosen for

samples of dimension up to 10. As the implementation of this test is rather involved, we refer the
interested reader to Huffer and Park (2007) for details. Program Listing C.2 gives our Matlab imple-
mentation, though, unlike most programs given throughout the book, the code does not tie in with
any analytic description of the method given in the text, and is thus just a “black box” routine.
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1 function [TestStat,Pvalue,PSerror]=ProgTestPARK(Y)
2 p=length(Y(1,:)); c=3; p0=1/(c*2ˆp); G=matriceO(p);
3 % Define Scaled Residual:
4 Ybar=mean(Y); N=length(Y(:,1)); S=((N-1)/N).*cov(Y); [~,q] = chol(S);
5 if q==0
6 L=chol(S,'lower'); L=L'; R=inv(L); Z=(Y-Ybar)*R'; PSerror=0;
7 else
8 Shat=nearestSPD(S); L=chol(Shat,'lower'); L=L';
9 R=inv(L); Z=(Y-Ybar)*R'; PSerror=norm(Shat-S);

10 end
11 % Define the Cell Counts
12 if p==1, Znorm=(Z').ˆ2; else Znorm=vecnorm(Z').ˆ2; end
13 U=zeros(2ˆp,c); q=zeros(1,c+1);
14 for k=1:N
15 for j=2:c+1
16 q(1,j)=quantile(Znorm,(j-1)/c);
17 for i=1:2ˆp
18 if (G(1:p,(i-1)*p+1:i*p)*Z(k,:).'> 0) ...
19 & (q(1,j-1)<Znorm(1,k)) & (Znorm(1,k)<=q(1,j))
20 U(i,j-1)=U(i,j-1)+1;
21 end
22 end
23 end
24 end
25 % Define statistic Xˆ2 and Obtain p-value:
26 squareX=sum(sum((U-N*p0).ˆ2))/(N*p0);
27 TestStat=squareX; Pvalue=LimitPvalue(TestStat,p,c);
28 end
29
30 function G=matriceO(p)
31 g = dec2bin(0:2ˆp-1); Q1 = zeros(2ˆp-1,p);
32 for i=1:size(g,1)
33 for j=1:size(g,2), Q1(i,j) = str2double(g(i,j)); end
34 end
35 Q2=Q1-1; Q=Q1+Q2; G=zeros(p,p*2ˆp);
36 for j=1:2ˆp, G(1:p,(j-1)*p+1:j*p)=diag(Q(j,:)); end
37 end
38
39 function Pvalue=LimitPvalue(TestStat,p,c)
40 N=7000; dfW0=c*(2ˆp-1)-p*(p+1)/2; dfW1=p; dfW2=p*(p-1)/2;
41 W0=chi2rnd(dfW0,[1,N]);
42 W1=chi2rnd(dfW1,[1,N]); W2=chi2rnd(dfW2,[1,N]); VW=0:1/c:1;
43 q0=chi2inv(VW,p);
44 A=chi2cdf(q0(1,2:c),p+1)-chi2cdf(q0(1,1:c-1),p+1);
45 B=chi2cdf(q0(1,2:c),p+2)-chi2cdf(q0(1,1:c-1),p+2);
46 astar=2*c/pi * sum(A.ˆ2); bstar=4*c/piˆ2 * sum(B.ˆ2);
47 W=W0+(1-astar).*W1+(1-bstar).*W2; [f,x]=ecdf(W);
48 for k=1:N+1
49 if (TestStat >= x(k,1)), PV=f(k,1); end
50 end
51 Pvalue=1-PV;
52 end
53
54 function n = vecnorm(x, dim) % Already built into version R2017b
55 if nargin < 2, dim = 1; end
56 n = sqrt(sum(x.ˆ2, dim));
57 end

Program Listing C.2: Program to compute the H-P test statistic fromHuffer and Park (2007). Func-
tion nearestSPD, by John D’Errico, called in line 8, was obtained from the Matlab File Exchange.
It takes as input a square real matrix, and delivers the nearest matrix (by minimizing the Frobenius
norm of the difference) that is symmetric and positive definite.
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Figure C.2 Kernel density plots (truncated, so that the x-axis is the same in each plot) of the distribution of H-P test
statistic T for ellipticity. The x-axis elements were divided by 1,000. Top left: Computed on the GARCH-filtered log
percentage returns of d = 5 randomly drawn stocks out of 416 from the S&P500 index, and this done over 1,000
random draws. The remaining plots show the same result but when restricting the d = 5 stocks to be within the same
of each of the 10 industry sectors that divide the stocks on the index.
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As an empirical example of potential relevance, we use the Gaussian GARCH-filtered daily returns
of 416 stocks listed on the S&P500 index, as initially examined in Example 12.7.With 10 years of daily
data, this results in 2,592 data points. Recall that each stock belongs to one of 10 industry sectors, e.g.,
energy, financials, health care, utilities, etc. Due to the computational requirements of the H-P test,
we restrict attention to use of d = 5 and d = 10 assets, and consider the following heuristic to assess
the extent to which sets of stocks within a sector are closer to being elliptic than sets of stocks from
different financial sectors.
First, d = 5 stocks from the available 416 are randomly drawn (without regard to industry sector)

and the corresponding H-P ellipticity test statistic, T1, is computed.This is repeatedM = 1,000 times,
resulting in test statisticsT1,… ,TM.The top left panel in Figure C.2 shows the resulting kernel density
plot.This serves as a “null distribution” (specific to the 416 stocks, the 10 years of daily data used, and
also the extent to which the Gaussian GARCH model is adequate for filtering out the time-varying
scale term to result in a set of i.i.d. deviates) of the distribution of T when based on d = 5 stocks and
the industry sector is ignored.
Second, d = 5 stocks from each sector, s = 1,… , S, S = 10, are randomly drawn for m = 1,… ,M,

and the corresponding ellipticity test statistics, Ts,1,… ,Ts,M, are computed, s = 1,… , S. For each sec-
tor, the remaining panels in Figure C.2 show the resulting kernel density estimates. Note that the plots,
starting from the second one to the bottom right, each contain two overlaid sectors (to save space).
From this exercise, we see that non-ellipticity is relatively very prominent in some sectors, notably the
energy and financial sectors, but not in others, such as health care and consumer staples. A similar
exercise using d = 10 assets yields qualitatively similar results.
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Appendix D

Introducing the SAS Programming Language

SAS is one of the most versatile software packages for data handling and statistical analysis. Its pro-
gramming language and data structures are suited specifically for this task, and thus differ from
those of more general programming languages such as C++ and Java, and their matrix-based pro-
totyping extensions, such as Julia, Matlab, Python, R, etc. Software packages that emphasize canned,
pre-written statistical methods include SAS, SPSS, and Stata, though both Matlab and R also have
packages with canned statistical routines.
For development of methods, C++, Java, Matlab, Python, and R (alphabetically listed) appear at the

top of many lists, with big data and machine learning practitioners tending towards Python, while for
statistics, R dominates, particularly in the academic setting. For industry end-users, it appears that
SAS is still the leader in medicine/clinical trials and is also popular in large organizations, including
major financial institutions, as it serves as a modular and integrated computing package useful for
generating, combining, and processing various (potentially large) databases.
Note that SAS is relatively rather expensive, Matlab is not cheap, while R is free. Due to its open

source nature, new techniques are often available very quickly in R, though often numerous packages
will exist for similar analyses, and the reliability of the code is not ensured. For decades, SAS has been
the undisputed leader in the commercial space, with well-tested updates to its capabilities based on
demand, as opposed to trying to include every new method in real time. R has a very large online
community (as does SAS and Matlab), but no service support, while SAS has dedicated customer
service support.
As a commercial product, SAS is governed by a commondesign unifying the data processing engine,

user interfaces, procedures, and documentation, with syntax consistent across procedures. R-package
developers operate independently and without a comparable design. Its diversity and speed in imple-
menting new methods is a strong plus, but can be a drawback (and liability) for professionals in
industry.
A data analyst does not have to choose to the exclusion of others, just like with human languages:

Knowing more than one is often an advantage, though generally accepted advice is that being able
to program is a necessary, but far from sufficient, prerequisite for success. Programming is relatively
easy compared to deep acquisition of skills in statistics, distribution and probability theory, as well as
subject-specific knowledge such as biostatistics, engineering, quantitative risk management, mathe-
matical finance, or econometrics.

Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH, First Edition. Marc S. Paolella.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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Some advantages in learning and using SAS include:

1) Data handling capability. Statistically analyzing a data set and building a model for a certain
purpose is often only part of the job. Among the many steps (data acquisition, presentation of
results, etc.), an important one includes reading in the data from various types of data files that
might have been “uniquely” (or poorly) constructed, processing the data in various ways, such as
sorting, merging with related data, and cleaning (eliminating faulty values), etc. SAS offers the user
a wide variety of techniques to process data, preparing it for proper statistical analysis.

2) Availability ofmany statistical and other procedures. In statistical consulting andmuch applied
research, the analysis of the majority of data sets requires techniques that are already available in
most statistical packages. While, say, simple t-tests and basic linear models analysis can easily and
quickly be conducted in a programming language such as Matlab, more advanced routines can
be very time-consuming to program, not to mention the time required to test their reliability and
robustness. Instead of reinventing the wheel, use of the canned routines in software such as SAS
can sparemany potential mistakes, and enormous amounts of time (and your employer’s or client’s
patience).

3) Reliability. Although arguably less today, SAS is considered a benchmark in statistical comput-
ing. Of course, no software package is without mistakes, and journal articles occasionally appear
comparing computations across software platforms and pointing out errors.

4) Popularity. Because so many public and private organizations use SAS, and have already devel-
oped many custom programs with it, they will be unwilling to switch to another platform.

5) Processing speed. SAS was traditionally known for well-coded statistical algorithms and fast
execution speed, though for particular methods the gap is no doubt closing, given, for example,
that the underlying vectorized operations in Matlab are efficiently written in a low-level (close to
machine) language. SAS has an advantage with massive data processing, as it does not require all
the data to be loaded into memory, though various workarounds for this issue do already exist for
other languages, such as in Matlab with their so-called tall arrays and distributed arrays.

6) Access to data. SAS can interface with commercial data bases. An example of interest to
researchers in empirical corporate finance, quantitative risk management, and financial econo-
metrics is Wharton Research Data Services (WRDS), from the Wharton (business) School of the
University of Pennsylvania, and includes, among others, the data from CRSP, Thomson Reuters,
and OptionMetrics. Once the user has access to the WRDS, one can “Use SAS on your PC to
submit jobs on the WRDS cloud or download data directly to your PC and analyze using our
extensive site, programs and utilities”, as stated on the WRDS webpage.

D.1 Introduction to SAS

D.1.1 Background

SAS was developed before powerful desktop computers and workstations existed and, thus, originally
intended for use on mainframe computers, whereby users (typically universities, research firms, or
other companies) had to pay for computer resources (memory and CPU time). This is reflected, for
example, in the fact that output from a SAS job (i.e., program execution), still includes information
about runtime, even in the PC version (in the LOG file). In addition, there are various options and
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commands that can be invoked to perform data operations in less time and/or with less memory;
these are naturally somewhat obsolete in a PC environment, although still useful from time to time.
Note that, with the emergence of cloud computing, this aspect might come full circle and become
relevant again.
Given the existing computer technology at the time of SAS’s initial development, it was not possible

(perhaps not even imaginable) for interactive, real-time data explorationwith easy, high-level graphics
capabilities. Instead, data processing, numerical output, and simple character graphics from statistical
procedures were emphasized, obtained from submitting written programs for execution.
Naturally, newer versions running on graphics-friendly devices support modern data exploration.

Nevertheless, SAS’s strong point is undoubtedly still its data handling capability. Before more specific
software packages became available and popular, SAS’s data manipulation features were rich enough
to be able to serve as a database manager, spreadsheet, payroll manager, report generator and, of
course, a state-of-the-art statistical software package. For this reason, we will concentrate on reading
and manipulating datasets in SAS.

