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Preface

Exact Tests™ is a statistical package for analyzing continuous or categorical data by
exact methods. The goal in Exact Tests is to enable you to make reliable inferences
when your data are small, sparse, heavily tied, or unbalanced and the validity of the
corresponding large sample theory is in doubt. This is achieved by computing exact p
values for a very wide class of hypothesis tests, including one-, two-, and K- sample
tests, tests for unordered and ordered categorical data, and tests for measures of asso-
ciation. The statistical methodology underlying these exact tests is well established in
the statistical literature and may be regarded as a natural generalization of Fisher’s ex-
act test for the single 2 X 2 contingency table. It is fully explained in this user manual.
The real challenge has been to make this methodology operational through software
development. Historically, this has been a difficult task because the computational de-
mands imposed by the exact methods are rather severe. We and our colleagues at the
Harvard School of Public Health have worked on these computational problems for
over a decade and have developed exact and Monte Carlo algorithms to solve them.
These algorithms have now been implemented in Exact Tests. For small data sets, the
algorithms ensure quick computation of exact p values. If a data set is too large for the
exact algorithms, Monte Carlo algorithms are substituted in their place in order to es-
timate the exact p values to any desired level of accuracy.

These numerical algorithms are fully integrated into the IBM® SPSS® Statistics
system. Simple selections in the Nonparametric Tests and Crosstabs dialog boxes al-
low you to obtain exact and Monte Carlo results quickly and easily.
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Getting Started

The Exact Tests option provides two new methods for calculating significance levels for
the statistics available through the Crosstabs and Nonparametric Tests procedures. These
new methods, the exact and Monte Carlo methods, provide a powerful means for obtain-
ing accurate results when your data set is small, your tables are sparse or unbalanced, the
data are not normally distributed, or the data fail to meet any of the underlying assump-
tions necessary for reliable results using the standard asymptotic method.

The Exact Method

By default, IBM® SPSS® Statistics calculates significance levels for the statistics in the
Crosstabs and Nonparametric Tests procedures using the asymptotic method. This
means that p values are estimated based on the assumption that the data, given a suffi-
ciently large sample size, conform to a particular distribution. However, when the data
set is small, sparse, contains many ties, is unbalanced, or is poorly distributed, the asymp-
totic method may fail to produce reliable results. In these situations, it is preferable to cal-
culate a significance level based on the exact distribution of the test statistic. This enables
you to obtain an accurate p value without relying on assumptions that may not be met by
your data.

The following example demonstrates the necessity of calculating the p value for
small data sets. This example is discussed in detail in Chapter 2.

© Copyright IBM Corporation. 1989, 2013
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Chapter 1

Figure 1.1 shows results from an entrance examination for fire fighters in a small
township. This data set compares the exam results based on the race of the applicant.

Figure 1.1 Fire fighter entrance exam results

Test Results * Race of Applicant Crosstabulation

Count
Race of Applicant
White Black Asian Hispanic
Test Results | Pass 5 2 2
No Show 1 1
Fail 2 3 4

The data show that all five white applicants received a Pass result, whereas the results
for the other groups are mixed. Based on this, you might want to test the hypothesis that
exam results are not independent of race. To test this hypothesis, you can run the Pearson
chi-square test of independence, which is available from the Crosstabs procedure. The
results are shown in Figure 1.2.

Figure 1.2 Pearson chi-square test results for fire fighter data

Chi-Square Tests

Asymp.
Sig.
Value df (2-tailed)
Pearson 1
Chi-Square 11.556 6 .073

1. 12 cells (100.0%) have expected count less than 5.
The minimum expected count is .50.

Because the observed significance of 0.073 is larger than 0.05, you might conclude that
exam results are independent of race of examinee. However, notice that the data contains
only twenty observations, that the minimum expected frequency is 0.5, and that all 12
of the cells have an expected frequency of less than 5. These are all indications that the
assumptions necessary for the standard asymptotic calculation of the significance level
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for this test may not have been met. Therefore, you should obtain exact results. The ex-
act results are shown in Figure 1.3.