D.1.2 Working with SAS on a PC

A computer-savvy person with basic programming skills should be able to work through this chapter
in a couple of days. To save space, not all output from the demonstration programs is shown. Thus,
while helpful to just read the notes, nothing can replace brewing a pot of coffee, rolling up the sleeves,
and actively working through the material.
It is useful to specify a working directory, where input files can be found and output files can be

directed. This is accomplished by going to the menu Tools, then Options, then Change Current
Folder, and entering the desired path. It is useful to have a way of putting the location of such files
into the SAS code, so that a “batch” code can be run without requiring to start the SAS graphical user
interface andmanually use the menu structure to indicate the desired path. How this is done is shown
at the beginning of Section D.3.3.
When SAS is started, several sub-windows are presented, the most useful of which for us will be

LOG, OUTPUT, and PROGRAM EDITOR. A program can be typed in a PROGRAM EDITOR win-
dow, and then executed by command Submit, located under the menu title Run. This menu option
only appears when the cursor is in a PROGRAM EDITOR. Another way of executing the program is
to left mouse click on the icon that resembles a running person. As the program runs, SAS generates
a so-called log file, which appears in the LOG window and provides details regarding the previously
submitted program statements. Errormessages are shown in red, helping to spot them. For beginners,
it is worth reading the other messages (in blue) as well.
If the program was successful and output from a procedure was generated, it can be viewed in the

OUTPUT window. In SAS version 9.4, output is in hypertext markup language (HTML) format. It
can easily be converted to both Adobe portable document format (pdf) and rich text format (rtf ); see,
e.g., the commands in Listing 2.1 (Chapter 2) for how to do this.
As an example to get started:

1) (How to type in a program) In the PROGRAM EDITOR, type the following short program.
Don’t worry about understanding all the details of the program now—they will be explained
shortly.
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data welcome; /* this is a comment. Note the delimiters */
input stage_name $ age;
datalines; /* the old name was: cards. It can still be used */

Rodolfo 26
Marcello 24
Colline 31
Mimi 25
;
proc print;

title 'La Boheme Quanti anni abbiamo ora?';
run;
proc means;

var age;
run;

2) (Howto submit a programand examine theOutput)With themouse or keyboard, Submit
the program. If it was typed in correctly, then the LOG window will show the details about the
executed program, and the OUTPUT window will show the output of the two procedures print
and means.

3) (Howtocopy and paste a code segment) Go back into the PROGRAMEDITORwindow and
append to the end of the program a copy of the program segment corresponding to proc means
(i.e., the last three lines of the above program). Edit the new proc means as follows:

proc means min max range maxdec=5;
var age;

run;

4) (How to run just a piece of code) Mark the new proc means procedure (using the mouse).
Now Submit the code (right mouse click, choose Submit Selection). This will execute just the
piece of code that you marked. The LOG and OUTPUT windows will be appended with the new
results, i.e., they keep growing until you delete them.

5) (How to clear the contents of the OUTPUT and LOG windows) With a right mouse
click from somewhere in the OUTPUT window, choose Edit followed by Clear All. Do the same
for the LOG window.

6) (How to save a SAS program)The code you entered in the PROGRAM EDITOR window can
be saved as a text file via menu option File, Save As and specifying a path and name. If you do not
provide an extension, SAS uses the default of .sas.

7) (Howtopull a SAS program into SAS)UnderMS-Windows, from the Explorer, a rightmouse
click on a file with extension .sas will result in a floating menu of options catered to SAS, one of
them being Open with SAS 9.4 (or whatever version you have). This will start the SAS GUI (the
Windows Graphical User Interface) software if it is not already running and place the contents
of the selected program into its editor. If the SAS GUI is already running, one can also just drag
the file with the mouse into the SAS editor window, and a new editor window will be created for
the file. The program can then be executed, modified, and saved, etc., using the methods already
discussed. Finally, and usefully, dragging a file into the LOG or OUTPUT window will execute the
code, but not instigate a new editor window.

8) (How to run SAS as a batch job) It is actually not necessary to use SAS’s file editor and LOG
and OUTPUT windows. From the Windows Explorer, right click the mouse on a SAS program
(assuming it has the .sas extension) and select from the resulting floatingmenu the optionBatch
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Submit.The programwill be executed by SAS “in the background” andwill produce a correspond-
ing.log file for the log output and, if at least one procedure successfully ran and generated output,
a.lstfile for the statistical output (and possibly a.pdf and/or.rtffile).Thisworks irrespective
of whether or not the SAS GUI is running.

D.1.3 Introduction to the Data Step and the Program Data Vector

It is easiest to think of a SAS data set as a matrix, with the columns representing different variables,
and the number of rows representing the total number of observations. A SAS program can define
and operate on numerous data sets and its ability to combine them in various ways is one of its advan-
tages. A data set is created in SAS by specifying the keyword data, followed by a name consisting of
letters and numbers, the first of which must be a letter; a blank space is not allowed. For instance, the
statement data erstmal is valid, but not data 1.mal. In older versions of SAS, the name was
restricted to at most eight characters, but this is no longer the case.
Data is input into the named data set by using the keyword input, followed by variable names.The

variable names follow the same rules as those of the data names. The actual numbers read into the
variables can either be part of the program, following the datalines statement (as we used above),
or contained in a text file (as will be shown below). Variables can also be generated from previous
variables using mathematical functions. The Program Data Vector, or PDV, is where SAS internally
holds a vector of observations before they are output to the data set. The following examples are
illustrated both with their output, as generated by SAS, as well as a representation of what the PDV
looks like during the data step.
It is sometimes useful to designate variable names using a foreign language (obviously provided

the user understands it), so that it is clearly differentiated from function names in the syntax of the
programming language.We continue this below, occasionally using some simple words fromGerman
(erstmal, Leute, alle, zusammen, ein, aus, Geschlecht, Geburtstag, das Ende, drucken, Einheit, falsch,
klappt, keine, Montag, Dienstag, Mittwoch, Donnerstag, Freitag).
Consider the program:

data Leute;
input name $ sex age height weight;
ratio=height/weight;
drop height weight;

datalines;
john 0 45 101 151
mike 0 38 105 163
susan 1 50 98 142
frank 0 32 120 182
jenn 1 71 78 100
bill 0 14 43 64
mary 1 15 53 81
;
run;
proc print; run;

The name of the data set is Leute (people). The input statement tells SAS to input 5 variables:
name, sex, age, height, and weight. Notice that name is followed by a dollar sign, $, as it resembles a
string.This indicates that name is not a number, but rather a character string.The data come after the
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Raw Data which
follow the
datalines;
statement

input

ratio =
height*weight

name sex age height weight ratio PDV

drop
data set

Leute

Figure D.1 PDV for input and calculation of variables.

keyworddatalines, and thedatalines statement comes at the end of the processing commands.
The variable ratio is generated from the most recently input height and weight variables. The
drop statement instructs SAS not to save the variables height and weight. We only want the ratio
of these two variables, and do need to keep them in the data set.Theproc print; run; statement
at the end invokes SAS’s printing procedure. It causes the contents of the most recently created data
set to be printed.
To help visualize things, a flowchart-like diagram of the PDV in this case is given in Figure D.1. It

serves to indicate how SAS processes a single observation.The first data line is read in, ratio is com-
puted, and all the variables in the PDV that are not tagged with a drop statement are written to data
setLeute. It is important also to envision how the data step processes several observations.The above
depicted procedure is repeated as many times as there are observations following the datalines
statement. In our case, there are 7. Thus, 7 “lines” or rows are written to the data set Leute. The
output from the print procedure looks approximately as follows:

OBS NAME SEX AGE RATIO

1 john 0 45 0.66887
2 mike 0 38 0.64417
3 susan 1 50 0.69014
4 frank 0 32 0.65934
5 jenn 1 71 0.78000
6 bill 0 14 0.67188
7 mary 1 15 0.65432
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Consider the additional code segment

data adults;
set Leute;
if age < 18 then delete;

run;

The set statement uses the previously created data set Leute to input observations. In this case,
we want a subset of the observations from Leute, namely only those people at least 18 years old. We
call the new data set adults. The PDV in this case can be represented by the diagram in Figure D.2.
There are other ways to extract this subset from data set Leute. Two other possibilities are

data adults; data adults;
set Leute; and set Leute(where=(age>=18));
if age >= 18; run;

run;

The first of these is logically equivalent to the original code, but in terms of easily readable (or
self-documenting) code, it is less clear (ifage >= 18, thenwhat? And if not, thenwhat?)The second
alternative uses the where= statement, a feature that was added to version 6 of SAS (and revealing
the age of the author). Only if the condition specified in parentheses after the where= statement
is fulfilled is the observation allowed to enter into adults. With larger data sets, using the where
statement can save execution time. It also makes for shorter and better documented programs.

age > = 18?

data set

adults
delete

name sex age ratio PDV

noyes

data set

Leute

Figure D.2 PDV illustrating branching via an if statement.
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We can create more than one data set at a time. Perhaps we want to make two separate data sets,
based on the sex variable, and including both children and adults. It should be noted that although
we created the data set adults from data set Leute, they are both still present in SAS. Thus, the
following is used.

data male female;
set leute;
if sex=0 then output male;
else output female;

run;

Notice first that the two new data sets appear on thedata declaration (the first line in the program),
and are not separated by commas.The output statement instructs SAS to which data set the current
observation should be output. Because there is more than one data set being created in this case,
we have to specify which observations go to which data set. In fact, when there is only one data set
declared, like in the previous data steps, SAS implicitly inserts an output statement at the end of the
data step. For instance, in the previous program, we could have explicitly written

data adults;
set Leute(where=(age>=18));
output;

run;

and would get exactly the same result. The PDV in this case is shown in Figure D.3.

sex = 0?

data set

male
delete set

female

name sex age ratio PDV

noyes

data set

Leute

Figure D.3 PDV illustrating construction of two data sets.
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The data set male just contains the observations for john, mike, frank, and bill. The data set
female contains only those observations for susan, jenn, and mary.
Now imagine that two new people are being added to this study; Josh and Laura. We would create

another data set with their information, and call it Leute2. Notice it is exactly the same as the data
step for Leute, except that the two observations after the datalines statement are different.
data leute2;

input name $ sex age height weight;
ratio=height/weight;
drop height weight;

datalines;
josh 0 53 130 110
laura 1 60 165 140
;
run;

We would like to combine all the people into one data set. To do this, we may place both data set
names, Leute and Leute2, on the set statement.
data Alle;

set Leute Leute2;
run;

SAS simply appends the two data sets together, one after another, to create the data set Alle. Using
the print procedure, where this time we explicitly tell SAS which data set to print, proc print
data=alle; run; we get as output,

OBS NAME SEX AGE RATIO

1 john 0 45 0.66887
2 mike 0 38 0.64417
3 susan 1 50 0.69014
4 frank 0 32 0.65934
5 jenn 1 71 0.78000
6 bill 0 14 0.67188
7 mary 1 15 0.65432
8 josh 0 53 1.18182
9 laura 1 60 1.17857

Imagine that later it is decided to ask the participants some information about how much they eat
and how active they are. In particular, we ask them approximately how many calories they consume
on average every day and, on a scale of 0 to 3, how active they are, where 0 indicates “absolutely lazy”
and 3 means “very active in sports”. With the collected data, we would type the following program,
creating the new data set moreinfo. Laura unfortunately refused to answer how many calories she
consumes every day, as well as how sporty she is. We therefore leave her out of this data set.
data moreinfo; /* notice Laura is missing! */

input name $ calories sport;
datalines;

susan 1250 2
jenn 3270 0
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mike 2370 0
frank 1540 1
josh 1050 0
mary 5340 3
john 1040 2
bill 2080 0
;
run;

This is quite similar to the first program above, so we omit the PDV and the output from the print
procedure. The goal is now to merge this data set with the data set Alle, where the rest of the infor-
mation is contained. SAS has an appropriately named statement, merge, for this. However, to merge
the two data sets Alle and moreinfo, they each need to be sorted by the name variable first. This
is accomplished in SAS with the procedure sort.
proc sort data=moreinfo;

by name;
run;
proc sort data=Alle;

by name;
run;

Notice the by statement, which, somewhat obviously, indicates by which variable to sort the obser-
vations. If wewere to print the data setsmoreinfo andAllenow,wewould see that the observations
in both are sorted by name, alphabetically. Now comes the exciting part.
data zusammen; /* means 'together' in German */

merge Alle moreinfo;
by name;

run;
proc print; run;

The output from proc print looks as follows. Notice two things. First, the observations are
sorted by name. Second, SAS does not give an error message or even a warning when it cannot find
the information for Laura in the moreinfo data set. SAS simply sets those values tomissing.Missing
values are denoted with a period.

OBS NAME SEX AGE RATIO CALORIES SPORT

1 bill 0 14 0.67188 2080 0
2 frank 0 32 0.65934 1540 1
3 jenn 1 71 0.78000 3270 0
4 john 0 45 0.66887 1040 2
5 josh 0 53 1.18182 1050 0
6 laura 1 60 1.17857 . .
7 mary 1 15 0.65432 5340 3
8 mike 0 38 0.64417 2370 0
9 susan 1 50 0.69014 1250 2

With the merge statement, the PDV can be thought of as the diagram in Figure D.4.
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name sex age ratio

name sex age

name calories

if name missing
then assign:
calories =.

sport =.

sport

calories sportratio

data set

Alle
data set

moreinfo

Figure D.4 PDV using merge.

Notice that the variable name is not duplicated. Because we merged by name, name only
appears once.

D.2 Basic Data Handling

Consider the following real data set, taken from Hand et al. (1994), collected in an experiment to
determine if caffeine increases ones ability to tap his/her fingers. The number of taps per minute was
recorded for 30 people, 10 per each group, where the first group received no caffeine, the second
group received 100 ml, and the third group 200 ml.