Figure 1.3  Exact results of Pearson chi-square test for fire fighter data

Chi-Square Tests

Asymp.
Sig. Exact Sig.
Value df (2-tailed) | (2-tailed)
Pearson 1
Chi-Square 11.556 6 .073 .040

1. 12 cells (100.0%) have expected count less than 5. The
minimum expected count is .50.

The exact p value based on Pearson’s statistic is 0.040, compared to 0.073 for the as-
ymptotic value. Using the exact p value, the null hypothesis would be rejected at the
0.05 significance level, and you would conclude that there is evidence that the exam
results and race of examinee are related. This is the opposite of the conclusion that
would have been reached with the asymptotic approach. This demonstrates that when
the assumptions of the asymptotic method cannot be met, the results can be unreliable.
The exact calculation always produces a reliable result, regardless of the size, distribu-
tion, sparseness, or balance of the data.

The Monte Carlo Method

Although exact results are always reliable, some data sets are too large for the exact p
value to be calculated, yet don’t meet the assumptions necessary for the asymptotic
method. In this situation, the Monte Carlo method provides an unbiased estimate of the
exact p value, without the requirements of the asymptotic method. (See Table 1.1 and
Table 1.2 for details.) The Monte Carlo method is a repeated sampling method. For any
observed table, there are many tables, each with the same dimensions and column and
row margins as the observed table. The Monte Carlo method repeatedly samples a spec-
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ified number of these possible tables in order to obtain an unbiased estimate of the true
p value. Figure 1.4 displays the Monte Carlo results for the fire fighter data.

Figure 1.4 Monte Carlo results of the Pearson chi-square test for fire fighter data

Chi-Square Tests

Monte Carlo Significance (2-tailed)

o i
Asymp. 99% Confidence Interval
Sig. Lower Upper
Value df (2-tailed) Sig. Bound Bound
1 2
Pearson 11.556 6 073 041 .036 .046
Chi-Square

1. 12 cells (100.0%) have expected count less than 5. The minimum expected count is .50.
2. Based on 10000 and seed 2000000 ...

The Monte Carlo estimate of the p value is 0.041. This estimate was based on 10,000
samples. Recall that the exact p value was 0.040, while the asymptotic p value is 0.073.
Notice that the Monte Carlo estimate is extremely close to the exact value. This demon-
strates that if an exact p value cannot be calculated, the Monte Carlo method produces
an unbiased estimate that is reliable, even in circumstances where the asymptotic p value
is not.
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When to Use Exact Tests

Calculating exact results can be computationally intensive, time-consuming, and can
sometimes exceed the memory limits of your machine. In general, exact tests can be per-
formed quickly with sample sizes of less than 30. Table 1.1 and Table 1.2 provide a
guideline for the conditions under which exact results can be obtained quickly. In Table
1.2, r indicates rows, and ¢ indicates columns in a contingency table.

Table 1.1 Sample sizes (N) at which the exact p values for nonparametric tests are computed

quickly
One-sample inference
Chi-square goodness-of-fit test N<30
Binomial test and confidence interval N <100, 000
Runs test N<20
One-sample Kolmogorov-Smirnov test N<30

Two-related-sample inference

Sign test N<50
Wilcoxon signed-rank test N<50
McNemar test N <100, 000
Marginal homogeneity test N<50

Two-independent-sample inference

Mann-Whitney test N<30
Kolmogorov-Smirnov test N<30
Wald-Wolfowitz runs test N<30

K-related-sample inference

Friedman’s test N<30
Kendall’s W N<30
Cochran’s Q test N<30

K-independent-sample inference

Median test N<50
Kruskal-Wallis test N<LI15,K<4
Jonckheere-Terpstra test N<20,K<4

Two-sample median test N <100, 000
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Table 1.2 Sample sizes (N) and table dimensions (r, ¢) at which the exact p values for

Crosstabs tests are computed quickly
2 x 2 contingency tables (obtained by selecting
chi-square)
Pearson chi-square test
Fisher’s exact test
Likelihood-ratio test

r x ¢ contingency tables (obtained by selecting
chi-square)

Pearson chi-square test

Fisher’s exact test
Likelihood-ratio test
Linear-by-linear association test

Correlations

Pearson’s product-moment correlation coefficient
Spearman’s rank-order correlation coefficient

Ordinal data

Kendall’s tau-b
Kendall’s tau-c
Somers’ d
Gamma

Nominal data

Contingency coefficients
Phi and Cramér’s V/
Goodman and Kruskal’s tau
Uncertainty coefficient

Kappa

N <100, 000
N <100, 000
N <100, 000

N<30 and min{r,c} <3
N<30 and min{r,c} <3
N<30 and min{r,c} <3
N<30and min{r,c} <3

N<20 and r<3
N<20 and r<3
N<30

N<20 and r<3

N<30 and min{r,c} <3
N<30 and min{r,c} <3
N<20 and r<3

N<30 and min{r,c} <3

N<30 andc<5
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The exact and Monte Carlo methods are available for Crosstabs and all of the Nonpara-
metric tests.

To obtain exact statistics, open the Crosstabs dialog box or any of the Nonparametric
Tests dialog boxes. The Crosstabs and Tests for Several Independent Samples dialog
boxes are shown in Figure 1.5.

Figure 1.5 Crosstabs and Nonparametric Tests dialog boxes

= Tests for Several Independent Samples

subject

Row(s):

Column(s):

dose

K
Paste

Reset

toxicity

Cancel

Help

subject

J
N

Layer 1 of 1

Ne:

gl

2]

[ Suppress tables

Exact... | ‘§tatistics... | ‘

Cells... H Format...

Test Variable List:

Grouping Variable:

[Test Type
[ kruskal-wallis H

[} Jonckheere-Terpstra

Define Range...
[ Median Exact... I

Options... I

Click here for exact tests

e Select the statistics that you want to calculate. To select statistics in the Crosstabs

dialog box, click Statistics.

e To select the exact or Monte Carlo method for computing the significance level of
the selected statistics, click Exact in the Crosstabs or Nonparametric Tests dialog box.
This opens the Exact Tests dialog box, as shown in Figure 1.6.
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Figure 1.6 Exact Tests dialog box

= Exact Tests

Cancel

® asymptotic only

 Monte Carlo

Confidence level:

¥

Number of samples: | 10000
O Exact

)

&< Time limit per test: minutes

Exact method will be used instead of Monte
Carlo when computational limits allow.

You can choose one of the following methods for computing statistics. The method you
choose will be used for all selected statistics.

Asymptotic only. Calculates significance levels using the asymptotic method. This pro-
vides the same results that would be provided without the Exact Tests option.

Monte Carlo. Provides an unbiased estimate of the exact p value and displays a confi-
dence interval using the Monte Carlo sampling method. Asymptotic results are also dis-
played. The Monte Carlo method is less computationally intensive than the exact
method, so results can often be obtained more quickly. However, if you have chosen the
Monte Carlo method, but exact results can be calculated quickly for your data, they will
be provided. See Appendix A for details on the circumstances under which exact, rather
than Monte Carlo, results are provided. Note that, within a session, the Monte Carlo
method relies on a random number seed that changes each time you run the procedure.
If you want to duplicate your results, you should set the random number seed every time
you use the Monte Carlo method. See “How to Set the Random Number Seed” on p. 9
for more information.

Confidence level. Specify a confidence level between 0.01 and 99.9. The default value
is 99.

Number of samples. Specify a number between 1 and 1,000,000,000 for the number
of samples used in calculating the Monte Carlo approximation. The default is 10,000.
Larger numbers of samples produce more reliable estimates of the exact p value but
also take longer to calculate.
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Exact. Calculates the exact p value. Asymptotic results are also displayed. Because com-
puting exact statistics can be time-consuming, you can set a limit on the amount of time
allowed for each test.