Independent observations

Caffeine
0 242 245 244 248 247 248 242 244 246 242
100 248 246 245 247 248 250 247 246 243 244
200 246 248 250 252 248 250 246 248 245 250

Although there are several possible ways of constructing a datamatrix from the above data, analysis
is most easily conducted when SAS internally views the data as a matrix of two variables, with 30
observations:

Obs. Caffeine Taps

1 0 242
2 0 245
⋮ ⋮ ⋮
30 200 250

(D.1)
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We now consider a few different ways of reading this data set into SAS. Because the data set is
relatively small, we will type the data directly into the SAS program editor. For larger data sets this
will be impractical, so later we will discuss how to read text files into SAS.

D.2.1 Method 1

We construct three separate data sets, named caff0, caff100, and caff200. We’ll examine how
to calculate basic statistics from them, like the mean, etc., and then combine them into one data set
so that it appears as in (D.1).
data caff0;

input taps @@; /* @@ tells SAS not to go to a new line */
caffeine=0; /* this variable stays constant */
datalines;

242 245 244 248 247 248 242 244 246 242
;
data caff100;

input taps @@;
caffeine=100;
datalines;

248 246 245 247 248 250 247 246 243 244
;
data caff200;

input taps @@;
caffeine=200;
datalines;

246 248 250 252 248 250 246 248 245 250
;

The three data sets are now in memory. They would have to be combined in order to conduct,
say, an F test for equality of means. Before doing so, we might be interested in printing the data and
examining some simple statistics. Use the following to print the data sets just constructed:
proc print data=caff0; /* indicates which data set */

title 'No caffeine administered'; /* prints nice title */
title2 '(Control Group)'; /* 2nd title line */

run; /* ''run'' is actually not necessary */
proc print data=caff100;

title '100 ml caffeine administered';
proc print data=caff200;

title '200 ml caffeine administered';
run;

To compute various simple statistics, use the means procedure:
proc means data=caff0 maxdec=1; /* specify max # of decimal places */

title 'No caffeine administered';
title2 '(Control Group)';
var taps; /* which variable(s) to analyze? */

run;
proc means data=caff100 mean min max; /* just compute mean, min and max */

title '100 ml caffeine administered';
var taps;
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proc means data=caff200;
title '200 ml caffeine administered';
var taps;

run;

The variable specification var command is not necessary. Without it, SAS uses all the variables in
the data set. The output is, however, less cluttered if only those variables of interest are used.
Now we wish to combine the three data sets into one. The following accomplishes this:

data all;
set caff0 caff100 caff200; /* appends them */

;

As before, we may use the print and means procedures.
proc print; /* default dataset is last one created */

title 'All Observations';
run;
proc means maxdec=1 mean;

by caffeine; /* data are sorted */
var taps;
* title 'get the MEANS for each level of caffeine';

run;

The by statement is very useful. As long as the data are sorted by the “by variable”, we can perform
essentially threemeans procedures, one for each level of caffeine.The star in front of a line (andwhich
ends with a semicolon) serves to comment that line out, as shown above for the title line in the
proc means. In this case, we comment out the title to illustrate the point that, if the procedure is
not explicitly given a title, then its output uses the title from the most recently executed procedure,
in this case, from the print procedure.
It might be desired to print the data grouped according to the level of caffeine. Here is one way:

proc print data=all noobs; /* noobs omits the observation number */
title 'We can print BY caffeine also';
by caffeine;

run;

D.2.2 Method 2

Here we directly create one data set.
data coffee;

input caffeine @; /* don't go to next input line */
do i=1 to 10; /* start a loop */

input taps @; /* get a data point but stay on the line */
output; /* now write both vars: caffeine, taps */

end;
datalines;

0 242 245 244 248 247 248 242 244 246 242
100 248 246 245 247 248 250 247 246 243 244
200 246 248 250 252 248 250 246 248 245 250
;
proc print; /* just check */

title 'Second Method for reading in data';
run;



786 Linear Models and Time-Series Analysis

Theabove deserves a bitmore explanation.The@ sign at the end of the input line causes SAS to keep
the “input pointer” on the current line until there are no more observations on that line. The do loop
then reads the 10 observations on the first line, also using the @ sign to prevent SAS from going to the
next line. For each observation, the command output is executed, and writes the variables caffeine
and taps to the data set coffee. This command output is normally executed by SAS automatically in
the data step, but for complicated data entry tasks it is a useful tool.
The difference between the single @ sign, and the double @@ sign is small, but important. Use @@

also to “hold the line”, but only when complete sets of variables are followed by one another on a line.
For example, if for some reason, we had typed the level of caffeine for each observation, we would use
the @@ sign instead:
data koffee;

input caffeine taps @@; /* several FULL obs. on each line */
datalines;

0 242 0 245 0 244 0 248 0 247 0 248 0 242 0 244 0 246 0 242 100 248
100 246 100 245 100 247 100 248 100 250 100 247 100 246 100 243 100
244 200 246 200 248 200 250 200 252 200 248 200 250 200 246 200 248
200 245 200 250
;
proc print; /* just check again */

title 'yet another way';
run;

D.2.3 Method 3

Here we’ll see how to use arrays in SAS, as well as some other useful features.
data tapping;

input caffeine v1-v10; /* no @, as we read the whole line */
average=mean(of v1-v10); /* now we have the mean too */
array vv{10} v1-v10; /* v1 is vv(1), v2 is vv(2), etc. */
do i=1 to 10;
taps=vv(i); /* we want a separate obs. for each */
deviate=taps-average; /* construct a new variable */
output; /* combination of caffeine and taps */

end;
drop v1-v10; /* no need to keep these variables */
datalines;

0 242 245 244 248 247 248 242 244 246 242
100 248 246 245 247 248 250 247 246 243 244
200 246 248 250 252 248 250 246 248 245 250
;
proc print;

by caffeine;
title 'The 3rd way to read in the data set';

run;

Observe that the variableaverage is themean over the levels of caffeine, and not the overall mean.
To calculate the overall mean, just use proc means without the by statement, i.e.,
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proc means data=tapping mean;
title 'the overall mean';
var taps;

run;

D.2.4 Creating Data Sets from Existing Data Sets

Using the previously created tapping data set, we now create three new data sets, caf0, caf100,
and caf200, that contain the data corresponding to the caffeine level 0, 100, or 200, respectively.The
keep statement below only takes the variables caffeine and taps from the previously created
tapping data set. Recall we had the additional variables average and deviate, though we do not
wish to use them now.
/* how to make three data sets from just one */
data caf0 caf100 caf200;

set tapping (keep=caffeine taps);
drop caffeine;
if caffeine=0 then output caf0;
else if caffeine=100 then output caf100;
else if caffeine=200 then output caf200;

run;

Now consider making once again a single data set with all 30 observations, but this time having
three separate variables, taps0, taps100, and taps200, within the single data set. The rename
command will be of use here, and is of the form rename=(oldname=newname). Notice that, in
this case, the set command does work, but generates missing values. The merge command is what
we really want to use. Understanding how the set and merge commands work is of great value.
/* combine them to make 3 separate vars */
data try1;

set caf0(rename=(taps=taps0))
caf100(rename=(taps=taps100))
caf200(rename=(taps=taps200));

run;
proc print;

title '3 different vars';
title2 'but not quite what we wanted℩';

run;
proc means mean min max nmiss;

title 'the MEANS procedure ignores missing values';
run;

data try2;
merge caf0(rename=(taps=taps0))

caf100(rename=(taps=taps100))
caf200(rename=(taps=taps200));

run;
proc print;

title '3 different vars, with no Missing Values';
run;
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D.2.5 Creating Data Sets from Procedure Output

Many procedures in SAS allow the output to be sent into a new data set. We will illustrate this idea
with proc means, which we have seen computes such statistics as the mean, variance, minimum,
maximum, etc., of a data set. It is perhaps more useful if we can merge the output of the procedure
with the original data set. This is relatively easy to do in SAS, and is a common task.
If we wish to incorporate the overall, or grand, mean into the data set, we have two options, the “one

shot” fast way, and the elegant, but longer way. The first way is as follows. Run proc means to get
the overall mean, as we did at the end of Section D.2.3 above, examine the output, and then just type
the mean into another data step as follows:
data tapping; /* notice this overwrites the old tapping */

set tapping;
overall=246.5;

run;
proc print;

title 'The quick and dirty way to do this';
run;

To avoid having to “do it by hand”, the following technique is used. We run proc means, but
request that its output becomes a data file, calledtapbar. It will be a data set with only one important
variable (ignore the rest for now), and one observation, namely the mean of the 30 observations from
the data set tapping. The option noprint indicates that no printed output should be generated
from the procedure. The option mean indicates that only the mean should be computed. On the
output line, out=tapbar is how we indicate the name of the new data set, and mean=overall
indicates that we wish to output the mean and call it overall.
proc means data=tapping noprint mean;

var taps;
output out=tapbar mean=overall; /* creates new dataset tapbar */

run;
proc print; /* look at the new data set */

title 'output from MEANS procedure (overall mean)';
run;
data einheit; /* this means 'unified' in English */

set tapbar(keep=overall in=m) tapping(keep=caffeine taps);
retain grand;
if m then do;
grand=overall;
delete;

end;
drop overall;

run;
proc print;

title 'the combined data sets: data and their overall mean';
run;

We first notice the keep statements: They simplify the einheit data set by only allowing those
variables of interest. (As an example, notice _TYPE_ and _FREQ_; these are additional, sometimes
useful variables that SAS generates as output from proc means).The special command in= is used
to create a boolean variable (true or false), in this case we called it m. As data set einheit is being
created, m indicates if the observation from tapbar entered in.
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To be more specific, the set statement works as follows. First, all observations from tapbar are
read in because it is the first data set listed in the set line. (Notice that this is an example in which
order does matter). In this case, there is only one observation, the mean. Next, the 30 observations
from tapping are read in, so that einheit should really have 31 observations. This first obser-
vation from tapbar is critical. The if statement tells SAS to maintain only those 30 observations,
deleting the one observation fromtapbar. But then howdowe keep themean?Theretain state-
ment tells SAS not to clear the value of the variable grand; it gets assigned the overall mean from
that first observation from the data set tapbar, i.e., the single variable overall.
Yes, some practice with SAS will be necessary to understand its logic. Try removing the retain

statement and convince yourself that it really works.
One might try to devise a simpler program to accomplish the same task. For instance, it seems like

the following could work:

proc means data=tapping noprint mean;
var taps;
output out=tapbar mean=overall;

run;
data falsch;

retain overall;
merge tapbar(keep=overall) tapping(keep=caffeine taps);

run;
proc print; run;

Unfortunately, it does not. However, the following program does, and is considerably simpler than
the above correct technique.This should be thought of as a “trick” because it is really not obvious why
it works.

proc means data=tapping noprint mean;
var taps;
output out=tapbar mean=overall;

run;
data klappt;

set tapping(keep=caffeine taps);
if_N_=1 then set tapbar(keep=overall);

run;

Finally, we can even use the above technique for combining the groupmeans and not just the overall
mean. To do so, we would use:

proc sort data=tapping; /* in case it is not sorted */
by caffeine;

run;
proc means data=tapping noprint mean;

by caffeine;
var taps;
output out=grptap mean=grpmean; /* creates new data set called grptap */

run;
proc print; /* look at the new data set */

title 'output from MEANS procedure (by caffeine)';
run;
data allinone;

merge tapping grptap;
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by caffeine;
keep caffeine taps grpmean;

run;
proc print;

title 'Combined now!';
run;

By adding theby statement to theproc means procedure, the output contains the same variables,
but now (in this case) three observations. The command merge is very useful in SAS, and combines
automatically the mean for each of the three groups with the observations. Observe that, in this case,
where we use the by statement with merge, it works, whereas for the overall mean, it did not.

D.3 Advanced Data Handling

D.3.1 String Input andMissing Values

To input a string, simply follow the variable name on the input line with a dollar sign. To represent a
missing value, use a period. Consider the following list of authors:

data a;
input name $ x1-x6;
datalines;

Christopher 11 22 33 44 55 66
Sam 66 55 44 . 22 11
Richard 11 33 55 77 99 0
Daniel 99 . . 33 11 0
Steven . 11 77 33 55 .
;
proc print; run;

Notice that SAS understands the abbreviation x1-x6 to mean x1 x2 x3 x4 x5 x6. Missing
values can appear anywhere in the data list. As long as it is surrounded by blank spaces, there will not
be any confusion with a decimal point belonging to a valid number. Imagine that we wish to create
a subset of this data set, including only those observations for which the entire vector contains no
missing values. In other words, we want a data set containing only those observations corresponding
to the names Christopher and Richard. One way is the following:

data b1;
set a;
if x1 >. & x2 >. & x3 >. & x4 >. & x5 >. & x6 >.;

run;
proc print; run;

Three things must be mentioned to understand how this works.

1) Internally, SAS stores amissing value as the largest (inmagnitude) negative number possible.Thus,
the comparison x1 >. asks if the variable x1 is greater than the value “missing”. If x1 has any
non-missing value (except the internal SAS code for a missing value), it will be greater than the
largest negative number, and thus be true. Otherwise, if x1 is in fact missing, the comparison will
be false.
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2) The if statement checks whether the six variables x1 through x6 are not missing. The sign “&”
stands for the logical ANDmathematical operation.TheOR operation is designated by the “|” sign.

3) The if statement has no corresponding then statement. SAS interprets this to mean that if the
condition is true, then allow the observation into the data set, otherwise do not. We already saw
this earlier. Another way of accomplishing this is to write the following:

data b2;
set a;
if x1 =. | x2 =. | x3 =. | x4 =. | x5 =. | x6 =. then delete;

run;
proc print; run;

That is, if x1 is missing, or x2 is missing,… , or x6 is missing, then delete the observation, i.e.,
do not let it enter into data set b2.
Now imagine if we had 36 variables instead of six. This leads to a good illustration of the usefulness

of the array statement introduced in Section D.2.3 above.The following accomplishes the same task
as the above programs, but is not only more elegant and easier to read, but also less likely to have a
mistake.

data c;
set a;
array check{6} x1-x6;
flag=0;
do i=1 to 6;

if check(i)=. then flag=1;
end;
if flag=0;
drop i flag; /* these are no longer needed */

run;
proc print; run;

The use of so-called boolean or flag variables is very common in all computer programming lan-
guages. Here, we initializeflag to zero, and set it to one if any of the variables in the array aremissing.
Then, we allow the observation to enter into the data set only when flag is zero, i.e., there are no
missing values in the observation. Instead of the line if flag=0; we could have used the longer
(but clearer) if flag=1 then delete;.

D.3.2 Using setwith first.var and last.var

Consider the caffeine data set introduced earlier. Imagine we would like to construct a data set with
three variables: the level of caffeine and the minimum and maximum of the 10 observations in each
group. In particular, from the following data table,

Independent observations

Caffeine
0 242 245 244 248 247 248 242 244 246 242
100 248 246 245 247 248 250 247 246 243 244
200 246 248 250 252 248 250 246 248 245 250



792 Linear Models and Time-Series Analysis

we want a data set that looks like

Caffeine Min. Max.
0 242 248
100 243 250
200 245 252

We have already seen most of the tools we need to address this problem. Consider the following
code:

data tapping(keep= taps caffeine)
extreme1(keep=grpmin grpmax caffeine);

input caffeine v1-v10;
grpmin=min(of v1-v10); grpmax=max(of v1-v10);
output extreme1;
array vv{10} v1-v10;
do i=1 to 10;
taps=vv(i);
output tapping;

end;
drop v1-v10;

datalines;
0 242 245 244 248 247 248 242 244 246 242
100 248 246 245 247 248 250 247 246 243 244
200 246 248 250 252 248 250 246 248 245 250
;
run;
proc print data=tapping;

by caffeine;
title 'I''m starting to hate this data set';
/* Observe how to get a single quote mark into the title */

run cancel;
proc print data=extreme1;

title 'The min and max of each level of Caffeine';
title2 'Method 1';

run;

Theprogram is very similar to that in SectionD.2.3.We construct two data sets at the beginning.The
first is tapping, and is just the data set with all the observations. Data set extreme1 contains the
desired variables. Notice how the keep statements are used on the first line. Without them, no harm
is done, but both data sets then contain superfluous variables. After the proc print is executed,
and you are convinced that the tapping data set is correct and do not wish to see the output over
and over again, there are at least four options:

• Delete the code corresponding to the proc print statement.
• Enclose the code in the comment brackets /* and */.
• “Comment out” each line by preceding itwith an asterick * (each line needs to endwith a semicolon).
• Use the run cancel option, which instructs SAS not to execute the procedure.

All four ways except the first allow the code to stay in the program; this provides clear documen-
tation and is especially useful for longer and more advanced programs, even more so if you plan on
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looking at it later (and have forgotten everything in themeantime) or, worse, someone else has to look
at your code.
The next method should also be familiar. We use proc means to generate a data set with the

required variables:

proc sort data=tapping;
by caffeine;
title;

run;
proc means data=tapping noprint min max;

by caffeine;
var taps;
output out=extreme2 min=grpmin max=grpmax;

run;
proc print data=extreme2;

var caffeine grpmin grpmax;
title 'The min and max of each level of Caffeine';
title2 'Method 2 this time';

run;

The third method introduces a new data step technique: When we generate a new data set from an
old one, using both the set and the by statements, say by myvar, SAS automatically creates two
new variables, first.myvar and last.myvar, that do not get put into the data set, but can be
used during the execution of the data step.The data has to be sorted by the myvar. Before explaining
how they work, we look at an example. Because the variables are not written to the new data set, in
order to see them we simply assign them to two new variables, and then use proc print.

data show;
set tapping;
by caffeine;
first=first.caffeine;
last=last.caffeine;

run;
proc print;

title 'The first. and last. variables';
run;

The abbreviated out is shown in SAS Output D.1.
We see that first.caffeine takes on the value 1 only when the level of caffeine changes to a

new level. The variable last.caffeine is similar, being 1 only when it is the last observation with
that level of caffeine. So how might we extract the minimum and maximum using these variables?
The data have to be arranged so that, for each level of caffeine, the data are sorted by taps. If we just
wanted to know the first and last observation for each level of caffeine, we do not require a two-level
sort, but in this case, we do. Performing a two-level sort is no more difficult (for us) than a one-level:

proc sort data=tapping out=tapsort;
by caffeine taps;

run;

Certainly for the computer, this requires more resources, so in general this is not the recommended
way to get the minimum and maximum, unless you need to sort the data anyway. The proc sort
also allows a new data set to be created, as we have done here. Recall that the default (when the out=



794 Linear Models and Time-Series Analysis

OBS CAFFEINE TAPS FIRST LAST
1 0 242 1 0
2 0 245 0 0

.

.
9 0 246 0 0
10 0 242 0 1
11 100 248 1 0

.

.
19 100 243 0 0
20 100 244 0 1
21 200 246 1 0

.

.
29 200 245 0 0
30 200 250 0 1

SAS Output D.1: Part of the SAS output with first. and last. variables.

option is not specified) is to rewrite the old data set. The data set tapsort is now sorted not only by
caffeine, but also by taps, within each level of caffeine.
So, how do we proceed? First, the wrong way. Consider the following code, and try to tell before you

run it why it will indeed work, but the data set will not be quite what you would like it to be. (Hint: at
each output, what is the value of grpmin and grpmax?) Next, run it, and examine the output.

data extreme3; * NOT the correct way℩;
set tapsort;
by caffeine;
if first.caffeine then do;
grpmin=taps;
output;

end;
if last.caffeine then do;
grpmax=taps;
output;

end;
drop taps;

run; proc print;
title 'NOT what we wanted!!';

run;

After having reflected on what went wrong above, try to determine why one way of fixing things is
the following program. The key is the retain statement that we also met earlier.

data extreme3; * now it is correct;
set tapsort;
by caffeine;
retain grpmin;
if first.caffeine then grpmin=taps;
if last.caffeine then do;
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grpmax=taps;
output;

end;
drop taps;

run; proc print;
title 'Ahh yes, the pleasures of SAS!';

run;

D.3.3 Reading in Text Files

Having to type in the data, or even copy/paste it from a file, is not necessary and not elegant. One
can easily circumvent this using the following. The text file elderly.asc from Hand et al. (1994)
contains the heights of 351 elderly women who participated in an osteoporosis study. We first asso-
ciate the file to be read in, along with the directory path where it is located, with a name, here ein.
Similarly, the name and directory location of an output file can be specified, as we do here with aus.
If, as is common, one particular directory is used for a particular project, then the default directory
path can be specified, as stated at the beginning of Section D.1.2.
Next, we read the file in, compute the mean, and write the mean to another file, using the put

statement. If no file is specified, the put statement writes to the LOG file. This can be useful for
debugging.

filename ein "u:\datasets\elderly.asc";
filename aus "u:\datasets\elderly_output.txt";
data grey;

infile ein;
input height @@;

run;
proc means data=grey noprint mean;

var height;
output out=greymean mean=themean;

run;
data _NULL_;

set greymean;
file aus;
put themean=;
put themean;

run;
proc univariate data=grey normal plot;

var height;
run;

Inspect the file elderly_output.txt to see what the two put statements have done. Only one
is necessary in general. We will see more uses of the put statement later. The data name _NULL_ is
used when we are not interested in the creation of a new data set, just (in this case) the put state-
ments contained in it. This not only saves computer memory, disk space, and time, but serves also as
documentation for yourself and other potential users of your program.
Finally, examine the output of proc univariate.The options normal and plot are not neces-

sary, but cause proc univariate to calculate a test of normality statistic and plot a stem-and-leaf
plot of the data, respectively.



796 Linear Models and Time-Series Analysis

D.3.4 Skipping over Headers

Sometimes data files have a header or titles above each column of data. For example, imagine the
fictitious data file justtest.dat looks as follows:

height weight
155 74
182 92
134 45
188 53

To read the data into SAS, it would be quickest just to skip the first line containing the header. (More
complicated SAS commands could be used to actually read the titles, see ahead). The following will
work:

filename in "c:\justtest.dat";
data a;

infile in;
if _N_=1 then do;
input;
delete;

end;
else input height weight;

run;

The variable _N_ is created automatically by SAS and indexes the observations as they are read in.
Thus, _N_ starts at the value 1, and we input without specifying any variables. We then delete
the empty “observation”. SAS then goes to the next input line, N = 2, and the rest of the file is read
in. You should try the above technique by creating an artificial data set, such as the one above, and
running the above program. Omit the delete statement to see what purpose it serves here.

D.3.5 Variable and Value Labels

In older versions of SAS, variable names were limited to eight characters, and this prevented using
names thatmore precisely describe what the variable represents. Oneway to deal with this in SAS that
is still useful is to accompany a name with a variable label. In addition, labels for actual data values
are also possible, and can convey much more information than the originally coded values. These are
called value labels, or formats in SAS. For example, instead of using a 1 to represent male, and 2 to
represent female, it would be nice if we could print the character strings MALE and FEMALE.We begin
with an example. The following description is taken from Hand et al. (1994, p. 266).

The data come from the 1990 Pilot Surf/Health survey Study of the NSW (New South Wales)
Water Board (in SydneyAustralia).Thefirst column takes values 1 or 2 according to the recruit’s
perception of whether (s)he is a Frequent Ocean Swimmer, the second column has values 1 or
4 according to recruit’s usually chosen swimming location (1 for non-beach, 4 for beach), the
third column has values 2 (aged 15–19), 3 (aged 20–25), or 4 (aged 25–29), the fourth column
has values 1 (male) or 2 (female) and, finally, the fifth column has the number of self-diagnosed
ear infections that were reported by the recruit.
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The objective of this study was to determine, in particular, whether beach swimmers run a
greater risk of contracting ear infections than non-beach swimmers.

The data set starts like this:

1 1 2 1 0 2 1 2 1 0 1 4 2 1 0 2 4 2 1 0

At this point, we wish just to read the data set into SAS and print it with appropriate labels. Examine
the following program:

filename in "u:\datasets\ear.asc";
proc format;

value ocean 1='yes' 2='no';
value beach 1='non-beach' 4='beach';
value agegrp 2='15-19' 3='20-25' 4='25-29';
value sex 1='male' 2='female' other='neutral?';

run;
data a;

infile in;
input ocean beach age sex ear @@;
label ocean='Frequent Ocean Swimmer'

beach='Usual Swimming Location'
age='Age Group'
sex='Geschlecht'
ear='Self Diagnosed Ear Infections';

format ocean ocean. beach beach. age agegrp. sex sex.
run;
proc print split=' ';

title 'With nice labels';
run;

There are a few new things here. The proc format defines the value labels; it only needs to get
executed once. Observe with the value sex, the SAS keyword other. This is useful for detecting
outliers, typographical errors, and strange things in the data set, and should, in general, be used. The
variable labels are placed in the data step, and the value labels are engaged also in the data step, but
must be previously defined.Observe that the variable name and the format name can be the same, but
that need not be the case. The latter is distinguished by placing a period after its name. Now when we
use proc print, things look much “prettier”. However, the variable labels are too long and SAS will
only use them if it knows where to divide them. To help SAS do this, specify the split character in
proc print. (Try it without this option to see that it works.) A sample of the output is shown in
SAS Output D.2.

D.4 Generating Charts, Tables, and Graphs

Themost ubiquitous graph is the pie chart. It is a staple of the business world. Rule of Thumb:
Never use a pie chart. Present a simple list of percentages, or whatever constitutes the divisions
of the pie chart.