Time limit per test. Enter the maximum time allowed for calculating each test. The
time limit can be between 1 and 9,999,999 minutes. The default is five minutes. If the
time limit is reached, the test is terminated, no exact results are provided, and the ap-
plication proceeds to the next test in the analysis. If a test exceeds a set time limit of
30 minutes, it is recommended that you use the Monte Carlo, rather than the exact,
method.

Calculating the exact p value can be memory-intensive. If you have selected the exact
method and find that you have insufficient memory to calculate results, you should first
close any other applications that are currently running in order to make more memory
available. If you still cannot obtain exact results, use the Monte Carlo method.

Additional Features Available with Command Syntax

Command syntax allows you to:

e Exceed the upper time limit available through the dialog box.

¢ Exceed the maximum number of samples available through the dialog box.
e Specify values for the confidence interval with greater precision.

Nonparametric Tests

As of release 6.1, two new nonparametric tests became available, the Jonckheere-
Terpstra test and the marginal homogeneity test. The Jonckheere-Terpstra test can be
obtained from the Tests for Several Independent Samples dialog box, and the mar-
ginal homogeneity test can be obtained from the Two-Related-Samples Tests dialog
box.

How to Set the Random Number Seed

Monte Carlo computations use the pseudo-random number generator, which begins with
a seed, a very large integer value. Within a session, the application uses a different seed
each time you generate a set of random numbers, producing different results. If you want
to duplicate your results, you can reset the seed value. Monte Carlo output always dis-
plays the seed used in that analysis, so that you can reset the seed to that value if you



want to repeat an analysis. To reset the seed, open the Random Number Seed dialog box
from the Transform menu. The Random Number Seed dialog box is shown in Figure 1.7.

Figure 1.7 Random Number Seed dialog box

@ Setseedto:  [2000000
" Bandom Seed

0K I Paste | Cancell Help |

Set seed to. Specify any positive integer value up to 999,999,999 as the seed value. The
seed is reset to the specified value each time you open the dialog box and click on OK.
The default seed value is 2,000,000.

To duplicate the same series of random numbers, you should set the seed before you gen-
erate the series for the first time.

Random seed. Sets the seed to a random value chosen by your system.

Pivot Table Output

With this release of Exact Tests, output appears in pivot tables. Many of the tables shown
in this manual have been edited by pivoting them, by hiding categories that are not rel-
evant to the current discussion, and to show more decimal places than appear by default.
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A fundamental problem in statistical inference is summarizing observed data in terms
of a p value. The p value forms part of the theory of hypothesis testing and may be
regarded an index for judging whether to accept or reject the null hypothesis. A very
small p value is indicative of evidence against the null hypothesis, while a large p value
implies that the observed data are compatible with the null hypothesis. There is a long
tradition of using the value 0.05 as the cutoff for rejection or acceptance of the null
hypothesis. While this may appear arbitrary in some contexts, its almost universal
adoption for testing scientific hypotheses has the merit of limiting the number of false-
positive conclusions to at most 5%. At any rate, no matter what cutoff you choose, the
p value provides an important objective input for judging if the observed data are
statistically significant. Therefore, it is crucial that this number be computed
accurately.

Since data may be gathered under diverse, often nonverifiable, conditions, it is
desirable, for p value calculations, to make as few assumptions as possible about the
underlying data generation process. In particular, it is best to avoid making
assumptions about the distribution, such as that the data came from a normal
distribution. This goal has spawned an entire field of statistics known as nonparametric
statistics. In the preface to his book, Nonparametrics: Statistical Methods Based on
Ranks, Lehmann (1975) traces the earliest development of a nonparametric test to
Arbuthnot (1710), who came up with the remarkably simple, yet popular, sign test. In
this century, nonparametric methods received a major impetus from a seminal paper by
Frank Wilcoxon (1945) in which he developed the now universally adopted Wilcoxon
signed-rank test and the Wilcoxon rank-sum test. Other important early research in the
field of nonparametric methods was carried out by Friedman (1937), Kendall (1938),
Smirnov (1939), Wald and Wolfowitz (1940), Pitman (1948), Kruskal and Wallis
(1952), and Chernoff and Savage (1958). One of the ecarliest textbooks on
nonparametric statistics in the behavioral and social sciences was Siegel (1956).