(Gerald van Belle, 2008, p. 203)
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With nice labels

Self
Frequent Usual Diagnosed
Ocean Swimming Age Ear

Obs Swimmer Location Group Geschlecht Infections

1 yes non-beach 15-19 male 0
2 no non-beach 15-19 male 0
3 yes beach 15-19 male 0
4 no beach 15-19 male 0

SAS Output D.2: Use of proc print with the split option.

D.4.1 Simple Charting and Tables

Before beginning, it is worth emphasizing that the point of this chapter is to introduce the workings of
the SAS data handling language and some of its most common statistical procedures, and not the cor-
rect analysis of data per se. As alluded to in the above quotation, the book by van Belle (2008) should
be required reading for anyone who has to work with, and present, statistical data. As an example,
van Belle (2008, Sec. 9.6) discusses and illustrates why bar graphs and stacked bar graphs are “a waste
of ink”.
We have already worked with proc print and proc means, as procedures to output the data

set, and sample statistics. Another popular procedure is proc freq, which produces frequency
tables. With the last data set still in memory, execute the following:
proc freq;

tables sex age sex*age;
run;

Observe how the * symbol produces two-way tables (and how SAS knows that, even though the
line ends with a semicolon, it is not serving as the delimiter of a comment). Notice that the variable
and value labels associated with the data set are used; this considerably assists reading the output. As
with most all SAS procedures, there are many possible options that can be added to this procedure;
we indicate some below, while the SAS documentation, as usual, can be consulted for the full monty.
A graphical way of depicting the one-way frequency tables shown above is given next. Run the

following segment of code:
proc chart;

hbar age sex / discrete;
run;

The option discrete forces SAS to treat the data as discrete, which it is in this case. The default
is to treat the data as continuous. Run the program without the option to see the difference. In the
data description given above, the authors noted that the question of interest is whether or not beach
swimmers have more ear infections than non-beach swimmers. We could attempt to answer this by
an analysis of variance via proc anova. For now, consider a graphical approach to shed light on the
question:
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proc chart;
vbar ear / group=beach;

run;

The first statement we can make is that the data are not normally distributed! As such, the infer-
ence from the usual ANOVA F test should be taken cautiously (simulation confirms that it is indeed
somewhat robust; recall Section 2.4.6) but non-parametric procedures should also be invoked (these
are implemented in SAS’s proc npar1way). Either way, do the sample distributions look different?
As skilled statisticians, we immediately consider the next question: Does sexmake a difference? We
will answer the question by making use of the by statement:
proc sort; by sex; run;
proc chart;

vbar ear / group=beach;
by sex;

run;

Observe how we first had to sort by the variable sex. Does sex influence your decision? Another
possibility with proc chart is the following:
proc chart;

vbar ear / group=beach subgroup=sex;
run;

We combine the two different sex graphs into one, using the letters “m” and “f” to distinguish
between the two genders. Notice how SAS automatically used the value format that we specified
earlier. The chart procedure can also make pseudo-3D charts. Consider the following, which not
only produce appealing looking graphs, but conveys useful information:
proc chart;

block beach / discrete type=mean sumvar=ear;
run;

Several of the options can be combined to produce relatively complicated (and interesting) plots.
For example, the following code produces the output shown in SAS Output D.3.
proc chart;

title 'Not bad for text-based graphics';
block beach / discrete subgroup=sex group=age type=mean sumvar=ear;

run;

The “rules” for the block chart are as follows:

• The variable specified by block forms the x-axis (here it is beach).
• The optional group= specifies the y-axis (here it is age).
• The optional subgroup= specifies how the vertical bars are divided (in this case we used sex).
• The z-axis is determined by sumvar=. In our case we want to examine the distribution of ear

infections.
• As we want the average of the ear infections in the particular category, we specify type=mean.

Other options include type=freq, and type=sum.
• Theoption discrete is needed in our case because the values of beach are limited to two values.

(Try without it and convince yourself.)
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Not bad for text-based graphics
Mean of ear by beach grouped by age

1.8732394366

non-beach beach

Usual Swiming Location

Symbol sex

m male

15–19

20–25

25–29

Age Group

Symbol sex

f female

1.3043478261

1.565217 0.606061

1.652174 1
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mm
mm
mm
mm
mm
mm
mm
mm
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ff
mm
mm
mm
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mm
mm
mm
mm

ff
ff
ff
mm
mm
mm
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mm
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mm
mm
mm
mm
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ff
ff
mm
mm

ff
ff
mm

SAS Output D.3: Pseudo-graphical output from proc chart (converted to a simple font instead
of the better looking SAS Monospace).

As a last method to answer the previously posed question, we could always consider using our old
friend, proc means. However, we would like to look at the mean in four different groups, corre-
sponding to the two levels of beach and the two levels of sex:
proc sort;

by beach sex;
run;
proc means;

var ear;
by beach sex;

run;
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The above procedures are all methods to condense the data somehow, either as a graph or into
summary statistics. Another option when some of the variables are categorical in nature (as are sex,
beach, age, and ocean in our case) is the tabulate procedure:
• The class statement specifies which variables are to be used as categorical variables.
• The var statement specifies which variable(s) to use in the table.
• How the variable gets used is indicated by one ormore of the summary statistics that can be used in
proc means. For example, in our case we are probably interested in not only the average number
of ear infections per category (such as female ocean swimmers aged 20–25), but also the maximum
and the standard deviation.

• The table statement dictates how the table is formed.The best way to approach the table state-
ment is with trial and error. The following are three possibilities.

proc tabulate;
var ear;
title 'Separate table for each sex';
class beach age sex;
table sex, age*beach, ear*(mean max std);

run;
proc tabulate;

var ear;
title 'Everything together';
class beach age sex;
table sex*age*beach, ear*(mean max std);

run;
proc tabulate;

var ear;
title 'Still another possibility';
class beach age sex;
table age*beach*(mean max std), sex*ear;

run;

Truncated output from the last call to proc tabulate is shown in SAS Output D.4.

D.4.2 Date and Time Formats/Informats

SAS makes working with times and dates rather simple. SAS can store variables that contain a rep-
resentation for the year, month, day, hour, minute, and second, and can manipulate them in many
useful ways. For example, in the following program, assume geburtst is the birthday formed from
the month, day, and year, as input from the mdy function. The intck function with first argument
‘day’ returns the number of days between the second and third arguments, where both are date/-
time variables.The functiontoday() always returns the current date. Finally, theformat statement
instructs SAS to associate the mmddyy8. format with geburtst, so that when we print the variable,
it appears in a familiar form.
data a;

input j m d;
geburtst=mdy(m,d,j); ntage= intck('day',geburtst,today());
format geburtst mmddyy8.;
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Geschlecht

femalemale

Self
Diagnosed

Self
Diagnosed

Ear
Infections

Ear
Infections

Age
Group

Usual

Swimm-
ing

15-19
Locat-
ion

non-
beach

Mean 1.79 2.50

Max 16.00 10.00

Std 2.67 3.82

beach Mean 1.15 1.52

Max 9.00 10.00

Std 1.89 2.64

20-25 non-
beach

Mean 1.88 1.19

Max 17.00 4.00

Std 3.44 1.36

beach Mean 0.57 0.63

Max 5.00 3.00

Std 1.34 0.90

25-29 non-
beach

Mean 2.20 0.63

Max 10.00 2.00

Std 2.60 0.92

beach Mean 0.65 1.79

SAS Output D.4: Output from proc tabulate (converted to a simple font instead of the better
looking SAS Monospace).



Introducing the SAS Programming Language 803

datalines;
1996 1 1 1995 12 31
;
run;
proc print; run;

Very useful is intnx(a,b,c). It returns a date/time variable corresponding to b incremented by
c periods, where the period is given by a. For example, nextqtr=intnx(‘qtr’,today(),1)
returns the date/time that is exactly one quarter of a year away from today’s date.
There are many other functions, formats, and possibilities. The SAS Users Guide: Basics contains

many examples.

D.4.3 High Resolution Graphics

D.4.3.1 The GPLOT Procedure
Although SAS offers many graphics procedures, probably the most useful is proc gplot, for
two-dimensional graphs. The bare bones syntax is as follows:

proc gplot;
plot y*x;
title 'Yippie!';

run;

This generates a plot with the variable y on the y-axis, and the variable x on the x-axis. Naturally,
the procedure has many other options. Consider the data set e1.dat from Lütkepohl (1993, App. E)
giving quarterly macroeconomic data forWest Germany from 1960 to 1982.The file has some header
lines that describe the three columns and indicate the starting date of the data, namely 1960, first
quarter. We would like to read the data in, skipping the header lines, and also create a variable in SAS
that indicates the year and quarter of each observation. The following program works.

filename in "u:\datasets\E1.dat";
data level;

retain period;
format period YYQ4.;
label income='Income'

consume= 'Consumption'
invest='Investment';

infile in;
if _N_ < 3 then do;

input garb $;
delete;

end;
else do;

input invest income consume;
if period=. then period=yyq(1960,1);
else period=intnx('QTR',period,1);

end;
drop garb;

run;
proc print split=' ';
run;
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For the first actual observation, period is missing, and we set it to the first value, 1960 quarter
I. For further observations, we wish to use the intnx command on the previous value of period.
This is the reason for the use of the retain statement. Without it, period will always be initially
set to missing, and thus, our if statement will set it to 1960 Quarter I every time.
Just to get an idea of the range of the data, we run proc means.

proc means data=level min max range maxdec=0;
var invest income consume;

run;

The output looks approximately as follows:

Variable Label Minimum Maximum Range

invest Investment 179 870 691

income Income 451 2651 2200

consume Consumption 415 2271 1856

As income and consumption are roughly of the same scale, we could plot them on the same graph,
i.e., using the same set of axes.This is quite easy to do in SAS.Wewould specify theplot statement as
plot income*period consume*period / overlay;. The overlay option tells SAS not
to generate a second graph, but rather place them on top of one another. SAS is also smart enough
to set the y-axis to include both sets of variables. In other words, the y-axis would start at 415, the
minimum of consumption, and end at 2651, the maximum of income. We could also overlay the plot
of invest * period. However, because investment is considerably smaller than both income and
consumption, SAS would be forced to choose the minimum of the y-axis to be 179, so that the plots
of income and consumption would be rather small.
There is a way around this, however. Because investment shares the same x-axis, namely the vari-

able period, we could overlay the plot of invest * period using a different scaling for the
y-axis, shown on the right side of the graph. This is accomplished by following the above statement by:
plot2 invest * period / overlay;. Notice this is not a secondplot statement (and is not
allowed), but rather plot2, instructing SAS to use the right side of the plot margin as a second axis.
The next problem is that all the lines are the same type and of the same color. This is changed by

defining a symbol statement for each graph, and following the variable pairs to plot with “=”, an
equals sign, and the number of the symbol.The C= specifies the color, L= specifies the line type, and
I= indicates howwewould like to “connect the dots”. In this case, we just wish tojoin the points. SAS
has other options, such as polynomial smoothing, splines, etc. The symbol definitions are specified
before the call to proc gplot and are then valid in any subsequent call to proc gplot or, for that
matter, any high-resolution graphics procedure that makes use of them.
symbol1 C=blue I=join L=1;
symbol2 C=red I=join L=2;
symbol3 C=black I=join L=20;
proc gplot;

plot income*period=1 consume*period=2 / overlay;
plot2 invest*period=3 / overlay;

run;

The next thing we need to do is to improve the axis labels. By default, SAS will use variable labels, if
they are defined, and if not, just the variable name itself. As we have two variables along the left y-axis
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(income and consumption), SAS just uses the first, namely income.As this ismisleading, before calling
proc gplot, add the following:

axis1 LABEL= (ANGLE=90 FONT=SWISS 'Income & Consumption');
axis2 LABEL=(ANGLE=90 FONT=SWISS);

The axis command is of the form axis n, where n is a number. The ANGLE statement instructs
SAS to write the axis label at a 90∘ angle, so that it runs along the axis itself. FONT can be used to
change which font the characters are written in. Finally, to tell SAS to actually use the axis definitions,
follow the slash (where the overlay command is) with VAXIS=AXIS n to modify the vertical axis
with the n th defined axis command, or HAXIS=AXIS n to modify the horizontal axis. In our case
we would have

plot income*period=1 cons*period=2 / overlay VAXIS=axis1;
plot2 invest*period=3 / overlay VAXIS=axis2;

The last feature we discuss is how to add a legend to the graph. One defines a legend n statement,
with a SHAPE= command to indicate what is shown. We would like a line of, say, length equivalent
to four letters, with the color and type (dotted, dashed, solid, etc.) corresponding to that used in the
graph. We only need to specify a length, SAS takes care of the rest. The DOWN command specifies
how many lines are shown in a vertical direction. (The ACROSS command specifies the horizontal
number.) The final set of graphics definitions and call to proc gplot look as follows:
symbol1 C=blue I=join L=1;
symbol2 C=red I=join L=2;
symbol3 C=black I=join L=20;
axis1 LABEL= (ANGLE=90 FONT=SWISS 'Income & Consumption');
axis2 LABEL=(ANGLE=90 FONT=SWISS);
legend1 SHAPE=LINE(4) DOWN=2 LABEL=(FONT=SWISS)

POSITION=(BOTTOM LEFT INSIDE);
legend2 SHAPE=LINE(4) DOWN=1 LABEL=(FONT=SWISS)

POSITION=(BOTTOM RIGHT INSIDE);
proc gplot;

title 'West German Data in Billions of DM';
plot income*period=1 consume*period=2 /

overlay grid legend=legend1 VAXIS=axis1;
plot2 invest * period=3 / overlay legend=legend2 VAXIS=axis2;

run;

Notice the legend= statement specifies which legend n to use. We also place a grid on the plot
by adding the grid statement to one of the plot lines. The resulting graph is shown in Figure D.5.

D.4.3.2 The GCHART Procedure
This is similar to proc chart discussed above. Extensions to the high-resolution case include color
and line fill specification, among other things. Again with the ear infection data, we had used the
following to produce two vertical bar charts (histograms) next to one another (using the group state-
ment), comparing beach swimmers to non-beach swimmers, dividing each bar into two segments,
male and female (using the subgroup statement):
proc chart;

vbar ear / group=beach subgroup=sex discrete;
run cancel;
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Figure D.5 Output from SAS proc gplotwith overlaid data.

Now consider the high-resolution version. We wish to use the blue lines for the male segments and
red lines for the female segments:
proc gchart;

title 'High Resolution Charts';
label ear='Infections' beach='location';
pattern1 C=BLUE V=L2; pattern2 C=RED V=R4;
vbar ear / group=beach subgroup=sex discrete;

run;

The V= option controls the appearance of the bar, in this case, L indicates lines in the left direction,
with thickness 1. Thickness can be a number from 1 to 5. Other options are R for right lines, and S
for solid fill. Because the original labels for the variables ear and beach were quite long, we shorten
them somewhat, so they fit on the graph better. Figure D.6 shows the result.
We mention that there are many other useful graphical procedures in SAS; see the online help or

the SAS/Graph Users Guide for more information.

D.4.4 Linear Regression and Time-Series Analysis

Consider the West German data that we previously plotted. Perhaps we would like to perform a
regression with consumption as the dependent variable, and income and investment as independent
variables. Given the nature of the data, it might be more sensible to work with first differences of the
data,1 obtained using the dif function. Using the level data set created earlier,
data diff;

set level;

1 Excellent, technically detailed presentations of co-integration, and vector error correction models (VECM) can be found in
Hamilton (1994), Hayashi (2000), and Lütkepohl (2005), while Patterson (2000a) provides a highly readable, more basic
introduction.
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Figure D.6 Output from SAS proc gchart.

time=_N_ - 1; inv=dif(invest); inc=dif(income); con=dif(consume);
label inc='Income (1st diff)'

con= 'Consumption (1st diff)'
inv='Investment (1st diff)'
time='time trend';

run;

In data set diff, the variable time is 1… 91. We subtract 1 from _N_ when time is constructed
because the first observation ofinv,inc, andconwill bemissing (due to differencing).The following
is the bare bones structure of the regression procedure, which we already encountered in Example
1.12.
proc reg data=diff;

model consume = invest income;
run;

Suppose we want to consider several models, in particular we wish to compare the fit in levels with
the fit in differences. We can specify several model statements under one proc reg call, as well
as giving each one a label, so that the output is easier to identify. Also, SAS allows a data set to be
generated that contains the coefficient estimates for all the models. This is accomplished using the
outest= statement. Below we generate this, and print only some of its contents, in particular the
root mean square error (RMSE) of each model. Finally, additional options can be specified on any
model statement. There are far too many to describe here—see the SAS manual for a listing. Here
we look at the correlation matrix of the coefficient estimates, CORRB, as well as the Durbin–Watson
statistic, DW.
proc reg data=diff outest=beta;

levels1: model consume = invest income;
levels2: model consume = time income;
onediff: model con = inv inc / CORRB DW;
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run;
proc print data=beta;

var _model_ _rmse_;
run;

Assume we decide to pursue further the last model, the one in differences, and want to plot the
true value of consumption against the predicted value. To do this requires two steps. We first obtain
the predicted value of the difference of consumption from the regression. Then we un-difference (or
integrate) it. The first of these tasks is accomplished by creating a new data set from proc reg con-
taining the predicted values.This data set, named after the OUT= statement, contains all the variables
in the incoming data set, as well as the ones specified. Here, P= writes the predicted values. Other
variables could also be written, such as the residuals, 95% confidence bounds, etc.

proc reg data=diff;
model con = inv inc;
output OUT=story P=p;

run;

For the second task, SAS unfortunately does not have a built-in function to undifference a variable,
but the following program will work. Observe that the retain statement is key here.

data story2;
set story;
retain p2;
if _N_=1 then p2=consume;
else p2=p2+p;
label consume='Actual Consumption';
label p2='Predicted Consumption';

run;

The following gplot statements should be familiar now; they result in Figure D.7.

symbol1 C=blue I=join L=1;
symbol2 C=red I=join L=2;
legend1 SHAPE=LINE(15)

DOWN=2
LABEL=(FONT=SWISS);

axis1 label=(ANGLE=90 "Consumption");
proc gplot data=story2;

title 'True and Predicted Consumption';
title2 'Using model in Differences';
plot (p2 consume) * period / overlay grid legend=legend1 vaxis=axis1;

run;

Perhaps we now wish to perform the same regression analysis, but treating the error term as an
autoregressive (AR) process.The proc autoreg is ideally suited for this. To fit the above regression
model with AR(3) disturbances, we would use:

proc autoreg data=diff;
model con = inv inc / nlag=3;

run;

To examine the generalized Durbin–Watson statistics (5.24), along with their exact p-values, use
the following:
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Figure D.7 Differences model for predicting consumption.

proc autoreg data=diff;
model con = inv inc / DW=12 DWPROB;

run;

Using the backstep option, one could automatically pick those AR lags that are “significant” to
include in the model, though, as emphasized in Chapter 9, there are better ways of model selection.
The slstay= option allows us to change the cutoff p-value determining whether an AR lag is

permitted to enter the model. The default is 0.05.
proc autoreg data=diff;

model con = inv inc / nlag=12 backstep slstay=0.25 method=ml;
output out=story3 P=p3;

run;

Notice the output statement has the same form as that in the proc reg. We would expect that
this model fits better. In fact, the autoreg procedure selects lags 1, 3, 6, and 7, and the RMSE
improves from 10.47 to 9.35. Following the same procedure as above to generate a plot of true and
predicted consumption, we get Figure D.8. Notice the fit is somewhat better.

D.5 The SAS Macro Processor

It’s not daily increase but decrease—hack away the unessential!
(Bruce Lee)

D.5.1 Introduction

Macros in SAS are programs that generate SAS code to be executed. One use of this arises in the case
when the program to write depends on quantities that can only be assessed at runtime.
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Figure D.8 Autoregressive model for predicting consumption.

Some consider the macro features of SAS to be (i) difficult, (ii) confusing, and (iii) not necessary.
The first of these is true only if you are not yet comfortable with the techniques we have discussed
up to this point. The second statement is sometimes true, so that some extra care and experience
are indeed required when using SAS macros. Regarding the last point, there are many tasks that are
either very difficult or virtually impossible to do in SAS without using macros. Many times, even if
a certain task could be accomplished without macros, using them can (i) make the program much
shorter, (ii) save computer memory and disk space, (iii) make the program easier to understand, and,
most importantly, (iv) drastically reduce the chance of a programming error.
Another important reason is speed. For example, if a bootstrap inference is required, it is much

faster to generate the large data set with the bootstrap resamples, and then use a by statement and
use of a do loop via a macro to call the statistical procedure.
Instead of a general treatment, we will consider several simple, but common examples that illustrate

how SAS macros can make life much easier. The more advanced features are detailed in the SAS
manual dealing exclusively with the macro processor.

D.5.2 Macro Variables

A macro variable is defined with the %let statement and evaluated by placing an amperstand (&)
before the variable. Consider the following example, where we assume that data set a contains at least
one variable and 25 observations:

%let myvar=25;
proc print data=a;

title "This data set has &myvar observations";
run;
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The first thing to notice is that, in title statements with macro variables, we need to use the double
quote mark instead of the single quote mark. With single quote marks, SAS does not parse (read)
the statement for macro variables. When SAS executes the above program, it first evaluates &myvar
before running the proc print, and instead “sees” the following code:
proc print data=a;

title 'This data set has 25 observations';
run;

Of course, the whole purpose of macros is that they allow SAS code to be generated at runtime, so
that the above program is not particularly useful, i.e., the variable myvar is fixed. In order to allow
myvar to get defined at runtime, we need the symput command, which defines a macro variable
during execution of a data step. Regardless of the number of observations in data set a, the following
will work:
data a;

input y x @@;
datalines;

18 543 18 583 9 358 21 356 21 923
;
data _NULL_;

set a end=dasEnde;
if dasEnde then call symput('myvar',_N_);

run;
proc print data=a;

title "This data set has &myvar observations";
run;

Note that, with the end= feature in the set statement, we can create a boolean variable that is
always false until the last observation from the set is read in, in which case it is true.The variable (in
this case, dasEnde) is not written to the data file. In the above program, when dasEnde is true, we
call the symput function, defining themacro variable myvar to have the value _N_, which is SAS’s
internal counter of the number of observations. Notice that with the symput function, we enclose
the macro variable name in single quotation marks. If you run the above, you will notice that the
number of observations, in this case 5, is printed with many leading or trailing blanks. To avoid this,
we can use two charactermanipulation functions of SAS, namely trim and left, which trim leading
blanks, and left align the string, respectively. Replace the appropriate line above with the following:
if dasEnde then call symput('myvar',trim(left(_N_)));

Of course, for SAS to treat the numeric value contained in myvar as a character string, it must first
be converted to a string. SAS does this internally for you, but does print the following to let you know:

NOTE: Numeric values have been converted to character values at the places given by:
(Line):(Column). 108:49

For example, the program
%let fname = "u:\datasets\temp.txt";
filename in &fname;
data b;

infile in;
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input x y;
run;

will be interpreted by SAS as
filename in "u:\datasets\temp.txt";
data b;

infile in;
input x y;

run;

and the program will be executed successfully (assuming that the file exists). Assume we also want
to print the filename into the title of say, proc print, so that, for this particular filename, we would
want the following to be executed:
proc print;

title 'The text file is: "u:\datasets\temp.txt" ';
run;

To do this with the macro variable, use the following:
proc print;

title "The text file is: "&fname" ";
run;

We surrounded the macro variable reference &fname also with double quotation marks. This is in
general not needed, as we saw above. In this case, however, fname is itself a string surrounded by
double quotes, and two quotes instead of one are needed.

D.5.3 Macro Programs

Imagine you are getting tired of having to type proc print; run; every time you want to see the
results of a data step and would like to type something shorter. We could define the following macro
program:
%macro druck0;

proc print data=_LAST_;
title;

run;
%mend druck0;

The data set _LAST_ just tells SAS to use the latest data set that you created. Now, when we create
a new data set and wish to print it, we can just enter %druck0 after the data step to call the macro.
Notice we don’t need to follow the macro call with a semicolon because the macro itself ends in a
run; statement.
It might be nice if we could pass it a parameter indicating to print using a by statement. However,

often we won’t want to use the by statement, so a method should be used where the default is that
no by statement is used, only if we tell it to. Here is one way, making use of the SAS boolean operator
NE, which means “not equal to”, and noting that “keine” is German for “none”:
%macro druck1(byvar=keine);

proc print data=_LAST_;
title;
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%if &byvar NE keine %then %do;
by &byvar;

%end;
run;

%mend druck1;

Macrodruck1 takes a parameter,byvar, and, optionally, we have specified a default value,keine.
If the user does not specify the value of byvar, then it takes on this default value, namely keine. In
this case, it can be called as %druck1; (with the semicolon) or %druck1(), and the semicolon is
not needed.
Statements that get evaluated, not generated, in the macro, are preceded by a percent (%) sign.