The early research, and the numerous papers, monographs and textbooks that
followed in its wake, dealt primarily with hypothesis tests involving continuous
distributions. The data usually consisted of several independent samples of real
numbers (possibly containing ties) drawn from different populations, with the
objective of making distribution-free one-, two-, or K-sample comparisons, performing
goodness-of-fit tests, and computing measures of association. Much earlier, Karl
Pearson (1900) demonstrated that the large-sample distribution of a test statistic, based
on the difference between the observed and expected counts of categorical data

11
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generated from multinomial, hypergeometric, or Poisson distributions is chi-square.
This work was found to be applicable to a whole class of discrete data problems. It was
followed by significant contributions by, among others, Yule (1912), R. A. Fisher
(1925, 1935), Yates (1984), Cochran (1936, 1954), Kendall and Stuart (1979), and
Goodman (1968) and eventually evolved into the field of categorical data analysis. An
excellent up-to-date textbook dealing with this rapidly growing field is Agresti (1990).

The techniques of nonparametric and categorical data inference are popular mainly
because they make only minimal assumptions about how the data were generated—
assumptions such as independent sampling or randomized treatment assignment. For
continuous data, you do not have to know the underlying distribution giving rise to the
data. For categorical data, mathematical models like the multinomial, Poisson, or
hypergeometric model arise naturally from the independence assumptions of the sampled
observations. Nevertheless, for both the continuous and categorical cases, these methods
do require one assumption that is sometimes hard to verify. They assume that the data set
is large enough for the test statistic to converge to an appropriate limiting normal or chi-
square distribution. P values are then obtained by evaluating the tail area of the limiting
distribution, instead of actually deriving the true distribution of the test statistic and then
evaluating its tail area. P values based on the large-sample assumption are known as
asymptotic p values, while p values based on deriving the true distribution of the test
statistic are termed exact p values. While exact p values are preferred for scientific
inference, they often pose formidable computational problems and so, as a practical
matter, asymptotic p values are used in their place. For large and well-balanced data sets,
this makes very little difference, since the exact and asymptotic p values are very similar.
But for small, sparse, unbalanced, and heavily tied data, the exact and asymptotic p values
can be quite different and may lead to opposite conclusions concerning the hypothesis of
interest. This was a major concern of R. A. Fisher, who stated in the preface to the first
edition of Statistical Methods for Research Workers (1925):

The traditional machinery of statistical processes is wholly unsuited to the needs of
practical research. Not only does it take a cannon to shoot a sparrow, but it misses the
sparrow! The elaborate mechanism built on the theory of infinitely large samples is not
accurate enough for simple laboratory data. Only by systematically tackling small
problems on their merits does it seem possible to apply accurate tests to practical data.
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The example of a sparse 3 X9 contingency table, shown in Figure 2.1, demonstrates
that Fisher’s concern was justified.

Figure 2.1 Sparse 3 x 9 contingency table

VAR1 * VAR2 Crosstabulation

Count
VAR2
1 2 3 4 5 6 7 8 9
VAR1 |1 7 1 1
2 1 1 1 1 1 1 1
3 8

The Pearson chi-square test is commonly used to test for row and column independence.
For the above table, the results are shown in Figure 2.2.

Figure 2.2 Pearson chi-square test results for sparse 3 x 9 table

Chi-Square Tests

Asymp.
Sig.
Value df (2-tailed)
Pearson 1
Chi-Square 22.286 16 134

1-25 cells (92.6%) have expected count less than 5.
The minimum expected count is .29.

The observed value of the Pearson’s statistic is X2 = 22.29, and the asymptotic p value
is the tail area to the right of 22.29 from a chi-square distribution with 16 degrees of
freedom. This p value is 0.134, implying that it is reasonable to assume row and column
independence. With Exact Tests, you can also compute the tail area to the right of 22.29
from the exact distribution of Pearson’s statistic. The exact results are shown in Figure
2.3.

Figure 2.3  Exact results of Pearson chi-square test for sparse 9 x 3 table

Chi-Square Tests

Asymp.
Sig. Exact Sig.
Value df (2-tailed) | (2-tailed)
Pearson 1
Chi-Square 22.286 16 134 .001

1. 25 cells (92.6%) have expected count less than 5. The
minimum expected count is .29.
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The exact p value obtained above is 0.001, implying that there is a strong row and col-
umn interaction. Chapter 9 discusses this and related tests in detail.

The above example highlights the need to compute the exact p value, rather than
relying on asymptotic results, whenever the data set is small, sparse, unbalanced, or
heavily tied. The trouble is that it is difficult to identify, a priori, that a given data set
suffers from these obstacles to asymptotic inference. Bishop, Fienberg, and Holland
(1975), express the predicament in the following way.

The difficulty of exact calculations coupled with the availability of normal approxi-
mations leads to the almost automatic computation of asymptotic distributions and
moments for discrete random variables. Three questions may be asked by a potential
user of these asymptotic calculations:

1. How does one make them? What are the formulas and techniques for getting the
answers?

2. How does one justify them? What conditions are needed to ensure that these for-
mulas and techniques actually produce valid asymptotic results?

3. How does one relate asymptotic results to pre-asymptotic situations? How close
are the answers given by an asymptotic formula to the actual cases of interest
involving finite samples?

These questions differ vastly in the ease with which they may be answered. The
answer to (1) usually requires mathematics at the level of elementary calculus.
Question (2) is rarely answered carefully, and is typically tossed aside by a remark of
the form °...assuming that higher order terms may be ignored...” Rigorous answers to
question (2) require some of the deepest results in mathematical probability theory.
Question (3) is the most important, the most difficult, and consequently the least
answered. Analytic answers to question (3) are usually very difficult, and it is more
common to see reported the result of a simulation or a few isolated numerical
calculations rather than an exhaustive answer.

The concerns expressed by R. A. Fisher and by Bishop, Fienberg, and Holland can be
resolved if you directly compute exact p values instead of replacing them with their
asymptotic versions and hoping that these will be accurate. Fisher himself suggested the
use of exact p values for 2 x 2 tables (1925) as well as for data from randomized
experiments (1935). Exact Tests computes an exact p value for practically every
important nonparametric test on either continuous or categorical data. This is achieved
by permuting the observed data in all possible ways and comparing what was actually
observed to what might have been observed. Thus exact p values are also known as
permutational p values. The following two sections illustrate through concrete examples
how the permutational p values are computed.
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Pearson Chi-Square Test for a 3 x 4 Table
Figure 2.4 shows results from an entrance examination for fire fighters in a small township.
Figure 2.4  Fire fighter entrance exam results

Test Results * Race of Applicant Crosstabulation

Count
Race of Applicant
White Black Asian Hispanic
Test Results | Pass 5 2 2
No Show 1
Fail 2 3 4

The table shows that all five white applicants received a Pass result, whereas the results
for the other groups are mixed. Is this evidence that entrance exam results are related to
race? Note that while there is some evidence of a pattern, the total number of observa-
tions is only twenty. Null and alternative hypotheses might be formulated for these data
as follows:

Null Hypothesis: Exam results and race of examinee are independent.
Alternative Hypothesis: Exam results and race of examinee are not independent.