In other words, we do not wish the macro to generate statements with if and then, but rather to
actually check if &byvar is not equal to the value keine. Thus, if we call %druck1 without any
parameters, the code translates to

proc print data=_LAST_;
title;

run;

If instead we call %druck1(byvar=y), the code is

proc print data=_LAST_;
title;
by y;

run;

When we specify a default for the input variable in a macro, as we have done in druck1, we must
also specify the variable name when we invoke the macro.That is why we use %druck1(byvar=y)
and not just %druck1(y). SAS will return an error message if you try this. Of course, the variable y
must be in the previous data set, and the data set is sorted by this variable y. Here is an example:

data a;
input y x @@;
datalines;

18 543 18 583 9 358 21 356 21 923
;
proc sort data=a;

by y;
run;
%druck1(byvar=y)

We can simplify this macro somewhat, taking advantage of SAS’s somewhat forgiving syntax. The
following piece of code is allowed:

proc print;
by;
title 'does this really work?';

run;

Here, there is no by variable specified with the by statement, but SAS does not consider this an
error. Instead, it is taken to mean that SAS should print the data set without using a by variable. Try
it and see. Thus, we can use the easier macro:
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%macro druck2(byvar);
proc print data=_LAST_;
title;
by &byvar;

run;
%mend druck2;

If we do not pass byvar, and call %druck2() or %druck2;, the macro resolves to
proc print;

title;
by;

run;

D.5.4 A Useful Example

Suppose we wish to use SAS in batch mode to read the text file
1.2 11 22
2.7 33 44
3.1 55 88
4.5 77 99

perform a regression analysis, and write the coefficients out to a file. Because we know that
regin.txt contains three columns with the first being the dependent variable, say y, and the next
two are the independent variables, say x1 and x2, we could use the following program. One suggestion
is to run this first without the noprint option in the proc reg statement, just to make sure things
are working. Only after it is debugged should one use this.2

filename in 'u:\datasets\regin.txt';
filename out 'u:\datasets\regout.txt';
data a;

infile in;
input y x1 x2;

run;
proc reg data=a outest=beta noprint;

model y = x1 x2;
run;
data _NULL_;

file out; set beta;
put intercept; put x1; put x2;

run;

In the lastdata step, theput statementswrite to the file specified by thefile statement.However,
what if the number of independent variables can change? Call the number of regressors p.

D.5.4.1 Method 1
The first way is the following. We create the input file with the first line specifying the number of
regressors. So, regin.txt now looks like:

2 Observe that the intercept term of the regression automatically receives the name intercept; in older versions that
restricted the length of variable names to eight characters, it was intercep.
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2
1.2 11 22
2.7 33 44
3.1 55 88
4.5 77 99

Our goal is to read this file twice. The first time, we just read the first number to establish the value
of p. Then we read the file again, skipping the first line, but using our knowledge of p to correctly read
the matrix. The first part could be accomplished by the code segment:
data _NULL_;

infile in;
if _N_=1 then do;

input p; call symput('p',p);
end;
stop;

run;

The stop statement tells SAS to stop reading the input file.There is no need to continue reading it,
so this saves time. There is a slightly more elegant way to do this. If we could somehow tell SAS that
all we want is the first line, we would not need the if _N_=1 statement, nor the stop statement.
This can be accomplished as follows:
data _NULL_;

infile in obs=1;
input p; call symput('p',p);

run;

Here, the obs=1 statement tells SAS precisely what we wanted. Of course, this has other uses. If
we wish to test a program, we could read in just the first, say, 100 observations of a large file instead
of the whole thing, and debug the program. When we are sure that it works, we would remove the
obs= statement.
Next, we need a macro that, for a given value of p, say 4, would generate the following line: x1 x2

x3 x4;We could then use such a macro in the regression procedure. Here is the macro:
%macro xnames(name,uplim);

%do n=1 %to &uplim; &name&n %end;
%mend xnames;

By calling %xnames(x,4), for example, we would get the desired line. However, we will call it with
the macro variable p instead, i.e., %xnames(x,&p). Notice that there is no semicolon following the
line &name&n. If there were, SAS would also insert a semicolon between each variable name, which
is not what we want. Next, we need a way to generate the p put statements. This will work:
%macro varput(name,uplim);

%do n=1 %to &uplim; put &name&'n; %end;
%mend varput;

Here we use a semicolon after the line put &name&n because we want each put statement to be
executed separately. Putting this all together, we have
filename in 'u:\datasets\regin.txt';
filename out 'u:\datasets\regout.txt';
%macro xnames(name,uplim);
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%do n=1 %to &uplim; &name&n %end;
%mend xnames;
%macro varput(name,uplim);

%do n=1 %to &uplim; put &name&n; %end;
%mend varput;
data _NULL_;

infile in obs=1; input p; call symput('p',p);
run;
data a;

infile in; if _N_=1 then do; input; delete; end;
else input y %xnames(x,&p);

run;
proc reg data=a outest=beta noprint;

model y = %xnames(x,&p);
run;
data _NULL_;

file out; set beta; put intercept; %varput(x,&p);
run;

D.5.4.2 Method 2
Now assume that we either do not want to, or, for some reason, cannot write the number of regressors
as the first line of the text file. What we could then do is read the first line of data and somehow figure
out how many numbers are on it. Because y is the first variable on the line, we take p to be one less
than this number. Once we know p, we can re-read the entire file.
There are a number of approaches to “parsing” the first line to determine how many numbers are

there. One way would be to read the line as a character string and count the number of blank spaces.
For instance, if there are three columns of numbers, then there must be a total of two blanks on the
first line. This only works when the data are separated exactly by one blank space; otherwise, it gets
trickier. There is a much easier way though, which works irrespective of how the numbers are spaced
on the first line. Before the program is shown, a new option for the infile statement is described
that is very useful in general.
Imagine we have a data file consisting of names, ages, and year of high school graduates. However,

if the person has either not graduated yet, or never will, instead of the SAS missing character, the
period, there is no entry. The text file might look like this:
John 23 1990
Mike 16
Susan 14
Mary 20 1992
Ed 45

If we were to use the following code to read this data, we would get an error message:
data a;

infile people; * assume this refers to the text file above;
input name $ age year;

run;

The reason it will not work is as follows. When SAS reads the entry for Mike, because the year
is missing, SAS goes to the next line to find it. SAS then encounters the character string Susan, and
everything goes wrong from there. The missover statement instruct SAS not to go to the next line
when something is missing. Thus, the program
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data a;
infile people missover;
input name $ age year;

run;

will work correctly. The default is what is called flowover. This means, flow over to the next line
to find the data, and is exactly not what we want in this case. A third option SAS allows is stopover.
If there is something missing, SAS stops reading and reports the mistake immediately. This is useful
if you know that the data should be complete and want SAS to check.
Regarding the program we wish to construct, our strategy is as follows. Read in a large number of

variables for the first line, say v1 through v40, but use the missover option. If p is 3, i.e., there are
4 numbers on the line, then v1 will be the y value, v2 will be x1, v3 will be x2, and v4 will be x3.
The variables v5-v40 will all be set to missing. Thus, we only need to count the number of variables
of v2-v40 to determine the value of p. Of course, if there are more than 39 regressors, this method
will fail, so that some “prior” knowledge about the data is required.
data _NULL_;

infile in obs=1 missover; input v1-v40;
array v{*} v1-v40;
do i=2 to 40;
if v(i) >. then p+1; * In SAS, p+1 is short for p=p+1;

end;
call symput('p',p);
run;
data a;

infile in; input y %xnames(x,&p);
run;

In addition, we see yet another application of the array statement, as well as another way to incre-
ment a variable in SAS.The expressionp+1 is equivalent top=p+1.We could use any number instead
of 1, but for negative numbers we cannot write, for example, count-3 to mean count=count-3.
We could, however, write count+(-3).
Much more information about macros in SAS and many examples can be found in the SAS Guide

to Macro Processing.

D.6 Problems

Problem 4.1 You maintain a file of the names and grades of doctoral students. The information for
each exam comes from a different instructor. Grades are in the Swiss format, meaning between 1.0
and 6.0, in increments of 0.25, with 6.00 being the best, 1.0 the worst, and 4.0 just passing. The file
currently looks as follows.
Darwin Charles 4.50 5.00
Dawkins Richard 5.25 4.50 5.50
Fisher Ronald 5.25 6.00
Freud Sigmund 4.75 5.50
Mendel Gregor 5.50 4.75
Pinker Steven 5.75 5.00
Popper Karl 6.00 6.00
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This is called the master file because it contains both first and last names, and all the exam grades
(and possibly other information, like student ID number, etc.). Richard had to take the third exam
before anyone else. The official third exam was taken later.
You receive a text file from the instructor for the third exam with the last names (not necessarily in
alphabetical order) along with the raw score (meaning, the total number of points from an exam,
out of, say, 200). It looks as follows.

Darwin 120
Dawkins
Fisher 145
Freud 180
Mendel 90
Pinker 110
Popper 135

Write a program that reads in themaster and examfiles,merges them, and constructs a newmaster
file. The grade (G) from the third exam is determined from the raw score (r) as G = 1.0 + 0.25 ×⌈12 × q + 8⌉, where

q = max(r) − r
max(r) −min(r)

and ⌈x⌉ denotes the numeric rounding function, i.e., ⌈3.6⌉ = 4.

Problem 4.2 You are a personal fitness trainer in Switzerland and have asked your client (Laura) to
record information about her workout Monday through Friday during the period of November
2009 to January 2010 as follows. Each line contains the month and day, and then a sequence of
numbers indicating how many repetitions she managed with the weights. For example, from the
second line, which corresponds to November 16, she did three workouts, each time doing five
repetitions. Here are the first five lines of the data set; the entire data set can be found in the file
named fitness.txt.

11 13 5
11 16 5 5 5
11 17 6 6 7
11 18 7
11 19 7 5

The task is to write a program that, ideally, is more general and not dependent on this particular
data set for which the maximal number of sets she accomplished on a day is five. It should generate
a report containing the following:
1. A list of the data, the beginning of which might look like:

Client’s Program

DATE SETS AVERAGE V1 V2 V3 V4 V5

Fri, Nov 13, 2009 1 5.0 5 . . . .
Mon, Nov 16, 2009 3 5.0 5 5 5 . .
Tue, Nov 17, 2009 3 6.3 6 6 7 . .
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2. A list of the average frequency of training sessions per weekday, which should look like:

Average number of sets per weekday

weekday average

Montag 2.87500

Dienstag 3.37500

Mittwoch 3.28571

Donnerstag 1.60000

Freitag 1.50000

For this part, the means should of course be computed using a by statement. Just to practice,
also make a program that produces the output without using the by statement.

3. A high-resolution plot containing both number of sessions and average daily repetition number.

Hints:
1. You will need to determine a way to read in a variable number of entries per line, and a way to

instruct SAS to keep only as many variables as needed.
2. Themdy functionwill be useful, as well as theweekday function (use the online help for details)

and the weekdate17. format.
3. To get the mean per weekday, use proc means with the output option, and for printing the

output, you will need to create a custom format for each day of the week.

D.7 Appendix: Solutions

1) The programs in Listing D.1 will accomplish the task.
2) The programs in Listings D.2 and D.3 will accomplish the task, and Listing D.4 shows the code that

can be used if you do not wish to use the by statement.
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filename masterin "u:\datasets\master.txt";
filename exam3in "u:\datasets\exam3.txt";
filename out "u:\datasets\nmaster.txt";
data master;

infile masterin missover;
attrib vorname length=$14 label='Given Name';
attrib nachname length=$14 label='Family Name';
input nachname $ vorname $ grade1-grade3;

run;
proc sort data=master; * only need this the first time;

by nachname;
run;
data newexam;

infile exam3in missover;
attrib nachname length=$14 label='Family Name';
input nachname $ raw;

run;
proc sort data=newexam;

by nachname;
run;
proc means data=newexam(where=(raw>-1)) noprint max min;

var raw;
output out=extremes max=rawmax min=rawmin;

run;

data newexam;
set newexam;
if _N_=1 then set extremes(keep=rawmax rawmin);
ratio = 1 - (rawmax-raw)/(rawmax-rawmin);
grade = 1.0 + 0.25*round(12*ratio+8);
keep nachname grade raw;

run;
data masternew;

merge master newexam;
by nachname;
if grade3 <= . then grade3=grade;

run;
proc print data=masternew;

title 'Results of 3rd test';
var vorname grade3;

run;
data _NULL_;

set masternew;
file out;
put nachname $18. vorname $12. (grade1-grade3) (5.2);

run;

SAS Program Listing D.1: Program for calculating grades.
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%macro vlist(st,p);
&st.1-&st&p

%mend vlist;
proc format;

value myweek 2='Montag'
3='Dienstag'
4='Mittwoch'
5='Donnerstag'
6='Freitag';

run;
data a;

infile "u:\datasets\fitness.txt" missover;
retain themost 0;
input monat datum v1-v40;
if 11<=monat<=12 then jahr=2009;
else jahr=2010;
date=mdy(monat,datum,jahr);
weekday=weekday(date); * mon, tues, etc.;
format date ddmmyy8.; * a default format;
average=mean(of v1-v40);
array v{*} v1-v40;
sets=0;
do i=1 to 40;

if v(i) > . then sets+1;
end;
themost=max(themost,sets);
call symput('themost',themost);
drop i themost;

run;
data a;

set a (keep=date weekday sets average %vlist(v,&themost));
if sets > 0;

run;