To test the hypothesis of independence, use the Pearson chi-square test of independence,
available in the Crosstabs procedure. To get the results shown in Figure 2.5, the test was
conducted at the 0.05 significance level:

Figure 2.5 Pearson chi-square test results for fire fighter data

Chi-Square Tests

Asymp.
Sig.
Value df (2-tailed)
Pearson 1
Chi-Square 11.556 6 .073

1. 12 cells (100.0%) have expected count less than 5.
The minimum expected count is .50.

Because the observed significance of 0.073 is larger than 0.05, you might conclude that
the exam results are independent of the race of the examinee. However, notice that table
reports that the minimum expected frequency is 0.5, and that all 12 of the cells have an
expected frequency that is less than five.

That is, the application warns you that all of the cells in the table have small expected
counts. What does this mean? Does it matter?
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Chapter 2

Recall that the Pearson chi-square statistic, X 2, is computed from the observed and
the expected counts under the null hypothesis of independence as follows:

r c RV
2 (x;j—X5) -
X = —_—— Equation 2.1
DI D .
i=1j=1 4

where x;; is the observed count, and
)Acij = (ml.nj)/N Equation 2.2

is the expected countin cell (7, j) ofan » X ¢ contingency table whose row margins are
(m;, my,...m,), column margins are (n,,Hn,,...n.), and total sample size is N.
Statistical theory shows that, under the null hypothesis, the random variable X
asymptotically follows the theoretical chi-square distribution with (r—1) X (c—1)
degrees of freedom. Therefore, the asymptotic p value is

Pr(yx” > 11.55556) = 0.07265 Equation 2.3

where X2 is a random variable following a chi-square distribution with 6 degrees of
freedom.

The term asymptotically means “given a sufficient sample size,” though it is not easy
to describe the sample size needed for the chi-square distribution to approximate the
exact distribution of the Pearson statistic.

One rule of thumb is:

e The minimum expected cell count for all cells should be at least 5 (Cochran, 1954).
The problem with this rule is that it can be unnecessarily conservative.

Another rule of thumb is:

e For tables larger than 2 x 2, a minimum expected count of 1 is permissible as long as
no more than about 20% of the cells have expected values below 5 (Cochran, 1954).

While these and other rules have been proposed and studied, no simple rule covers all
cases. (See Agresti, 1990, for further discussion.) In our case, considering sample size,
number of cells relative to sample size, and small expected counts, it appears that relying
on an asymptotic result to compute a p value might be problematic.

What if, instead of relying on the distribution of Xz’ it were possible to use the true
sampling distribution of X* and thereby produce an exact p value? Using Exact Tests,
you can do that. The following discussion explains how this p value is computed, and
why it is exact. For technical details, see Chapter 9. Consider the observed 3 x 4
crosstabulation (see Figure 2.4) relative to a reference set of other 3 x 4 tables that are
like it in every possible respect, except in terms of their reasonableness under the null
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hypothesis. It is generally accepted that this reference set consists of all 3 x 4 tables of
the form shown below and having the same row and column margins as Figure 2.4. (see,
for example, Fisher, 1973, Yates, 1984, Little, 1989, and Agresti, 1992).

X1 X12 X13 X14 9
X21 X2 X23 X24 2
X3 X33 X33 X34 9

5 5 5 5 20

This is a reasonable choice for a reference set, even when these margins are not naturally
fixed in the original data set, because they do not contain any information about the null
hypothesis being tested. The exact p value is then obtained by identifying all of the
tables in this reference set for which Pearson’s statistic equals or exceeds 11.55556, the
observed statistic, and summing their probabilities. This is an exact p value because the
probability of any table, {x;}, in the above reference set of tables with fixed margins
can be computed exactly under the null hypothesis. It can be shown to be the
hypergeometric probability

I _ n M. _ m)
P({xl.].}) = =l =l Equation 2.4
' NI, (T !

For example, the table

5 2 2 0 9
0 0 0 2 2
0 3 3 3 9
5 5 5 5 20

is a member of the reference set. Applying Equation 2.1 to this table yields a value of
X* = 14.67 for Pearson’s statistic. Since this value is greater than the value
X~ = 11.55556, this member 