SAS Program Listing D.2: Program to process the fitness trainer data. Continued below.
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proc print noobs;
title 'Client''s Program';
format date weekdate17.; * a nicer format;
var date sets average %vlist(v,&themost);

run;
proc sort out=byday;

by weekday;
run;
proc means data=byday noprint;

var sets;
by weekday;
output out=mbyday mean=average;

run;
proc print data=mbyday noobs;

title 'Average number of sets per weekday';
format weekday myweek.;
var weekday average;

run;

symbol1 C=blue I=join L=1;
symbol2 C=red I=join L=2;
legend1 SHAPE=LINE(5)

DOWN=1
LABEL=(FONT=SWISS)
POSITION=(BOTTOM LEFT INSIDE);

legend2 SHAPE=LINE(5)
DOWN=1
LABEL=(FONT=SWISS)
POSITION=(BOTTOM RIGHT INSIDE);

proc gplot data=a;
axis1 LABEL= (ANGLE=90 FONT=SWISS

'Average Number of "Reps"');
axis2 LABEL=(ANGLE=90 FONT=SWISS

'Number of "Sets"');
title 'Client''s Progress';
plot average*date=1 / overlay

grid legend=legend1 VAXIS=axis1;
plot2 sets * date=2 / overlay

legend=legend2 VAXIS=axis2;
run;

SAS Program Listing D.3: Continuation of program for fitness trainer data.
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data monday; set a(keep=sets date);
wotag=weekday(date); if wotag=2; run;

proc means noprint mean; var sets;
output out=tag1 mean=average; run;

data tuday; set a(keep=sets date);
wotag=weekday(date); if wotag=3; run;

proc means noprint mean; var sets;
output out=tag2 mean=average; run;

data wedday; set a(keep=sets date);
wotag=weekday(date); if wotag=4; run;

proc means noprint mean; var sets;
output out=tag3 mean=average; run;

data thurday; set a(keep=sets date);
wotag=weekday(date); if wotag=5; run;

proc means noprint mean; var sets;
output out=tag4 mean=average; run;

data friday; set a(keep=sets date);
wotag=weekday(date); if wotag=6; run;

proc means noprint mean; var sets;
output out=tag5 mean=average; run;

data alles;
set tag1 tag2 tag3 tag4 tag5;
if _N_=1 then Wochentg='Montag ';
if _N_=2 then Wochentg='Dienstag ';
if _N_=3 then Wochentg='Mittwoch ';
if _N_=4 then Wochentg='Donnerstag';
if _N_=5 then Wochentg='Freitag ';

run;
proc print;
var Wochentg average; title 'Average number of sets per weekday';
run;

SAS Program Listing D.4: How to get the means for each weekday without using the by statement
in proc means.
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Autoregressive model 13, 188

Asymptotic Distribution of m.l.e. 199
Bootstrap 209
conditional m.l.e. 197
Confidence intervals 215
Covariance 191
Expected value 189
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Autoregressive model (contd.)
Explosive process 192
Forecasting 200, 331
Information set 200
Jackknife 208
Latent equation 223
mean square prediction error 201
Multivariate 357
Observation equation 223
Order p 281
Random walk 192
SETAR 346
Smooth transition 347
Subset 315, 393, 435
Threshold 346
Threshold autoregressive stochastic unit root

model 346
Unit root 192, 282
Variance 189
Vector AR(1) process 334
Yule Walker
Equations 286, 292, 390
Estimator 201, 291, 292, 302, 318

b
Backtest overfitting 519, 598, 641
Backtesting 490
Bartlett’s formula 373
Basel committee on banking supervision 638
Basu’s lemma 696
BDS test 475
BEKK 493
Bessel function 650, 663, 734
Bias-variance tradeoff 471, 637
Biased test 232
BIC 313, 417
Bilinear form 12
Black-Litterman model 29
Bootstrap 215, 329
Burn-in period 313

c
Canonical reduction 702
Causality 5
CAViaR 489

Characteristic function 734
characteristic generator 742
CIMITYM 635
Co-integration 195, 247, 806
Cochrane-Orcutt 238
Coefficient of multiple determination (R2) 15
Column space 17, 690
COMFORT 499
Common factor restrictions 224
Complexity 406
Conditional ACF (CACF) 422
Conditional autoregressive expectile

(CARE) 490
constructed portfolio return series 516
Contagion 594, 613
Copula 503, 540
Correlogram
Inverse 439
Modified 439
Sample ACF (SACF) 363
Sample partial ACF (SPACF) 392
Theoretical ACF (TACF) 359
Theoretical partial ACF (TPACF) 389, 390
Visual analysis 407

Cramer’s rule 391, 732
Credit scoring 56
Curse of dimensionality 600

d
Dancing shadows 4
Data generating process (d.g.p.) 193
Delta method 202
Delta-gamma hedging 673
Density forecasting 594
Density generator 748
Dimension (linear space) 17
Distribution
AFaK 542
copula 503
doubly noncentral F 84
Elliptic 739
FaK 541
GAt 462, 626
generalized hyperbolic 734
GHyp 735
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Identified 612
IGam 526, 530, 736
Jones multivariate t 534
MEST 556, 573
meta-elliptical 767
meta-elliptical Student’s t 541
MixGAt 576
MixN 611
Multivariate Laplace 649
multivariate noncentral t 530
multivariate Student’s t 525, 736
MVNCT 740
Noncentral t 462, 468, 526
normal mean-variance mixture 556
Shaw and Lee multivariate t 538
Stable Paretian 462, 473
Symmetric multivariate stable 748

DJIA 469, 473, 492, 494
Dot product 17
Durbin-Levinson algorithm 392
Durbin-Watson test 47, 227, 229, 230, 236, 249,

698, 701
Bounds test 236
Generalized 238, 808
Inconclusive region 236
Limiting power 239

e
Elastic net 52
Elicitability 492
Ellipticity 739
EM algorithm 614
Equally-weighted portfolio 514
Equi-correlation 18
Estimability 31
Exchangeable 588
Exogeneity 11
Expected Mean Squares 96
Expected shortfall (ES) 487, 622, 663, 766

Span 521
Expectiles 490
Extreme value theory 489

f
Fiducial inference 150
Filtered historical simulation 488
Final prediction error (FPE) 417
Forecasting 331
Four horsemen 613
Frisch-Waugh-Lovell theorem 11, 24, 57, 226
Functionally independent 11

g
GARCH 446, 554

APARCH 460
ARCH 446
COMFORT 499
Constant conditional correlation (CCC) 494
Dynamic conditional correlation (DCC) 494
Dynamic conditional score 460
EVT 489
FIGARCH 460, 481
Integrated 453
Markov switching 484
Mixed normal 477
Quadratic ARCH 460
Variance targeting estimator 459
Varying correlations (VC) 494
YAARCH 446

Geary’s formula 682
General-to-Specific (GETS) 53
Generalized inverse 226, 748
Global financial crisis 448, 631, 658
Global warming 5
Gram-Schmidt 17, 21, 23, 24

h
Half life 207
Hannan-Quinn criterion (HQ) 417
Heteroskedastic and autocorrelation consistent

(HAC) estimator 15
Heteroskedasticity 6, 262, 446
Hypothesis test

LBI 231
POI 231
UMP 239
UMPI 35, 766
UMPU 229
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Hypothesis testing
Composite normality 625
Neyman-Pearson 27
Significance 26, 412

i
Idempotent matrix 20
Identifiability 31
Impulse indicator saturation 53
Independent components analysis (ICA) 484
Inequality

Cauchy-Schwarz 57
Information set 200, 451, 592
Inner product 17
Innovation process 188, 446
Interaction 107

j
Jacobian 197, 536, 752

k
Kalman filter 30, 47, 49, 260, 328
Kendall’s 𝜏 554
Kummer’s Transformation 717

l
Lag operator 224, 281
Lagrange multipliers 29, 61
LASSO 52
Leading principle minor 283
Leverage effect 482, 612
Likelihood

Concentrated 55, 263, 271
Likelihood ratio statistic 59
Linear model

Dependent variable 4
Endogenous variable 4
Explanatory variables 4
Generalized 55

Linear span 17
Link function 56
Logit 56
Long memory process 347
Long-run variance 195

m
Machine learning
Elastic net 3
LARS 3
LASSO 3

Mahalanobis distance 629
Robust 631

Maple 183
Matlab
Nested functions 75

Mean reversion 247, 599
Mean-bias adjusted estimator 211
Median-unbiased estimator 211
Minimum covariance determinant 630, 645
Mixed model 28, 29
Mode-adjusted estimator 212
Moment generating function 733
Momentum effect 463
Moving average model 13, 294
Invertibility 296
Order q 299

Multicollinearity 52
Multifractal model 448
Multiple imputation 53, 328
Murder rate 5, 40, 42

n
NASDAQ 491
News impact curve 460
Nonlinear time series models 343
Norm (of a vector) 17

o
Order of integration 195
I(0) 195

Orthogonal complement 18
Orthonormal 17
Orthonormal (basis) matrix 17
Overfitting 406

p
Parsimony 294, 311, 312, 316, 339, 406, 408, 409,

416, 418, 429, 483
Partial correlation 384
Partially adaptive estimation 54
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Partitioned inverse 57
Peaks over threshold 489
Pie chart 797
Pivotal quantity 138
Poincaré separation theorem 237, 727
Pooled variance estimator 81
Portfolio distribution 555, 620, 662
Portfolio optimization

Equally weighted 512
FaK 600
Markowitz 510
Simulation 513
Univariate collapsing method (UCM) 516

Principle axis theorem 670
Principle components analysis (PCA) 485, 510
Probability integral transform 541
Probability of default 56
Probit 56
Profile log-likelihood 456, 661
Projection matrix 19, 23
Projection theorem 19, 389
Pseudo maximum likelihood estimator 246
Purchasing power parity 207

q
Quadratic form 12, 206, 669, 767

Bilinear 669
Generalized 675
Ratio 366, 679
Moments 695

Quantile regression 4, 55
Quasi-Bayesian prior 616
Quasi-maximum likelihood 464

r
Radial random variable 742
Random walk

with drift 192
Realized predictive log-likelihood 592

normalized sum 593, 635
Regression

Adaptive 187
Adjusted R2 10
Bonferroni method 44, 97
Coefficient of multiple determination (R2) 9

Confidence intervals 42
Controlling for 5
Design matrix 10
Forecasting 51
Gauss-Markov theorem 8
Generalized least squares (g.l.s.) 13
Heteroskedasticity 6, 50
Least squares 7
Locally disjoint broken trend model 41
Mallows’ Ck 10
Maximum modulus t intervals 44
Missing values 53
Model specification 52
Multicollinearity 52
Normal equations 7
Omitted variables 187
Ordinary least squares 7
Parameter constancy 53, 259
Partially adaptive estimation 53
Piecewise linear 41
Quantile 4, 55
Residuals
BLUS 48
LUS 48, 50
Recursive 49, 64, 365, 397

Restricted generalized least squares 33
Restricted least squares 28, 58
Ridge 52
Robust Estimation 53
Sample splitting model 54
Scheffé’s method 45, 97, 102
Simple linear 7
Structural break 41, 50, 53
Sums of squares
Explained (ESS) 8
Residual (RSS) 8, 24
Total (TSS) 8

Threshold 54
Time series 40
Time-varying linear constraints 30
Time-varying parameters 53, 259
Hildreth-Houck 261
Random walk 269
Rosenberg Return to Normalcy 277

Weighted least squares 13
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Religion 5
Response function 56
Return to Normalcy 277
Returns

Percentage log 344
RiskMetrics 469

s
S&P500 195, 473
Sample autocorrelation function 705
Sample autocorrelation function (SACF) 50
SAS 77, 98, 127, 137, 142, 454, 773
Satterthwaite’s method 140
Sausages 405
Shadows 3
Sharpe ratio 519
Shrinkage 594, 617
Signed likelihood ratio statistic 415
Singular spectrum analysis (SSA) 315
Singular value decomposition 226, 436
Sortino ratio 520
Spearman’s 𝜌 554
Spherical 739
Sphericity 740
Spillover 594
Spurious correlation 5
Spurious trend 193
Stable tail adjusted return ratio 520
State space representation 30, 53, 260, 328
Stationarity

Non-stationary process 192
Strict 192
Trend 247
Up to orderm 192
Weak 191

Stein’s lemma 767
Stochastic volatility (SV) 451, 503
Structural break 192
Studentized range distribution 99

Stylized facts 445, 474
Sub-prime crisis 448
Sufficiency 136, 198
Survivorship bias 494, 645
Synthetic assumption 464

t
Tail dependence 561, 613
Tail estimation 475
Tail index 628
Tea leaves 407
Time-varying parameters 192
Time-varying skewness 480
Transaction costs 504
proportional 508

u
Unit root
Stochastic 344, 345
structural breaks 254
Test 247

Dickey-Fuller 248
KPSS 256

Univariate collapsing method (UCM) 517

v
Value at risk (VaR) 487
Violations 490

Variation-free 11, 25
Vech 546
Vector autoregression 279
Vector error correction models 806

w
Weighted likelihood 587
White noise 188

z
Zero pole cancellation 312, 329, 330
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